
REVIEWER 2

Summary

This paper focuses on the use of several −mostly new for hydrology− concepts and

methods from the machine and deep learning fields for uncertainty quantification in

rainfall-runoff modelling. Specifically, it presents a large-scale application of these

concepts and methods under a new framework. This large-scale application can be

used as a guide for future works wishing to apply these (or similar) concepts and

methods.

GENERAL COMMENTS

Overall, I believe that the paper is meaningful, very interesting, and well-prepared in

general terms with room for improvements.

I recommend major revisions. To my view, these revisions should (mainly but not

exclusively) be made in the following key directions for the paper to reach its best

possible shape:

a) Key direction #1 (for details, see specific comments #1,2): To my view, the work’s

background should be better covered. In fact, to my knowledge there are two very

relevant published studies, additionally to the studies already included in the

“Introduction” section, that use LSTMs for uncertainty assessment in hydrological

modelling. Also, there are research works presenting machine learning concepts and

algorithms for uncertainty assessment in hydrological modelling (e.g., for

probabilistic hydrological post-processing), including some few ones that conduct

large-scale benchmark experiments using data from hundreds of catchments and

several machine learning models (thereby also introducing benchmark procedures,



which I agree that are very rare in the field and very important). Further, I would say

that the connection with the machine and deep learning fields needs to be better

highlighted as well.

We will respond to these points in specific comments below, where the reviewer

gives details about which papers and methods they are referring to.

b) Key direction #2 (for details, see specific comment #3): I agree with the main point

raised by the other reviewer (Dr John Quilty). To my view, only through a comparison

of the four deep learning methods of the paper to other statistical and machine

learning methods providing probabilistic predictions (with the latter methods

playing the role of benchmarks) will the paper fully achieve its aims in terms of

benchmarking. I believe that this is absolutely necessary, as (i) the paper devotes a lot

of space discussing its benchmarking contribution (but easier-to-apply methods are

currently missing from its contents, while they have already been exploited for

probabilistic hydrological modelling) and, (ii) the paper indeed offers interesting

results which would mean more to the reader if compared to the results provided by

easier-to-apply statistical and machine learning methods.

The reviewer has fundamentally misunderstood our aims for benchmarking. What

the reviewer suggests is antithetical to what we are trying to do in terms of

advancing benchmarking. We explained this more fully in response to reviewer #1’s

comment, however to summarize here, the reason that we feel strongly about not

doing ad hoc, one-off benchmarking is that it is generally impossible for authors to

correctly implement methods that they are not experts in (and are motivated to beat).

We see this consistently in papers where people benchmark against methods that we

are experts in — they almost never implement these methods correctly. This is why

modern scientific disciplines use community benchmarking (which has some of its

own challenges). The choice to *NOT* benchmark against an ad hoc selection of ad

hoc implemented methods was conscious and deliberate — doing so goes against

what we are trying to do with setting up a community benchmark on an open, public

community dataset. Doing what the reviewer suggests would perpetuate the exact

problem that we are trying to address.



Also, we are not aware of any UE methods that are easier to apply. It is possible to

design very simple UE methods around existing hydrological models, but in these

cases you still have to calibrate the hydrology model, and then a�erward apply some

statistical procedure. Here, we do all this in one go (and we do it with the current

best-performing hydrological model that has been published). All we have to do here

is add a probabilistic head to the model (less than 10 lines of code), and change the

loss function (a few lines of code), and then use the same training procedure that any

LSTM rainfall-runoff model uses. How could there possibly be any method that is

simpler than this (either conceptually, computationally, or in terms of the effort it

takes to apply)?

c) Key direction #3 (for details, see specific comment #4): To my view, proper scores

(see e.g., Gneiting and Ra�ery 2007) should necessarily be computed for assessing the

issued probabilistic predictions. Currently, there is an important −from a practical

point of view− aspect of this work’s large-scale results that is not assessed. In fact,

the selected scores cannot directly and objectively inform the forecaster-practitioner

which method to prefer (and when), while proper scores can.

We will provide a more detailed answer to this comment in our answer to specific

comment 4 of reviewer 2.



