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Abstract. Fully integrated three dimensional (3D) physically based hydrologic models usually require many computational

resources. For many applications, simplified models can be a cost effective alternative. 3D models of subsurface flow are often

simplified by coupling a 2D groundwater model with multiple 1D models for the unsaturated zone. The crucial part of such

models is the coupling between the two model compartments. In this work we compare two approaches for the coupling. One is

iterative and the 1D unsaturated zone models go down to the impervious bottom of the aquifer and the other one is non-iterative5

and uses a moving lower boundary for the unsaturated zone. In this context we also propose a new way of treating the specific

yield, which plays a crucial role in linking the unsaturated and the groundwater model. Both models are applied to three test

cases with increasing complexity and analyzed in terms of accuracy and speed compared to fully integrated model runs. The

non-iterative approach is faster but does not yield a good accuracy for the model parameters in all applied test cases whereas

the iterative one gives good results in all cases. Which strategy is applied depends on the requirements: Computational speed10

vs. model accuracy.

1 Introduction

Three dimensional (3D) hydrologic models for subsurface flow are an important tool to gain a better understanding of the

processes in a hydrologic system and to estimate the impact of possible future changes to it. However, these models tend to be

very computationally demanding especially when applied to settings on large length scales that require a fine grid resolution15

(Kollet et al., 2010). Therefore, a lot of approaches to reduce the complexity of such models have been developed. One very

common approach is to divide the model domain into two components: the saturated (groundwater) part and the unsaturated

part. This is often complemented by the assumption that flow in the unsaturated part occurs predominantly in vertical direction.

Thus, the unsaturated zone, which is usually the more complex one due to the strong nonlinearity of Richard’s equation, can be

represented by one or multiple one dimensional soil columns that can be solved independently from each other. Groundwater20

flow is then either modeled as 3D or as 2D depth integrated flow. The coupled model can then be seen as 2.5D or quasi 3D.

In this work we focus on phreatic aquifers where the crucial part is the coupling of the two model components. Usually,

they are linked by the exchange of information on groundwater recharge and the position of the groundwater table. This can

be done either in an iterative manner to account for the feedback between the two models (Refsgaard and Storm, 1995; Shen
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and Phanikumar, 2010; Zhu et al., 2011; Kuznetsov et al., 2012; Xie et al., 2012; Xu et al., 2012; Mao et al., 2019; Zeng25

et al., 2019) or in a non-iterative manner without feedback (Pikul et al., 1974; Yakirevich et al., 1998; Beegum et al., 2018;

Erdal et al., 2019). Both methods have been applied successfully. While iterative coupling in general yields a higher accuracy,

non-iterative coupling requires less computational ressources (Zeng et al., 2019).

Differences among the coupling strategies exist also in terms of the spatial extent of the unsaturated zone model. Mostly,

the unsaturated zone is modeled to span from the groundwater table to the land surface (Pikul et al., 1974; Refsgaard and30

Storm, 1995; Yakirevich et al., 1998; Zhu et al., 2011; Kuznetsov et al., 2012; Xie et al., 2012; Zhu et al., 2012; Renard and

Tognelli, 2016; Erdal et al., 2019; Zeng et al., 2019). As the groundwater table is moving with time, a remesh is needed after

each coupling time step. Others assign a small overlap of the two model compartments which allows for a better calculation of

the recharge flux (Xu et al., 2012; Beegum et al., 2018; Mao et al., 2019). A third approach is to consider 1D soil columns that

reach down to the bottom of the groundwater domain (Shen and Phanikumar, 2010). Thus, the two compartments overlap in35

the entire saturated zone. The drawback of this approach is that the size of the unsatured model grid is increased. The advantage

is that lateral fluxes in the groundwater can be passed directly to the unsaturated zone model and no remeshing is needed.

All these different coupling strategies have been tested successfully against real data or fully integrated 3D models. One has

to keep in mind that there are limitations to the applicability that are not related to the coupling strategy but the general 2.5D

or quasi 3D approach. Due to the 1D representation of the unsaturated zone, these models cannot be applied in the presence of40

large lateral fluxes in the unsaturated zone which might be the case in steep hillslopes. Furthermore, they neglect lateral water

movement in the capillary fringe which can play a significant role.

One shared problem of these coupled models is due to the fact that the exchange quantities, e.g. recharge and water table

position, are usually assumed to be constant over one coupling time step. This might lead to non-consistent model states when

using a coupling scheme without feedback. While the consistency of the two model compartments is not necessary when the45

compartments are spatially separated, it is fundamental when they overlap. The easiest way to prevent these inconsistencies is

to choose a small enough coupling time step, but this might lead to unfeasible compute times. Beegum et al. (2018) overcame

this problem by updating the pressure head profile in the unsaturated zone after each time step in such a way that the new

groundwater table position and the current recharge flux are both matched. By this procedure they prevent sudden in- or outflow

of the unsaturated zone due to a stepwise changing groundwater table position. However, this requires the application of an50

optimization routine which can be rather time consuming. With an iterative coupling scheme, consistency can be achieved. In

the MIKE-SHE model (Refsgaard and Storm, 1995), the water table is adjusted step-wise during the iterations until the mass

balance is met with a predefined accuracy. But there still remains an error due to neglection of the temporal changes in the

exchange information. Zeng et al. (2019) use linear extrapolation of the groundwater table position to reduce this error. Zhu

et al. (2012) solve the two models jointly linked via the pressure head values at the interface. However, this is only possible55

if the groundwater model is 3D and the time steps in both compartments are equal. Often, the time step of the groundwater

model is chosen to be larger than in the unsaturated model where smaller time steps are needed to achieve convergence for the

nonlinear system of equations (Beegum et al., 2018).
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Regarding the model consistency, another important factor is the quantification of the specific yield. It relates the amount of

water being added or released to the fluctuations of the groundwater table, thus accounting for the neglected unsaturated zone.60

