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Abstract. Reanalysis datasets are increasingly used to drive flood models, especially for continental and global analysis, and 

in areas of data scarcity. However, the consequence of this for risk estimation has not been fully explored. We investigate the 

implications of four reanalysis products (ERA-5, CFSR, MERRA-2 and JRA-55) on simulations of historic flood events in 

five basins in England. These results are compared to a benchmark national gauge-based product (CEH-GEAR1hr). The 10 

benchmark demonstrated better accuracy than reanalysis products when compared with observations of water depth and 

flood extent. All reanalysis products predicted fewer buildings would be inundated by the events than the national dataset. 

JRA-55 was the worst by a significant margin, underestimating by 40% compared with 14-18% for the other reanalysis 

products. CFSR estimated building inundation the most accurately, while ERA-5 demonstrated the lowest error in terms of 

river stage (29.4%) and floodplain depth (28.6%).  Accuracy varied geographically and no product performed best across all 15 

basins. Global reanalysis products provide a useful resource for flood modelling where no other data is available, but they 

should be used with caution due to the underestimation of impacts shown here. Until a more systematic international strategy 

for the collection of rainfall and flood impacts data ensures more complete global coverage for validation, multiple 

reanalysis products should be used concurrently to capture the range of uncertainties. 

1 Introduction 20 

The primary drivers of pluvial and fluvial flooding are precipitation events. The duration, intensity and spatial extent of these 

events can all affect the depth and extent of any flooding caused. Therefore, the choice of precipitation data when simulating 

floods is critical. Inaccurate precipitation will undoubtedly lead to a spurious and potentially misleading understanding of the 

risk posed by a given event. This effect is further exacerbated when low-quality precipitation data is used to project risk into 

the future, with planning decisions being made based on the results. Unfortunately, understanding which source of 25 

precipitation is most appropriate is challenging. There is also spatial variation in the availability and quality of precipitation 

data. High-quality data is often collected by national or regional authorities but can be inaccessible or difficult to obtain, 

therefore continental or global precipitation datasets, such as reanalysis products, are a popular option despite their generally 

lower resolution and accuracy. 

 30 
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Reanalysis products are created by driving numerical models with recorded weather observations to build a comprehensive 

historical picture of a wide range of climatic variables. These datasets usually have global coverage and span multiple 

decades. Reanalysis precipitation data has been widely used in continental- and global-scale flood risk modelling 

(Winsemius et al., 2013; Alfieri et al., 2013; Andreadis et al., 2017; Pappenberger et al., 2012; Xu et al., 2016; Seyyedi et al., 

2015; Schumann et al., 2013). The main advantages of reanalysis products are their extensive spatiotemporal coverage and 35 

ease of access. In areas with a limited number of rain gauges that can provide high-quality observations, reanalysis products 

are often the best or only source of precipitation inputs for flood simulations. However, there is no guarantee that they are 

able to accurately represent extreme events and subsequently characterise flood risk. As a range of reanalysis datasets are 

available, there is also the question of which is more suitable for the application. 

 40 

The influence of reanalysis data on flood risk estimates has previously been explored in part. Sampson et al. (2014) found 

that the loss ratio decreased by 8.5 times when using a reanalysis product (ERA-Interim) instead of a satellite rainfall product 

(CMORPH) in their catastrophe risk model of Dublin. Andreadis et al. (2017) compared flood models driven using an 

ensemble of parameters from 20CRv2 to a benchmark using observed flow boundary conditions and found that, overall, 

20CRv2 only captured 15.7% of the benchmark inundated area. Mahto et al. (2019) used ERA-5, ERA-Interim, CFSR, JRA-45 

55 and MERRA-2 to drive a macroscale hydrological model and simulate monsoon season runoff in India. CFSR and JRA-

55 resulted in a strong positive bias, compared to a national precipitation dataset, while MERRA-2 strongly underestimated 

runoff. The two ERA products showed a much less prominent positive bias. While their study represents one of the first 

intercomparisons of different reanalysis precipitation products for runoff modelling, it does not go as far as looking at the 

consequences for flood impacts. Meanwhile, Chawla et al. (2020) demonstrate a strong negative bias in flood discharge 50 

when using CFSR in the Himalayas. This is indicative of the spatial variability in accuracy inherent in reanalysis datasets, 

driven largely by assimilation data availability. Winsemius et al. (2013) compared flood impacts from the GLOFRIS model 

cascade, which uses ERA-Interim, with The OFDA/CRED International Disaster Database (EM-DAT). River flood risk 

maps and damage estimates produced using ERA40 and ERA-Interim were found to be in the same order of magnitude as 

estimates from EM-DAT and the World Bank. However, the effect of using a different source of precipitation was not 55 

assessed and therefore the impact of using reanalysis data on the cascade is unknown. 

 

This paper extends previous studies by undertaking a systematic intercomparison of how modern reanalysis products 

compare when used to drive a hydrodynamic flood model. This provides important insights to inform the selection of data 

for flood modelling in data-sparse regions as well as a more general assessment of how well extreme rainfall events are 60 

captured in each product. To provide further context and identify the potential effects on flood risk assessments, the flood 

model outputs are subsequently used to estimate the number of buildings that would be inundated by each rainfall product. 

