https://doi.org/10.5194/hess-2021-151
Preprint. Discussion started: 29 March 2021
(© Author(s) 2021. CC BY 4.0 License.

10

15

20

25

30

35

40

45

Hydrology and
Earth System
Sciences

Discussions

Land-use and climate change effects on water yield from East African
Forested Water Towers

Charles Nduhiu Wamucii', Pieter R. van Oel’, Arend Ligtenberg®, John Mwangi Gathenya®, Adriaan J.
Teuling'

'Hydrology and Quantitative Water Management Group, Wageningen University & Research, 6700 AA Wageningen, The Netherlands
*Water Resources Management Group, Wageningen University & Research, 6700AA Wageningen, The Netherlands

3Laboratory of Geo-information Science and Remote Sensing, Environmental Sciences, Wageningen University & Research, 6708 PB
‘Wageningen, The Netherlands

4Soil, Water and Environmental Engineering Department, School of Biosystems and Environmental Engineering, Jomo Kenyatta
University of Agriculture & Technology, P.O Box 62000 - 00200 Nairobi, Kenya

Correspondence to: Charles Nduhiu Wamucii (charles.wamucii@wur.nl)

Abstract. East-African forested mountain regions are vital in generating and supplying water resources to adjacent
arid and semi-arid lowlands. However, these ecosystems are under pressure from both climate and land-use
changes. This study aimed to analyze the effects of climate and land-use changes on water yield using the Budyko
conceptual framework. For 9 selected forested water towers in East Africa, the amount and distribution of water
resources and their decadal changes were analyzed. Results show that most areas inside and outside the water
towers are under pressure from human influences. Water yield was ebserved-te—be more sensitive to climate
changes compared to land-use changes within the selected East African water towers themselves. However, for
the surrounding lowlands, the effects of land-use changes hawve greater impacts on water yield. We conclude that
the East-African water towers have seen a strong shift towards wetter conditions, especially in the period of 2011-
2019 while at the same time, the atmospheric demand is gradually increasing. Given that majerity; of the water
towers were identified as non-resilient to these changes, future water yield is likely to also experience more
extreme variations.

Keywords: Water towers, Climate changes, Land-use changes, Water yield, Budyko framework

1. Introduction

Many mountainous areas act as water towers by generating and supplying water resources to adjacent lowlands
that would otherwise be much drier. An area is considered a water tower if it has a high elevation and high
precipitation, consequently generating streamflow to lowland areas (Dewi et al., 2017; Immerzeel et al., 2010;
Viviroli et al., 2007). Although research on water towers has focused mainly on glaciated mountain chains
(Immerzeel et al., 2020), there is growing awareness that forested mountains can provide similar services (Viviroli
and Weingartner, 2004). Mountainous areas in Africa cover approximately 20 % of Africa’s surface area and
receive significantly more rain than adjacent lowlands (EAC et al., 2016; UNEP, 2014). They capture water, store
it, purify it, and release it to lowland areas (UNEP, 2014). The East-African region is one of the most mountainous
areas of Africa with several peaks above 4,500 meters and hosts the three highest mountains on the continent:
Kilimanjaro (5,895 m), Mount Kenya (5,119 m), and the Rwenzori Mountains (5,109 m) (UNEP, 2014).

Montane forest ecosystems in the East-African region are classified as water towers due to their high elevations
and high humidityjthus generating water yield for adjacent lowland areas. There is a high dependency on surface
water in the East-African region (Jacobs et al., 2018), but rainfall distribution is meager in most parts of the region,
with several areas experiencing frequent eeeurrenee-of severe droughts (Nicholson, 2017). Therefore, the forested
water towers in the region are important sources of water that sustain environmental and human water demands in
the lowland areas.

The water towers of East Africa are under pressure from human intensification and climate change (Gebrehiwot
etal., 2014; WWF, 2005). According to the Intergovernmental Panel for Climate Change (IPCC) Fifth Assessment
Report, the average annual temperature for Africa has risen by at least 0.5 °C during the last 100 years and this is
predicted to increase by approximately 3.2 °C by 2080. This will dramatically diminish glaciers in East-African
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water towers whose surface area has already decreased by 80 % since the 1990s (EAC et al., 2016), affecting
runoff and water resources downstream. The East-African montane forest zones continue to be lost to agriculture
and other anthropogenic uses. This is mainly attributed to high and increasing population density which is a major
driving force of environmental change in the mountainous areas (UNEP, 2014).