To get a consistent solution in both model parts in terms of water table position and mass conservation, it is obvious that a

correct estimation of the specific yield in the groundwater model is needed.

However, the specific yield is not easy to be quantified as it depends on soil properties, change of the groundwater table and

the water content profile above the groundwater table (Pikul et al., 1974; Sophocleous, 1985; Crosbie et al., 2005; Hilberts et al.,

2005). The common approach to define it as drainage porosity and assign a temporally and often even spatially constant value65

is a strong simplification in most applications. Beegum et al. (2018) performed a small sensitivity analysis on this parameter

and detected a strong influence on the dynamics of the groundwater table position. Some research was dedicated to getting a

better estimation of this value in the context of groundwater modeling (Hilberts et al., 2005) and coupled saturated-unsaturated

zone modeling (Pikul et al., 1974; Xu et al., 2012; Zeng et al., 2019). Hilberts et al. (2005) presented an analytical expression

for the specific yield depending on the groundwater table position and the soil hydraulic parameters assuming hydrostatic70

equilibrium in the unsaturated zone. A similar approach was used by Crosbie et al. (2005) who propose a soil and depth

dependent formulation of the specfic yield. Pikul et al. (1974) were the first to use a dynamic heterogeneous specific yield for

linking the 1D unsaturated zone model with a 2D Boussinesq equation for the groundwater. They calculate it as the difference

between saturated water content and the minimum water content at a specified depth. This approach was criticized by Vachaud

and Vauclin (1975), who could confirm the dependency of the specific yield on space and time with physical experiments, but75

did not agree with its ambiguous definition proposed in the work by Pikul et al. (1974). Xu et al. (2012) implemented three

different methods to define the specific yield when coupling the SWAP model (Kroes and Van Dam, 2003) with MODFLOW-

2000 (Harbaugh et al., 2000) but do not give a comparison of these methods or a suggestion. Zeng et al. (2019) distinguish

between a small-scale and a large-scale specific yield. The small-scale specific yield is calculated from the unsaturated zone

model as the change of water content up to a user specified elevation above the groundwater table, the large-scale specific yield80

is the commonly used parameter of the groundwater model. The difference between those two is used to correct the recharge

flux. So the quantification of the specific yield remains an issue which is not yet fairly solved.

In this work we compare two different coupling methods for linking 1D unsaturated flow with 2D depth integrated ground-

water flow. Both are quite simple, straight forward to implement and do not build on any additional software. One of them can

keep the consistency of the two model compartments while still being fast and efficient whereas the other one is essentially85

designed to be very fast. The latter approach builds on the setup developed by Erdal et al. (2019) and uses a non-iterative,

fast, but also rather approximate, coupling scheme, in which the unsaturated columns vary individually in length over the sim-

ulation time. Hence, each column is resized every time step to fit the distance between groundwater table and surface. In the

other method the unsaturated zone model covers the entire depth to the bottom of the groundwater domain and is coupled in

an iterative manner to the groundwater model. Thus, the solution in both model compartments is guaranteed to be consistent.90

A new way of calculating the specific yield during the iteration is introduced and passed as coupling information between the

model components. This prevents a prior calibration of this parameter and can account for its temporal and spatial variability.
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We perform a sensitivity analysis with the iteratively coupled model to examine whether the calculated specific yield behaves

reasonably and to identify those parameters which have a high impact on the groundwater dynamics in the coupled model. The

number of parameters that need to be calibrated can thus be reduced saving computation time. As the equations describing95

unsaturated flow are nonlinear, a global sensitivity analysis, where the sensivity is measured over a larger (predefined) range of

parameter values, is preferable. As global sensitivity metric we choose activity scores based on active subspaces introduced by

Constantine and Diaz (2017). This is a rather new method that has been given increasing attention since its publication (Palar

and Shimoyama, 2017; Fritz et al., 2019; Leon et al., 2019) and has also been used with subsurface models (Erdal and Cirpka,

2019). The idea of the method is to find the most influential directions in parameter space, in which the directions are linear100

combinations of the individual parameters, so called active variables.

The remainder of this paper is structured as follows: The coupled model with the two different coupling strategies as well

as the activity scores used for the sensitivity analysis are described in detail in the following section. Afterwards the used test

cases are introduced. We then present and discuss the results of the coupling scheme comparison and the sensitivity analysis.

