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Abstract2

Reanalysis datasets are increasingly used to drive flood models, especially for continental and global3

analysis, and in areas of data scarcity. However, the consequence of this for risk estimation has not been4

fully explored. We investigate the impact of using four reanalysis products (ERA-5, CFSR, MERRA-25

and JRA-55) on simulations of historic flood events in Northern England. These results are compared to6

a benchmark national gauge-based product (CEH-GEAR1hr). All reanalysis products predicted fewer7

buildings would be inundated by the events than the national dataset. JRA-55 was the worst by a8

significant margin, underestimating by 40% compared with 14-18% for the other reanalysis products.9

CFSR estimated building inundation the most accurately, while ERA-5 demonstrated the lowest error10

in terms of river stage (29.4%) and floodplain depth (28.6%). Accuracy varied geographically and11

no product performed the best across all basins. Global reanalysis products provide a useful resource12

for flood modelling where no other data is available, but they should be used with caution. Until a13

more systematic international strategy for the collection of rainfall data ensures more complete global14

coverage of validation data, multiple reanalysis products should be used concurrently to capture the15

range of uncertainties.16

Introduction17

The primary drivers of pluvial and fluvial flooding are precipitation events. The duration, intensity and18

spatial extent of these events can all affect the depth and extent of any flooding caused. Therefore, the19

choice of precipitation data when simulating floods is critical. Inaccurate precipitation will undoubtedly20

lead to a spurious and potentially misleading understanding of the risk posed by a given event. This21

effect is further exacerbated when low-quality precipitation data is used to project risk into the future,22

with planning decisions being made based on the results. Unfortunately, understanding which source of23

precipitation is most appropriate is challenging. There is also spatial variation in the availability and24

quality of precipitation data. High-quality data is often collected by national or regional authorities but25

can be inaccessible or difficult to obtain, therefore continental or global precipitation datasets, such as26

reanalysis products, are a popular option despite their generally lower resolution and accuracy.27

Reanalysis precipitation data has been widely used in large-scale flood risk modelling (Alfieri et al., 2013;28

Andreadis et al., 2017; Pappenberger, Dutra, Wetterhall, & Cloke, 2012; Schumann et al., 2013; Seyyedi,29

Anagnostou, Beighley, & McCollum, 2015; Winsemius, Beek, Jongman, Ward, & Bouwman, 2013; Xu,30

Xu, Chen, & Chen, 2016). The main advantages of reanalysis products are their vast spatiotemporal31

coverage and ease of access. In areas with a limited number of rain gauges that can provide high-32

quality observations, reanalysis products are often the best or only source of precipitation inputs for33
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flood simulations. However, there is no guarantee that they are able to accurately represent extreme34

events and subsequently characterise flood risk. As a range of reanalysis datasets are available, there is35

also the question of which is more suitable for the application.36

The influence of reanalysis data on flood risk estimates has previously been explored in part. Sampson37

et al. (2014) found that the loss ratio decreased by 8.5 times when using a reanalysis product (ERA-38

Interim) instead of a satellite rainfall product (CMORPH) in their catastrophe risk model of Dublin.39

Andreadis et al. (2017) compared flood models driven using an ensemble of parameters from 20CRv2 to40

a benchmark using observed flow boundary conditions and found that, overall, 20CRv2 only captured41

15.7% of the benchmark inundated area. Mahto and Mishra (2019) used ERA-5, ERA-Interim, CFSR,42

JRA-55 and MERRA-2 to drive VIC and simulate monsoon season runoff in India. CFSR and JRA-43

55 resulted in a strong positive bias, compared to a national precipitation dataset, while MERRA-244

strongly underestimated runoff. The two ERA products showed a much less prominent positive bias.45

While their study represents one of the first intercomparisons of different reanalysis precipitation products46

for runoff modelling, it does not go as far as looking at the consequences for flood impacts. Meanwhile,47

Chawla and Mujumdar (2020) demonstrate a strong negative bias in flood discharge when using CFSR48

in the Himalayas. This is indicative of the spatial variability in accuracy inherent in reanalysis datasets,49

driven largely by assimilation data availability. Winsemius et al. (2013) compared flood impacts from50

the GLOFRIS model cascade, which uses ERA-Interim, with The OFDA/CRED International Disaster51