Understanding historical climate change and human-induced land-use changes and their impacts on streamflow
generation from the forested water towers can explain some of the extreme hydrological events experienced in the
adjacent lowlands such as floods and hydrological droughts. To the-best-of our knowledge, there are no studies
that have focused on the East-African forested water towers and their ability to generate streamflow under a
changing climate and land-use in the East-African region. That said, Guzha et al. (2018) in their review emphasized
the importance of forests in streamflow generation in the region, with forest degradation leading to increased
stream discharges and surface runoff. Moreover, Muthoni et al. (2019); focused on spatial-temporal trends and
variability of precipitation within East and Southern Africa. However, there is limited information on the
partitioning of the available precipitation into water yield and evapotranspiration from the forested water towers
of the East-African region.

Various approaches have been used for studying the effects of climate change and land-use on streamflow. Jiang
etal. (2015) categorized such methods into twog(a) deterministic rainfall-runoff models and (b) statistical methods.
Dey and Mishra (2017) categorized these approaches into four categories; (i) experimental approaches, (ii)
hydrological modeling, (iii) conceptual approaches, and (iv) analytical approaches. The Budyko model (Budyko,
1974) is a conceptual approach that considers both water and energy constraints in hydrological processes over a
long-term period. The framework has been applied to quantify or separate the impacts of climate change and
human activities on runoff (Jiang et al., 2015; Roderick and Farquhar, 2011; Xu et al., 2013).

The Budyko framework has been applied successfully in numerous studies focusing on the partitioning of
precipitation into streamflow and evapotranspiration (Creed et al., 2014; Jiang et al., 2015; Mwangi et al., 2016;
Roderick and Farquhar, 2011; Xu et al., 2013; Zhang et al., 2004). The framework works well both at coarse global
grid resolution and in smaller basins of less than 10 km? (Redhead et al., 2016; Teuling et al., 2019; Zhang et al.,
2004). This paper aims to analyze the effects of climate and land-use changes over the past decades and their
impacts on the amount and distribution of water resources from selected forested water towers of East Africa. The
water yield simulations were evaluated against observation-based runoff.

2. Data and Methodology

The Budyko conceptual framework was adopted to
evaluate the impacts of land-use changes and climate
changes on water yield from the selected forested
water towers. The study area is the East-African

region. The montane forest ecosystems are the major
forest types in Eastern Africa. They range from .y
Ethiopian highlands to Albertine rift mountains
stretching along the Congo DRC and bordering
Uganda, Rwanda, Burundi, and Tanzania. This study %

South Sudan

[ Water Towers

focused on montane forest ecosystems and their I Lakes
. Il Montane forests
moorlands. The selected water towers are shown in [~IMoorlands

Fig 1, and summarized in Table 1). [JArc Forests
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Figure 1. The East African Forest Ecosystems and the
location of the selected water towers
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Table 1. The selected water towers of East Africa

Mountain Location Peak Elevation — asl Foot slope contour - asl (m)

Ecosystems (m)

Mt Kilimanjaro Tanzania 5,895 2000

Mt Kenya Kenya 5,199 2000

Mt Elgon Kenya/Uganda 4,321 2000

Aberdare Ranges Kenya 3,999 2100

Rwenzori Mountains ~ Uganda/Congo 5,109 2000

Mt Meru Tanzania 4,565 2000

Virunga Mountains Congo/Rwanda/Uganda 4,507 2000

Bale Mountains Ethiopia 4,337 2600

Imatong Mountains South Sudan/Uganda 3,187 2000

Precipitation data () gvas gathered from Climate Hazards Group Infrared Precipitation with Stations (CHIRPS-
v2) with a temporal coverage beginning 1981 and a spatial resolution of 0.05°. Potential Evapotranspiration (PET)
data pvas sourced from Climate Research Unit (CRU) database with temporal coverage beginning 1981 and a
spatial resolution of 0.5°. Normalized Difference Vegetation Index (NDVI) data to estimate land surface
characteristics gvas sourced fromGlobal Inventory Monitoring and Modeling System (GIMMS) Third Generation
(3 g) Advanced Very High-Resolution Radiometer (AVHRR) sensor onboard the National Oceanic and
Atmospheric Administration (NOAA) satellites at a spatial resolution of 0.07° (Kalisa et al., 2019). The research
borrows from the concept of quantifying the long-term impact of climate and land-use changes on mean annual
evapotranspiration and water yield at catchment scales based on data and parameters that are easily measurable at
aregional scale (Zhang et al., 2001). Forested catchments generally have higher evapotranspiration than other land
covers such as grassed catchments. Therefore changes in land use and forest management have an impact on
catchment water balance and hence water yield (Teuling and Hoek van Dijke, 2020; Zhang et al., 2001).

