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Abstract.

Sorptivity is a parameter of primary importance in the study of unsaturated flow in soils. This integral parameter is often

considered for modeling the computation of water infiltration into vertical soil profiles. Sorptivity can be directly estimated

from the knowledge of the soil hydraulic functions (water retention and hydraulic conductivity curves), using the integral

formulation of Parlange (1975). However, calculating sorptivity in this manner requires the prior determination of the soil5

hydraulic diffusivity and its numerical integration between initial and final saturation degrees, which may be difficult in some

situations (e.g., coarse soil with diffusivity functions quasi-infinite close to saturation). In this paper, we present a procedure

to compute sorptivity using a scaling parameter, cp, that corresponds the sorptivity of a unit soil (i.e., unit values for all

parameters and zero residual water content) utterly dry at the initial state and saturated at the final state. The cp parameter

was computed numerically and analytically for five hydraulic models: delta (i.e., Green and Ampt), Brooks and Corey, van10

Genuchten-Mualem, van Genuchten-Burdine, and Kosugi. Based on the results, we proposed brand-new analytical expressions

for some of the models and validated previous formulations for the other models. We also tabulated the output values so that

they can easily be used to determine the actual sorptivity value for any case. At the same time, our numerical results showed

that the relation between cp and the hydraulic shape parameters strongly depends on the chosen model. These results highlight

the need for careful selection of the proper model for the description of the water retention and hydraulic conductivity functions15

when estimating sorptivity.
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1 Introduction

Soil sorptivity represents the capacity of a soil to absorb or desorb liquid by capillarity, and is therefore one of the key factors for

modelling water infiltration into soil (Cook and Minasny, 2011). Knowledge of soil sorptivity is also important when decipher-

ing soil physical properties, such as hydraulic conductivity, from infiltration tests (e.g., Lassabatere et al., 2006). Sorptivity20

is incorporated in a wide range of infiltration models (Angulo-Jaramillo et al., 2016; Lassabatere et al., 2009, 2014, 2019).

Sorptivity varies depending on initial and boundary conditions (e.g., water contents). However, calculated sorptivity values

can also vary depending on the chosen soil hydraulic model, making it important to assess the impact of such a choice on the

computation of sorptivity. In this study, we address this issue and propose a new scaling procedure to simplify its computation.

One of the first equations proposed for the computation of sorptivity was developed by Philip (1957), who modeled the 1D25

gravity-free water infiltration as:I(t) = S (θ0,θ1)
√
t

S (θ0,θ1) =
∫ θ1
θ0
χ(θ)dθ

(1)

In the above equations, S(θ0,θ1) stands for the sorptivity between θ0 and θ1, χ(θ) = x(θ,t)√
t

stands for the Boltzmann trans-

formation variable, θ0 is the initial water content, θ1 the final water content corresponding also to the water content applied at

the soil surface, and t is the elapsed time. In practical applications, the user must perform numerical modeling of horizontal30

infiltration using a given set of hydraulic function and initial and final conditions. Then, the Boltzmann transformation must be

computed by integrating the modeled water content profile. This procedure is often time-consuming and subject to numerical

instabilities that lead to substantial errors.

To avoid such complexity, Parlange (1975) proposed a formulation that directly relates sorptivity to the hydraulic functions

and the initial and final water contents:35

S2
D (θ0,θ1) =

θ1∫
θ0

(θ1 + θ− 2θ0)D (θ)dθ (2)

where D(θ) =K(θ)dhdθ is the hydraulic diffusivity function. Note that several integral expansions were proposed for the com-

putation of sorptivity (Angulo-Jaramillo et al., 2016). This point is beyond the framework of this study and will be the subject

of another study. While the above equation provides the diffusivity form for sorptivity determination, it can be equally defined

as a function of the hydraulic conductivity function, K(h) =K (θ (h)):40

S2
K (h0,h1) =

h1∫
h0

(θ (h1) + θ (h)− 2 θ (h0))K (h)dh

=

h1∫
h0

(θ1 + θ (h)− 2 θ0)K (h)dh (3)

where h is the water pressure head, h0 and h1 are respectively the initial and final water pressure heads, and θ0 = θ (h0) and

θ1 = θ (h1). For the sake of clarity, the functions S2
D and S2

K are respectively referred to as the “diffusivity” and “conductivity”
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forms of sorptivity. S2
D and S2

K are equivalent so long as the water retention function θ (h) is bijective over the water pressure

head interval [h0,h1], which is the case when the water pressure head at the surface is lower than the air-entry water pressure45

head, i.e., h1 ≤ ha. Then, Eq. (3) can be easily deduced from Eq. (2) by a simple change of variable from θ to h:

S2
K (h0,h1 ≤ ha) = S2

D (θ (h0) ,θ (h1))

= S2
D (θ0,θ1) (4)

Otherwise, when the surface water pressure head exceeds the soil air-entry pressure, i.e., h1 > ha(≤ 0), sorptivity must

be computed using Eq. (3) (Ross et al., 1996). Indeed, the function θ(h) is no longer bijective over the interval [h0,h1].

Consequently, Eq. (2) and Eq. (3) are no longer equivalent. In this case, the integration involved in Eq. (3) must be divided50

into two parts, one part integrating over the interval [h0,ha] ensuring the bijectivity of the function θ(h), and the other part

retaining the integration interval [ha,h1] corresponding to the saturated part of the integration (Ross et al., 1996). Then, the

change of variable from θ to h in the first integral leads to the retrieval of S2
D:

S2
K(h0,h1 > ha) =

ha∫
h0

(θ1 + θ(h)− θ0)K (θ(h))dh+

h1∫
ha

(θ1 + θ(h)− 2θ0)K (θ(h))dh

=

ha∫
h0

(θ1 + θ(h)− 2θ0)K (θ(h))dh+ 2(θs− θ0)Ks

h1∫
ha

dh

=

ha∫
h0

(θ1 + θ(h)− 2θ0)K (θ(h))dh+ 2(θs− θ0)Ks(h1−ha)

=

θs∫
θ0

(θ1 + θ− 2θ0)D (θ)dθ+ 2(θs− θ0)Ks (h1−ha)

= S2
D (θ0,θs) + 2(θs− θ0)Ks (h1−ha) (5)

The computation of sorptivity with Eqs. (2) or (3) requires choosing a set of hydraulic functions from the wide range of55

available models. Here, we considered five of the most widely used hydraulic models. Firstly, we considered the Delta model

(d, Delta), which involves Dirac delta functions (stepwise functions) for the description of both the water retention (WR)

and hydraulic conductivity (HC) functions. Indeed, this model is often considered for analytical resolutions to the Richards

equation and the determination of analytical expressions for water infiltration, like the Green and Ampt approach (Triadis and

Broadbridge, 2012). Secondly, we considered the Brooks and Corey (1964) model, referred to as the “BC” model, since it60

is among the first hydraulic models of soil physics (Hillel, 1998). The BC model involves power functions for both the WR

and HC functions, thus allowing for analytical integration of Eq. (2) and leading to analytical expressions for sorptivity (e.g.

Varado et al., 2006). Thirdly, the van Genuchten – Burdine (vGB) model was studied since it has been used for the devel-

opment of the BEST methods (Beerkan Estimation of Soil pedoTransfer functions) for the characterization of soil hydraulic

properties (Lassabatere et al., 2006; Yilmaz et al., 2010; Bagarello et al., 2014). The vGB model combines the van Genuchten65
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(1980) model with Burdine condition
(
m= 1− 2

n

)
for the WR function and the Brooks and Corey (1964) model for the HC

function. Fourthly, we considered the van Genuchten – Mualem (vGM) model that combines van Genuchten (1980) model

with Mualem’s condition
(
m= 1− 1

n

)
for the WR function and the Mualem (1976) capillary model for the HC function. The

vGM is among the most widely-used models and often used for the numerical modelling of flow in the vadose zone (Šimůnek

et al., 2003). Lastly, the Kosugi (KG) model (Kosugi, 1996), was also considered since it relates the water retention function70

to physical characteristics of the soil pore size distribution assuming log-normal distributions.

These five models have the following mathematical expressions (Triadis and Broadbridge, 2012; Brooks and Corey, 1964;

van Genuchten, 1980; Mualem, 1976; Kosugi, 1996; Nasta et al., 2013):θd (h) = θr + (θs− θr)H
(

1 + h
|hd|

)
Kd (h) =KsH

(
1 + h

|hd|

) Delta model (6)

75 
θBC (h) =

θs h≥ hBC

θr + (θs− θr)
(
hBC
h

)λBC
h < hBC

KBC (θ) =Ks

(
θ−θr
θs−θr

)ηBC BC model (7)

θvGB (h) = θr + (θs− θr)
(

1 +
(

h
hvGB

)nvGB)−mvGB
KvGB (θ) =Ks

(
θ−θr
θs−θr

)ηvGB mvGB = 1− 2

nvGB
vGB model (8)


θvGM (h) = θr + (θs− θr)

(
1 +

(
h

hvGM

)nvGM)−mvGM
KvGM (θ) =Ks

(
θ−θr
θs−θr

)lvGM (
1−

(
1−

(
θ−θr
θs−θr

) 1
mvGM

)mvGM)2 mvGM = 1− 1

nvGM
vGM model (9)80

θKG (h) = θr + (θs−θr)
2 erfc

(
ln(h)−ln(hKG)√

2σKG

)
KKG (θ) =Ks

(
θ−θr
θs−θr

)lKG (
1
2erfc

(
erfc−1

(
2 θ−θr
θs−θr

)
+ σKG

2

))2 KG model (10)

where H stands for the one-sided Heaviside step function: H(x < 0) = 0, H(x≥ 0) = 1 (Triadis and Broadbridge, 2012);

erfc stands for the complementary error function. These models involve several specific hydraulic shape parameters and the

following common scale hydraulic parameters: residual water content, θr, saturated water content, θs, scale parameter for the85

water pressure head, hg , (=hd,hBC ,hvGB ,hvGM , or hKG), and saturated hydraulic conductivity,Ks. The Delta and BC models

involve a non-null air-entry water pressure head, hd and hBC , meaning that air needs a nonzero suction to enter into the soil

and start to desaturate it. For the sake of simplicity, the scale parameter for water pressure head is fixed at the air-entry pressure

head, i.e., hg = hd and hg = hBC , respectively.
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The computation of sorptivity by applying Eqs. (2) or (3) to hydraulic models, and in particular to those selected for this90

study, i.e., Eqs. (6)-(10), are quite tricky, given the complexity of the hydraulic functions. Such computation might exhibit the

following shortcomings. First of all, the diffusivity functions must be determined analytically, by multiplying the hydraulic

conductivity with the derivative of water pressure head with regards to water content, which may involve complex algebraic

operations. Then, the integration involved in the right-hand side of Eq. (3) may lead to numerical indetermination for very low

initial water pressure heads, in case of very dry initial conditions. Meanwhile, the integration involved in the right-hand side of95

Eq. (2) may pose numerical shortcomings for infinite hydraulic diffusivity, which is the case of some of the hydraulic functions

detailed above, Eqs. (6)-(10).