SPECIFIC COMMENTS

1) To my view, the biggest contribution of this work is that it guides the reader on

how to use and combine (mostly) new deep learning concepts and methods for

uncertainty assessment in hydrological modelling (type-a contribution), while the

introduction of a general benchmarking framework for uncertainty assessment in

hydrological modelling is (as also mentioned in the “Introduction” section) a

secondary (but still important) contribution (type-b contribution). For both these

types of contribution and mainly for the former one, a better coverage of the study’s

background is required. For instance, in lines 15 and 16 it is written that “the

majority of machine learning (ML) and Deep Learning (DL) rainfall–runoff studies do

not provide uncertainty estimates (e.g., Hsu et al., 1995; Kratzert et al., 2019b, 2020;

Liu et al., 2020; Feng et al., 2020)”. This is inarguably true; however, there are

machine and deep learning rainfall-runoff studies (mostly machine learning

rainfall-runoff studies) that do provide uncertainty estimates, while some of them

also involve large-scale benchmarking across hundreds of catchments and also use

proper scoring rules (together with more interpretable scores) to allow practical

comparisons. In fact, this study is not the first one proposing and/or extensively

testing machine learning algorithms for probabilistic rainfall-runoff modelling and,

to my view, this should be somehow recognized in the “Introduction” section during

revisions. In this latter section, information on uncertainty quantification in

hydrological modelling using machine and deep learning algorithms is currently

scarce, although other topics (even less relevant ones) are well-covered. Especially as

regards LSTM-based methods for uncertainty quantification, to my knowledge there

are two published works proposing such methods in hydrological modelling and

forecasting (Zhu et al. 2020; Althoff et al. 2021). To my view, these studies should

necessarily be viewed as part of this work’s background.

The reviewer mentioned that there are UE benchmarking studies in hydrology using

large-scale, public datasets. Alas, no examples are given. But, if any such studies exist

that we did not cover, we would really like to know about them — and we would

include them as reference, as we did with the other UE studies we cite.



We will include Althoff et al. (2021) in the revision — this paper was published a�er

we completed writing this paper. It is a single-basin study (which is likely not

appropriate for deep learning), but it is directly relevant. We already cited the work

by Zhu et al. (2020), but we cited their primary methodological paper, not the

derivative study that the reviewer mentions here.

In view of specific comment 4 by reviewer 2 it is perhaps also worth mentioning that

neither of these publication reports CPRS; and Zhu et al. (2020) specifically do not

make use of any strictly proper scoring.

2) Moreover, I would say that the connection with the machine and deep learning

fields needs to be further highlighted for the paper to become more balanced with

respect to its nature. Perhaps, this could be established by referring the reader in

more places in the manuscript to the original sources of the concepts and algorithms,

and by adding a few examples of research works adopting (some of) the same

concepts and methods for non-hydrological applications (and possibly by

highlighting features that are especially meaningful for rainfall-runoff modelling

applications).

All original sources for all methods were cited. If the reviewer sees that we missed

one, we will definitely fix it.

3) I should also note that I agree with the main point raised by the other reviewer (Dr

John Quilty). As the paper aims to establish benchmarks and benchmark procedures

for future works (and as it emphasizes its practical contribution in terms of

benchmarking), it would be essential to also provide a comparison with respect to

easier-to-apply methods from the statistical and machine learning fields. Such

methods have already been applied in the field (mainly for probabilistic hydrological

post-processing), and include (but are not limited to) the following ones:

linear-in-parameters quantile regression, quantile regression forests, quantile

regression neural networks and gradient boosting machine.

https://link.springer.com/article/10.1007%2Fs00477-021-01980-8
https://doi.org/10.1007/s00477-020-01766-4
https://doi.org/10.1007/s00477-020-01766-4


This specific comment is largely covered by our responses to reviewer #1. In short:

As the title suggests this paper tries to establish baselines for benchmarking. As such

the suggestion is not in line with our intention for the framework and the baselines.