One way of estimating water yield (Q) and actual evaporation (ET) is to assume that evapotranspiration from land
surfaces is controlled by water availability and atmospheric demand (Zhang et al., 2001). The water availability
can be approximated by precipitation; the atmospheric demand represents the maximum possible
evapotranspiration and is often considered as the potential evapotranspiration (PET). Under very dry conditions,
PET exceeds precipitation (P) and actual evapotranspiration (ETa) equals precipitation. Under very wet conditions
water availability exceeds PET, and ET will asymptotically approach the potential evapotranspiration (Zhang et
al., 2001), (see Fig Al for key assumptions on energy and water limits). The Budyko Curve provides a “business
as usual” reference condition for the water balance. Assuming that it can depict the expected partitioning of P into
ET and Q, then it is possible to account for the reasons why some points depart from the baseline (Creed and
Spargo, 2012b). The vertical deviations reflect a change in the partitioning of P into ET and Q, hence, the higher
the evaporative index (EI), the less the streamflow (Q). The horizontal deviations reflect the change in climatic
conditions (i.e. temperature and precipitation); thus, the higher the dryness index (DI), the warmer/drier the
conditions. One important feature of the Budyko curve is the assumption that, under stationary conditions,
hydrologic partitioning of study areas willfeHew on the Budyko Curve. However, under non-stationary conditions,
each catchment will deviate from the Budyko curve depending on land cover and physical catchment
characteristics (Creed and Spargo, 2012b), and this feature might be used to separate land cover change effects
from climate change.

Several analytical equations have been proposed for the Budyko curve. In this study, FU’s equation was used
(Equation 1). The equation has been applied in different studies (Li et al., 2013; Teuling et al., 2019).

ET _ L PET [ (PET)“’ e Q)
P p P

where P, PET, and ET are the precipitation, potential evaporation, and actual evapotranspiration. PET/P and ET/P
are termed ‘‘dryness index’’ and ‘‘evaporation ratio”’, respectively.

Parameter (w) is an empirical parameter that controls how much of the available water will be evaporated given
the available energy. It reflects the impact of other factors such as land surface characteristics and climate
seasonality on water and energy balances (Li et al., 2013). Land surface hydrology varies due to variations in
different factors such as vegetation, soil types, and topography, climate seasonality;-ete (Liet al., 2013). Vegetation
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information can serve as a good integrated indicator of these ecohydrological impacts on water and energy balances
as it reflects the integrated landscape and climatic features (Donohue et al., 2007). The fact that vegetation
coverage integrates the effects of the eco-hydrological processes on water and energy balances warrants a simple
parameterization for (w) using only vegetation information in the large-scale basins (Li et al., 2013). According
to Li et al. (2013), w) parameters can be calculated using the following equation:

w = 236M + 1.16 2)
_Where (M) represents the vegetation coverage — which is calculated based on NDVI indices (Yang et al., 2009):

_ _NDVI— NDVly 3)
NDVIpgy — NDVpin

In this study, the M values were calculated for 1985, 1995, 2005, and 2015, and assumed to represent the (w)
parameters for the respective periods of 1981-1990, 1991-2000, 2001-2010, and 2012019.

Over a long period (i.e. 5-10 years) it is reasonable to assume that changes in soil water storage are zero (Creed et
al., 2014; Teuling et al., 2019; Zhang et al., 2001). Therefore, water yield is estimated using the following equation:

Q=P—ET 4)
_Where (@) represents the water yield, P fprecipitation), and {E£7) the simulated actual evapotranspiration.

To develop the Budyko curves that are representative of the selected forested water towers, 100 random points
were generated in each of the water towers in ArcGIS. The random points were used to extract values from raster
P, PET, and ET grids into excel format for external analysis. For maximum representation, the minimum allowed
distance between the random points was set to 100 meters. The random points generated were assigned the
respective values of PET, ET, and P using the Extract Multi Values to Points tool in ArcGIS. The Evaporative
index (EI) values; calculated as a ratio of ETa and P, and Dryness index (DI) values; a ratio of PET and P were
used to draw the Budyko curves. In this study, the Budyko curve for the 1981-1990 period was used as the
reference condition for the water balance, to effectively assess the trends in the succeeding periods of 1991-1990,
1991-2000, 2001-2010, and 2011-2019.