In the final part we give a summary of our experiments and conclusions.105

2 Methods

2.1 Governing equations

The coupled model consists of two components, namely groundwater and unsaturated zone. Groundwater flow is modeled by

the 2D Boussinesq equation for an unconfined aquifer

Sy
∂h

∂t
=∇ · (Ks(h− z0)∇h) +R (1)110

where Sy [−] is specific yield, h [m] is hydraulic head, t [s] is time, Ks [ms−1] is the depth averaged saturated hydraulic

conductivity, z0 [m] is the bottom elevation of the aquifer and R [ms−1] is groundwater recharge.

The mixed formulation of 1D Richards equation is used to describe flow in the unsaturated zone columns:

S(hp)Ss
∂hp
∂t

+
∂(S(hp)φ)

∂t
=∇ · (K(hp)∇(hp + z)) +Q (2)

where S [−] is saturation, Ss [m−1] is specific storage, hp [m] is pressure head, φ [−] is porosity, K [ms−1] is the unsaturated115

hydraulic conductivity, z [m] is the geodetic height above the bottom of the aquifer and Q [s−1] is a source/sink term. The

specific storage is here defined as Ss =
φ

Vt

∂Vt
∂hp

with Vt [m3] being the total volume and assuming that
∂φ

∂hp
is negligible.

We use this formulation of Richards equation as it is consistent with Parflow (Kollet and Maxwell, 2006), which we use

as fully integrated reference model, even though there might be more common formulations and the first term describing

compressibility of the whole medium is not relevant for our examples.120
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The relation between pressure head, saturation and unsaturated hydraulic conductivity is represented by the van Genuchten-

Mualem model (Van Genuchten, 1980):

S(hp) =


Sr +

Ssat−Sr
[1 + (α|hp|)n]

m if hp < 0

Ssat if hp ≥ 0

(3)

K(hp) =

KsS
0.5
e

[
1−

(
1−S1/m

e

)m]2
if hp < 0

Ks if hp ≥ 0
(4)

where125

Se =
S−Sr
Ssat−Sr

(5)

[−] is the effective saturation and the model parameter m [−] is usually given by m= 1− 1/n. The model parameters α

[m−1] and n [−] are related to the pore-size distribution, Ssat and Sr [−] are the saturated and residual saturation, respectively.

2.2 Coupling

2.2.1 General approach130

The coupled model is a simplified subsurface model that can model flow in the groundwater and in the vadose zone, but no

overland flow. It consists of a 2D depth averaged model for horizontal groundwater flow (Eq. 1) and multiple 1D models for

vertical unsaturated flow (Eq. 2). Each 1D model is located at a cell of the groundwater model grid. To reduce the computational

burden not every groundwater grid cell has a 1D model. Instead, several grid cells of the groundwater model can be lumped

into zones that are assigned one 1D soil column. A schematic example of the model grid is shown in Fig. 1. The atmospheric135

forcing of the unsaturated zone model as well as the recharge that is calculated from the unsaturated zone model and passed to

the groundwater model are assumed to be constant within each zone. Therefore, the definition of the zones should be geared to

land use, depth to groundwater table or other factors that affect the recharge flux as also done by Xu et al. (2012), Renard and

Tognelli (2016) and Erdal et al. (2019) and investigated by Zhu et al. (2012) and Zeng et al. (2019).

Both components are discretized using finite volumes and an implicit Euler time integration. The nonlinear systems of140

equations are solved using the Newton Raphson scheme and line search. For the groundwater model a rectangular grid with

uniform grid spacing is used. The 1D grid for the unsaturated zone can be non-uniform.

The boundary conditions on the lateral sides of the groundwater model can be either Neumann or Dirichlet boundary con-

ditions. The upper boundary condition of the unsaturated zone models is a Neumann boundary representing the flux across

the land surface. In this work, the flux will be either precipitation or the net flux from precipitation and evapotranspiration145
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Figure 1. Example of the coupled model grid with 3 recharge zones (white, gray and black).

depending on the test case. The feedback from the groundwater model to the unsaturated zone models as well as the lower

boundary condition of the unsaturated zone models depend on the coupling method described in the following sections.

The time step size of the unsaturated zone model is smaller than that of the groundwater model to guarantee convergence

in the former but also numerical efficiency for the full model. The coupling time step, which defines the interval when the

two model components exchange their information, is equal to the time step size of the groundwater model. All exchanged150

information such as groundwater recharge etc. is assumed to be constant during one coupling time step.

Both components as well as the coupling routine are implemented in Matlab.

2.2.2 Non-iterative method

The first coupling method aims at providing a fast and iterative free, but also rather approximate, solution to the numerical

problem. A previous version of the model is published in Erdal et al. (2019). In this method, specific yield is a parameter of155

the groundwater model that the user needs to specify during model setup. Each unsaturated zone column is set up to range

from the groundwater table to the land surface, with a Dirichlet boundary h= 0m at the bottom. A coupling time step is then

performed as:

1. Run all unsaturated 1D column models for the coupling time step, collect the computed recharge (i.e. fluxes leaving over

the bottom boundary for all 1D time steps during the coupling time step) and interpolate the 2D map of groundwater160

recharge.