While this study provides an example of how varied results may be between products, the relative performance of each 

dataset may differ between areas and events and is not necessarily transferable. 
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2 Methodology 65 

2.1 Study Area  

To assess the performance of global reanalysis precipitation, more reliable gauge-based data is required as a baseline to 

validate against. However, the quantity and quality of gauge observations are limited across much of the globe, particularly 

in sparsely populated and poorer regions. Local gauge data may in fact be of lower accuracy than the large scale products if 

the rain gauges on the ground are of poor quality or have been influenced by human error. There is no way to check which is 70 

more correct by looking at precipitation alone and an independent source of data is required. River flow data has been used 

for this purpose in the past (Beck et al., 2017) and presents a viable option for assessing precipitation performance in the 

context of flood events. To fulfil the requirements of high-quality local precipitation and river flow observations, an area of 

northern England, encompassing the Tyne, Tees, Eden, Wear and Lune basins (Figure 1) was selected for this study. The 

relatively simple flood response of these steep, surface water dominated basins, and the occurrence of recent flood events, 75 

means they provide a suitable testbed for investigating the effects of using global reanalysis products for more localised 

flood risk modelling. 

2.2 Model Setup 

The City Catchment Analysis Tool (CityCAT) (Glenis et al., 2018), a hydrodynamic surface water flood model, was used to 

simulate flooding in this study. CityCAT represents spatial rainfall fields falling directly onto elevation surfaces made up of 80 

uniformly sized square grid cells and propagating according to the shallow water equations (SWEs). The model uses the 

method of finite volumes and shock capturing schemes to solve the SWEs with a Generalised Osher-Solomon Riemann 

solver. The system is suitable for this study as it is able to directly capture the effects of rainfall on flood depths without 

requiring any intermediate steps. The domain grid of each simulation is directly generated from the DEM and has the same 

resolution, in this case 50m. Model domains within the study area were delineated using HydroBASINS (Lehner and Grill, 85 

2014). The outer boundaries of the domain were treated as being open which allows water to exit the domain at basin outlets. 

No processing of the DEM was undertaken and it was used in its original form.   

 

The DEM does not explicitly include river bathymetry, except where the river is of similar or greater width than the DEM 

resolution, and within low points in valleys.  For example, in Carlisle where we undertake more detailed impacts analysis 90 

this includes a coarse rectangular channel bathymetry, with depths ranging from 1.5-4m and a width of 50-100m.    

(2021)(2019) Although Neal et al (2012) showed that representation of channels is important for accurate simulation of flood 

propagation, Neal et al (2021) and Dey et al (2019) show that choices about how bathymetry is represented becomes less 

important at more extreme return periods.  Peña et al. (2021)  go as far as to conclude that: “small-scale features and river 

bathymetry are negligible under extreme hydrologic events as the floodplain conveyance capacity is the driving principle of 95 

flood inundation dynamic”.  By not explicitly embedding an accurate river bathymetry into our model , it is likely that flood 



4 

 

extent will be over-estimated and channel discharge underestimated, although the model performance appears adequate in 

this regard.  Whilst the lack of an explicit river channel should be considered when interpreting absolute measures of 

accuracy, it is a reasonable approximation here as we are not studying bathymetry or DEMs, we focus on large flood events, 

and any errors apply to all rainfall simulations allowing for objective intercomparison of global rainfall products which is the 100 

purpose of this study.   

 

 

Water depths were output every hour for each grid cell within the domain and then extracted at each gauge location (Figure 

1). The Manning’s coefficient for all domains was uniformly defined as 0.03 (Chow, 1959), that is the same, or similar, to 105 

other studies (Choné et al., 2021; Addy and Wilkinson, 2021; Hou et al., 2020).  The land surface was assumed to be 

impermeable given the extreme nature of the selected events (described below). Once the ground is saturated during long-

duration flood events, subsurface processes will cease to have a large impact on water levels, especially for catchments such 

as those addressed here with generally shallow soils and low base flow indices. For example, on a small catchment Hossain 

Anni (2020) found an increase of only 0.02m in average flood depth when excluding infiltration from a 100-year flood 110 

model.  Furthermore, larger scale studies by Ni et al. (2020) and Hou et al. (2021) show that peak flow and flood extent are 

relatively insensitive to infiltration rates, although an assumption of no infiltration would impact outflows as the flood wave 

falls; the effect of this is greater for longer floods, and would be more significant in semi-arid or arid regions (which is not 

the case here). In the case of the Carlisle flood in the Eden basin it is documented that antecedent conditions had led to 

saturated soils when the flood event occurred (Convery and Bailey, 2008). Additionally, it is assumed that there are no 115 

artificial water abstraction measures or flood defences present, information on the elevation of the latter in 2005 could not be 

located. This configuration of friction, bathymetry and infiltration parameters is sufficient as the primary aim of this study is 

to compare the influence of different global rainfall products rather than the absolute accuracy of the hydrodynamic model. 

2.3 Rainfall 

Four global reanalysis products (JRA-55, MERRA-2, ERA-5 and CFSR) have been selected and compared against CEH-120 

GEAR1hr, used here as a benchmark. Each rainfall dataset is described below and key characteristics are shown in Table 1. 

The reanalysis products were selected based on their high spatiotemporal resolution, open availability and suitable duration. 