To evaluate the impacts of climate and land-use changes, the sensitivity of climate and land-use changes was
conducted. The climate and land-use values for the years 1981-1990 were used as the reference conditions in the
Budyko framework. The climatic conditions (i.e. P and PET) for the years 1981-1990 were held constant in the
Budyko framework to evaluate the impacts under changing land-use conditions in the succeeding periods of 1991-
2000, 2001-2010, and 2011-2019. Similarly, the land-use conditions (i.e. (w) parameters) for the years 1981-1990
were held constant in the Budyko framework to evaluate the impacts under changing climatic conditions in the
succeeding periods of 1991-2000, 2001-2010, and 2011-2019.

_Additienallysthe-deviations from the Budyko curves were also investigated to give a further understanding of the
type of changes observed in the different water towers. Vertical deviations from the Budyko curve indicate
anthropogenic effects which result in increases or decreases in water yield (Creed and Spargo, 2012b, 2012a). Fhe
horizontal deviations reflect a shift to warmer or humid conditions mainly due to resultant variations in temperature
and precipitation (Creed and Spargo, 2012b, 2012a). The deviation (d) and elasticity (e) are the-two indices used
to describe the potential departure from the theoretical Budyko curve of a catchment’s DI and EI points with time
(Creed et al., 2014). The deviation (d) was calculated using the following formula;

d = Elsim — Elgyq )

Where El;,, represents EI simulated for periods in 1991-2000, 2001-2010 and 2011-2019 and Elg,,, represents
the predicted theoretical Budyko value for the reference period of 1981-1990. A negative () represents a
downward shift from the Budyko curve and hence an increase in Q. A positive (&) represents an upward shift from
the Budyko curve and hence a decrease in Q. The elasticity (e) was calculated as a ratio of DI ranges to EI ranges
. ; e :
_ b1 ©)
T AEI
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_Where ADI represents a range in DI values and AET represents a range in EI values observed in the periods of
1991-2000, 2001-2010, and 2011-2019 using the period of 1981-1990 as the reference period. The water towers
with lower elasticity values indicate greater ranges in their EI values and the water towers with higher elasticity
values demonstrate lesser ranges in their EI values.

The simulated streamflow of the water towers was compared with composite runoff data downloaded from the
Global Runoff Data Centre (GRDC). The composite runoff fields, developed through combining observed river
discharge information with a climate-driven water balance model, provide the "best estimate" of terrestrial runoff
over large domains (Fekete et al., 2002). A total of 312 points above 2000 meters above sea level, which is the
focus of this study (i.e. elevated water towers), were randomly generated in ArcGIS. For maximum representation,
the minimum allowed distance between the random points was set to 100 meters. The selected random points and
their respective values of simulated streamflow and composite runoff were compared.

3. Results

Higher long-term mean annual rainfall of above 1000 mm yr'! was pbserved majotly in the mountainous forest
ecosystems located in the western region and the Ethiopian highlands in the north of East Africa (Fig 2a). The
mountainous forest ecosystems are important rainfall regions in drier environments as represented by Mt
Kilimanjaro (average 1800 mm yr'), Mt Meru (average 1200 mm yr'!'), Mt Kenya (average 1400 mm yr!), and
Aberdare ranges (average 1200 mm yr'') as shown in Fig 2a and Fig 2b. The 10-year moving averages analysis
revealed patterns of high and low trends in precipitation in the different water towers (Fig A2).

_Ysing-the19811990-period-as—the—referenee—period;—ehanges in Precipitation showed a fongitudinal gradient.
Negative changes in rainfall were observed in the water towers located towards the eastern side except for the
Virunga mountains. Positive trends were observed in the water towers located towards the western side with
exception of Aberdare ranges. Mt Kilimanjaro experienced a strong mean annual rainfall reduction with an average
annual reduction of 13.5 % and 12 % observed in the-perieds-ef 2001-2010 and 2011-2019 respectively (Fig 2c).
Contrastingly, a steady increase in mean annual rainfall was observed in Mt Elgon with an average increase of
over 20 % recorded in the years of 2011-2019 (Fig 2c¢).

Long-term assessment of atmospheric demand (PET) showed areas with relatively higher mean annual PET to
coincide with areas of low rainfall and vice-versa (Fig 2d). Generally, atmospheric demand continued to increase
over time in all the water towers with a peak observed in the-years-ef 2001-2010 (Fig 2¢ and Fig A3). Imatong
Mountains water tower had the highest atmospheric demand with an average long-term mean of appx 1500 mm
yr'!, followed closely by Mt Elgon with an average long-term mean of appx 1400 mm yr'. The water towers
located towards the western side exhibited lower atmospheric demand (examples are Virunga mountains — long-
term mean of 990 mm yr' and Rwenzori mountains — long-term mean of 1100 mm yr').