2. Run the 2D groundwater model for the coupling time step with the computed recharge.

6



3. For each 1D column, resize all cells by a uniformed ratio computed such that the resized grid fits the new groundwater

table to land surface distance at the column location. Thus, the cell sizes ∆z are changed while all other properties of

the model are kept as they are, including saturation and hydraulic head which means a gain or loss of water in the 1D165

models.

4. Compute the amount of water lost (or gained) in each unsaturated model by resizing the grid.

5. Add (or subtract) a ratio r of this water to the recharge computed in the next coupling time step.

6. Move to the next coupling time step and repeat from point 1.

The ratio r can in principle range from 0 to 1. At 1 the coupled model is locally mass conservative, as no water is lost or gained170

during the grid-resizing. However, a local mass-conservation in a non-iterative coupling method may not be wanted. Reasons

for this are for example (1) the water content in the unsaturated zone is also effected by lateral flows in the groundwater, (2) the

added or subtracted water is only added in the next time step, (3) the dynamics around the rising or falling groundwater table

is only captured in rough terms, and, (4) the column resizing is distributed across the full column. This can cause numerical

problems like oscillating groundwater tables. In this work we compute r as the ratio between the incoming water volume from175

the 1D column (R∆tc [m]) and the volume of water added to (or subtracted from) the groundwater (φ ·∆HGW [m]):

ri = min

{∣∣∣∣∣ Ri∆tc
φi∆HGW,i

∣∣∣∣∣,1
}

(6)

where i is the index of the column, ∆tc [s] the coupling time step and r is limited to a maximum value of 1. The current for-

mulation gives an indication to what extent the change of groundwater elevation can be attributed to the incoming groundwater

recharge. If recharge is the main contribution, the water lost or gained in the resizing could be assumed to have entered/left180

the groundwater, while if the recharge is small but the change in groundwater table large, we find it more likely that the water

may still be in the unsaturated zone. We note that this is an ad-hoc solution, and that it differs to the one presented in Erdal

et al. (2019), where r was simply set to 0. However, numerical tests show good stability and the best overall performance for

the applied test cases when r is computed as in this work even though a value of r = 1 would be needed to keep strict mass

conservation.185

2.2.3 Iterative method

The second method couples the groundwater and the unsaturated model parts iteratively. Here, the 1D soil columns span the

entire soil thickness from the impervious bottom of the aquifer up to the land surface. Thus, the 1D and the 2D model overlap

in the saturated part. The bottom boundary condition of the 1D columns is then a no-flow boundary.
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The groundwater recharge R [ms−1], that is passed from the unsaturated zone models to the groundwater model, is defined190

- similar as in Crosbie et al. (2005) - as the amount of water being added to or substracted from the groundwater over time and

calculated from each unsaturated flow model as

Rν =
∆H1

UZ ·Sνy
∆tc

(7)

where HUZ [m] is the position of the groundwater table in the unsaturated zone model, Sy [−] is the specific yield, ∆tc [s]

is the coupling time step and the superscript (ν) the iteration counter for the coupling time step loop.195

The information passed from the groundwater model to the unsaturated zone models are the lateral fluxes Qlat [ms−1] into

or out of the columns cells. They are calculated at the locations where the unsaturated and groundwater models overlap as the

amount of water being added to or substracted from the groundwater over time minus recharge:

Qνlat =
∆Hν−1

GW ·Sν−1
y

∆tc
−Rν−1 (8)

with HGW [m] being the position of the groundwater table in the groundwater model. This cumulative flux is spread over200

the saturated part of the corresponding 1D model taking into account the variable cell sizes of the 1D grid:

qνlat,i =Qνlat ·
∆zi∑
j∆zj

with zi,zj ≤HUZ (9)

The local flux qlat,i [ms−1] is given as a source/sink term to the i-th cell of the 1D model. This procedure is shown exem-

plarily for one 1D model in Fig. 2.

In this approach, the position of the groundwater table in both models is not used as exchange information but as closure205

criterion for the iteration. With the lateral fluxes from groundwater flow being accounted for in the unsaturated zone models,

the calculated groundwater table position at the next time step should be equal in both models. However, this is only the case

if the specific yield is chosen to correctly represent the behavior of the unsaturated zone in the groundwater model. As was

already discussed in the introduction, the specific yield is dynamic. Therefore it needs to be determined at every time step.

In the literature, different approaches of how to define and calculate the specific yield can be found. Most of them lack the210

dependency on the fluctuations of the groundwater table ∆H . The method proposed by Zeng et al. (2019) takes this into account

but requires the definition of a threshold elevation above the groundwater table. Here, we propose a method that calculates the

specific yield depending on ∆H without need of further user-defined parameters:

Sνy =
Qνlat ·∆tc

∆Hν
UZ −∆H1

UZ

(10)

It represents the ratio of the lateral fluxes and the corresponding change of the groundwater table position in the unsaturated215

zone model. In our case this is equivalent to relating all incoming fluxes (Qνlat+R
ν) to the total change of the groundwater table
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Figure 2. Illustrative example of the time step integration for one 1D model in the iteratively coupled model.

position (∆Hν
UZ). So the specific yield is no longer a fixed model parameter but the ratio of the calculated water gain/loss per

calculated groundwater level change where the water level change is calculated using the 1D Richards equation, which does not

have the specific yield as a parameter. We thereby to a certain extent impose the unsaturated zone model upon the groundwater

model. As the altered specific yield may lead to different lateral fluxes and consequently to a different specific yield, several220

iteration steps are needed to achieve a consistent solution in both model compartments. The convergence of the specific yield

is - as in any numerical scheme - bound to an adequate choice of the numerical grid and in this case additionally to a sufficient

number of unsaturated zone models which can both be found by a convergence study. Note that if ∆Hν
UZ −∆H1

UZ = 0m,

then there are no lateral fluxes which means that there is no iteration required and the specific yield stays at its current value.