In this study, we propose a specific scaling procedure to avoid all these shortcomings and to simplify the computation of

sorptivity for the hydraulic models described in Eqs. (6)-(10) under the boundary conditions of a slightly positive water pres-

sure head at surface and relatively dry initial conditions. We focus on these conditions since they constitute the most common100

experimental conditions for most water infiltration experiments and related procedures for characterizing soil hydraulic prop-

erties (Angulo-Jaramillo et al., 2016). In particular, these conditions feature the Beerkan method that involves pouring water

into a ring placed on the ground (Braud, 2005; Lassabatere et al., 2006). The theory section details the scaling procedure that

relates the square sorptivity to the square scaled sorptivity, cp = S∗2K (−∞,0), the product of scale parameters, and correcting

factors accounting for the contribution of initial water contents. The square scaled sorptivity corresponds to the sorptivity of105

a unit soil (unit value for all the scale parameters, except the residual water content fixed at zero) and for the whole range of

water pressure head, i.e., (−∞,0]. It depends only on the soil hydraulic shape parameters, and its determination features the

main algebraic complexity of the whole scaling procedure, the rest relies on simple algebraic operations (multiplication and

sums). It was then computed for the hydraulic models defined by Eqs. (6)-(10), either analytically when feasible or numeri-

cally, otherwise. For each model, it was computed and tabulated as a function of a shape index that characterizes the spreads of110

the water retention function (from gradual to stepwise shapes, corresponding to soils with a broad or a very narrow pore size

distribution, respectively). The evolution of the square scaled sorptivity versus the shape index was compared and discussed

between models. In the last section, we illustrate the application of the proposed scaling procedure. We show how the tabulated

values of the square scaled sorptivity cp can be used to upscale sorptivity and easily provide the sorptivity corresponding to

zero water pressure head at surface for relatively small initial water contents.115

2 Theory

2.1 Global scaling procedure

The proposed scaling procedure relies on two main steps already used in some previous studies: (i) relating the actual square

sorptivity S2
K (h0,0) to the maximum square sorptivity S2

K (−∞,0) by isolating the effect of initial and final conditions (h0),

and (ii) scaling hydraulic functions and sorptivity to split the contributions of shape and scale parameters and facilitate the120

computation of S2
K (h0,0). In our case, we consider that the final conditions always involve a null water pressure head, h1 = 0,

and saturated conditions, θ1 = θs, while initial conditions (h0,θ0) may vary.
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2.1.1 Isolating the effect of initial conditions

The first step of the proposed procedure involves the work of Haverkamp et al. (2005) who isolated the contributions of the

initial and final conditions to sorptivity. These authors considered that, at dry initial states (θ0 ≤ 1
4 θs) and zero water pressure125

head at surface (i.e., h1 = 0 and θ1 = θs), the following approximation applied:S
2 (θ0,θs)≈ S2 (0,θs)

Ks−K0

Ks
θs−θ0
θs

S2 (0,θs) = cp |hg|Ksθs

(11)

where K0 corresponds to the initial hydraulic conductivity K0 =K (θ0). The parameter cp = S2(0,θs)
|hg|Ksθs is a proportionality

constant that depends only on the hydraulic shape parameters (Haverkamp et al., 2005). By combining both expressions in

Eq. (11), the sorptivity, S2(θ0,θs), can be defined as the product of three different terms that account for the respective con-130

tributions of the shape parameters (lumped into the proportionality constant cp), the scale parameters |hg|, Ks, θs, and initial

conditions, θ0:

S2 (θ0,θs)≈ cp|hg|Ksθs
Ks−K0

Ks

θs− θ0

θs
(12)

Eq. (12) offers an accurate and practical approximation for the computation of sorptivity in the case of Beerkan runs, i.e., for

a zero water pressure head imposed at the soil surface, h1 = 0. Eq. (12) was frequently used for the treatment of Beerkan data135

and in particular in all BEST methods (Lassabatere et al., 2006; Yilmaz et al., 2010; Angulo-Jaramillo et al., 2019). However,

it addresses the case of soils with null residual water content, θr = 0, and without any air-entry pressure head, ha = 0. Besides,

it was developed and used for the vGB model.

In this study, we adapt Eq. (12) to any type of hydraulic models, including those with non-null residual water contents,

θr > 0, and air-entry water pressure heads, ha < 0. First of all, we consider that θr must be accounted for, and we replace140

Eq. (11) by the following equation:

S2 (θ0,θs)

S2 (θr,θs)
≈ Ks−K0

Ks

θs− θ0

θs− θr
(13)

Indeed, the denominator θs must be replaced by (θs− θr) when θr 6= 0 to ensure that the ratio S2(θ0,θs)
S2(θr,θs)

tends towards unity

when θ0→ θr. Secondly, we consider that the approximation behind Eq. (11) involves only the unsaturated part of sorptiv-

ity, i.e., S2
D (θ0,θs). As mentioned above, when the air-entry water pressure head is non-null, the computation of sorptivity145

S2
K (h0,0) must be split into its unsaturated and saturated parts, as illustrated by Eq. (5). In that case, the following derivations

are proposed:

S2
K(h0,h1 = 0) = S2

D(θ0,θs) + 2 (θs− θ0)Ks (h1−ha)

=
Ks−K0

Ks

θs− θ0

θs− θr
S2
D(θr,θs) + 2 (θs− θ0)Ks|ha| since h1 = 0

=
Ks−K0

Ks

θs− θ0

θs− θr
S2
D(θr,θs) +

θs− θ0

θs− θr
(2 (θs− θr)Ks|ha|) (14)
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Eq. (14) can be simplified by introducing correcting factorsRθ andRK to account for the contribution of the initial conditions:

S2
K(h0,0) =RKRθS

2
D(θr,θs) +Rθ (2 (θs− θr)Ks|ha|) (15)150

where S2
D(θr,θs) and 2(θs− θr)Ks|ha| refer to the unsaturated and saturated parts of the square sorptivity S2

K(−∞,0) (see

Eq. (5) with h0 =−∞ ,i.e., θ0 = θr, and h1 = 0), and where the two correcting factors RK and Rθ are defined as follows:Rθ = θs−θ0
θs−θr

RK = Ks−K0

Ks

(16)

2.1.2 Scaling sorptivity and defining parameters cp and c
′

p

So far, the computation of the square sorptivity S2
K (h0,0) was treated considering dimensional equations. The second step of155

the proposed procedure scales the sorptivity in order to alleviate any numerical difficulty in relation to the values of dimensional

variables. The square dimensional sorptivity S2
K (h0,0) can be easily related to the square scaled sorptivity S∗2K (h∗0,0) by

scaling variables (water content, water pressure head, and hydraulic conductivity) as follows (Ross et al., 1996):
Se = θ−θr

θs−θr

h∗ = h
|hg|

Kr = K
Ks

(17)

This scaling procedure defines the dimensionless water retention, Se (h∗), the dimensionless (or relative) hydraulic conduc-160

tivity, Kr (Se), and the dimensionless hydraulic diffusivity function D∗ (Se) =Kr (Se)
dh∗

dSe
. These dimensionless hydraulic

functions define the hydraulic characteristics of the unit soil that has the same values for the shape parameters and unit value

for all the scale parameters, θs = 1, hg = 1, Ks = 1, excepted the residual water content that is fixed at zero, θr = 0. In other

words, these hydraulic parameters define the so-called "unit soil". The use of the scaled expressions in Eq. (17) allows us to

relate the square sorptivity (dimensional soil), S2, to the square scaled sorptivity (unit soil), S∗2 (Ross et al., 1996):165

S2 = S∗2 |hg|Ks (θs− θr) (18)

Then, S∗2 can be computed by applying Eqs. (2) or (3) to the dimensionless hydraulic functions as a function of the initial and

final water pressure heads, h∗0 and h∗1, or saturation degrees, Se,0 = Se (h∗0) and Se,1 = Se (h∗1):S
2∗
D (Se,0,Se,1) =

∫ Se,1
Se,0

(Se,1 +Se− 2 Se,0)D∗ (Se)dSe

S2∗
K (h∗0,h

∗
1) =

∫ h∗1
h∗0

(Se,1 +Se (h∗)− 2 Se,0)Kr (h∗)dh∗
(19)

S∗2D and S∗2K define the “diffusivity” and “conductivity” forms of the square scaled sorptivity and are related to each other by170

Eqs. (4) and (5), leading to:S
∗2
K (h∗0,h

∗
1 ≤ h∗a) = S∗2D (Se,0,Se,1)

S∗2K (h∗0,h
∗
1 > h∗a) = S∗2D (Se,0,Se,1) + 2(1−Se,0)(h∗1−h∗a)

(20)
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with h∗a = ha
|hg| . The scaled sorptivity functions, S∗2D and S∗2K , depend only on the shape parameters and the initial and final

saturation degrees.