Ysing—the19811990-peried—as—the—referenee—period;—all water towers experienced increases in the annual

atmospheric demand(Fig 2f.) Bale mountains saw a sharp increase in atmospheric demand jpy approximately 6 %
in the-periods-of 2001-2010 and 2011-2019. A minimal increase in atmospheric demand was observed in Mt
Kilimanjaro with an average annual increase of 0.1 %, 1.0 %, and 0.8 % in the-perieds-ef 1991-2000, 2001-2010,
and 2011-2019 respectivelyjas shown in Fig 2f.
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Figure 2. Long-term Mean annual rainfall (a, b, ¢) and Potential Evapotranspiration (d, e, f) for the period 1981-2019
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Higher values for the Budyko parameter (w) were observed in the western part of Congo/Uganda, the Ethiopian
Highlands and along the coastline of Tanzania, Kenya, and Somalia (Fig 3a). The land surface characteristics (w);
ranged between 2.4 and 3.1 in the different water towers, with exception of Bale mountains where a drop to 2.3
was observed in 2015 (Fig 3b). Using the-year 1985 as the reference for the land cover characteristics, different

5 patterns of negative changes and positive changes were observed. A major drop was observed in Mt Meru and Mt
Kilimanjaro while Mt Elgon and Imatong mountains maintained a positive change (Fig 3c).
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Figure 3. The Jband surface characteristics (w) for 1985 to 2015 (a), the changes observed between 1985 and 2015 (b) &
and (¢)

The long-term actual evapotranspiration (Eta) assessment revealed longitudinal differences in the spatial
distribution. The water towers towards the west were observed to be located in regions with higher ETa (examples
are Mt Elgon, Imatong mountains, Rwenzori mountains, and Virunga mountains). The water towers towards the
east are located in regions with relatively lower ETa (examples are Mt Meru, Mt Kilimanjaro, Aberdare Ranges,
and Mt Kenya-(Fig 4a and Fig 5a, 5b, 5c, 5d). The changes in ETa in the region were analyzed using the 1981-
1990 period as the baseline (Fig 4a). Fhe-decreases in ETa were observed in the South4Eastern parts of Ethiopia,

_North-south gradient in Kenya, central Tanzania, and the western side of Congo/Burundi region as shown in Fig
4b, 4c, and 4d. Fhe-increases in ETa were observed in northern parts of Eastern Africa (i.e. Sudan, South Sudan,
Djibouti, Northern Somalia, the Kenyan-Somali border, and parts of north-western Kenya bordering Uganda and
South Sudan (Fig 4b, 4c, and 4d).
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Figure 4. Simulation of Actual Evapotranspiration (Eta) in the East African region: (a) ETa for 1981-1990, (b) ETa
changes in 1991-2000, (c) ETa changes in 2001-2010, and (d) ETa changes in 2011-2019

Despite the longitudinal differences, the individual water towers recorded varied ETa values. Higher ETa values
5 were simulated around the Imatong Mountains — with a long-term mean of 1107 mm yr’!, Mt Elgon — with long-
term a mean of 1097 mm yr''> and Mt Kilimanjaro — with long-term a mean of 1012 mm yr''. The lowest ETa
values were observed in the Bale mountains — with a long-term mean of 747 mm yr~' (Fig 5j). Using the 1981-
1990 period as the reference period, Mt Elgon recorded a steady increase in annual mean ET with an average
increase of the order of 10 % ebserved between 2011 and 2019. Pronounced decreases in ET were observed injMt

10 Kilimanjaro and Mt Meru water towers (Fig 5k), consistent with the decreasing trend in precipitation.
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Figure 5. The Long-term Actual Evapotranspiration (ETa) in and around the water towers (a-i) and Simulated Annual
Mean Evapotranspiration in the water towers (j&k)

Similarly to what was observed gr ETa spatial-distribution, the long-term water yield (Q) assessment also showed
that the water towers located towards the east are surrounded by regions with low water yield potential below 200

5 mm yr-! (examples are Mt Meru, Mt Kilimanjaro, Aberdare Ranges, and Mt Kenya (Fig 6a and Fig 7a, 7b, 7c, 7d).
Using the period 1981-1991 as the baseline, major increases in Q were observed in areas of Sudan, and the Kenya-
Somali border as shown in Fig 6b, 6¢, and 6d.
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Figure 6. Simulation of Water Yield (Q) in the East African region: (a) Q for 1981-1990, (b) Q changes in 1991-2000, (c)
Q changes in 2001-2010, and (d) Q changes in 2011-2019