Events between the start and end dates of CEH-GEAR1hr (1990-2014) were selected based on the peak stage at the most 

downstream river gauge within each basin (Table 2). This identified the most extreme rainfall events, independently of the 

rainfall data itself. The largest events were chosen as they have the greatest impact in terms of flood damages. Looking at a 125 

wider range of events may have provided a more comprehensive view of the performance of reanalysis products across 

different magnitudes, however this was outside the scope of the study. Different events were selected for each basin as the 

largest extremes may have occurred at different times in different areas. Each identified event was only simulated in the 

basin in which it was observed, to enable river gauge records to be used for validation. Simulations were commenced two 
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weeks before the discharge peaks and ran until one week after. This was to allow model spinup and characterisation of 130 

hydrograph recession. The sensitivity to run duration was not explicitly assessed here but the duration was sufficient in all 

cases to ensure adequate accounting for antecedent rainfall and return to normal flow conditions. Antecedent rainfall is 

necessary to initiate normal flow in the river channels, which requires the water from all upstream cells to reach the outlet of 

the basin. Normal flow here refers to the flow in the channel before the flood event took place. If no spin-up period is 

included, then flood magnitudes would be underestimated, and the flood wave would not propagate in a physically realistic 135 

way.  

 

The events, according to each dataset, are mapped in Figure 3 and compared with time series of observations at selected 

gauges in Figure 2. CEH-GEAR1hr contained, on average, higher rainfall totals than the reanalysis products and JRA-55 

represented only approximately half as much precipitation as other reanalysis products. ERA-5 significantly over-estimated 140 

the gauged precipitation for the 2005 event in the Tyne basin but other than this, reanalysis products underestimated rainfall 

totals. The 1995 event in the Lune basin was the most under-represented across the reanalysis products. CEH-GEAR1hr was 

consistently very close to the gauge observations as they will have been used as part of its creation.  

 

Each rainfall value was converted into a rate (kg m-2 s-1) at the corresponding times and each point on the original 145 

reanalysis grid was converted into an area with a width and height equivalent to the horizontal and vertical resolution of the 

dataset. This resulted in differently sized rainfall polygons for each dataset, corresponding to the resolutions listed in Table 

1. These areas were then re-projected into British National Grid as cartesian coordinates are required by CityCAT. The 

rainfall products are described below, along with findings from previous studies which have assessed their performance. 

 150 

The Centre for Ecology and Hydrology provide an hourly version of their Gridded Estimates of Areal Rainfall dataset (CEH-

GEAR1hr) (Lewis et al., 2018). This hourly product is based on a daily product which interpolates data from rain gauges 

using natural neighbour interpolation (Tanguy et al., 2019). CEH-GEAR1hr uses nearest neighbour interpolation to maintain 

more realistic weather patterns and unmoderated peak values. To ensure consistency between the hourly and daily versions, 

the daily totals were maintained in the hourly dataset by scaling the interpolated values accordingly (Lewis et al., 2018). 155 

Quality control procedures were applied to the hourly gauge data used to produce the gridded product. Each gauge was 

compared with CEH-GEAR daily and 92.9% matched well. Other flags were applied to suspicious values, such as those 

which exceeded the 1- or 24-hour record values, values which were preceded by 23 hours of no rain and for tipping bucket 

gauges where the frequency of tips was unexpectedly high. Combinations of these flags were used to identify and exclude 

values where necessary. This gauge-based dataset was used as a baseline to compare against the reanalysis products 160 

identified below. The approach of using a gauge-based product as a baseline is well established (Jiang et al., 2021; Sun and 

Barros, 2010; Lei et al., 2021). However, there are always errors present in any rainfall product and gauge-based products 

are no exception. For example, wind-induced under-catch may lead to a negative bias in precipitation (Pollock et al., 2018). 
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The network may also not be dense enough to capture given events effectively. Despite these limitations, CEH-GEAR1hr 

provides the best available gridded hourly data for the UK, based on quality-controlled data from a well-established network. 165 

 

Japanese Meteorological Agency reanalysis 55 (JRA-55) replaces JRA-25, incorporating higher resolution and better data 

assimilation, among other improvements (Kobayashi et al., 2015; Japan Meteorological Agency, Japan, 2013). Suzuki et al. 

(2018) were able to effectively simulate continental river discharge using JRA-55, however, they found large biases 

attributable to precipitation error in some regions. Chen et al (2014) found that JRA-55 has a diurnal difference of ~50% 170 

which was comparable to an observed satellite dataset from the Tropical Rainfall Monitoring Mission (TRMM). Hua et al 

(2019) found that JRA-55 over-estimated rainfall by ~15% around southern Sahel and western equatorial Africa. Over 

eastern China, Chen et al (2019) found that rainfall was better represented by JRA-55 than ERA-Interim, CFSR and 

MERRA-1. Meanwhile in the Northern Great Plains, JRA-55 has been found to perform worse than other reanalysis 

products such as ERA-5 and MERRA-2, demonstrating a strong wet bias (Xu et al., 2019). The variability in performance 175 

across these studies illustrates that the accuracy of JRA-55 is not consistent between regions. 