Further, in our eyes there are no simpler UE methods available that are the ones that

we propose. We cover post-processing in the paper already: We cited several seminal

post-processing papers and discussed the advantages of generative probabilistic

methods vs. post-processing beginning in line 20 of the manuscript. Be it as it may,

we view it as more complicated than building probabilistic models directly.

Quantile-regression is a form of regression and does not constitute an approach as

such. Random forests and gradient boosted models are not necessarily simpler.

Further, we already know that XGboost does not constitute rainfall-runoff models

that are as good as LSTMs (see: Gauch, Mai, Lin; 2021). Even if we were to adopt the

approach of creating our own ad hoc benchmarks (which, again, goes directly against

the point we are making about community benchmarking), none of these suggestions

are good examples.

4) Furthermore, in lines 94−99 it is written that “the best form metrics for comparing

distributional predictions would be to use proper scoring rules, such as likelihoods

(see, e.g., Gneiting and Ra�ery, 2007). Likelihoods, however do not exist on an

absolute scale (it is generally only possible to compare likelihoods between models),

which makes these difficult to interpret (although, see: Weijs et al., 2010).

Additionally, these can be difficult to compute with certain types of uncertainty

estimation approaches, and so are not completely general for future benchmarking

studies. We therefore based the assessment of reliability on probability plots, and

evaluated resolution with a set of summary statistics”. However, to my view proper

scores (Gneiting and Ra�ery 2007) should necessarily be computed in this paper, as at

the moment its large-scale results cannot be directly useful to

forecasters-practitioners (despite the fact that the currently computed scores provide

information that could be also of interest to the reader). For example, the continuous

ranked probability score—CRPS score could be computed across multiple quantiles.

As these scores are indeed difficult to interpret when stated in absolute terms, in the

literature they are mostly presented in relative terms by computing relative

improvements offered by an algorithm with respect to another (benchmark).

https://www.sciencedirect.com/science/article/abs/pii/S136481522030983X


Therefore, one of the compared methods could serve as a benchmark for the others,

and the mean (or median) relative improvements could be computed. These

computations will reveal the method that forecasters would choose among the four

compared ones.

We admit that we did not emphasize the general deficiencies of the (single)

metrics/statistics/distances enough in this paper. Taken alone every metric has

deficiencies and assumptions underlying it. And, in general we did not want to imply

that any of the proposed metrics are fixed, since it is very difficult to define a

meaningfully complete set of metrics for hydrological (probabilistic) predictions —

and every application will have its own unique purpose. Thus, we never wanted to

attempt to define a universal set of benchmarking metrics here. As a matter of fact,

we hope that the proposed metrics will be adapted, refined, exchanged and

complemented as benchmarking efforts will be  adopted by the community. In this

way, maybe at some point, canonical metrics for UE benchmarking will emerge. But,

we definitely would not dare to claim to do this. We discussed this briefly in the

conclusion of the current version of the manuscript. However given the reading by

the reviewer we now came to believe that we should also add a broad disclaimer

when introducing the method and deepen the discussion. We will do so in the

revision.

Regarding the proper scoring rules (sensu Gneiting and Ra�ey, 2007), we have to say

that we purposefully did not report them. This choice was made consciously and not

out of laziness or oversight. The reasoning for doing so is provided in the portion of

text that the reviewer cited. And, regarding CRPS specifically, one generally

distinguishes between the continuous ranked probability score (CRPS) and the

continuous ranked probability skill score (o�en abbreviated as CRPSS or CRPS

score). The former integrates over the different quantiles by construction (which

might be what the reviewer tries to indicate in his statement?). The latter is the usual

choice in literature for providing a more interpretable score, by using the CRPS in

the same style that the NSE uses variances of point estimates. This use does however

require sensible baselines, such as the ones proposed in our contribution. Our

approaches conceptually allow us to evaluate the performance in terms of CRPs (and

also in terms of likelihood). However, computing meaningful scores is not as simple

https://www.tandfonline.com/doi/abs/10.1198/016214506000001437?casa_token=rGPzAESSxcsAAAAA:Jf0VHOLV73j8il9zSw0ltwD-KIrtqAQs914Eqdc5lXXfax-oTmi626DlGcVQ510apa02rO_RO0QD