Despite longitudinal differences, the higher mean annual water yield was hewever observed iy Mt Kilimanjaro
water tower located on the eastern side — with the long-term annual mean of 794 mm yr™!, followed by two water
towers located on the western side (i.e. Virunga mountains — with a long-term annual mean of 676 mm yr' and
Rwenzori mountains — with a long-term annual mean of 650 mm yr'* The lowest annual mean water yield was
observed in Bale mountains — with a long-term annual mean of 315 mm yr!' (Fig 7j). Conversion of water yield
units from mm/yr to m%/s per unit area revealed that Mt Kilimanjaro and Mt Kenya are important sources of water
in the drier part of the East African region (Table Al).

Using the period 1981-1990 as the reference point, the positive and negative changes were observed igthe different
water towers. There was a consistent increase in annual mean water yield #g Mt Elgon water tower with an-erdes_
of 11.4 % and 42.9 % recorded in the-perieds-ef 2001-2010 and 2011-2019 respectively (Fig 7k). There was a
decrease in water yield in the Aberdare and Mt Meru water towers during the 1991-2000 period, after which an
increase in annual mean water yield was recorded in the later years. A consistent decline was observed i Mt
Kilimanjaro and the Virunga mountains during the study period.
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Figure 7. The Long-term Water yield (Q) in and around the water towers (a-i) and Simulated Annual Mean Water
Yield in the Water Towers (j&k)

The simulated streamflow was compared with composite runoff data downloaded from the Global Runoff Data
Centre (GRDC) (Fekete et al., 2002). The spatial pattern of the simulated streamflow closely resembles the pattern

5 produced by GRDC composite runoff as shown in Fig 8a and 8b. A total of 312 points above 2000 meters above
sea level, the focus of this study (i.e. elevated water towers), were randomly selected and their respective values
of simulated streamflow and composite runoff were compared. The Kling-Gupta efficiency test revealed positive
values; JKGE=0.33)as shown in (Fig 8c).
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Figure 8. Spatial distribution of streamflow in the East African region: (a) Simulated streamflow, (b) Observation-based
composite runoff, and (c) Kling-Gupta efficiency calculation

The water yield was observed to be relatively more sensitive to climate changes (i.e. P and PET) than land-use
changes within the selected East African water towers. However, a closer look at the regions surrounding the
selected water towers revealed that the effects of land-use changes have greater impacts on water yield outside the
water towers boundaries (Fig 9). An example is on the Eastern side of Mt Elgon where there was a major reduction
in water yield especially in the periods 0f2001-2010 and 2011-2019, (Fig 9 Row no 3, column B). Climate changes
showed a reduction of water yield in seven water towers in the periods of 1991-2000 and 2001-2010. However, in
the years of 2011-2019, climate changes triggered increased water yield in seven water towers (Fig 10). The
climate changes in Mt Elgon resulted in a consistent increase in water yield, while a consistent decrease was
inferred for Mt Kilimanjaro.
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Summary:

1. Mt Kilimanjaro/Mt Meru: In column A the changes are observed both inside and outside water towers. In column B
extreme changes are observed outside the water towers.

2. Aberdare ranges/Mt Kenya: In column A, major reductions were observed on the south-eastern side. In column B,
major reductions were observed on the north-western side.

3. Mt Elgon: In column A, increases observed inside water towers. In column B, major decreases outside the water tower.
No major changes inside water towers.

4. Rwenzori mountains: In column A, major changes inside the water tower. No major changes inside the water towers in
column B.

5. Virunga mountains: In column A, there are major changes that also affect water yield inside the water tower. In
column B, no noticeable changes inside the water tower. Buf extreme reductions were observed outside the water tower.

6. Imatong mountains: In column A, noticeable changes inside the water tower. In column B, no obvious changes inside
the water towers, but extreme changes outside the water tower.

7. Bale mountains: In column A, there are apparent changes inside the water tower. In column B, no major changes inside
the water tower.