By analogy with the approach of Haverkamp et al. (2005) (see Eq. (11)), we scaled the maximum dimensional square175

sorptivity S2
K (−∞,0) and its unsaturated part S2

D (θr,θs), which are involved in Eq. (15), to define the parameters cp and c
′

p:cp = S2∗
K (−∞,0) =

S2
K(−∞,0)

(θs−θr)Ks|hg|

c
′

p = S2∗
D (0,1) =

S2
D(θr,θs)

(θs−θr)Ks|hg|

(21)

The application of Eq. (19) with the proper lower and upper initial and final conditions, (Se,0 = 0, h0 =−∞, Se,1 = 1, h1 = 0),

leads to the following expression for the two parameters cp and c
′

p:cp =
∫ 0

−∞ (1 +Se (h∗))Kr (h∗)dh∗

c
′

p =
∫ 1

0
(1 +Se)D

∗ (Se)dSe

(22)180

The parameters cp and c
′

p depend exclusively on the soil shape parameters. The application of Eq. (20) provides a very simple

equation linking the two parameters:

cp = c
′

p + 2 |h∗a| (23)

2.1.3 Final expansion for computing sorptivity

The combination of the two previous steps (sections 2.1.1 and 2.1.2) lead to the final expression for sorptivity. As mentioned185

above, in order to avoid numerical problems, we first compute the scaled sorptivity before up-scaling. The application of the

scaling procedure, Eq. (18), to the approximations Eq. (15) leads to the following equivalent equations for the square scaled

sorptivity S∗2K (h0,0):S
∗2
K (h∗0,0) = c

′

pRKRθ + 2 |h∗a|Rθ

S∗2K (h∗0,0) = (cp− 2 |h∗a|)RKRθ + 2 |h∗a|Rθ
(24)

where the correcting factors defined in Eq. (16) can be scaled and expressed as a function of the initial saturation degree and190

relative hydraulic conductivity:Rθ = θs−θ0
θs−θr = 1−Se,0

RK = Ks−K0

Ks
= 1−Kr (Se,0)

(25)

These developments, based on the combination of the equation proposed by Haverkamp et al. (2005) to isolate the effect

of initial and final conditions and the scaling procedure proposed by Ross et al. (1996), provide a new simple equation for a

8



straightforward computation of sorptivity S2
K(h0,0):195 

S2
K(h0,0) = S∗2K (h∗0,0)(θs− θr)Ks |hg|

S∗2K (h∗0,0) = (cp− 2 |h∗a|)RKRθ + 2 |h∗a|Rθ

Rθ = 1−Se,0

RK = 1−Kr (Se,0)

(26)

The application of Eq. (26) requires the prior determination of the parameter cp. In the following, we compute the value of

parameter cp for different hydraulic models.

2.2 Scaling hydraulic functions

2.2.1 General expressions200

The first step of the determination of cp requires the computation of the dimensionless functions, Se(h∗), Kr(Se), and D∗(Se)

to be injected in Eqs. (22). The application of the scaling variables, Eq. (17), to the hydraulic functions defined by Eqs. (6)-(10)

leads to the following expressions:Se,d (h∗) =H (1 +h∗)

Kr,d (Se) =H (Se− 1)
Delta model (27)

205 Se,BC (h∗) = (1−H (1 +h∗)) |h∗|−λBC +H (1 +h∗)

Kr,BC (Se) = S ηBC
e

BC model (28)

Se,vGB (h∗) = (1 + |h∗|nvGB )
−mvGB

Kr,vGB (Se) = S ηvGB
e

with mvGB = 1− 2

nvGB
vGB model (29)


Se,vGM (h∗) = (1 + |h∗|nvGM )

−mvGM

Kr,vGM (Se) = S lvGM
e

(
1−

(
1−S

1
mvGM
e

)mvGM)2 with mvGM = 1− 1

nvGM
vGM model (30)210

Se,KG (h∗) = 1
2 erfc

(
ln(|h∗|)√

2 σKG

)
Kr,KG (Se) = S lKG

e

(
1
2erfc

(
erfc−1 (2Se) + σKG

2

))2 KG model (31)

Note that the scaling parameter for water pressure head, hg , used in the Eqs. (6)-(10) was set equal to the air-entry pressure

head for the Delta and BC WR functions, i.e., hd and hBC were set equal to ha, as mentioned above.
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Eqs. (27)-(31) were then used to derive the following formulations for the dimensionless diffusivity functions, D∗ (Se),215

applying D∗ (Se) =Kr (Se)
dh∗

dSe
(see Appendix A):

D∗d (Se) = δ (Se) (32)

D∗BC (Se) =
1

λBC
S
ηBC−

(
1

λBC
+1
)

e (33)

220

D∗vGB (Se) =
1−mvGB

2mvGB
S
ηvGB−

1+mvGB
2mvGB

e

(
1−S

1
mvGB
e

)− 1+mvGB
2

(34)

D∗vGM (Se) =
1−mvGM

mvGM
S
lvGM− 1

mvGM
e

((
1−S

1
mvGM
e

)−mvGM
+

(
1−S

1
mvGM
e

)mvGM
− 2

)
(35)

D∗KG (Se) =
1

2

√
π

2
σKGS

lKG
e

(
erfc

(
erfc−1 (2Se) +

σKG√
2

))2

e(erfc
−1(2Se))

2
+
√

2σKG erfc
−1(2Se) (36)225

where δ stands for the one-sided Dirac delta function (Triadis and Broadbridge, 2012).

2.2.2 Further simplifications

In the following section, several simplifications are proposed based on previous studies and the literature (Angulo-Jaramillo

et al., 2016; Haverkamp et al., 2005). Several authors used capillary models to relate the HC to the WR functions. For the vGB

model, Haverkamp et al. (2005) linked the shape parameter related to the HC function, η, with the combination of those of the230

WR function, λ=mn as follows:

η =
2

λ
+ 2 + p (37)

where the tortuosity parameter, p, takes the values of 1 for the case of the Burdine’s condition. We also consider the same

equation for the BC model given its similarity with the vGB model (as demonstrated below, in the Results section). In addition,

further simplifications involved the values of the tortuosity parameters, lvGM and lKG in the vGM and KG models. These235

parameters were fixed at the default values: lvGM = lKG = 1/2: lvGM = lKG = 1/2 (Šimůnek et al., 2003; Kosugi, 1996; Ko-

sugi and Hopmans, 1998). In practice, these shape parameters rarely vary (Haverkamp et al., 2005). With those supplementary

considerations, the diffusivity functions for the BC, vGB, vGM, and KG models become:

D∗BC (Se) =
1

λBC
S

1
λBC

+2
e (38)
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240

D∗vGB (Se) =
1−mvGB

2mvGB
S

1+3mvGB
2mvGB

e

(
1−S

1
mvGB
e

)− 1+mvGB
2

(39)

D∗vGM (Se) =
1−mvGM

mvGM
S
mvGM−2

2mvGM
e

((
1−S

1
mvGM
e

)−mvGM
+

(
1−S

1
mvGM
e

)mvGM
− 2

)
(40)

D∗KG (Se) =
1

2

√
π

2
σKGS

1
2
e

(
erfc

(
erfc−1 (2Se) +

σKG√
2

))2

e(erfc
−1(2Se))

2
+
√

2σKG erfc
−1(2Se) (41)245

The set of equations Eqs. (38)-(41) shows that each hydraulic diffusivity function involves only one shape parameter, i.e.,

λBC , mvGB , mvGM and σKG for the respective BC, vGB, vGM and KG hydraulic models, respectively. In the following, we

consider both the general (i.e., Eqs. 33-36) and simplified (i.e., Eqs. 38-41) versions of the hydraulic diffusivity functions for

the analytical determination of cp. Then numerical applications are performed only for the simplified Eqs. (38)-(41).

2.3 Integral determination of parameter cp250

Once the dimensionless diffusivity functions are determined, the use of Eq. (22) allows the determination of cp, either analyti-

cally or numerically, depending on the considered hydraulic models.

2.3.1 cp for the Delta model

This case is the easiest one. Indeed, the HC function is characterized by a null hydraulic conductivity for h∗ <−1 and a unit

value Kr = 1 for h∗ ≥−1, as featured by Eq. (27). In this case, Eq. (22) yields:255

cp,d =

0∫
−∞

(1 +Se,d (h∗))Kr,d (h∗)dh∗

=

−1∫
−∞

(1 + 0) · 0 · dh∗+

0∫
−1

(1 + 1) · 1 · dh∗

= 2 (42)

Note that this value of 2 was already proposed by Haverkamp et al. (2005) for the “Green and Ampt” soils, as defined by these

authors, which corresponds to the "Delta" model for the description of WR and HC functions.

2.3.2 cp for the Brooks and Corey (BC) model

The BC model involves an air-entry water pressure head h∗a =−1. We used Eq. (22) while accounting for the saturated part260

of sorptivity and used the diffusivity form for the determination of the unsaturated sorptivity. Indeed, the diffusivity func-

tion D∗BC (Se) shown in Eq. (38) obeys a power law, which makes it possible to integrate analytically the diffusivity form
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of sorptivity. Simple algebraic operations and integrations of Eq. (22) lead to the following equation (see demonstration in

Appendix B1):

cp,BC (λBC ,ηBC) = 2 +
1

λBC ηBC − 1
+

1

λBC ηBC +λBC − 1
(43)265

When the relation between ηBC and λBC is ruled by Eq. (37) with p= 1, the analytical expression of cp turns into:

cp,BC (λBC) = 2 +
1

3λBC + 1
+

1

4λBC + 1
(44)

Our results are in line with previous studies (Varado et al., 2006).

2.3.3 cp for the van Genuchten-Burdine (vGB) model

In the case of the vGB model, there is no air-entry pressure head, i.e., h∗a = 0. Eq. (22) shows that cp reverts to the diffusivity270

form of the square scaled sorptivity,
∫ 1

0
(1 +Se)D

∗(Se)dSe. Besides, the diffusivity function D∗vGB (Se), Eq. (29), makes the

square scaled sorptivity analytically integrable, leading to (see demonstration in appendix B2):

cp,vGB (mvGB ,nvGB ,ηvGB) = Γ

(
1 +

1

nvGB

)Γ
(
mvGB ηvGB − 1

nvGB

)
Γ(mvGB ηvGB)

+
Γ
(
mvGB ηvGB +mvGB − 1

nvGB

)
Γ(mvGB ηvGB +mvGB)

 (45)

where Γ is the gamma function:

Γ(z) =

+∞∫
0

tz−1 e−t dt (46)275

Considering the relations betweenm and n, i.e.,m= 1− 2
n , and the relation between η and λ=mn in Eq. (37), the following

simplification emerges:

cp,vGB (mvGB) = Γ

(
3−mvGB

2

)[
Γ
(

1+5mvGB
2

)
Γ(1 + 2mvGB)

+
Γ
(

1+7mvGB
2

)
Γ(1 + 3mvGB)

]
(47)

The expression corresponding to Eq. (45) was already proposed and discussed by Haverkamp et al. (2005).