Database (EM-DAT). However, the effect of using a different source of precipitation was not assessed52

and therefore the impact of using reanalysis data on the cascade is unknown.53

This paper extends previous studies by undertaking a systematic intercomparison of how modern re-54

analysis products compare when used to drive a hydrodynamic flood model. This provides important55

insights to inform the selection of data for flood modelling in data-sparse regions as well as a more general56

assessment of how well extreme rainfall events are captured in each product. To provide further context57

and identify the potential effects on flood risk assessments, the flood model outputs are subsequently58

used to estimate the number of buildings that would be inundated by each rainfall product.59

Methodology60

Study Area61

To assess the performance of global reanalysis precipitation, more reliable gauge-based data is required62

as a baseline to validate against. However, the quantity and quality of gauge observations are limited63

across much of the globe, particularly in sparsely populated and poorer regions. Local gauge data may64

in fact be of lower accuracy than the large scale products if the rain gauges on the ground are of poor65

quality or have been influenced by human error. There is no way to check which is more correct by66

looking at precipitation alone and an independent source of data is required. River flow data has been67

used for this purpose in the past Beck et al. (2017) and presents a viable option for assessing precipitation68

performance in the context of flood events. To fulfil the requirements of high-quality local precipitation69

and river flow observations, an area of northern England, encompassing the Tyne, Tees, Eden, Wear70

and Lune basins (Figure 1) was selected for this study. The relatively simple flood response of these71

steep, surface water dominated basins, and the occurrence of recent flood events, means they provide a72

suitable testbed for investigating the effects of using global reanalysis products for more localised flood73

risk modelling.74

75

Model Setup76

The City Catchment Analysis Tool (CityCAT) (Glenis, Kutija, & Kilsby, 2018), a hydrodynamic surface77

water flood model, was used to simulate flooding in this study. CityCAT represents spatial rainfall78

fields falling directly onto uniformly gridded elevation surfaces and propagating according to the shallow79

water equations. The system is suitable for this study as it is able to directly capture the effects of80

rainfall on flood depths without requiring any intermediate steps. Model domains within the study area81
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Figure 1: The location and topography of basins within the study area, illustrated using OS Terrain 50.

were delineated using HydroBASINS (Lehner & Grill, 2014). Water depths were output every hour for82

each grid cell within the domain and then extracted at each gauge location (Figure 1). The Manning’s83

coefficient for all domains was uniformly defined as 0.03 (Chow, 1959) and the land surface was assumed84

to be impermeable given the extreme nature of the selected events (described below). As this study85

primarily aims to compare model results with one another, the absolute accuracy of the hydrodynamic86

model is not the focus and therefore the friction and infiltration configurations are not critical.87

Rainfall88

Four global reanalysis products (JRA-55, MERRA-2, ERA-5 and CFSR) have been selected and com-89

pared against CEH-GEAR1hr, used here as a benchmark. Each rainfall dataset is described below and90

key characteristics are shown in Table 1. The reanalysis products were selected based on their high91

spatiotemporal resolution, open availability and suitable duration. Events between the start and end92

dates of CEH-GEAR1hr (1990-2014) were selected based on the peak stage at the most downstream93

river gauge within each basin (Table 2). This identified the most extreme rainfall events, independently94

of the rainfall data itself. Different events were selected for each basin as the largest extremes may have95

occurred at different times in different areas. Each identified event was only simulated in the basin in96

which it was observed, to enable river gauge records to be used for validation. Simulations were com-97

menced two weeks before the discharge peaks and ran until one week after. This was to allow model98

spinup and characterisation of hydrograph recession. The sensitivity to run duration was not explicitly99

assessed here but the duration was sufficient in all cases to ensure adequate accounting for antecedent100

rainfall and return to normal flow conditions . The events, according to each dataset, are mapped in101

Figure 2. CEH-GEAR1hr contained, on average, higher rainfall totals than the reanalysis products and102

JRA-55 represented only approximately half as much precipitation as other reanalysis products. Each103

rainfall value was converted into a rate (kg m-2 s-1) at the observed times and each point on the grid104

was converted into an area with a width and height equivalent to the horizontal and vertical resolution105

of the dataset. These areas were then re-projected into British National Grid as cartesian coordinates106
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Dataset DOI Resolution Coverage Period Frequency
CEH-
GEAR1hr

10.5285/d4ddc781-25f3-
423a-bba0-747cc82dc6fa

1 km Great
Britain

1990-2014 Hourly

ERA-5 10.24381/cds.adbb2d47 ˜30 km Global 1979- Hourly
MERRA-2 10.5067/7MCPBJ41Y0K6 ˜55 km Global 1980- Hourly
CFSR 10.5065/D6513W89 ˜35 km Global 1979-2011 Hourly
JRA-55 10.5065/D6HH6H41 ˜60 km Global 1958- 3 Hourly

Table 1: Precipitation products included in this study. Where the end of the period is not given, the
product continues to be updated to the present day at the time of writing.

are required by CityCAT.