The integration of the coupled model to the next time step, which is illustrated in Fig. 3, can be thus summarized as follows:225

1. Run all unsaturated 1D column models for the coupling time step with qlat,i = 0ms−1 ∀i, calculate the computed

recharge according to Eq. 7 and interpolate the 2D map of groundwater recharge R1.

2. Run the 2D groundwater model for the coupling time step with the computed recharge R1.

3. Calculate the lateral flux source/sink terms qνlat,i for the 1D models (Eq. 9).

4. Run all unsaturated 1D column models for the coupling time step with qνlat,i, calculate the computed recharge according230

to Eq. 7 and interpolate the 2D map of groundwater recharge Rν .

5. Calculate and interpolate the 2D map of specific yield Sνy using Eq. 10.
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6. Run the 2D groundwater model for the coupling time step with the updated recharge Rν and specific yield Sνy .

7. Repeat steps 3 to 6 until |Hν
UZ −Hν

GW | ≤ εH .

8. Move to the next coupling time step and repeat from point 1.235

Note that an assumption is made in this approach. The source/sink terms qlat,i have an effect on the recharge (R(Qlat =

0) 6=R(Qlat 6= 0)), which due to the nonlinearity of Richards equation cannot be quantified. This effect is assumed to be

negligible and the fluctuations due to recharge (∆H1
UZ) are kept constant during the iterations whereas the remainder of the

total fluctuations (∆Hν
UZ −∆H1

UZ) are assigned entirely to the lateral fluxes. Changes of the recharge Rν during the iteration

are then only caused by changes of the specific yield (see Eq. 7).240

Besides, as groundwater recharge and specific yield are calculated from the unsaturated zone models, they are spatially

uniform for all cells of the groundwater model that belong to the zone assigned to that unsaturated zone model. This leads to a

simplified recharge and specific yield pattern but is necessary to keep the model computationally efficient.

Figure 3. Flow diagram for the iterative coupling.

2.3 Activity scores

We perform a global senstivity analysis to identify the most influential parameters for the groundwater dynamics in the coupled245

model. As metric we use activity scores (Constantine and Diaz, 2017). For this we define the vector of m model parameters

x normalized to a range of [0,1] with the probability density function ρ(x) of the parameters and the scalar model output

f(x). In our case, the parameters are the soil hydraulic parameters and the upper boundary condition, defined in more detail in

Section 3.4. The model output f is either the groundwater table position, its daily fluctuation or the calculated specific yield in

the iterative model (see Section 4.4).250
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The active subspace of f is defined by the eigenvectors of the matrix

C =

∫
∇f(x)∇f(x)T ρ(x)dx = WΛWT , (11)

where W is the matrix of eigenvectors and Λ is the diagonal matrix of the corresponding eigenvalues λi in decreasing order.

If there exists a λn that fulfills λn� λn+1, Λ and W can be partitioned into

Λ =

Λ1

Λ2

 and W =
[
W1 W2

]
, (12)255

with Λ1 containing the first n eigenvalues on its diagonal and W1 consisting of the first n columns of W. The column span

of W1 is the active subspace of dimension n of the function f . The product WT
1 x gives the n first active variables which are

linear combinations of the normalized input parameters. A variation of an active variable causes a stronger variation in f(x)

than a variation of the inactive variables given by WT
2 x. Then, the individual sensitivity for the i-th parameter can be calculated

as260

ai = ai(n) =

n∑
j=1

λjw
2
ij (13)

where λj is the j-th eigenvalue and wij the value corresponding to the i-th parameter in the j-th eigenvector. This metric is

called the activity score. For a transient problem, the activity score of a parameter can change with time, leading to a transient

activity score ai(t).

In this work, the activity score is computed independently for each time step to create a transient score and normalized such265

that the sum of all scores at one time step is equal to one:

NASi(t) =
ai(t)∑m
i=1 ai(t)

. (14)

Often, the integration over the parameter space required in Eq. 11 is not feasible or not possible. Therefore, a Monte Carlo

method, where M samples are drawn independently from ρ(x), is used to compute the matrix C as proposed in Constantine

et al. (2015):270

C≈ 1

M

M∑
i=1

∇f(xi)∇f(xi)
T . (15)