2.3.4 cp for the van Genuchten-Mualem (vGM) model280

In contrast with the vGB model, no analytical expressions have been reported so far in the literature for this model. By analogy

with the case of vGB model, analytical developments were proposed to analytically integrate the diffusivity form of the scaled

sorptivity, leading to the following analytical expression for cp (see demonstration in appendix B3):

cp,vGM (mvGM , lvGM )=Γ(2−mvGM )

(
Γ(mvGM (1+lvGM ))

(mvGM (1+lvGM )−1)Γ(mvGMlvGM )
+

Γ(mvGM (2+lvGM ))
(mvGM (2+lvGM )−1)Γ(mvGM (1+lvGM ))

)
+(1−mvGM )

[(
Γ(mvGM (1+lvGM ))Γ(1+mvGM )

(mvGM (1+lvGM )−1)Γ(mvGM (2+lvGM ))
+

Γ(mvGM (2+lvGM ))Γ(1+mvGM )
(mvGM (2+lvGM )−1)Γ(mvGM (3+lvGM ))

)
−2

(
1

mvGM (1+lvGM )−1
+ 1
mvGM (2+lvGM )−1

)]
(48)
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Note that, this equation requires that mvGM 6= 1
1+lvGM

and mvGM 6= 1
2+lvGM

. Considering that shape parameter lvGM = 1
2 ,285

as usually considered, Eq. (48) can be simplified to:

cp,vGM (mvGM )=Γ(2−mvGM )

(
Γ( 3mvGM

2 )
( 3mvGM

2
−1)Γ(mvGM2 )

+
Γ( 5mvGM

2 )
( 5mvGM

2
−1)Γ( 3mvGM

2 )

)

+(1−mvGM )

[(
Γ( 3mvGM

2 )Γ(1+mvGM )

( 3mvGM
2

−1)Γ( 5mvGM
2 )

+
Γ( 5mvGM

2 )Γ(1+mvGM )

( 5mvGM
2

−1)Γ( 7mvGM
2 )

)
−2

(
1

3mvGM
2

−1
+ 1

5mvGM
2

−1

)]
(49)

These sets of equations have never been proposed and constitute one of the novel outputs of this study. The complexity of

algebraic developments for the derivation of Eqs. (48) and (49) make them valuable.

2.3.5 cp for the Kosugi (KG) model290

No analytical formulation was found for the case of Kosugi’s hydraulic functions. Therefore, the square scaled sorptivity was

computed numerically with a generic procedure that can be applied to any type of hydraulic model (i.e., any set of HC and

WR functions). To avoid integration over infinite intervals with respect to h and integration of an infinite diffusivity close to

saturation, the integral was split into two parts, leading to the following developments:

cp,KG (σKG, lKG) =

0∫
−∞

(1 +Se,KG (h∗))Kr,KG (h∗)dh∗

=

h∗KG( 1
2 )∫

−∞

(1 +Se,KG (h∗))Kr,KG (h∗)dh∗+

0∫
h∗KG( 1

2 )

(1 +Se,KG (h∗))Kr,KG (h∗)dh∗

=

1
2∫

0

(1 +Se)D
∗
KG (Se)dSe +

0∫
h∗KG( 1

2 )

(1 +Se,KG (h∗))Kr,KG (h∗)dh∗ (50)295

where h∗KG
(

1
2

)
is the water pressure head corresponding to Se = 1

2 . In the last expression of Eq. (50), cp is composed of two

integrals of continuous functions over closed intervals, which are thus well defined and easily computable. Again, a simplified

version is proposed assuming that the shape parameter lKG is fixed to 1
2 .

2.4 Shape indexes for comparing cp between the selected hydraulic models

The approach described below allows cp to be determined for the selected BC, vGB, vGM, and KG models. In addition to its300

contribution to simplifying Eq. (26), cp has a real physical meaning: it corresponds to the square sorptivity of unit soils with

zero water pressure head at the soil surface and utterly dry initial profile. Therefore, cp should not depend on the choice of the

hydraulic models. We then investigate the dependency of cp upon the selected hydraulic model. Consequently, we designed

shape indexes to compare cp between models. These shape indexes were built to describe the same state of the WR functions

regardless of the chosen hydraulic model. We designed these shape indexes to vary WR functions between two extreme states:305

(i) values close to zero for gradual WR functions corresponding to soils with broad pore size distributions, (ii) values of unity
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for stepwise WR functions mimicking an abrupt change of water content corresponding to soils with very narrow pore size

distributions. This section presents the design of these shape indexes.

A sensitivity analysis of vGB and vGM models showed that the parameter m is adequate for varying the WR functions

between a gradual shape (m= 0) and a stepwise function (m= 1). We thus consider mvGB and mvGM to be the appropriate310

shape indexes, i.e., xvGB =mvGB and xvGM =mvGM . Next, we designed the shape index for BC, xBC , deriving from vGB,

mvGB , considering that vGB and BC functions describe close WR curves. Indeed, for large values of nvGB , the vGB model

converge towards a power function similar to the BC model (Haverkamp et al., 2005):

lim
nvGB→+∞

(1 + |h∗|nvGB )
−mvGB ≈ |h∗|−nvGBmvGB

≈ |h∗|−λvGB with λvGB = nvGBmvGB = nvGB − 2 (51)

The equation λBC = λvGB = nvGB−2 defines a relation between λBC and nvGB that ensures a similar state for WR functions.315

Substituting nvGB by mvGB according to mvGB = 1− 2
nvGB

leads to:

mvGB =
λBC

2 +λBC
(52)

Since mvGB is the appropriate shape index for the vGB model, we consider its equivalent, λBC
2+λBC

, as the appropriate shape

index for the BC model, leading to:

xBC =
λBC

2 +λBC
(53)320

For KG functions, we considered that stepwise WR functions are associated with a narrow pore size distribution, i.e., a null

standard deviation, σKG. In contrast, gradual WR functions correspond to a spread distribution of pore size distribution, i.e.

very large values of σKG. Consequently, by analogy with Eq. (53), i.e. by using a ratio, we propose the following shape index,

σKG:

xKG =
1

1 +σKG
(54)325

Finally, the hydraulic shape parameters for each model can be expressed as a function of the shape index, by inverting the

previous equations. For the sake of simplicity, we use the same letter “x”, to denote the different shape indexes, xBC , xvGB ,

xvGM , or xKG. We obtain the following relations:

λKG = 2x
1−x

mvGB = x

mvGM = x

σKG = 1−x
x

(55)

where x takes values in the interval [0,1]. Eqs. (55) provide the shape parameters of the studied models for a given value of330

shape index x, i.e., for a similar state of WR function between gradual (x= 0) and stepwise functions (x= 1).
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On the basis on these relations between hydraulic shape parameters and indexes, cp can easily be related to the shape index

using Eq. (44), Eq. (47) and Eq. (49), obtained for the simplified diffusivity functions, Eqs. (38)-(41), based on the capillary

model Eqs. (37). For the KG model, the computations of cp remained numerical. The following set of equations were obtained:

335 

cp,BC (x) = 2 + 1−x
5x+1 + 1−x

7x+1

cp,vGB (x) = Γ
(

3−x
2

)[Γ( 1+5x
2 )

Γ(1+2x) +
Γ( 1+7x

2 )
Γ(1+3x)

]
cp,vGM (x) = Γ(2−x)

[
Γ( 3

2 x)
( 3

2x−1)Γ( 1
2 x)

+
Γ( 5

2 x)
( 5

2x−1)Γ( 3
2 x)

]
+ (1−x)

[
Γ( 3

2 x)Γ(1+x)

( 3
2x−1)Γ( 5

2 x)
+

Γ( 5
2 x)Γ(1+x)

( 5
2x−1)Γ( 7

2 x)
− 2
(

1
3
2x−1

+ 1
5
2x−1

)]
cp,KG (x) =

∫ 1
2

0
(1 +Se)DKG(x) (Se)dSe +

∫ 0

h∗
KG(x)(

1
2 )
(
1 +Se,KG(x) (h∗)

)
Kr,KG (h∗)dh∗ with σKG (x) = 1−x

x

(56)

We performed a sensitivity analysis by varying the shape index x for each model between 0 and 1 by increments of 0.025. We

then computed the different shape parameters for BC, vGB, vGM, and KG models using Eq. (55) and then plotted the related

hydraulic functions Eqs. (28)-(31) with η = 2
λ+2+p and lvGM = lKG = 1

2 and diffusivity functions Eqs. (38)-(41). Lastly, we

computed the square scaled sorptivity cp as a function of the shape index, Eqs. (56), and discussed the function cp (x) regarding340

the choice of the hydraulic model. The values of cp (x) are also compared to that of the Delta model (Dirac delta functions),

i.e. cp,d = 2.

3 Results

3.1 Analysis of the hydraulic functions and hydraulic diffusivity functions

The hydraulic and diffusivity functions are plotted in Fig. 1 for the shape index value of 0.275, and their sensitivity upon each345

model shape index is shown in Fig. 2. For the sake of clarity, we plotted the relative hydraulic conductivity both as functions

of saturation degree, Kr (Se), and water pressure head, Kr (h∗), noting that these functions have distinct uses: Kr (Se) defines

the HC functions as a property of the soils, whereas Kr (h∗) is mostly used to compute sorptivity, e.g., as in Eq. (19). Thus,

Kr (h∗) has a similar role as the diffusivity function D∗ (Se), and the shapes and properties of these two functions determine

the values of the square scaled sorptivity cp.350

The comparison between the hydraulic models (with the same shape index value) reveals some similarities and discrepancies

(Fig. 1). Three of the water retention models (vGB, vGM, KG) exhibit an inflection point with a continuous increase in

Se (h∗) over the whole interval (−∞,0] (Fig. 1a, “vGB”, “vGM”, and “KG”), while the BC model reaches the asymptote

Se = 1 at h∗ =−1 with full saturation for h∗ ≥−1 (Fig. 1a, “BC”). Despite that difference, the BC and vGB models exhibit

similar shapes (Fig. 1a, “BC” versus “vGB”). The vGM model exhibits a more progressive increase in Se (h∗) while remaining355

asymmetrically distributed across the inflection point (Fig. 1a, “vGM”). Lastly, the KG model exhibits an even more progressive
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Figure 1. Examples of water retention, Se (h∗) (a), relative unsaturated hydraulic, Kr (Se) (b) and Kr (h∗) (c), and diffusivity D∗ (Se)

functions (d) for the four hydraulic models: Brooks and Corey (BC), van Genuchten – Burdine (vGB), van Genuchten – Mualem (vGM),

and Kosugi (KG); the curves were plotted for the same value of the shape index, x= 0.275. The hydraulic parameters λBC , mvGM , mvGB ,

and σKG were computed as a function of x using Eq. (55) with lvGM = lKG = 1
2

. The dashed line represents the "Delta" model.