Basin Stage Peak (m) Peak Time Start Time End Time
Wear 4.1 2009-07-18 11:00:00 2009-07-04 11:00:00 2009-07-25 11:00:00
Tyne 6.3 2005-01-08 08:00:00 2004-12-25 08:00:00 2005-01-15 08:00:00
Tees 3.3 1995-01-31 20:15:00 1995-01-17 20:15:00 1995-02-07 20:15:00
Lune 7.1 1995-01-31 21:15:00 1995-01-17 21:15:00 1995-02-07 21:15:00
Eden 7.2 2005-01-08 14:30:00 2004-12-25 14:30:00 2005-01-15 14:30:00

Table 2: Event start and end times for each basin based on the observed stage peak at the most
downstream gauge. Start times are two weeks before, and end times two weeks after, the observed stage
peak times to allow for model spin-up and inclusion of hydrograph recession.

107

The Centre for Ecology and Hydrology provide an hourly version of their Gridded Estimates of Areal108

Rainfall dataset (CEH-GEAR1hr) (Lewis et al., 2019). This hourly product is based on a daily prod-109

uct which interpolates data from rain gauges using natural neighbour interpolation (Tanguy, 2019).110

CEH-GEAR1hr uses nearest neighbour interpolation to maintain more realistic weather patterns and111

unmoderated peak values. To ensure consistency between the hourly and daily versions, the daily totals112

were maintained in the hourly dataset by scaling the interpolated values accordingly (Lewis et al., 2018).113

This gauge-based dataset was used as a baseline to compare against the reanalysis products identified114

below.115

Japanese Meteorological Agency reanalysis 55 (JRA-55) replaces JRA-25, incorporating higher resolution116

and better data assimilation, among other improvements (Japan Meteorological Agency, 2013; Kobayashi117

et al., 2015). Suzuki et al. (2017) were able to effectively simulate continental river discharge using JRA-118

55, however, they found large biases attributable to precipitation error in some regions.119

Modern-Era Retrospective Analysis for Research and Applications 2 (MERRA-2) (Global Modeling and120

Assimilation Office, 2015) builds upon its predecessor, MERRA (Rienecker et al., 2011), with reduced121

biases in aspects of the water cycle, among other improvements (Gelaro et al., 2017). MERRA-2 uses122

observed precipitation products to correct the forecasts and provide better estimates (Reichle et al.,123

2017). Hua, Zhou, Nicholson, Chen, and Qin (2019) found that MERRA-2 was better at representing124

rainfall climatology over Central Equatorial Africa than ERA-Interim and JRA-55, among others.125

The European Centre for Medium-Range Weather Forecasts Reanalysis 5 product (ERA-5) (ECMWF,126

2018) replaces and improves on ERA-Interim (Dee et al., 2011), which stopped being produced in August127

2019. It supports an increased spatial and temporal resolution, along with an updated modelling and128

data assimilation system, which has resulted in better representation of convective rainfall (Mahto &129

Mishra, 2019). The land surface component is being used to calculate river discharge for the Global130

Flood Awareness System (Harrigan et al., 2020). Albergel et al. (2018) found that ERA-5 resulted in131

better estimates of river discharge than ERA-Interim when used to drive a land surface model of the132

US. It has also been shown to outperform a range of other reanalysis products as part of a hydrological133

model applied in two Indian basins (Mahto & Mishra, 2019).134

The NCEP Climate Forecast System Reanalysis (CFSR) (Saha et al., 2010) replaces the previous135

NCEP/NCAR reanalysis (Kalnay et al., 1996) and uses a very similar analysis system to MERRA-2136
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Figure 2: (A)-(E) show rainfall over the study area during the events in Table 2, according to each re-
analysis dataset. (F) shows the total rainfall over the domain for all reanalysis datasets.