as the reviewer thinks: Whenever a probability density function is discretized,

information is lost (see for example: Gupta et al., 2021). Intuitively, (a) if the bins are

very wide, a bias is introduced because the difference between the mass of the bin

and of the actual continuous distribution becomes very large; (b) if the bins are very

thin, almost no data can be used to estimate its properties, which induces a large

variance in the estimation. In the hydrological context specifically, small bin-widths

should also be distrusted because of the inherent uncertainty of the variables. Apart

from a careful choice of bin-sizes, it is therefore in practice o�en more appropriate

to evaluate the properties of the UE approaches with regard to different metrics to

derive at a nuanced, paretian evaluation (see for example: Kumar, Lia and Ma, 2020).

This is what we choose to do in this paper.

Finally, we want to point out that CRPS are not common in hydrology. To

substantiate this claim, we did a literature review to provide a list of publications

that assess UE approaches in a hydrological context. The list is not exhaustive, but

we include a larger set of topics and settings than considered in our manuscript.

Notably, it includes all referenced sources by the reviewer himself, which did not

report proper scoring rules. In summary, from 38 references only 5 report proper

proper scores; and these also examine the performance in terms of probability plots

(or metrics derived thereof) and resolution.

1. Althoff et al. (2021) primarily use point-prediction metrics for evaluation, but

also percentage of coverage (related to the probability plot), average width of

the uncertainty intervals (i.e., a single statistic for the resolution), and average

interval score (a proper scoring rule, but nut CRPRS). They also use a set of

ad-hoc tests to get an intuition about the uncertainty estimation capacity.

2. Abbasour et al. (2015) report the performance in terms of point-metrics, and

show the 95% quantiles visually within hydrographs.

3. Ajami et al. (2007) count the number of observations within the 95% prediction

interval (i.e. a single point on the probability plot) and show visual evidence of

their approach in the form of hydrographs.

4. Berthet et al (2020) report CRPS scores, but since they found them so

uninformative they also evaluate in terms of the probability-plot, the

sharpness and point-metrics (as we do).

https://www.mdpi.com/1099-4300/23/6/740
https://arxiv.org/abs/1909.10155
https://link.springer.com/article/10.1007/s00477-021-01980-8
https://www.sciencedirect.com/science/article/pii/S0022169415001985?via%3Dihub
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2005WR004745
https://hess.copernicus.org/articles/24/2017/2020/


5. Beven (1993) shows bounds for specific events.

6. Beven and Binley (2014) show the 90% quantiles for individual events.

7. Beven and Smith (2015) report the event-based coverage of the 95% prediction

intervals (related to the probability plot).

8. Bogner and Pappenberger (2011) report metrics for point-predictions, CRPS

scores (which they just interpret in terms of accuracy), and probability plots

(together with derived summary statistics).

9. Coxon et al (2015) evaluate the uncertainty in terms of bound-distances

(related to precision statistics) and report the performance of the

point-estimates.

10. Dogulu et al. (2015) report UE estimation performance in terms of prediction

interval coverage probability (related to the probability plot), mean prediction

interval (related to the precision statistics), and average relative interval length

related to the precision statistics).

11. Gopalan et al. (2019) report point-prediction metrics, p-factors (related to

coverage, thus to the probability plot) and simulation uncertainty indices (an

improper score, related to the width of the quantiles).

12. Huart and Mailhot (2008) show hydrographs and dotty-plots.

13. Kavetski et al. (2006) report RMSE and standard deviation and show the

prediction bounds visually using hydrographs.

14. Liu et al (2005) show dotty plots, and provide a visual inspection for specific

events.

15. Kim et al. (2020) report CRPS scores, together with probability plots and rank

histograms.

16. Mantovan and Todini (2006) report percentiles of MSE values for their derived

posteriors.

17. McMillan et al. (2010) use a rank histogram (similar to our deviation plot) as

primary diagnostic tool. They also show exemplary hydrographs with

uncertainty bounds.