increase and a perfect symmetry around the inflection point (Fig. 1a, “KG”). The position of the inflection points depends on

the chosen hydraulic model. By construction, the inflection point is positioned at h∗ =−1 for the KG model. The others models

have inflection points positioned at larger abscissas (in absolute values), with similar intermediate values for the BC and the

vGB models and the largest abscissas for the vGM model (Fig. 1a).360

Regarding the relative hydraulic conductivity, the BC and vGB models have similar shapes for Kr (Se), both typical of

power functions (Fig. 1b, “BC and “vGB”). In contrast, the vGM and KG models have an inflection point, with larger increase

both at low saturation degrees and close to saturation compared to intermediate saturation degrees. In particular, these two

models exhibit a very large increase close to saturation whereas BC and vGB models have a gradual increase (Fig. 1b, “vGM”

and “KG” versus “BC” and “vGB”, close to Se = 1). This feature allows the vGM and KG models to simulate large drops in365
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hydraulic conductivity close to saturation that are typical for certain soils. The functions Kr (h∗) are depicted in Fig. 1c and

combine the properties of the functionsKr (Se) and Se (h∗), as described depicted above. The functionKr (h∗) exhibit similar

shapes for BC and vGB models, with a quasi linear and sharp increase for h∗ ≤−1 followed by a plateau (Fig. 1c, “BC” and

“vGB”). The vGM and KG models exhibit a much more progressive increase, involving a much larger range of water pressure

heads. This feature is the most pronounced for the KG model. This more progressive increase reflects the more gradual WR370

functions, Se (h∗), as described in Fig. 1a combined with the drop in Kr (Se) that reaches unity only for saturation degrees

extremely close to unity (Fig. 1b).

As for the WR and HC functions, the diffusivity functions exhibit close shapes for the BC and vGB models (Fig. 1d). The

BC model defines a concave shape with a finite maximum equal to λBC obtained at Se = 1, in line with the use of Eq. (38) at

Se = 1 (Fig. 1d, “BC”). In opposite, the vGB model diverts from the concave shape to tend towards infinity close to saturation,375

at Se = 1 (Fig. 1d, “vGB” versus “BC”). The vGB model defines an S-shape that reflects the larger increases at both low and

high saturation degrees with lower increase at intermediate saturation degrees (Fig. 1d, “vGB”). The two other models, vGM

and KG, exhibit the same type of S-shape with an infinite limit close to saturation (Fig. 1d, “vGM” and “KG”). Such infinite

limit spoils the numerical integration of Eqs. (22) for the determination of cp, requiring the use of the mixed formulation for

the KG models defined by Eqs. (50) and (56).380

Varying the shape index changes the WR and HC functions in an expected way (Fig. 2). For the WR functions, increasing

the shape index from 0 to 1 makes the shift from a gradual and moderate to an abrupt increase in saturation degree, respectively.

Values close to unity makes the WR functions close to a stepwise function corresponding to the Delta model (Fig. 2, 1st column,

arrows). As for the WR functions, the increase in the shape index put the curves Kr (h∗) close to stepwise functions (Fig. 2,

3rd column, arrows). For the BC model, we notice a decrease in Kr (h∗) for h∗ ≤−1 whereas Kr (h∗) remains equal to unity385

above (Fig. 2c, 3rd column). In opposite, for the vGB, vGM and KG models, the increase in the shape index has two antagonist

effects: a decrease of Kr (h∗) for h∗ ≤−1 followed by an increase for h∗ ≥−1 (Fig. 2g,k,o, 3rd column, arrows). Briefly,

as expected, the water retention and the relative hydraulic conductivity tend towards stepwise functions when the shape index

tends towards unity (Fig. 2, 1st and 3rd columns). This trend is less evident for the diffusivity functions (Fig. 2, 4th column).

These results show that, regardless of the selected model, increasing the shape index put the hydraulic functions closer to390

the Delta model that corresponds to soils with narrow pore size distribution. In opposite, very small values of the shape index

ensure very gradual shapes for WR and HC functions. However, the results point at contrasting trends when the shape index is

decreased towards zero. It is clear that for the vGB and BC models, the relative hydraulic conductivity Kr (h∗) is not greatly

impacted close to h∗ = 0 (Fig. 2c,g). In opposite, for the vGM and KG models, Kr (h∗) tends towards zero in the vicinity

of h∗ = 0 (Fig. 2k,o, inverted arrows). Similarly, the dimensionless diffusivity, D∗ (Se), tends towards zero over the whole395

interval [0,1] when the shape index tends towards zero (Fig. 2l,p, inverted arrows). Consequently, the features of Kr (h∗) and

D∗ (Se) functions suggest that the square scale sorptivity is very small for vGM and KG models, when the shape index tends

towards zero (see results below).
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Figure 2. : Impact of the shape index, x, on the WR and HC functions versus the selected hydraulic models: WR functions, Se (h∗) (1st

column), HC functions,Kr (Se) (2nd column) orKr (h∗) (3rd column), and diffusivity functionD∗ (Se) functions; Brooks and Corey (BC)

(1st row), van Genuchten – Burdine (vGB) (2nd row), van Genuchten – Mualem (vGM) (3rd row), and Kosugi (KG) models (4rd row);

the arrows indicate increasing values of the shape index x. The hydraulic parameters λBC , mvGM , mvGB , and σKG were computed as a

function of x using Eq. (55) with lvGM = lKG = 1
2

.

3.2 square scaled sorptivity cp as a function of shape indexes

The square scaled sorptivity, cp (x), is plotted as a function of the shape index, x (Fig. 3). The results show contrasting400

evolutions. For the BC model, we note a decrease of cp,BC (x) from 4 down to 2 (Fig. 3a, cp). Such a decrease is expected

since Kr,BC (h∗) functions decrease over the whole interval (−∞,0] with the shape index (see Fig. 2c). This leads to the

decrease of the integral involved in Eq. (22), and thus cp. The upper and lower limits can be easily determined by applying
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Figure 3. : square scaled sorptivity, cp, as a function of shape index, x, for the four hydraulic models: (a) Brooks and Corey (BC), (b) Kosugi

(KG), (c) van Genuchten – Burdine (vGB), and (d) van Genuchten – Mualem (vGM); the models were sorted as a function of their monotonic

features with monotonically increasing functions on the right.

Eq. (56), leading to cp,BC (0) = 4 and cp,BC (1) = 2. The air-entry water pressure head is non-null, so that the cp and c
′

p are

related by cp = c
′

p + 2 |h∗a|= c
′

p + 2, since by convention h∗a =−1. Consequently, c
′

p decreases from 2 to 0, with a simple405

vertical shift compared to cp (Fig. 3a, c
′

p). For the other hydraulic models, the air-entry water pressure head is null so that

cp = c
′

p (Fig. 3b-d). In the following, we compare the evolutions of cp as a function of the shape index of each model.

In contrary to the BC model, cp,vGB (x) for the vGB model does not decrease monotonically (Fig. 3c). Instead, cp,vGB (x)

decreases to 1.5 before increasing up to 2 for x≥ 0.52. This feature is in line with the effect of the shape index on the relative

hydraulic conductivity, Kr (h∗), as described above. The shape index has two antagonist effects: a decrease of Kr (h∗) for410

h∗ ≤−1 and an increase for h∗ ≥−1 (Fig. 2g, arrows). The numerical computation sorts out these contrasting effects and

demonstrates the two-step variation, i.e., a decrease followed by an increase. The two boundaries of the function cp,vGB (x)

can be easily found by using Eq. (56) with a lower limit of cp,vGB (0) = 2 Γ
(

3
2

)
Γ
(

1
2

)
= Γ

(
1
2

)2
= π and an upper limit of

cp,vGB (1) = Γ(1)
[

Γ(3)
Γ(3) + Γ(4)

Γ(4)

]
= 2.

For the KG and vGM models, the trend is opposite and the functions cp,KG (x) and cp,vGM (x) both increase (Fig 3b,d). This415

increase is in line with the fact that the shape index mainly increases the diffusivity function, D∗ (Se), over the whole interval
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Table 1. Values of the square scaled sorptivity cp as a function of the shape index x for the studied hydraulic models: Brooks and Corey

(BC), van Genuchten – Burdine (vGB), van Genuchten – Mualem (vGM), and Kosugi (KG).

x BC vGB vGM KG x BC vGB vGM KG

0.00 4.000 3.142 (π) 0.000 0.000 ... ... ... ... ..

0.02 3.749 2.891 2.559 E-03 3.38 E-776 0.52 2.237 1.605 0.820 0.604

0.04 3.549 2.692 9.814 E-03 2.14 E-188 0.54 2.220 1.605 0.864 0.686

0.06 3.384 2.529 2.126 E-02 3.106 E-81 0.56 2.205 1.608 0.908 0.768

0.08 3.246 2.393 3.646 E-02 2.125 E-44 0.58 2.191 1.611 0.953 0.848

0.10 3.129 2.279 5.500 E-02 1.161 E-27 0.60 2.177 1.616 0.998 0.927

0.12 3.028 2.183 7.654 E-02 9.772 E-19 0.62 2.164 1.623 1.043 1.004

0.14 2.940 2.099 0.101 1.875 E-13 0.64 2.151 1.631 1.089 1.079

0.16 2.863 2.028 0.127 4.350 E-10 0.66 2.140 1.640 1.135 1.151

0.18 2.794 1.966 0.156 7.998 E-08 0.68 2.128 1.651 1.181 1.220

0.20 2.733 1.911 0.187 3.107 E-06 0.70 2.117 1.662 1.228 1.287

0.22 2.678 1.864 0.219 4.429 E-05 0.72 2.107 1.676 1.275 1.351

0.24 2.629 1.823 0.253 3.218 E-04 0.74 2.097 1.690 1.322 1.412

0.26 2.584 1.787 0.288 1.463 E-03 0.76 2.088 1.706 1.370 1.471

0.28 2.543 1.755 0.325 4.760 E-03 0.78 2.079 1.723 1.418 1.527

0.30 2.506 1.727 0.362 1.212 E-02 0.80 2.070 1.741 1.467 1.580

0.32 2.471 1.704 0.401 2.568 E-02 0.82 2.062 1.761 1.516 1.630

0.34 2.440 1.683 0.440 4.735 E-02 0.84 2.054 1.782 1.566 1.680

0.36 2.410 1.665 0.480 7.837 E-02 0.86 2.046 1.804 1.617 1.727

0.38 2.383 1.650 0.521 0.119 0.88 2.039 1.828 1.669 1.771

0.40 2.358 1.637 0.562 0.170 0.90 2.032 1.853 1.721 1.814

0.42 2.334 1.627 0.604 0.229 0.92 2.025 1.879 1.775 1.854

0.44 2.312 1.619 0.646 0.295 0.94 2.018 1.907 1.829 1.893

0.46 2.291 1.613 0.689 0.367 0.96 2.012 1.937 1.885 1.930

0.48 2.272 1.608 0.732 0.444 0.98 2.006 1.967 1.942 1.966

0.50 2.254 1.606 0.776 0.523 1.00 2.000 2.000 2.000 2.000

[0,1] and thus the integral of Eq. (22). The two functions cp,KG (x) and cp,vGM (x) increase from 0 up to 2. For the vGM

model, the lower and upper limits can be demonstrated using Eq. (56) leading to cp,vGM (0) = 0 (numerical determination) and

cp,vGM (1) = Γ(1)