(Saha et al., 2010). Zhu, Xuan, Liu, and Xu (2016) demonstrated that CFSR was liable to overestimate137

high streamflow in two Chinese basins using SWAT and highlighted that performance varied between138

basins.139

140

Digital Elevation Model141

The terrain dataset used to represent the domain surface is a nationally and freely available Digital142

Elevation Model (DEM) product from the Ordnance Survey, known as OS Terrain 50 (Ordnance Survey,143

2017). This has been shown to perform best for flood risk modelling in a comparison with other DEMs144

(McClean, Dawson, & Kilsby, 2020). The product is based on airborne LIDAR and is corrected using145

a combination of automated and manual processes to create a bare earth surface with raised structures146

removed. The dataset was clipped to the area of each basin and used directly within the models (Figure147

1).148
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Exposure149

Building outlines from OS VectorMapLocal (VML) (Ordnance Survey, 2020) were used to estimate150

numbers of buildings inundated by each model. VML only represents individual buildings with a floor151

area over 20 m2 and each polygon may represent multiple buildings. Therefore, not all buildings are152

included in the inundation totals. This is acceptable for this analysis which compares the relative153

magnitude of flooding, rather than the absolute totals. Buildings from VML were classified as flooded if154

they intersected any model cell above a typical property threshold of 0.3 m (Environment Agency, 2019).155

Results156

The performance of each simulation was compared in terms of the magnitude and timing of the hydro-157

graph peak, the flood depth, and the number of buildings inundated (Table 3). ERA-5 outperformed158

other reanalysis datasets in terms of hydrograph peak error and floodplain depth, however, CFSR pro-159

duced more similar inundation levels to CEH-GEAR1hr and demonstrated more accurate peak timing.160

JRA-55 performed significantly worse than other reanalysis products across all of these aggregated mea-161

sures. The variability of each metric will now be assessed in more detail, including spatial variations in162

performance.163

Rainfall
Source

Mean Absolute
Peak Error (%)

Mean Absolute Peak
Time Error (hrs)

Mean Absolute
Inundation Error

(%)

Median Floodplain
Depth Error (%)

CEH-
GEAR1hr

29.4 1.0

ERA-5 29.4 4.2 16.1 -28.6
MERRA-

2
49.2 3.4 18.4 -44.4

JRA-55 70.9 162.6 39.6 -66.7
CFSR 38.0 3.4 14.4 -33.3

Table 3: Summary of performance statistics for each model. Building inundation and floodplain depth
errors are relative to CEH-GEAR1hr, therefore the CEG-GEAR1hr model has no values for these mea-
sures.

The maximum water depths according to models using each of the rainfall datasets are shown in Figure 3.164

Overall, the spatial distribution of floodwater is similar, as the same DEM is used in all models. There165

are noticeably higher depths along main river channels in the CEH-GEAR1hr results. JRA-55 presents166

less clearly visible channels than the other models, particularly in the Lune and Tees basins. The167

maps also illustrate that the MERRA-2 model produced lower depths in the Tyne basin than other168

reanalysis precipitation datasets. Across all basins, ERA-5 and CFSR produced similar distributions of169

error relative to the CEH-GEAR1hr results. The inter-quartile range of errors in MERRA-2 is narrower170

but the median error is slightly further below zero than ERA-5 and CFSR. JRA-55 water depths were171

significantly further below the other reanalysis datasets.172

Time series of water depths were extracted from the models at each gauge location and compared with173

the observed values (Figure 4). In all basins, apart from the Wear, CEH-GEAR1hr was closest to174

the observed peaks and predicted the highest maximum depth. In the Wear basin, where all models175

overestimated river stage, CEH-GEAR1hr was actually the least accurate. However, the observed values176

may be misleading here as flows go out of bank above 3 metres and so peaks are truncated. JRA-177

55 consistently severely underestimated river stage and only captured peaks in the Eden and Tyne178

basins. ERA-5 and CFSR display relatively similar performance across all basins. Meanwhile, MERRA-179