Figure 9. Effects of Land-use and Climate change on Water yield (Q)
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Figure 10. The effects of land-use and climate changes on water yield

The analysis of vertical deviations revealed downward shifts and upward shifts from the Budyko curve in the
different water towers. The vertical deviations (d) ranged from negative (-)0.05jto positive (+)0.02(Fig 11a). There
5 were no vertical deviations observed in Mt Elgon and Imatong mountains indicating that the values observed
(between 1991 and 2019) were approximately close to those predicted by the Budyko curve. The elasticity (e)
values ranged from 0.49 to 17.6 with most of the water towers recording lower elasticity values as shown in Fig
11b. The higher elasticity (e) values were observed gr Mt Kenya water tower in the-years-ef 1991-2000, Bale
mountains in the-peried-of 2011-2019, and jAberdare ranges in the-perieds-of 1991-2000 and 2001-2010.
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10 Figure 11. The-Deviation from the Budyko curve (a) and Elasticity (b) in the Water Towers

The horizontal shifts either to the left or to the right relative to the dryness index (DI) were observed in the water
towers. It was observed that 7 out of the 9 water towers plotted in the left (i.e. DI values less than 1, towards humid
conditions) (see Fig A4 a-i in the appendix). However, 2 of the water towers (i.e. Mt Meru and Bale mountains)

15 plotted more towards the right (i.e. DI values greater than 1). Mt Meru seems to have shifted from warmer to
humid conditions in the period of 2011-2019 as shown in Fig A4.

4. Discussion

The sensitivity analysis revealed differences brought about by climate ehanges and land-use changes on water
20  yield within and outside the water towers. Within the water towers, water yield was more sensitive to climate
changes compared to land-use changes. Outside the water towers, the water yield was observed to be more sensitive
to land-use changes than climate changes. This study, therefore, suggests that the direct anthropogenic influences
have a stronger impact outside the water towers. However, the Budyko metrics analysis revealed vertical
deviations (d) from the Budyko curve. According to Creed et al. (2014), these deviations indicate the presence of
25 anthropogenic effects within the water towers. In some of the water towers such as Mt Elgon and Imatong
mountains, no vertical deviations were observed indicating that the changes in the two water towers can gajerky

be associated with naturally occurring oscillations.
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Lower elasticity values were also observed in most of the water towers. Low elasticity indicates broad ranges in
the evaporative indexes (EI) compared toDryness indexes (DI) which further proves the presence of anthropogenic
influence within the water towers. According to Creed et al. (2014), elasticity can be used as a measure of
resilience. Elastic catchments are expected to plot along the Budyko curve (i.e. resilient to climate changes) while
inelastic catchments (non-resilience to climate changes) would deviate from the Budyko curve.

The horizontal shifts of the water towers either to the left or to the right relative to dryness index (DI) is an
important indicator of the behavior of the water towers towards warmer eenditions or humid conditions. These
horizontal deviations reflect a change in the climatic conditiong specifically temperature and precipitation (Creed
and Spargo, 2012a). This study observed that the majority of the water towers (7 out of 9) plotted within humid
conditions (i.e. DI <1). On the other hand, two of the water towers (i.e. Mt Meru and Bale mountains) demonstrated
warmer conditions (i.e. DI >1). One major observation is that water towers in Eastern Africa seem to shift towards
the left, an indication of the increased humid conditions especially in the period of 2011-2019. This includes Mt
Meru which shifted from warmer conditions observed in 1991-2000 and 2001-2010 to humid conditions in the
years of 2011-2019.

A gradual increase in PET was observed in all the water towers. This indicates that the atmospheric demand is
rising, an important signal of temperature increases in the East-African region. The effects of increasing
temperature have already been identified to have decreased the surface area of glaciers by 80 % in East African
water towers (EAC et al., 2016), affecting runoff and water resources downstream. According to Niang et al.
(2015), the temperature in Africa is projected to rise faster than the rest of the world, which could exceed 2°C by
the mid-21% century and 4°C by the end of the 21%' century. Therefore, the water towers are under pressure from
climate changes and PET is proving to be an important climate driver influencing water availability in the region.
The mountainous forest ecosystems located in drier environments (such as Mt Kilimanjaro, Mt Meru, Mt Kenya,
and Aberdare ranges) are important rainfall regions as they receive relatively higher rainfall than the adjacent
areas. This ensures water availability in the adjacent lowlands in the arid and semi-arid (ASAL) regions.

The simulated evapotranspiration (ETa) and water yield (Q) revealed longitudinal differences with low to high
values ranging from East to West. A related pattern on climate varying across East Africa from arid conditions in
the east to more humid conditions in the west was also observed by (Daron;2014). However, the individual water
towers revealed independent variations that do not follow the longitudinal pattern. For instance, ghe higher mean
annual water yield was observed gr Mt Kilimanjaro despite being located in the drier environment on the Eastern
side. This emphasizes the importance of elevated forested areas in ensuring water availability in semi-arid areas.
The extreme opposite grends observed in water yields from the different water towers confirm a strong variation
in the climatic patterns. For instance, while there was a consistent increase in annual mean water yield gr Mt Elgon,
the opposite was true gt Mt Kilimanjaro where a steady decline in water yield was observed.