 

Modern-Era Retrospective Analysis for Research and Applications 2 (MERRA-2) (Global Modeling and Assimilation 

Office, 2015) builds upon its predecessor, MERRA (Rienecker et al., 2011) with reduced biases in aspects of the water cycle, 

among other improvements (Gelaro et al., 2017). MERRA-2 uses observed precipitation products to correct the forecasts and 180 

provide better estimates (Reichle et al., 2017). Hua et al. (2019) found that MERRA-2 was better at representing rainfall 

climatology over Central Equatorial Africa than ERA-Interim and JRA-55, among others, with a mean bias of only 

0.01 mm/day. Hamal et al. (2020) found that MERRA-2 was able to accurately capture the seasonal precipitation in Nepal 

when compared to gauge observations (R ≥ 0.95). Over Pakistan, MERRA-2 precipitation has been shown to have an RMSE 

of 1.68 mm and performed better than JRA-55 (2.2 mm) but not as well as ERA-5 (1.53 mm) (Arshad et al., 2021). Liu et al. 185 

(2021) found that MERRA-2 precipitation was more similar to satellite observations during summer in the Sichuan Basin, 

with a linear correlation coefficient of 0.9 compared to other parts of the year with 0.57. In India, MERRA-2 has negative 

bias of 10% in extreme rainfall, compared with 33% from ERA-Interim (Mahto and Mishra, 2019).  

 

The European Centre for Medium-Range Weather Forecasts Reanalysis 5 product (ERA-5) (Hersbach et al., 2020) replaces 190 

and improves on ERA-Interim (Dee et al., 2011), which stopped being produced in August 2019. It supports an increased 

spatial and temporal resolution, along with an updated modelling and data assimilation system, which has resulted in better 

representation of convective rainfall (3.8% vs -5% median bias in monsoon precipitation over India)(Mahto and Mishra, 

2019). The land surface component is being used to calculate river discharge for the Global Flood Awareness System 

(Harrigan et al., 2020). Albergel et al. (2018) found that ERA-5 resulted in better estimates of river discharge than ERA-195 

Interim when used to drive a land surface model of the US. It has also been shown to outperform a range of other reanalysis 

products as part of a hydrological model applied in two Indian basins, with an RMSE of 25.5% compared with 40.2%, 
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59.2% and 75.6% from CFSR, JRA-55 and MERRA-2 respectively (Mahto and Mishra, 2019). In Pakistan, ERA-5 has an 

RMSE of 1.53 mm compared with daily gauge data, again outperforming MERRA-2 and JRA-55.   

 200 

The NCEP Climate Forecast System Reanalysis (CFSR) (Saha et al., 2010a) replaces the previous NCEP/NCAR reanalysis 

(Kalnay et al., 1996) and uses a very similar analysis system to MERRA-2 (Saha et al., 2010b). Zhu et al. (2016) 

demonstrated that CFSR was liable to overestimate high streamflow in two Chinese basins using SWAT and highlighted that 

performance varied between basins (19.15% - 31.47% bias). Nkiaka et al. (2017) found that using CFSR over ERA-Interim 

resulted in substantially improved representation of river flow in the Sudano-Sahel Region, with maximum Nash Sutcliffe 205 

Efficiencies of 0.43 and -0.56 respectively. In the Amazon basin, CFSR has been shown to underpredict winter precipitation 

with a bias of -0.60 and overpredict summer precipitation with a bias of 0.11 (Blacutt et al., 2015). During 2010-2014 in 

Bangladesh, CFSR overestimated precipitation relative to gauge observations with a bias of 1.18, this was greater than ERA-

5 which had a bias of 0.80 (Islam and Cartwright, 2020). In the Johor River Basin, Malaysia, the daily RMSE of CFSR was 

found to be 17.70 mm when compared with gauge observations (Tan et al., 2017).  210 

2.4 Digital Elevation Model 

The terrain dataset used to represent the domain surface is a nationally and freely available Digital Elevation Model (DEM) 

product from the Ordnance Survey, known as OS Terrain 50 (OST50) (Ordnance Survey, 2017). This has been shown to 

perform better than a range of global DEMs for flood risk modelling (McClean et al., 2020). The product is based on a 

combination of photogrammetry and topographical surveys and is corrected using a combination of automated and manual 215 

processes to create a bare earth surface with raised structures removed. The DEM was clipped to the area of each basin and 

used directly within the models (Figure 1).   

 

Other, higher resolution DEMs are available, such as Environment Agency LiDAR, which h typically have considerable 

advantages for flood modelling (Sanders, 2007; Muhadi et al., 2020; Md Ali et al., 2015; Trepekli et al., 2022). However, 220 

complete LiDAR coverage of the study area was not available. The DEM is therefore a source of uncertainty and is likely to 

cause over-estimation of inundation. For example, Yunus et al. (2016) found that using OST50 resulted in 3-10% more 

inundation for London when compared to 1m LiDAR. Even if LiDAR was available for the entire domain of each basin 

included here, the data would not be able to be used at its original 1-2 m resolution and would have to be resampled to a 

lower resolution to enable the simulations to complete in a reasonable time period. An alternative approach might be to 225 

merge LiDAR where available with OST50.  However, either of these approaches would reduce the benefits of using LIDAR 

over OST50 and the choice of resampling method would introduce a new uncertainty as it also influences model outputs.. 
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2.5 Validation Data 

15-minute stage observations were obtained from the Environment Agency (EA) at the most downstream gauge in each of 

the five basins via a Freedom of Information request. The most downstream gauge was used in each case as these are 230 

influenced by the largest areas of rainfall. The IDs, catchment areas and locations of each gauge are listed in Table 2. 