2 underestimated the peaks in the Eden and Tyne. All reanalysis products strongly underestimated the180

flood peak in the Lune basin.181

The total numbers of inundated buildings for each model are shown in Figure 5. In four out of five basins,182

using CEH-GEAR1hr resulted in the highest number of inundated buildings. ERA-5 inundated the most183
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Figure 3: (A)-(E) show maximum water depth throughout the study area from models using each of the
rainfall datasets. (F) shows the depth error of the reanalysis datasets relative to CEH-GEAR-1hr across
all cells, excluding outliers.

buildings in the Tees basin despite not being consistently higher than the other reanalysis datasets in184

the other basins. JRA-55 inundated the lowest number of buildings by a large margin in all basins apart185

from the Tyne, where it exceeded both MERRA-2 and CFSR. CFSR never resulted in either the highest186

or lowest number of inundated buildings. There is general agreement between the rankings of modelled187

peak water depth as shown in Figure 4 and the number of inundated buildings. Notable exceptions188

include the Tees, where the high inundation levels predicted by ERA-5 were not replicated in its depth189

peak, which was lower than CEH-GEAR1hr by a clear margin.190

7

https://doi.org/10.5194/hess-2021-153
Preprint. Discussion started: 30 March 2021
c© Author(s) 2021. CC BY 4.0 License.



05
Jan

2005

06 07 08 09 10 11 12 13 14
0

2

4

6

Eden

01
Feb

1995

28 29 30 31 02 03 04 05 06
0

1

2

3

Tees

15
Jul

2009

16 17 18 19 20 21 22 23 24

2

4

6

Wear

05
Jan

2005

06 07 08 09 10 11 12 13 14

2

4

6

8
Tyne

01
Feb

1995

28 29 30 31 02 03 04 05 06
0

2

4

6

Lune

CEH-GEAR1hr
ERA-5
MERRA-2
JRA-55
CFSR
Observed

Figure 4: Stage hydrographs comparing water depths (m) from model results and observed values at
each gauge.

Tyne Tees Wear Eden Lune
0

2

4

6

8

Nu
m

be
r o

f B
ui

ld
in

gs
 In

un
da

te
d 

>=
 0

.3
 m

1e3
CEH-GEAR1hr
ERA-5
MERRA-2
CFSR
JRA-55

Figure 5: Number of buildings inundated above a threshold (0.3 m) per basin by each model.

8

https://doi.org/10.5194/hess-2021-153
Preprint. Discussion started: 30 March 2021
c© Author(s) 2021. CC BY 4.0 License.



Discussion191

The results presented above demonstrate a persistent bias towards underestimation of flood depths and192

impacts when using global reanalysis products in place of high-resolution gauge-based rainfall datasets.193

The negative bias has been shown to exist in depths across the basins studied, at river gauging stations194

and specifically at the locations of buildings, which correspond to built-up areas exposed to flooding. This195

finding is in line with Sampson et al. (2014), who show ERA-Interim, an older product, underestimated196

flood risk. Our results, however, do not indicate such a stark bias, perhaps because the products used197

here are more modern and advanced than ERA-Interim. This is backed up by Towner et al. (2019) who198

have demonstrated improved performance of ERA-5 over ERA-Interim using hydrological models of the199

Amazon. Hirpa et al. (2016) also illustrate that ERA-Interim can underestimate flood risk, with spatial200

variability, which further reinforces our finding. In contrast, Andreadis et al. (2017) find flood extent201

to be overestimated (relative to a benchmark simulation) when using the 20CRv2 reanalysis product.202

However, they did find that outflow discharge was underestimated, which agrees with our results. Their203

assessment of flood extent did not include flood depths or effects on the inundation of exposed assets,204

as we have done here, which may explain the observed overestimation to some degree. We also did not205

replicate the underestimation of streamflow found by Zhu et al. (2016) when using CFSR. Though, it is206

difficult to draw direct comparisons given the major differences in methodology between studies.207