Another issue is related to the determination of ∇f . As this gradient often is unavailable, a common approach is to fit a

polynomial model to relate the model output to the input parameters (Jefferson et al., 2015; Erdal and Cirpka, 2019). Following
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the suggestion by Erdal and Cirpka (2019), a second order polynomial depending on the input parameters is fitted to the data

f(x) using standard multiple regression, from which the gradient∇f can be computed easily:275

f(x)≈ b0 +

m∑
i=1

bixi +

m∑
i=1

m∑
j=1

bijxixj . (16)

3 Test cases

We test and compare the above described coupling methods using three different test cases. The first two test cases are taken

from Beegum et al. (2018) where the second one was originally set up by Morway et al. (2013). As these are rather artificial,

we added a third test case which is more complex and more realistic. The first test case is a flow model in a bucket setup280

where all boundary sides are closed. It represents a 1D flow problem consisting of two homogeneous soil layers with dynamic

precipitation evapotranspiration (P-ET) data. It is used to investigate the coupling in the absence of any lateral fluxes where

fluctuations of the groundwater table are only due to groundwater recharge. The second test case is conceptualized with a 3D

model domain. However, as all parameters are constant over the length of the domain, it is effectively a 2D flow problem. Here

again the soil is homogeneous, but it contains lateral fluxes. The third test case is similar to the second but the dimensions and285

the precipitation are modified such that the groundwater table falls during a certain period and the soil is made heterogeneous.

This test case is a true 3D flow problem. The main features of the test cases are summarized in Table 1. For the 1D bucket

model, one 1D soil column that is not coupled to groundwater is solved for comparison. The results of the other two test cases

are compared to those obtained from a fully integrated 3D model set up with Parflow (Kollet and Maxwell, 2006).

Table 1. Main features of the three test cases.

1D flow 2D flow 3D flow

soil heterogeneity no no yes

lateral fluxes no yes yes

rising and falling groundwater table no no yes

simplified R and Sy pattern no no yes

For the global sensitivity analysis a fourth test case is created which is mainly a combination of the second and the third test290

case. They are combined and modified in such a way that the groundwater table rises and falls, the simulation is long enough

to finish the model spin up and parameters are homogeneous within each model compartment.

Grid convergence

We performed a convergence study on the spatial grid resolution (∆x= ∆y and ∆z) and coupling time step size (∆tc) for the

three applied test cases using the iteratively coupled model. As we want to compare our results to those of Beegum et al. (2018),295
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Table 2. Soil hydraulic parameters for the three test cases for Parflow and the coupled model

θr [−] θs [−] Ks [ms−1] α [m−1] n [−] Ss [m−1] Sy
a [−]

1D flow

sand 0.045 0.43 8.25 · 10−5 14.5 2.68
0.0015 0.255

loamy sand 0.057 0.41 4.05 · 10−5 12.4 2.28

2D flow

soil 0.1 0.45 5.70 · 10−4 1.65 2 0.0015 0.28

3D flow

loam 0.004 0.43 3 · 10−6 3.6 1.6

10−6 0.28
loamy sand 0.004 0.41 7 · 10−5 5.4 2.1

sandy clay 0.004 0.38 3 · 10−7 2.7 1.6

a Only needed in the coupled model. Using the iterative coupling, this value is the initial value S0
y.

we chose the grid sizes corresponding to the accuracy we obtained for the grid resolution used in their work (mean absolute

error of the groundwater table over time ofMAE ≤ 5·10−3 m) for our final calculations. To guarantee the comparabilty among

the fully integrated and the coupled model, we always use the same grid for the reference and for the coupled model using the

two coupling schemes although one has to keep in mind that the vertical grid resolution in the non-iteratively coupled model

will change during the remeshing. The convergence study showed that in the vertical direction a much finer grid is needed with300

form factors up to 500. Besides, the third (heterogeneous) test case requires a finer horizontal grid to achieve the same accuracy

as in the other two test cases. For all three test cases, the influence of the coupling time step ∆tc was negligible. Therefore,

we decided to use the maximal possible value ∆tc = 1d (as we have daily changing forcing data in test case 1) for all test

cases. The grid for the fourth test case used for the sensitivity analysis was not determined from a convergence study since its

accuracy does not need to be comparable to the other test cases and the convergence study might show different results for305

different parameter combinations. Instead, we chose a grid resolution between the second and the third test case, of which this

test case is a mixture.

3.1 Test case 1: 1D flow

This model is taken from Beegum et al. (2018) and covers a domain of 1m × 1m × 10m. All lateral boundaries are no-

flow boundaries. The net flux of daily varying precipitation and potential evapotranspiration (P-ET) shown in Fig. 4 is applied310

as a Neumann boundary at the soil surface. This data was collected at a weather station in Gdansk, Poland in 2011. The

initial condition assumes a hydrostatic pressure profile in the lower 6.5m of the soil corresponding to an initial position of

the groundwater table at 3.95m below the surface. In the upper 3.5m of the soil, unit gradient flow is imposed by setting the
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pressure head to −0.283m. The soil consists of two layers, a sandy soil in the top 2.5m and a loamy sand soil underneath

(see Fig. 9). The soil hydraulic parameters for the two layers are given in Table 2. Since the groundwater table stays below the315

interface to the sandy soil layer during the entire simulation, the groundwater model is assigned the loamy sand parameters.