Observations of flood extent during the event in Carlisle in the Eden basin were extracted from the EA Recorded Flood 

Outlines dataset (Environment Agency, 2019a). Distributed measurements of maximum water depth from the same event 

were provided by Neal et al (2009).  

2.6 Exposure 235 

Building outlines from OS VectorMapLocal (VML) (Ordnance Survey, 2018) were used to estimate numbers of buildings 

inundated by each model. VML only represents individual buildings with a floor area over 20 m2 and each polygon may 

represent multiple buildings. Therefore, not all buildings are included in the inundation totals. This is acceptable for this 

analysis which compares the relative magnitude of flooding, rather than the absolute totals. Buildings from VML were 

classified as flooded if they intersected any model cell above a typical property threshold of 0.3 m (Environment Agency, 240 

2019b). 

3 Results 

The performance of each simulation was compared in terms of the magnitude and timing of the hydrograph peak, the flood 

depth and extent, and the number of buildings inundated (Table 3). ERA-5 outperformed other reanalysis datasets in terms of 

hydrograph peak error and floodplain depth, however, CFSR produced more similar inundation levels to CEH-GEAR1hr and 245 

demonstrated more accurate peak timing, flood extent and depth compared to point observations. JRA-55 performed 

significantly worse than other reanalysis products across all measures. The variability of each metric will now be assessed in 

more detail, including spatial variations in performance. 

 

The maximum water depths according to models using each of the rainfall datasets are shown in Figure 4. Overall, the 250 

spatial distribution of floodwater is similar, as the same DEM is used in all models. There are noticeably higher depths along 

main river channels in the CEH-GEAR1hr results. JRA-55 presents less clearly visible channels than the other models, 

particularly in the Lune and Tees basins. The maps also illustrate that the MERRA-2 model produced lower depths in the 

Tyne basin than other reanalysis precipitation datasets. Across all basins, ERA-5 and CFSR produced similar distributions of 

error relative to the CEH-GEAR1hr results. The inter-quartile range of errors in MERRA-2 is narrower but the median error 255 

is slightly further below zero than ERA-5 and CFSR. JRA-55 water depths were significantly further below the other 

reanalysis datasets.  
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The flood extents from each model during the 2005 event in the Eden basin are compared against Environment Agency 

recorded flood outlines in Figure 5. This event was chosen because it provided the largest available flood extents in the 260 

observed dataset which coincide with a built-up area. CEH-GEAR1hr resulted in the highest Critical Success Index (CSI) 

(0.54). This level of performance with rainfall inputs derived from rain gauge data is consistent with the findings of 

Bárdossy et al. (2022) which showed that up to 50% of model error can be attributed to precipitation uncertainty. CFSR and 

ERA5 performed similarly to each other and less well than CEH-GEAR1hr. MERRA-2 caused further underestimation of 

extent, while JRA-55 had the lowest CSI by a significant margin. The recorded outlines data does not contain information 265 

about the total area that was surveyed so regions incorrectly identified as flooded in the model outputs may still have been 

flooded in reality. This is clearly the case in the downstream section of the Eden in the upper left of each plot, along with 

other water courses visible in the model outputs. This means that the CSI values are under-representative of accuracy, 

however they provide a useful metric for comparison between datasets.  

 270 

Wrack and water marks recorded following the 2005 event in Carlisle in the Eden catchment (Neal et al., 2009) have been 

compared against maximum modelled water depths in Figure 6. Wrack marks are left by debris deposited at the flood edge 

(HR Wallingford, 2004), while water marks are left as stains on the side of structures within the flooded area. The DEM 

values from the computational grid were subtracted from the observed water elevations to produce flood depths for 

comparison with the model outputs. Any depths which were calculated as being below zero were assumed to be zero. Again, 275 

CEH-GEAR1hr is the closest to the observed data with an RMSE of 0.41m, followed by CFSR and ERA-5 with 

approximately twice the error. JRA-55 resulted in less than half the r2 value of other datasets. The ranking of datasets 

remained consistent between the CSI analysis and comparison against observed depths.  Without data on the 2005 flood 

defence crest levels it was not possible to incorporate them.  However, the storm was estimated to be a 1 in 170 year event 

(Environment Agency & Cumbria County Council, 2016) (Environment Agency and Cumbria County Council, 2016), far 280 

higher than the design return period for many fluvial flood defences, so whether by overtopping or floodplain flow they 

would be expected to have a relatively minor influence on this event.   