We found that no precipitation product performed better in all models and each product performed208

differently depending on the basin. This implies that the optimum dataset to use depends on the location209

of the model. JRA-55 was very poor at capturing extreme rainfall and subsequently hydrograph peak210

and inundation magnitude in almost all cases. This may be slightly influenced by the lower temporal211

resolution, but it is unlikely that the small difference in observation frequency would result in such a212

strong negative effect on model performance. ERA-5 consistently performed better than other reanalysis213

datasets in terms of capturing the observed hydrograph peak. ERA-5, CFSR and MERRA2 were more214

evenly matched in terms of floodplain water depth, inundation extent, and impacts. We find no cause to215

favour any of these three datasets and suggest that all three could be adopted in parallel by reanalysis-216

based flood models to capture the range of uncertainty.217

Links between hydrograph performance and estimated numbers of inundated buildings are present but218

the relationship is not consistent. For example, in the Tyne basin, CFSR estimates a higher gauge peak219

than JRA-55 but, at the same time, inundates fewer buildings. Meanwhile, MERRA-2 only has the220

lowest hydrograph peak in the Tyne, where it estimates the lowest total building inundation compared221

to other models. CEH-GEAR1hr is also both generally higher in terms of both building inundation222

and hydrograph peak, but the occasions where this is not the case do not correspond to the same basin.223

These findings demonstrate that there is generally a positive relationship between peak hydrograph depth224

and numbers of inundated buildings, but increased river depth does not always lead to greater inundation.225

Therefore, hydrograph performance is not an entirely reliable metric for assessing the accuracy of flood226

risk estimated using global reanalysis products.227

The underestimation of inundation magnitude caused by using global precipitation data is counter to228

the overestimation that results from using global DEM data, as demonstrated by McClean et al. (2020).229

The negative inundation bias caused by using reanalysis precipitation is, however, not as strong as the230

positive bias from global DEM products. This is because changes in rainfall input have a less significant231

impact on the spatial distribution of flooding than changes in DEM input. Therefore, it is anticipated232

that the combined effects of using both global DEM and global reanalysis precipitation would not cancel233

themselves out and likely to produce a net positive bias.234

Undoubtedly the effects shown here are specific to the study area and other locations may present different235

patterns. Each reanalysis product may behave differently across climatic regions, for example. Areas236

with highly constrained topography are unlikely to be strongly affected by the choice of precipitation237

data, in terms of flood extent and numbers of inundated assets. This is because increases in total rainfall238

volume will not greatly alter flood extent if there are no new available flow pathways. A key limitation to239

applying our methodology in new locations is the requirement for high-quality gauge-based precipitation240

datasets and river flow observations to compare against. Despite the caveat of locality, our results do241

demonstrate the potential for underestimation of flood risk when reanalysis products are involved. This242
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underestimation has been replicated by previous studies in other areas (Sampson et al., 2014) and users243

of models based on reanalysis data should be aware of this effect.244

Conclusions245

Using precipitation from global reanalysis datasets results in an underestimation of flood risk by 14-18 %246

of inundated buildings and 29-44 % of median floodplain depth (Table 3, excluding JRA-55). The effect247

is location-specific, though, and this study found that no product performed best across all five of the248

catchments we studied. In some areas, the reanalysis data did result in similar levels of inundation to249

the national observed precipitation product (CEH-GEAR1hr). This is a positive message for the use of250

reanalysis data in flood risk modelling generally and future progress in forecast models will undoubtedly251

reduce this gap even further.252

As climatic and land-use changes increase flood hazard, the importance of accurately understanding253

current and future flood risk is increasing. Reanalysis data has enabled flood risk assessments to be254

undertaken more widely. However, this analysis shows global or regional reanalysis data should not be255

considered as a replacement for local, high resolution, observations. Uncertainties in flood risk assessment256

using reanalysis data need to be properly quantified and communicated to insurers, local and national257

authorities and communities, to ensure flood risk management decisions are not misinformed.258

While reanalysis datasets do show promising and improving results (ERA-5 achieved a mean absolute259

hydrograph peak error of 29.4 %, equivalent to CEH-GEAR1hr and CFSR only inundated on average260

14.4 % fewer buildings than CEH-GEAR1hr), caution should be used when interpreting outputs from any261

models based on them. We suggest that multiple products, such as ERA-5, CFSR and MERRA-2, should262

be used where possible to capture the full range of uncertainty. This is because each of these products263

has been shown to perform better in different areas or when using different performance measures. Based264

on the comparatively strong negative bias in inundation and flood peak shown here, JRA-55 should not265

be used in flood risk modelling. However, as highlighted, certain products may perform better in other266

areas and further research is needed to assess new and existing reanalysis products for flood modelling267

across a wider range of climatic regions. To enable this, a more systematic international strategy for the268

collection of rainfall data is needed to ensure more complete global coverage of validation data, building269

on efforts from Lewis et al. (2019).270
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