[
Γ( 1

2 )
Γ( 1

2 )
+

Γ( 3
2 )

Γ( 3
2 )

]
= 2. For KG hydraulic functions, the lower and upper limits were determined numerically,

leading also to 0 and 2, with almost zero values over a large interval of shape index, i.e., x ∈ [0,0.3] (Fig. 3b).420

The four functions cp,BC (x), cp,vGB (x), cp,vGM (x), and cp,KG (x) all reach the value of 2 when the shape index approaches

unity, i.e., when the WR and HC functions tend towards stepwise functions. In fact, the value of cp (x) converges to the value
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obtained for the Delta model, cp,d = 2 (see Eq. 42). Such a result indicates that similar results should be obtained for soils

with a narrow pore size distribution (like coarse soils with narrow pore size distributions), regardless of the selected model

for describing their WR and HC functions. In other words, the choice of the hydraulic model should not matter for soils with425

narrow pore size distributions. In opposite, contrasting trends are obtained when the shape index tends towards zero: quasi-null

values for the vGM and KG models, π for the vGB model and 4 for the BC model. The null values of cp for the KG and vGB

models are in line with the large decrease in D∗ (Se) over the whole interval [0,1] when the shape index, x, tends towards zero

(see Fig. 2l,p and comments above). Such results show that the choice of the hydraulic model matters for soils with graded

pore size distributions. Between these two extreme states, the four functions cp,BC (x), cp,vGB (x), cp,vGM (x), and cp,KG (x)430

exhibit contrasting evolutions, with cp,vGM (x), and cp,KG (x) increasing monotonously, cp,BC (x) decreasing monotonously,

cp,vGB (x) exhibiting a two-step behavior of decreasing followed by increasing values.

These contrasting evolutions of functions cp,BC (x), cp,vGB (x), cp,vGM (x), and cp,KG (x) point at different implications

regarding the physics of flow and infiltration in soils. It should be borne in mind that the choice of the hydraulic models should

not impact the value of the square sorptivity, S2
K (h0,0) for a given soil and given initial conditions, h0. Indeed, sorptivity435

should be independent of the choice of hydraulic models since it always equals the ratio between the cumulative infiltration

and the square root of time for gravity-free infiltration, as illustrated by Eq. (1). However, this work shows that the choice of

the hydraulic model strongly impacts the estimation of cp, for soils with broad pore size distributions, i.e., when the shape

index gets close to zero: the BC and vGB models predict non-null values for cp, thus ensuring non-null values of the sorptivity

(see Eq. (26)), whereas the KG or vGM models predict quasi-null values of cp. We then expect the product of scale parameters440

“(θs− θr)Ks|hg|” to compensate for the very low values of cp (see Eq. (26)). Given that the scale parameters θs, θr, and Ks,

characterize dry (residual) or saturated states of the soil, these parameters are not expected to vary between the hydraulic models

and are supposed fixed. Consequently, only the scale parameters for water pressure head, |hg|, is expected to compensate for the

very low values of cp when the vGM and KG models are used. We conclude that the value of |hg| must tends towards infinite

when the shape index tends towards zero for these two models. For the KG model, such relation |hKG| ∼ xKG is related to the445

relation |hKG| ∼ σKG since xKG = (1 +σKG)
−1. Our statements imply that very large values of σKG(xKG→ 0) should be

associated to very larges values of |hKG|, i.e., to very small pore radius. In other words, fine (coarse) soils with small (large)

pores should have broad (narrow) pore size distributions. These considerations are in line the previous studies on the KG model

by Pollacco et al. (2013) (see Fig. 1 of their paper), and Fernández-Gálvez et al. (2019). These authors even related the pore

radius of soil to the standard deviation of pore size distribution with a strongly decreasing function. Similar trends relating to450

some extent a relation between pore mean and pore standard deviation should also apply to the vGM model given our findings

(and to avoid null sorptivity for soils with broad pore size distributions). More investigations are needed to verify for real soils

such link between average pore size and standard deviation. More investigations are also needed to guide on the proper choice

of the hydraulic models as a function of the soil type, as already suggested by Fuentes et al. (1992). These aspects will be the

subject of a specific study.455

Regarding the numerical accuracy of computed values of cp, we used analytical formulations for the BC, vGB, and vGM

models as detailed in Eqs. (56). These values are expected to be perfect without any error since they correspond to the ap-
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plication of exact analytical formulations. Instead, we used the mixed numerical formulation defined by Eqs. (50) for the KG

model that relies on the numerical integration of the HC or diffusivity functions. In that case, the numerical integration may

bring some numerical errors. The mixed form, Eq. (50), was designed to minimize numerical indetermination and uncertainty.460

Such formulation was applied to the other models (BC, vGB, and vGM) and the resulting values were compared against the

analytical formulations (considered as the benchmark). A perfect agreement was obtained (errors < 1%), thus validating the

numerical mixed formulation and reinforcing the confidence on the tabulated values in Table 1. Note that the promotion of the

numerical mixed formulation, Eq. (50), and the study of its uncertainty will be the subject of another study.

3.3 Upscaling sorptivity SK (h0,0) from cp465

In this section, we elaborate on the use of Eq. (26) for the easy and straightforward computation of S2
K (h0,0) from the tabulated

values of cp (Table 1). The proposed scaling procedure Eq. (26) allows the computation of S2
K (h0,0) given initial conditions

(water contents or water pressure heads), hydraulic shape and scale parameters, and specific hydraulic models selected among

Eqs. (7)-(10):

1. Use the shape parameter (λBC ,mvGB ,mvGM , or σKG) to compute the related shape index, x, considering the following470

definitions: xvGB =mvGB , xvGM =mvGM , xKG = 1/(1 +σKG), and xBC = λBC
2+λBC

2. Choose in Table 1 the value of cp corresponding to the shape index, x, and the chosen WR and HC functions

3. Consider or compute the initial water content, θ0 or θ (h0), depending on the description of the initial condition (either

θ0 or h0)

4. Compute the related hydraulic conductivity, K0 =K (θ0), using the HC function475

5. Compute the correcting factors Rθ = θs−θ0
θs−θr (= 1−Se,0) and RK = Ks−K0

Ks
(= 1−Kr (Se,0))

6. Compute the scaled air-entry water pressure head: |h∗a|= |hahg |

7. Compute the square scaled sorptivity S2∗
K (h∗0,0) =RKRθ (cp− 2|h∗a|) + 2Rθ|h∗a|

8. Upscale to derive the square sorptivity: S2
K (h0,0) = S2∗

K (h∗0,0) (θs− θr)Ks|hg|

As an illustrative example, let consider the case of a loamy soil at water saturation with a slightly positive water pressure head480

at the surface (h1 = 0) and an initial water pressure head of h0 =−10 m (dry conditions). The loamy soil has the features of

“loam” as defined in the database of Carsel and Parrish (1988). Its WR and HC functions are described by the vGM model, with

the following shape and scale parameters: θr = 0.078, θs = 0.43, hg =−277 mm, Ks = 2.88 10−3 mm s−1, nvGM = 1.56,

and lvGM = 0.5. The application of the step-by-step procedure gives the following results:

1. Shape index: x=mvGM = 1− 1/nvGM leading to:485

x= 0.359
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2. Corresponding value of cp in Table 1 (“vGM model” column, x= 0.36):

cp = 0.480

3. Initial water content: computed from the initial water pressure head of -10 m using vGM-WR function, i.e., Eqs. (9):

θ0 = 0.125490

4. Initial hydraulic conductivity: computed from the initial water content using vGM-HC function, i.e., Eqs. (9):

K0 = 1.87 10−9 mm s−1

5. Corresponding correction factors: Rθ = θs−θ0
θs−θr and RK = Ks−K0

K0
, leading to:

Rθ = 0.865 and RK = 1.000

6. Air-entry water pressure head: no air-entry water pressure head, leading to,:495

|h∗a|= 0

7. Square scaled sorptivity: S2∗
K (h∗0,0) =RKRθcp leading to:

S2∗
K (h∗0,0) = 0.416

8. Sorptivity: S2
K (h0,0) = S2∗

K (h∗0,0)(θs− θr)Ks|hg|, leading to:

S2
K (h0,0) = 0.117 mm2 s−1, and SK (h0,0) = 0.342 mms−

1
2500

To check the accuracy of the proposed approximation, we computed the nominal value of sorptivity, using the regular Eq. (2).

We found a very close value, with less than 0.5% relative error, demonstrating the accuracy of the proposed scaling procedure,

Eq. (26).

As a second illustrative example, we consider the computation of sorptivity for the case of BC model, for the same conditions.