18. Montanari and Koutsoyiannis (2012) report performance in terms of the

probability-plot and show some exemplary hydrographs.

https://www.sciencedirect.com/science/article/abs/pii/030917089390028E
https://onlinelibrary.wiley.com/doi/full/10.1002/hyp.10082
https://ascelibrary.org/doi/full/10.1061/%28ASCE%29HE.1943-5584.0000991
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2010WR009137
https://doi.org/10.1002/2014WR016532
https://hess.copernicus.org/articles/19/3181/2015/
https://www.sciencedirect.com/science/article/pii/S0022169419309308
https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2007WR005949
https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2005WR004368
https://hess.copernicus.org/articles/9/347/2005/
https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019WR026262
https://www.sciencedirect.com/science/article/pii/S0022169406002162
https://doi.org/10.1002/hyp.7587
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2011WR011412


19. Murphy and Winkler (1984) discuss the utility and usage of the probability plot

for weather forecasting. They are one of the earliest sources that we are aware

of.

20. Mustafa et al. (2019) do not evaluate the predictive uncertainty as such.

21. Papacharalampous, Tyralis, and Langousis et al. (2019) use proper scores, but

only report their relative performance with respect to an arbitrary benchmark

model (for the sake of clarity). They also report reliability scores (related to the

probability plot), the average width of the prediction interval (related to our

precision statistics).

22. Schoups and Vrugt (2010) report the UE performance in terms of probability

plots.

23. Shrestha and Solomatine (2008) report interval coverage probability (related to

the probability plot) and mean prediction interval (related to our precision

statistics). They use a derivative of the probability plot to relate model error

with probability of occurrence, as well as the model residuals in dependence

of the input variables.

24. Shrestha and Solomatine (2009) use a probability plot and the mean size of the

prediction intervals. They also show cumulative densities for specific events.

25. Shrestha, Kayastha, and Solomatine (2009) report interval coverage probability

(related to the probability plot) and mean prediction interval (related to our

precision statistics). They also show the 90% prediction intervals for specific

events.

26. Shortridge, Guikema, and Zaitchik (2016) do not use explicit diagnostics to

assess the UE estimation capacity, but use a scenario based approach.

27. Srivastav, Sudheer, and Chaubey (2007) show the quantiles within hydrographs

for specific events.

28. Teweldebrhan, Burkhart, and Schuler (2018) report point-metrics, critical

success index (similar to coverage ratio, thus related to the probability plot)

and show some exemplary hydrographs.

29. Tian et al. (2018) report point-estimation metrics, average size of the

uncertainty interval (related to our precision statistics) and the coverage ratio

differentUE quantiles (related to the probability plot).

https://www.tandfonline.com/doi/abs/10.1080/01621459.1984.10478075
https://hess.copernicus.org/articles/23/2279/2019/
https://www.mdpi.com/2073-4441/11/10/2126
https://doi.org/10.1029/2009WR008933
https://www.tandfonline.com/doi/abs/10.1080/15715124.2008.9635341?casa_token=uKOFyFfat14AAAAA:0RECYL_xy31AGF_Q_7F6OctagyDAcq7Nix-mNeQbWs2N9xV5kwoAdQeT_tRyTL1EQERnNjS5W92X
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2008WR006839
https://hess.copernicus.org/articles/13/1235/2009/
https://hess.copernicus.org/articles/20/2611/2016/
https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2006WR005352
https://hess.copernicus.org/articles/22/5021/2018/
https://doi.org/10.3390/w10111655


30. Thyer et al. (2009) report the uncertainty estimation performance in terms of

the probability plots.

31. Tolson and Shoemaker (2008) show prediction bounds explicitly.

32. Vrugt et al. (2005) report point-estimation metrics together with error

distribution plots.

33. Vrugt et al. (2008) report point-estimation metrics, show the obtained bounds

over the training and validation periods, and the standard deviation of the

estimated parameters.

34. Woldemeskel et al. (2018) report CRPSS (a scoring rule), a probability plot

derivative, and the 99% interquartile range (related to our precision statistics).

The authors also show the 98% quantiles for specific events.

35. Westerberg and McMillan (2015) show individual runs, and quantile

deviations (similar in kind to our deviation plot).