 

Time series of water depths were extracted from the models at each river gauge location and compared with the observed 

values (Figure 7). In all basins, apart from the Wear, CEH-GEAR1hr was closest to the observed peaks and predicted the 285 

highest maximum depth. In the Wear basin, where all models overestimated river stage, CEH-GEAR1hr was actually the 

least accurate. However, the observed values may be misleading here as flows go out of bank above 3 metres and so peaks 

are truncated in the observed series. This means that the actual stage is likely to be higher than the recorded values and 

therefore the magnitude of the reported errors overestimated. JRA-55 consistently severely underestimated river stage and 

only captured peaks in the Eden and Tyne basins. ERA-5 and CFSR display relatively similar performance across all basins. 290 

Meanwhile, MERRA-2 underestimated the peaks in the Eden and Tyne. All reanalysis products strongly underestimated the 

flood peak in the Lune basin.  
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The total numbers of inundated buildings for each model are shown in Figure 8. As there is no observed building inundation 

data available, it cannot be concluded which is the most accurate. However, a reasonable assumption might be that since 295 

CEH-GEAR1hr is based on rainfall observations and is at a higher resolution, it is likely to produce the closest estimate to 

the truth. In four out of five basins, using CEH-GEAR1hr resulted in the highest number of inundated buildings. ERA-5 

inundated the most buildings in the Tees basin despite not being consistently higher than the other reanalysis datasets in the 

other basins. JRA-55 inundated the lowest number of buildings by a large margin in all basins apart from the Tyne, where it 

exceeded both MERRA-2 and CFSR. CFSR never resulted in either the highest or lowest number of inundated buildings. 300 

There is general agreement between the rankings of modelled peak water depth as shown in Figure 7 and the number of 

inundated buildings. Notable exceptions include the Tees, where the high inundation levels predicted by ERA-5 were not 

replicated in its depth peak, which was lower than CEH-GEAR1hr by a clear margin. Changing the inundation threshold had 

only very minor effects on the relative differences in inundation between datasets. 

4 Discussion 305 

The underestimation of extreme rainfall by reanalysis products has previously been identified in the literature (Blacutt et al., 

2015; He et al., 2019; de Leeuw et al., 2015). The results presented above demonstrate that this leads to a persistent bias 

towards underestimation of flood depths and impacts when using global reanalysis products in place of high-resolution 

gauge-based rainfall datasets.  One contributing factor is that the model grid resolution of the global climate models (GCMs) 

used may not be high enough to capture the dynamics of extreme events. Seasonal and local characteristics may also not be 310 

captured by the GCMs. Any resulting negative bias in precipitation propagates into flood depths and impacts as less water 

enters the hydrodynamic model and accumulates on the floodplain. The negative bias has been shown to exist in depths 

across the basins studied, at river gauging stations and specifically at the locations of buildings, which correspond to built-up 

areas exposed to flooding. This finding is in line with Sampson et al. (2014), who show ERA-Interim, an older product, 

underestimated flood risk. Our results, however, do not indicate such a stark bias, perhaps because the products used here are 315 

more modern and advanced than ERA-Interim. This is backed up by Towner et al. (2019) who have demonstrated improved 

performance of ERA-5 over ERA-Interim using hydrological models of the Amazon. Hirpa et al. (2016) also illustrate that 

ERA-Interim can underestimate flood risk, with spatial variability, which further reinforces our finding. In contrast, 

Andreadis et al. (2017) find flood extent to be overestimated (relative to a benchmark simulation) when using the 20CRv2 

reanalysis product. However, they did find that outflow discharge was underestimated, which agrees with our results. Their 320 

assessment of flood extent did not include flood depths or effects on the inundation of exposed assets, as we have done here, 

which may explain the observed overestimation to some degree. We also did not replicate the underestimation of streamflow 

found by Zhu et al. (2016) when using CFSR. Though, it is difficult to draw direct comparisons given the major differences 

in methodology between studies. 
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 325 

We found that no precipitation product performed better in all models and each product performed differently depending on 

the basin. This implies that the optimum dataset to use depends on the location of the model. JRA-55 was very poor at 

capturing extreme rainfall and subsequently hydrograph peak and inundation magnitude in almost all cases. This may be 

slightly influenced by the lower temporal resolution, but it is unlikely that the small difference in observation frequency 

would result in such a strong negative effect on model performance. ERA-5 consistently performed better than other 330 

reanalysis datasets in terms of capturing the observed hydrograph peak, apart from in the Eden, where CFSR was more 

accurate and also demonstrated a higher CSI and lower RMSE relative to recorded outlines and wrack mark depths. ERA-5, 

CFSR and MERRA2 were more evenly matched in terms of floodplain water depth (Figure 4), and impacts (Figure 8). We 

find no cause to favour any of these three datasets and suggest that all three could be adopted in parallel by reanalysis-based 

flood models to capture the range of uncertainty. 335 

 

Links between hydrograph performance and estimated numbers of inundated buildings are present but the relationship is not 

consistent. For example, in the Tyne basin, CFSR estimates a higher gauge peak than JRA-55 but, at the same 

time, inundates fewer buildings. Meanwhile, MERRA-2 only has the lowest hydrograph peak in the Tyne, where it estimates 

the lowest total building inundation compared to other models. CEH-GEAR1hr is also both generally higher in terms of 340 

both building inundation and hydrograph peak, but the occasions where this is not the case do not correspond to the same 

basin. These findings demonstrate that there is generally a positive relationship between peak hydrograph depth and numbers 

of inundated buildings, but increased river depth does not always lead to greater inundation. Therefore, hydrograph 

performance is not an entirely reliable metric for assessing the accuracy of flood risk estimated using global reanalysis 

products.   345 

 

The physically-based 2D hydrodynamic model achieves a good fit to several indicators, despite a reported Root Mean 