Figure 4. Net precitpitation and evapotranspiration used for the 1D flow model. Positive values indicate inflow, negative values outflow.

Figure 5. Model domain and initial water table position for the 1D flow model.

The total simulation time is one year. The 1D model used for comparison (pure Richards model, not coupled to groundwater)

uses an adaptive time stepping scheme with a minimum value of 1s and a maximum value of 1h. The grid is uniform with 1000

cells of 0.01m height. The same spatial resolution is used for the 1D models in the coupled model. The groundwater domain

is divided into a 2× 2 grid. Each groundwater cell is assigned a 1D model. The coupling time step as well as the time step of320

the groundwater model is set to 1d for both coupling methods. The time step for the 1D models is adaptive with a minimum

value of 1s and a maximum value of 1d.
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3.2 Test case 2: 2D flow

The dimensions of this model (Morway et al., 2013; Beegum et al., 2018) are 8000m× 4000m× 15m. Since there is no vari-

ability along the 8000m side, flow is effectively 2D in this test case. There is a constant slope of 0.1% at the 4000m side. Two325

no-flow boundaries are assigned along the shorter side walls. On the other two sides there are Dirichlet boundaries correspond-

ing to a groundwater table elevation ofH = 7m andH = 0.9m at the top and the bottom of the slope, respectively (Fig. 6). The

initial groundwater table elevation is interpolated linearly between the two Dirichlet boundaries. The initial condition for the

1D models is generated applying hydrostatic equilibrium and assigning a minimal initial pressure head of−1.25m at locations

where the pressure head is below this value. Monthly varying rainfall (Fig. 7) is used as Neumann boundary condition for the330

land surface. The forcing is repeated for five cycles summing up to a total simulation time of five years. The soil parameters

are listed in Table 2.

Figure 6. Model domain and initial water table position for the 2D flow model. (Beegum et al., 2018)

Figure 7. Net inflow used for the 2D flow model.
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The 3D Parflow reference model uses a uniform grid with 80× 40× 75 cells with grid size ∆x= ∆y = 100m and ∆z =

0.2m. The spatial resolution in the coupled model is the same with a 80× 40 grid for the groundwater model and 75 cells for

the unsaturated zone models. The groundwater domain is divided into 40 zones all consisting of slices along the 8000m side335

as shown in Fig. 6. With the flow problem being 2D this means that the entire domain is actually covered by 1D models. The

coupling and groundwater time step is ∆tc = 1d and the time step for the 1D models is again adaptive with a minimum value

of 1s and a maximum value of 1d. Parflow uses an adaptive time scheme as well, with a maximum value of 1h.

3.3 Test case 3: 3D flow

The first two test cases are rather simple. Therefore, a third test case is designed where the properties that are relevant for340

the coupling are closer to those of a model for a real hydrological system. The setup is similar to that of the second test case

but with some modifications. The domain size is reduced to 800m × 400m × 15m, the slope is maintained. The lateral

boundaries are the same, the flux boundary at the land surface now consists of three cycles of the precipitation shown in Fig. 7,

followed by two no-flux years and then again two years using the original precipitation data. Thus, the total simulation time

is seven years. With these changes, the groundwater table is forced to eventually fall and then rise again. Apart from the more345

dynamic groundwater table, the influence of heterogeneities should be investigated with this test case. Therefore, instead of

the homogeneous soil, three different soil types, representing loam, loamy sand and sandy clay, are distributed throughout the

domain as depicted in Fig. 8. The distribution is synthetic and the corresponding parameter values are given in Table 2. In the

coupled model, the parameters for the groundwater model are averaged arithmetically over the depth of the saturated zone in

that grid cell. This averaging takes place at every time step adapting to the new position of the groundwater table. The initial350

condition is the same as in the 2D flow case.

Figure 8. Distribution of soil types along the 800m side at x= 195m in the 3D flow model. grey: loam, white: loamy sand, black: sandy

clay.

The horizontal spatial resolution is increased to ∆x= ∆y = 5m. The vertical grid consists of 200 cells and is non-uniform

with grid sizes ranging between ∆zmin = 0.75mm at the surface and ∆zmax = 0.3m at the bottom. The same resolution is

used for Parflow and for the coupled model. With the heterogeneous soil, each grid cell of the groundwater model would need

a 1D model to cover the entire domain. As this is computationally not feasible, the groundwater domain is again divided into355
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40 zones but now spread evenly across the domain each covering an area of 20× 16 grid cells. The 1D models are placed at

the center of each zone and assigned the soil hydraulic parameters at this location. Thus, also the influence of a simplified

recharge (and specific yield) pattern, which is constant within each zone and calculated from the corresponding 1D model, can

be investigated. The time step sizes are the same as in the 2D flow model.