36. Zink et al. (2017) report the coefficient of variation and normalized 5%-95%

quantile ranges (both related to our precision statistics).

37. Zhu et al. (2020) primarily use point-prediction metrics and visually inspect

the uncertainty estimation capacities of the model.

38. Vaysse and Lagacherie (2017) report point-prediction metrics in conjunction

with probability plots.

5) Also, my general feeling is that the type-b contribution of the paper (see specific

comment #1) is emphasized somewhat more than its type-a contribution (see again

specific comment #1) throughout the paper. To my view, the opposite would be more

befitting to the contents of the paper. In any case, the type-a contribution could at

least be further discussed in the “Conclusions and Outlook” section.

Since the reviewer gave no reason or explanation as to why they hold this opinion it

is difficult for us to decide how (or whether) to act on this comment. What content is

missing from the conclusions and outlook section? Just asking to “add more” is not

helpful.

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2008WR006825
https://doi.org/10.1029/2007WR005869
https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2004WR003059
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2007WR006720
https://hess.copernicus.org/articles/22/6257/2018/
https://doi.org/10.5194/hess-19-3951-2015
https://hess.copernicus.org/articles/21/1769/2017/
https://link.springer.com/article/10.1007/s00477-020-01766-4
https://www.sciencedirect.com/science/article/pii/S001670611631059X?casa_token=z1EqEBmOWJAAAAAA:4zegtkw7aeUgs4gplSDXS_hQHPbFTHHcTHGwCTAy4h2lSODmven-wDuMuSoej5LfIMDrks92HMg


6) Moreover, the following lines (and other similar statements) do not describe the

literature accurately (as some existing works on uncertainty assessment in

hydrological modelling and forecasting offer benchmarks and benchmarking

procedures; see also specific comment #1) and could be rephrased a bit (or removed)

to recognize the relevant work made so far in the field:

1. … “while standardized community benchmarks are becoming an increasingly

important part of hydrological model development and research, similar tools

for benchmarking uncertainty estimation are lacking” (lines 3 and 4).

2. “We struggled with finding suitable benchmarks for the DL uncertainty

estimation approaches explored here” (lines 51 and 52).

3. “Note that from the references above only Berthet et al. (2020) focused on

benchmarking uncertainty estimation strategies, and then only for assessing

postprocessing approaches” (lines 55−57).

4. “However, as of now, there is no way to assess different uncertainty estimation

strategies for general or particular setups” (lines 332 and 333).

To our knowledge, all of the above quoted statements from the paper are correct. The

reviewer provides no references that do any of these things — the reviewer only

asserts that such references exist. We looked extensively for such references and

found none.

The requirements for a suitable, standardized benchmark are (Nearing et al., 2018): (i)

that the benchmark uses a community-standard data set that is publicly available, (ii)

the model or method is applied in a way that conforms to community standards of

practice for that data set (e.g., standard train/test splits), and (iii) that the results of

the standardized benchmark runs are publicly available. To these we added a

post-hoc model examination step in our framework, which aims at exposing the

intrinsic properties of the model. Although this last step is important, especially for

ML approaches and imperfect approximations, we do not view it as a requirement

for benchmarking in general (and therefore would have included any paper that did

items i-iii but not this).

We spent considerable time searching for such UE benchmarks for this paper. We do

not believe that we “misrepresented the current research landscape” and we wrote



the quoted sentences in good faith. As a matter of fact, the difficulty to find such

benchmarks was a reason why we decided to include a focus on establishing a

community UE benchmark in the first place.

7) Lastly, to my view the same holds for the following lines, as there are research

works using machine learning ensembles for uncertainty quantification in

hydrological modelling:

“A perhaps self-evident example for the potential of improvements are ensembles:

Kratzert et al. (2019b) showed the benefit of LSTM ensembles for single-point

predictions, and we believe that similar approaches could be developed for

uncertainty estimation” (lines 367−369)

This text passage does not propose to estimate uncertainty by using ensembles. It

proposes to build ensembles of uncertainty estimators. We are not aware of any

publication in the hydrological sector that has done this so far. If a reference had

been provided we could cite it in this context, however we are unaware of such a

study.
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