Squared Error (RMSE) for the OST50 DEM of 4m.  A key reason for this is that the RMSE is the absolute accuracy of 

elevation across the whole country.  This combines systematic (e.g. block linkages between photogrammetric observations) 

and random errors from one end of the country to the other, and is therefore not an absolute measure of accuracy for a given 350 

area of interest.  Local precision, the relative accuracy from point to point, is more important here and will be much better 

than the RMSE over the (relatively) small river basins (e.g. RICS (2021) suggest an Area of Interest would likely have 

relative precision of the order of decimetres).  Moreover, OST50 has been validated to meet the positional requirements for 

key features such as waterbodies, and to capture topography (Ordnance Survey, 2022). Although Yunus (2016) showed it 

likely led to a small overprediction of flood impacts relative to LiDAR, it has been used successful for hydrological 355 

modelling (Chen et al., 2021).  The combination of relative accuracy and positional validation against key features of the 

DEM explains the performance of the hydrodynamic model.  Whilst the hydrodynamic performance was reassuring, 

calibration could have further improved model fit (Maggioni and Massari, 2018).  However, the focus of the study is on the 
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sensitivity of model performance to different global rainfall products.  We have, by choice, therefore not adjusted any input 

data, or undertaken any specific calibration as this would compensate, differently for each catchment being studies, for the 360 

errors and differences in the data that this work is seeking to understand. 

 

The underestimation of inundation magnitude caused by using global precipitation data is counter to the overestimation that 

results from using global DEM data, as demonstrated by McClean et al. (2020). The negative inundation bias caused by 

using reanalysis precipitation is, however, not as strong as the positive bias from global DEM products. This is because 365 

changes in rainfall input have a less significant impact on the spatial distribution of flooding than changes in DEM input. 

Therefore, it is anticipated that the combined effects of using both global DEM and global reanalysis precipitation would not 

cancel themselves out and are likely to produce a net positive bias. 

 

Undoubtedly the effects shown here are specific to the study area and other locations may present different patterns. Each 370 

reanalysis product may behave differently across climatic regions, for example. Similarly, the assumption of no infiltration 

would lead to increased underestimation of flows in arid climatic regions.  Areas with highly constrained topography are 

unlikely to be strongly affected by the choice of precipitation data, in terms of flood extent and numbers of inundated assets 

because increases in total rainfall volume will not greatly alter flood extent if there are no new available flow pathways.  

 375 

A key limitation to applying our methodology in other locations is the requirement for high-quality gauge-based 

precipitation datasets and river stage observations to compare against. Despite the caveat of locality, our results do 

demonstrate the potential for underestimation of flood risk when reanalysis products are involved. This underestimation has 

been observed in other areas using earlier reanalysis rainfall products (Sampson et al., 2014) and users of models based on 

reanalysis data should be aware of this effect. 380 

5 Conclusions 

Using precipitation from global reanalysis datasets results in an underestimation of flood risk by 14-18 % of inundated 

buildings (Table 3, excluding JRA-55 as it was far outside the range of other products) relative to CEH-GEAR1hr, which 

outperformed reanalysis products in terms of flood depth and extent when compared to observations. The effect is location-

specific, though, and this study found that no product performed best across all five of the catchments we studied. In some 385 

areas, the reanalysis data did result in similar levels of inundation to the national observed precipitation product. This is a 

positive message for the use of reanalysis data in flood risk modelling generally and future progress in forecast models will 

undoubtedly reduce this gap even further. 
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As climatic and land-use changes increase flood hazard, the importance of accurately understanding current and future flood 390 

risk is increasing. Reanalysis data has enabled flood risk assessments to be undertaken more widely. However, this analysis 

shows global or regional reanalysis data should not yet be considered as a replacement for local, high resolution, 

observations. Uncertainties in flood risk assessment using reanalysis data need to be properly quantified and communicated 

to insurers, local and national authorities and communities, to ensure flood risk management decisions are not misinformed.   

 395 

While reanalysis datasets do show promising and improving results (ERA-5 achieved a mean absolute hydrograph peak error 

of 29.4 %, equivalent to CEH-GEAR1hr and CFSR only inundated on average 14.4 % fewer buildings than CEH-

GEAR1hr), caution should be used when interpreting outputs from any models based on them due to the underestimation of 

inundated buildings demonstrated here. However, as no observed building inundation data were available, our findings are 

not definitive. We suggest that multiple products, such as ERA-5, CFSR and MERRA-2, should be used where possible to 400 

capture the full range of rainfall uncertainty. This is because each of these products has been shown to perform better in 

different areas or when using different performance measures. Based on the comparatively strong negative bias in inundation 

and flood peak shown here for a limited set of events, JRA-55 may result in substantially lower risk estimates than other 

reanalysis products and users of model outputs based on it should take this into account. However, as highlighted, certain 

products may perform better in other areas and further research is needed to assess new and existing reanalysis products for 405 

flood modelling across a wider range of climatic regions. To enable this, a more systematic international strategy for the 

collection of rainfall data is needed to ensure more complete global coverage of validation data, building on efforts 

from Lewis et al. (2019). New reanalysis products continue to be developed which may improve on the findings presented 

here (Muñoz-Sabater et al., 2021) while bearing in mind the findings of Bárdossy et al. (2022) on the fundamental 

uncertainty of the reference raingauge data. This will require ongoing validation efforts to identify possible advancements in 410 