The Budyko framework is a suitable approach for analyzing the partitioning of rainfall into precipitation and water
yield. The framework gives-the-possibility-for-analyzing the combined effects er-separating-the-effeets of climate
and land-use changes on water yield. In this study, the spatial pattern of the simulated streamflow in the Budyko
framework closely resembles the pattern observed in the GRDC composite runoff. The Kling-Gupta efficiency
test revealed positive values, KGE=0.33 which are seen as “good" model performance (Knoben et al., 2019).
Therefore, the Budyko simulations in this study were considered acceptable. However, it should be noted that this
comparison is added for reference only and should not be seen as validation. This is because, the Global composite
runoff (Fekete et al., 2002) is not a strictly observational dataset, and it is used here as the “best estimate” available
for long-term estimates of streamflow in the East African region. The fact the Budyko framework uses data and
parameters that are easily measurable at a regional scale makes it a suitable approach for regions such as East
Africa where there is a gap in the availability of detailed and guality local climatic data.

The major reference period for this study was the 1981-1990 period based on the CHIRPs rainfall with precipitation
data beginning 1981 onwards. Further research using a reference period earlier than 1981 would help to strengthen
the findings of this study especially after the evidence of shifts towards wetter conditions in all the water towers.
Further studies on human-water interactions are also recommended to understand in detail the dynamics and co-
evolution of coupled human-water systems.
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5. Conclusions

Climate changes (i.e. changes in precipitation and potential evapotranspiration) have a relatively large effect on
water yield within the East African water towers. The effects of land-use changes on water yield are larger in the
adjacent regions surrounding the water towers. The majority of East-African water towers are under pressure from
human influences both within and outside the water towers. Generally, the patterns in water yield showed a strong
longitudinal difference (East to West), though the elevation is a key factor that ensures the generation of water in
the water towers located in drier environments. A hydroclimatic phenomenon is occurring in the East-African
region as the water towers show a strong shift towards wetter conditions (especially in the period of 2011-2019)
while at the same time; the atmospheric demand is gradually increasing. Given that grajerity of the water towers
were identified as non-resilient to changes, it means there are greater possibilities of extreme variations in water
yield under changing climatic conditions. The Budyko framework provides a suitable approach especially for
regions that lack detailed and guality data.

6. Appendices
A. Extended Figures and Tables
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Figure A 1. The Budyko Curve: Water limit (ETa=P); a site cannot plot above the blue line
unless there is input of water beyond precipitation. Energy limit (ETa=PET); a site cannot
plot above the red line unless precipitation is being lost from system by means other than
discharge (adapted from Creed and Spargo, 2012a).
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Figure A 2. The 10-year Moving averages ofjAnnual mean precipitation in the different water towers

Higher levels of annual precipitation were observed in 1990-1992, 1998-1999, and 2013-2015. Lower levels of annual
precipitation were observed in 1987, 1995-1996, 2004-2005, and 2017. Mt Kilimanjaro was observed to have a consistent
decline in annual mean rainfall between 1981 and 2017. Mt Elgon water tower recorded a consistent increase in annual
mean rainfall during the study period.
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Figure A 4. Graphical representation of the baseline Budyko curve (estimated for 1981-1990, and the trends of water

towers in the different years
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7. Data availability

All climatic data used in this study (i.e. (P, PET, and NDVI) are publicly available. Precipitation data (P) was
downloaded from Climate Hazards Group Infrared Precipitation with Stations (CHIRPS-v2)
https://www.chc.ucsb.edu/data/chirps (last accessed 31 July 2020). Potential Evapotranspiration (PET) data was
downloaded from the CRU database https://crudata.uea.ac.uk/cru/data/hrg/ (last accessed 22 July 2020).
Normalized Difference Vegetation Index (NDVI) was sourced from Global Inventory Monitoring and Modeling
System (GIMMS) Third Generation (3 g) Advanced Very High-Resolution Radiometer (AVHRR) sensor onboard
the National Oceanic and Atmospheric Administration (NOAA) satellites
https://ecocast.arc.nasa.gov/data/pub/gimms/3g.v1/ (last accessed 12 July 2020). The water towers analyzed data
sets are summarized in Table A1l for each water tower and the full analysis is available in the SESAM project
SharePoint. The data can be provided upon request from the 1% author (charles.wamucii@wur.nl).
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