The difference with the previous case is that the BC model has a non-null air-entry water pressure head, inducing a non-null505

saturated sorptivity. We consider the same loamy soil with the following parameters for BC model: θr = 0.078, θs = 0.43,

hg =−277 mm, and Ks = 2.88 10−3 mm s−1, with a value of λBC = 0.56. λBC was deduced from the previous value of

n= 1.56 considering the usual relation λ=mn, as suggested by Haverkamp et al. (2005). The application of the proposed

procedure leads to the following computations:

1. Shape index: xBC = λBC/(2 +λBC) leading to:510

xBC = 0.219

2. Corresponding value of cp in Table 1 (“BC model” column, xBC = 0.22):

cp = 2.678

3. Initial water content: computed from the initial water pressure head of -10 m using BC-WR function, i.e., Eqs. (7):

θ0 = 0.125515
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4. Initial hydraulic conductivity: computed from the initial water content using BC-HC function, i.e., Eqs. (7):

K0 = 3.342 10−9 mm s−1

5. Corresponding correction factors: Rθ = θs−θ0
θs−θr and RK = Ks−K0

K0
, leading to:

Rθ = 0.866 and RK = 1.000

6. Air-entry water pressure head: significant air-entry water pressure head, with hBC = ha leading to:520

|h∗a|= 1

7. Square scaled sorptivity: S2∗
K (h∗0,0) =RKRθ (cp− 2|h∗a|) +−2Rθ |h∗a| leading to:

S2∗
K (h∗0,0) = 2.318

8. Sorptivity: S2
K (h0,0) = S2∗

K (h∗0,0)(θs− θr)Ks|hg|, leading to:

S2
K (h0,0) = 0.651mm2 s−1, and SK (h0,0) = 0.806 mm s−

1
2525

Again, the exact value of sorptivity was estimated using the accurate Eq. (3) and lead to a similar value with a relative error

of 1‰. Note that, in this case, due to the non-null air-entry water pressure head, Eq. (3) must be employed instead of Eq. (2)

for the determination of the targeted value of sorptivity.

The two preceding applications illustrated the accuracy of the proposed scaling procedure, Eq. (26), for both hydraulic

functions, with and without air-entry water pressure heads. Eq. (26) proved appropriate and very accurate for the determination530

of the sorptivity, S2
K (h0,0).

It must be noted that the proposed scaling procedure applies only for a dry initial state. Indeed, Haverkamp et al. (2005)

stated that their approximation, Eq. (11), was valid only when θ0 ≤ 1
4 θs. For fine soils, even a small initial water pressure head

may cause θ0 >
1
4 θs, which may spoil the proposed scaling procedure. To illustrate this point, we investigated the case of the

silty clay soil, as defined by Carsel and Parrish (1988). This soil is defined for the following parameters: θr = 0.07, θs = 0.36,535

hg =−2000 mm, Ks = 5.555 10−5 mm s−1, n= 1.09, and l = 0.5. Considering the same value for the initial water pressure

head, i.e., h0 =−10 m, the initial water content is θ0 = 0.318; which exceeds 1
4θs. The application of the scaling procedure

lead to an estimated sorptivity of 0.0475 mm s−
1
2 , whereas the targeted sorptivity computed with Eq. (2) was 0.0127 mm s−

1
2 .

Such error corresponds to an overestimation by a factor of 2.73. Thus, we advise that the user verify that θ0 ≤ 1
4 θs before using

the proposed scaling procedure.540

4 Conclusions

The proper estimation of sorptivity is crucial to understand and model water infiltration into soils. However, its estimation

may be complicated, requiring complicated algebraic derivations and exhibiting potential numerical shortcomings when using

Eq. (2) or Eq. (3). In this study, we present a new scaling procedure for simplifying the computation of sorptivity for the case of

zero water pressure head imposed at the surface and dry initial state (θ0 ≤ 1
4θs). We based our approach on the combination and545

adaptation of the scaling procedure proposed by Ross et al. (1996) and the approximation proposed by Haverkamp et al. (2005).
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We then obtain a simple relation that relates the square sorptivity to the product of the square scaled sorptivity, referred to as

cp, the product of scale parameters and two correction factors that account for the initial conditions, (i.e., initial water content

and hydraulic conductivity). The value of the square scaled sorptivity, cp, was computed either analytically, when feasible, or

numerically, for four hydraulic models: Brooks and Corey, van Genuchten – Mualem, van-Genuchten – Burdine and Kosugi550

models. The values of cp were tabulated as a function of specific shape indexes representing similar states of WR functions

(well-graded versus stepwise shapes) between hydraulic models. The proposed scaling procedure is easy of use, and, given a

selected hydraulic model with related hydraulic shape and scale parameters, the following steps are conducted: computation

of the shape index from the hydraulic shape parameters, reading of the corresponding value of cp in Table 1, computation

of the correction factors (ratios in hydraulic conductivity and water contents, RK and Rθ), computation of the square scaled555

sorptivity from cp and the correction factors, and, lastly, upscaling by multiplying with the scale parameters. All these steps

are easy to conduct and straightforward. Illustrative examples are proposed at the end of this study and the accuracy of the

proposed scaling procedure is clearly demonstrated (with errors less than 1%), provided that the initial water content fulfills

the conditions θ0 ≤ 1
4θs.

In addition to providing a straightforward method for the determination of sorptivity, this study brings very interesting560

findings on the square scaled sorptivity, cp, and its dependency upon the shape index, x, and the chosen hydraulic model. The

results show that the function cp (x) strongly depends on the hydraulic model selected for the WR and HC curves. If all the

functions cp (x) converge for the same value, i.e., 2, close to x= 1 (stepwise WR functions – narrow pore size distribution), they

strongly divert close to x= 0 (graded WR functions – broad pore size distribution), with values of 0 for vGM and KG models

versus 3 - 4 for the vGB and BC models. However, the sorptivity should remain the same regardless of the selected hydraulic565

model: one soil under particular initial conditions, one single sorptivity. Consequently, the contrast of scaled sorptivity must

be compensated by a contrast in scale parameters. However, among scale parameters, the residual and saturated water contents

and the saturated hydraulic conductivity cannot be changed between models, since they characterize the dry and saturated

states of the same soil. Consequently, the value of the scale parameter, hg , must be the one to compensate. Previous studies on

the Kosugi model have already hypothesized a strong relation between the scale parameter, hKG, and the standard deviation,570

σKG (Pollacco et al., 2013). In other words, the scale parameter, hKG, should be parametrized as a function of the shape

parameter, σKG, to get plausible WR and HC functions and estimates of sorptivity. We may also expect the same link between

the scale parameter, hg,vGM , and the shape parameter,mvGM , to avoid unphysical scenarios and null sorptivity. However, such

hypothesis has never been suggested and requires further investigations. These results show the need to better understand the

mathematical properties of the hydraulic models, including the links between the hydraulic shape and scale parameters, and to575

better relate these properties to the physical processes of water infiltration into soils (Fuentes et al., 1992).

In addition to the proposed scaling procedure, this study gave the opportunity to derive analytically the scaled sorptivity for

the three models, BC, vGB, and vGM, thus confirming the expressions provided by previous studies. For the vGM model, the

analytical derivation is brand new and had never been proposed before. Its use is of great interest and could be implemented

into soil hydraulic characterization methods. For instance, additional BEST methods could be developed on the basis of the580

use of the proposed formulations for the parameter cp to relate sorptivity to shape and scale parameters. In current BEST
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methods, only the vGB model is considered. The prior estimation of shape parameters allows the determination of the parameter

cp using Eq. (45). Then, the estimation of saturated hydraulic conductivity, and sorptivity allows the determination of scale

parameter hg once cp is determined (Lassabatere et al., 2006). A similar procedure may be proposed for the vGM model, using

Eq. (49) that relates the parameter cp to the shape parameter mvGM . The development of the BEST method for the specific585

vGM hydraulic model, that is much more used than the vGB model, will be the subject of further investigations. Another

improvement concerns the consideration of the residual water content θr in the proposed scaling procedure. It would also be

interesting to derive somehow the residual water content, and not to assume it to be equal to zero as it might also alter the shape

of the soil water retention function. The use of the scaled sorptivity and the proposed scaling procedure for these purposes are

the subject of ongoing studies and will lead to implementations in many methods and tools for the characterization of single590

or dual permeability soils, including the BEST methods (Fernández-Gálvez et al., 2019; Lassabatere et al., 2019) and the

SoilWater-ToolBox software developed for the characterization of homogeneous and heterogeneous soils (Fernández-Gálvez

et al., 2021).

Code availability. Note all computations were done using Scilab free software. The scripts for the computation of Eqs. (28)-(31) for the

computation of WRHC functions, Eqs. (38)-(41) for the computation of the dimensionless diffusivity, and Eqs. (56) for the computation595

of the cp parameter can be downloaded online: https://zenodo.org/record/4587160 (Lassabatere, 2021). Note also that the computation of

the proposed sorptivity was implemented in the SoilWater-ToolBox software that interrelates specific modules to derive the soil hydraulic

parameters by using a wide range of cost-effective methods, accessible online: https://github.com/manaakiwhenua/SoilWater_ToolBox/ (open

source under the GP-3.0 License).

Appendix A: Dimensionless hydraulic diffusivity functions, D∗(Se)600

In the appendices, for the sake of clarity the notations of the shape parameters were simplified to λ, m, n, σ, in order to avoid

heavy equations. The dimensionless diffusivity functions were derived from their definition D∗ (Se), applying D∗ (Se) =

Kr (Se)
dh∗

dSe
. This task requires first to derive the inverse functions for the dimensionless water retention curves. The following

equations can be easily found through usual algebraic developments:

h∗BC (Se) =−S−
1
λ

e (A1)605

h∗vGB (Se) =−
(
S
− 1
m

e − 1
) 1
n

with m= 1− 2

n
(A2)

h∗vGM (Se) =−
(
S
− 1
m

e − 1
) 1
n

with m= 1− 1

n
(A3)

h∗KG (Se) =−e
√

2σerfc−1(2Se) (A4)
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where erfc−1 is the inverse function of the complementary error function. These functions can be differentiated to define their

relative derivatives, dh
∗

dSe
:610

dh∗BC
dSe

(Se) =
1

λ
S
− 1
λ−1

e (A5)

dh∗vGB
dSe

(Se) =
1−m
2m

S
− 1+m

2m
e

(
1−S

1
m
e

)−m+1
2

(A6)

dh∗vGM
dSe

(Se) =
1−m
m

S
− 1
m

e

(
1−S

1
m
e

)−m
(A7)

dh∗KG
dSe

(Se) =
√

2πσe(erfc
−1(2Se))

2
+
√

2σerfc−1(2Se) (A8)

The differentiation of the function h∗KG involves the following usual rules of differentiation (f og)
′
= f

′
og · g′ and

(
f−1

)′
=615

1
f ′ of−1 , considering bijective functions. We also use the usual derivative of the function erf function, erf

′
(x) = 2√

π
e−x

2

, and

the relation between erfc and erf functions, erfc(x) = 1− erf(x).