terms of flood risk analysis  
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Figure 1 The location and topography of basins within the study area, illustrated using OS Terrain 50. 645 
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Figure 2 – Comparison of daily rainfall totals from each dataset with observed values at selected gauges. The observations were 

obtained from MIDAS Open (Met Office, 2019). The MIDAS station ID of each gauge is shown in the title of each subplot. The 

series were converted from hourly to daily to improve clarity. CEH-GEAR1hr becomes obscured in places due to it precisely 

following the observed series. 650 
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Figure 3 Rainfall over the study area during the events in Table 2, according to each reanalysis dataset.  The 1995 event is shown 

for the Tees and the Lune, the 2004 event is shown for the Tyne and the Eden, the 2009 event is shown for the Wear. 
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Figure 4 
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(A)-(E) show maximum water depth throughout the study area from models using each of the rainfall datasets. (F) shows the 655 
depth error of the reanalysis datasets relative to CEH-GEAR-1hr across all cells, excluding outliers. “Ens” refers to the ensemble 

mean of all reanalysis products. “Ens-JRA” refers to the ensemble mean of reanalysis product excluding JRA-55.  

 

Figure 5 Comparison of flood extent based on a threshold of 0.3m with Environment Agency Recorded Flood Outlines for the 2005 

event in Carlisle. 660 
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Figure 6 (A)-(E) show a comparison of modelled and observed water depths from wrack and water marks in Carlisle during the 

2005 event (Neal et al., 2009). (F) shows the locations at which the water depths were measured. 
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Figure 7 Stage hydrographs comparing water depths (m) from model results and observed values at each gauge. 665 
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Figure 8 Number of buildings inundated above given thresholds per basin by each model. 

Table 1 Precipitation products included in this study. Where the end of the period is not given, the product continues to be 

updated to the present day at the time of writing. 

Dataset DOI Resolution Coverage Period Frequency 
CEH-
GEAR1hr 

10.5285/d4ddc781-25f3-423a-bba0-
747cc82dc6fa 1 km 

Great 
Britain 

1990-
2014 Hourly 

ERA-5 10.24381/cds.adbb2d47 ~30 km Global 1979- Hourly 

MERRA-2 10.5067/7MCPBJ41Y0K6 ~55 km Global 1980- Hourly 

CFSR 10.5065/D6513W89 ~35 km Global 
1979-
2011 Hourly 

JRA-55 10.5065/D6HH6H41 ~60 km Global 1958- 3 Hourly 
 670 

Table 2 Event start and end times for each basin based on the observed stage peak at the most downstream gauge. Start times are 

two weeks before, and end times two weeks after, the observed stage peak times to allow for model spin-up and inclusion of 



29 

 

hydrograph. Rainfall totals are the mean rainfall between the start and end times across the gauged catchment from CEH-

GEAR1hr. 

Basin 
Gauge 
Location 

Gauge 
ID 

Catchment 
Area 
(km2) 

Rainfall 
Total 
(mm) 

Stage 
Peak 
(m) 

Flow 
Peak 
(m3/s) Peak Time Start Time End Time 

Wear 
Chester le 

Street 24009 1008.3 151.7 4.1 378 
18/07/2009 

11:00 
04/07/2009 

11:00 
25/07/2009 

11:00 

Tyne Bywell 23001 2175.6 169.2 6.3 1390 
08/01/2005 

08:00 
25/12/2004 

08:00 
15/01/2005 

08:00 

Tees 
Darlington 

Broken Scar F3501 818.4 163 3.3 646 
31/01/1995 

20:15 
17/01/1995 

20:15 
07/02/1995 

20:15 

Lune Caton 724629 983 216.1 7.1 1400 
31/01/1995 

21:15 
17/01/1995 

21:15 
07/02/1995 

21:15 

Eden Sheepmount 765512 2286.5 216.5 7.2 1520 
08/01/2005 

14:30 
25/12/2004 

14:30 
15/01/2005 

14:30 
 675 

Table 3 Summary of metrics for each model.  CSI and water depth RMSE are reported for regions of the Eden basins 

corresponding to those shown in Figure 4 and Figure 5.  

  CEH-GEAR1hr ERA-5 MERRA-2 JRA-55 CFSR 

Stage peak error (%) 

Wear 74.99 17.02 47.92 -68.55 43.29 

Tees -22.28 -34.11 -38.16 -100 -35.9 

Eden -0.9 -16.39 -27.17 -49.47 -14.24 

Tyne 26.88 -4.91 -52.04 -36.43 -14.09 

Lune -21.81 -74.66 -80.57 -99.99 -82.37 

Stage peak time error (hrs) 

Wear -2 13 -1 168 -5 

Tees 0 2 -1 -336 4 

Eden -1 -3 0 114 -5 

Tyne 0 2 10 116 2 

Lune 2 1 -5 -79 1 

Number of buildings 
inundated >= 0.3m 

Tyne 8230 7287 5405 7240 6244 

Tees 8078 8956 7834 4801 7938 

Wear 6979 5187 6070 4357 5923 

Eden 5573 4515 4167 3262 4843 

Lune 3475 3005 2905 1177 2861 

CSI 0.54 0.42 0.35 0.19 0.44 

Water depth RMSE 0.41 0.85 1.05 1.35 0.79 
 