The derivatives dh∗

dSe
can now be multiplied with the hydraulic conductivity:

Kr,BC (Se) = S η
e (A9)

Kr,vGB (Se) = S η
e (A10)620

Kr,vGM (Se) = S le

(
1− 2

(
1−S

1
m
e

)m
+
(

1−S
1
m
e

)2m
)

(A11)

Kr,KG (Se) = S le

(
1

2
erfc

(
erfc−1 (2Se) +

σ

2

))2

(A12)

Note that for the hydraulic conductivity function of vGM model, Kr,vGM , we distributed the terms according to (a+ b)2 =

a2 + 2ab+ b2. The multiplication of Eqs. (A5)-(A8) with the expressions of relative conductivity Eq. (A9)-(A12) lead to the

following expressions of dimensionless diffusivity:625 

D∗BC (Se) = 1
λS

η−( 1
λ+1)

e

D∗vGB (Se) = 1−m
2m S

η− 1+m
2m

e

(
1−S

1
m
e

)− 1+m
2

D∗vGM (Se) = 1−m
m S

l− 1
m

e

((
1−S

1
m
e

)−m
+
(

1−S
1
m
e

)m
− 2

)
D∗KG (Se) = 1

2

√
π
2σS

l
e

(
erfc

(
erfc−1 (2Se) + σ√

2

))2

e(erfc
−1(2Se))

2
+
√

2σerfc−1(2Se)

(A13)

These equations, Eqs. (A13), correspond to the expressions of Eqs. (33)-(36). Afterwards, the combination with the capillarity

model Eq. (37) leads to Eqs. (38)-(41).
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Appendix B: Analytical developments for cp parameter

B1 Parameter cp for BC model630

For the BC model, we need to account for the air entry pressure, h∗a =−1. We remind that by convention, the scale parameters

for water pressure head, hBC is equalled to the air-entry water pressure head, ha. We then use the equation Eq. (22) with |h∗a|=
1. Then, the first part

∫ 1

0
(1 +Se)D

∗
BC (Se)dSe can be integrated analytically given that the hydraulic diffusivity D∗BC (Se)

obeys a power law. The following developments can be done:

cp,BC =

1∫
0

(1 +Se)D
∗
BC (Se)dSe + 2 |h∗a|

=

1∫
0

(1 +Se)D
∗
BC (Se)dSe + 2 (B1)635

1∫
0

(1 +Se)D
∗
BC (Se)dSe =

1∫
0

D∗BC (Se)dSe +

1∫
0

SeD
∗
BC (Se)dSe

=

1∫
0

1

λ
S
η−( 1

λ+1)
e dSe +

1∫
0

1

λ
SeS

η−( 1
λ+1)

e dSe

=
1

λ

 1∫
0

S
η−( 1

λ+1)
e dSe +

1∫
0

S
η− 1

λ
e dSe


=

1

λ

(
1

η− 1
λ

+
1

η− 1
λ + 1

)
=

1

ηλ− 1
+

1

ηλ+λ− 1
(B2)

The final expression can be easily computed by combining Eqs. (B1) and Eqs. (B2):

cp,BC (λ,η) =
1

ηλ− 1
+

1

ηλ+λ− 1
+ 2 (B3)

The concatenation of the Eq. (B3) with the capillary model, Eq.( 37), leads to the following final expression:640

cp,BC (λ) = 2 +
1

3λ+ 1
+

1

4λ+ 1
(B4)

These development demonstrate the equations proposed for cp for the BC model, i.e., Eqs. (43)-(44). This demonstration is in

line with Varado et al. (2006).
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B2 Parameter cp for vGB model

For vGB model, and the remaining models, there is no air-entry water pressure head, h∗a = 0, leading to:645

cp,vGB =

1∫
0

(1 +Se)D
∗
vGB (Se)dSe + 2 |h∗a|

=

1∫
0

(1 +Se)D
∗
vGB (Se)dSe (B5)

Then, the integral
∫ 1

0
(1 +Se)D

∗
vGB (Se)dSe can be decomposed into well-known integrals:

cp,vGB (m,η) =

1∫
0

(1 +Se)D
∗
vGB (Se)dSe

=

1∫
0

D∗vGB (Se)dSe +

1∫
0

SeD
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=
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0
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e
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1
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e
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e
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1
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e
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1
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0

SeS
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e
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1−S

1
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e
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2

dSe


=
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e
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dSe +
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 (B6)

The change of variable y = S
1
m
e provides the following expressions:

cp,vGB (m,η) =
1−m

2

1∫
0

ymη+m
2 −

3
2 (1− y)

−m+1
2 dy+

1−m
2

1∫
0

ymη+ 3m
2 −

3
2 (1− y)

−m+1
2 dy (B7)650

We can recognize in equation the beta function B and use its following properties (assuming x > 0 and y > 0):

B (x,y) =

1∫
0

tx−1 (1− t)y−1
dt

=
Γ(x)Γ(y)

Γ(x+ y)
(B8)
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Where the Γ function is already defined by Eq. (46): Γ(z) =
∫ +∞

0
tz−1 e−tdt (z > 0). Then, the parameter cp,vGB can be

expressed as follows:

cp,vGB (m,η) =
1−m

2
B

(
mη+

m

2
− 1

2
,
1−m

2

)
+

1−m
2

B

(
mη+

3m

2
− 1

2
,
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2

)
=
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2

Γ

(
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2

)(
Γ
(
mη+ m
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1
2

)
Γ(mη)
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Γ
(
mη+ 3m

2 −
1
2

)
Γ(mη+m)

)

= Γ

(
3−m

2

)(
Γ
(
mη+ m

2 −
1
2

)
Γ(mη)

+
Γ
(
mη+ 3m

2 −
1
2

)
Γ(mη+m)

)
(B9)655

The last equation uses the fact that Γ(z+1) = zΓ(z). The Eq. (B9) corresponds to the equation suggested by Haverkamp et al.

(2005), considering m= 1− 2
n :

cp,vGB (n,m,η) = Γ

(
1 +

1

n

)(
Γ
(
mη− 1

n

)
Γ(mη)

+
Γ
(
mη+m− 1

n

)
Γ(mη+m)

)
(B10)

Note that the proposed simplification using the beta function, Eq. (B9) requires that mη+ m
2 −

1
2 = 1

2 +
(

3
2 + p

)
m> 0, which

is quite evident since m> 0. When Eq. (B9) is combined with capillary model, i.e., Eq. (37), the expression becomes:660

cp,vGB (m) = Γ

(
3−m

2

)(
Γ
(

1+5m
2

)
Γ(1 + 2m)

+
Γ
(

1+7m
2

)
Γ(1 + 3m)

)
(B11)

The expressions of the parameter cp for the vGB model are accurately demonstrated, leading to Eqs. (45) and (47).

B3 Parameter cp for vGM model

For the vGM model, the same equation Eq. (B5) applies and can be cut into two parts:

cp,vGM (m,l) =

1∫
0

(1 +Se)D
∗
vGM (Se)dSe

=

1∫
0

D∗vGM (Se)dSe︸ ︷︷ ︸
A

+

1∫
0

SeD
∗
vGM (Se)dSe︸ ︷︷ ︸

B

(B12)665

For the sake of clarity, we demonstrate separately the simplifications of the two terms A and B:

A =
1−m
m

∫ 1

0

S
l− 1

m
e
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e
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e
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m
e dSe
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(B13)
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The last term of A can be simplified easily:

1∫
0

S
l− 1

m
e dSe =

1∫
0

S
l− 1

m
e dSe =

[
S
l− 1

m+1
e

l− 1
m + 1

]1

0

=
m

(l+ 1)m− 1
(B14)

For the two first, terms, we use the same change of variable y = S
1
m
e as above to transform the integrals, leading to:670

A = (1−m)

 1∫
0

yml+m−2 (1− y)
−m

dy+

1∫
0

yml+m−2 (1− y)
m
dy− 2

(l+ 1)m− 1

 (B15)

In this case, we need to assume that ml+m− 2>−1, i.e. m> 1
l+1 to use the beta function. Such a condition corresponds to

m> 2
3 , for the by-default value of l = 1

2 . The two first integrals can then be replaced using the beta and the gamma functions,

leading to the final expression for part A of cp:

A = (1−m)

(
B (m(l+ 1)− 1,1−m) +B (m(l+ 1)− 1,1 +m)− 2

(l+ 1)m− 1

)
= (1−m)

(
Γ(m(l+ 1)− 1)Γ(1−m)

Γ(ml)
+

Γ(m(l+ 1)− 1)Γ(1 +m)

Γ(m(l+ 2))
− 2

(l+ 1)m− 1

)
(B16)675

By analogy, the following developments come out for parameter B:

B = (1−m)

(
Γ(m(l+ 2)− 1)Γ(1−m)

Γ(ml+m)
+

Γ(m(l+ 2)− 1)Γ(1 +m)

Γ(m(l+ 3))
− 2

(l+ 2)m− 1

)
(B17)

The simplification for B is valid as soon as m> 1
2+l , which is the case since we suppose that m> 1

1+l . After rearranging

terms, the following expressions comes out for the scaled sorptivity:

cp,vGM (m,l) = Γ(2−m)

(
Γ(m(l+ 1)− 1)

Γ(ml)
+

Γ(m(l+ 2)− 1)

Γ(ml+m)

)
+ (1−m)

[(
Γ(m(l+ 1)− 1)Γ(1 +m)

Γ(m(l+ 2))
+

Γ(m(l+ 2)− 1)Γ(1 +m)

Γ(m(l+ 3))

)
− 2

(
1

(l+ 1)m− 1
+

1

(l+ 2)m− 1

)]
(B18)680

cp,vGM (m,l) = Γ(2−m)

(
Γ(m(l+ 1))

(m(l+ 1)− 1) Γ(ml)
+

Γ(m(l+ 2))

(m(l+ 2)− 1) Γ(m(1 + l))

)
+ (1−m)

[(
Γ(m(l+ 1)) Γ(1 +m)

(m(l+ 1)− 1) Γ(m(l+ 2))
+

Γ(m(l+ 2)) Γ(1 +m)

(m(l+ 2)− 1) Γ(m(l+ 3))

)
− 2

(
1

(l+ 1)m− 1
+

1

(l+ 2)m− 1

)]
(B19)

Note that, as stated above, that equation theoretically should apply only for the case of m> 1
1+l , which is quite restrictive.

However, thanks to the analyticity of the functions involved in the expression, this equality remains valid for m< 1
1+l and can

be considered for any value of m ∈ [0,1] provided that m 6= 1
1+l and m 6= 1

2+l . The Eq. (B19) demonstrates the Eqs. (48). The685

combination of these equations with the capillary model Eq. (37) leads to Eqs. (49).
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