3.4 Test case 4: sensitivity analysis360

As already pointed out, for this test case the 2D and 3D flow test cases were combined. The domain size and the boundary

conditions as well as the initial condition are the same as in the 3rd test case. This was done to maintain the rising and falling

groundwater table. To get rid of spin up effects, the simulation time was increased, running four times the precipitation data used

for the 3D flow case, adding up to a total simulation time of 28 years. The soil structure was simplified to be homogeneous

within each model compartment, thus the groundwater model and the unsaturated zone models. For a heterogeneous soil365

structure a global senstivity analysis would be neither feasible nor very meaningful. The parameters included in the sensitivity

analysis are listed in Table 3. Here, KGW and KUZ are the saturated hydraulic conductivity of the groundwater model and

the unsaturated zone models, respectively, whereas the saturated part of the 1D models, that overlaps with the groundwater

model, is also assigned the KGW value. This means that the hydraulic conductivity of an unsaturated model cell is changed

when the cell becomes saturated or unsaturated. Thus, inconsistencies between the two model compartments that may lead370

to numerical problems are avoided. The parameters are sampled from uniform distribution functions ρ to cover their entire

physically plausible range. Table 3 shows the limits of these ranges. Additionally, the influence of the upper boundary condition

is investigated by multiplying the precipitation data with a constant factor rPET. The residual saturation Sr = θr/θs and the

specific storage Ss are excluded from the analysis and set to 0.01 and 0.0015, respectively, as a previous smaller sensitivity

analysis had shown no impact of these parameters (not shown). The specific yield values are calculated by the model, so the375

range is defined by these calculated values. Even though this is not a predefined parameter, its influence on the model output,

i.e. the groundwater table dynamics, is of great interest and should be comprehensible and consistent over the entire simulation

time.

Table 3. Parameter ranges for the parameters included in the sensitivity analysis. For the saturated hydraulic conductivity values for the

groundwater (GW) and the unsaturated zone (UZ) model as well as the van Genuchten α the normal logarithm is sampled.

KGW [ms−1] Sy [−] KUZ [ms−1] α [m−1] n [−] θs [−] rPET [−]

min. 5 · 10−7 calculated 5 · 10−7 0.5 1.5 0.05 0.75

max. 10−4 calculated 10−4 10 5 0.7 1.25

The horizontal spatial resolution is ∆x= ∆y = 10m and the vertical resolution is ∆z = 0.1m. As the sensitivity analysis

requires a lot of model realisations, the number of unsaturated zone models and corresponding zones is decreased to eight to380

save computation time. Similar to the second test case they are placed evenly along the 800m side of the domain since the soil

is homogeneous and flow thus 2D again. The time step sizes are the same as in the previously described test cases.
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4 Results and Discussion

The coupling methods are compared in terms of accuracy and efficiency. The spatial and temporal distribution of the ground-

water table is used for the evaluation of the accuracy. The wall clock time serves as indicator for speed and is given in Table385

4. No information about run times are given in Beegum et al. (2018). Therefore, their results are not included in the speed

comparison. All Matlab calculations are done on a local desktop PC with an Intel Core i5 using 2 cores for the coupled model

runs. The Parflow runs used for the other test cases are performed on the JUWELS supercomputer at the Research Centre Jülich

which provides 2567 compute nodes with Dual Intel Xeon CPUs. 12 cores were used for the simulations.

Table 4. Wall clock times for the different test cases and coupling schemes.

control run iterative coupling (PC) non-iterative coupling (PC)

1D flow 66s (Matlab, PC) 113s 39s

2D flow 11760s (Parflow, supercomputer) 630s 581s

3D flow 184680s (Parflow, supercomputer) 4857s 2262s

The iterative coupling uses a dynamic formulation of the specific yield. The resulting values are investigated in terms of390

plausibility. The groundwater table position, the groundwater table fluctuations and the specific yield calculated from the

iterative coupling (all taken at the center of the domain) are used as observations f(x) for the global sensitivity analysis.

The resulting transient activity scores (Eq. 14) of the parameters listed in Table 3 are analyzed to identify the most influential

parameters and to see whether the calculated specific yield behaves reasonably.

4.1 Results 1D flow395

Figure 9 shows the water table elevation over time for the single column reference run and the two coupling schemes. The

reference elevation z = 0m is located at 5m below the surface. This is done to facilitate the comparison to the work by

Beegum et al. (2018). Both, the iterative and the non-iterative coupling scheme show a good match with the single column run.

The accuracy of the iterative approach is slightly higher, no difference to the single column run can be seen in Fig. 9. A visual

comparison indicates that the coupling applied by Beegum et al. (2018) yields a comparable accuracy.400

The dynamic adaptation of the specific yield in the iterative coupling scheme is active only in the presence of lateral fluxes,

because otherwise due to the formulation of the recharge in Eq. 7 the groundwater table fluctutations in the two model com-

partments are already forced to be the same in the first iteration step. Therefore, in this test case the value stays constant at its

initial value and further investigation is not possible.

For the 1D flow problem, the iterative coupling takes roughly three times as much wall clock time as the non-iterative405

coupling (see Table 4). This is due to the larger grid of the iterative model which also includes the saturated part.
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Figure 9. Groundwater table elevation over time for the 1D flow problem.

4.2 Results 2D flow

The temporal evolution of the groundwater table position at the center of the domain is shown in the upper plot of Fig. 10.

While both coupling approaches tend to overestimate the elevation of the groundwater table, increasing with time, the non-

iterative coupling shows a rather large offset compared to the Parflow run. This difference is also evident in the spatial plot of410

the groundwater table in the lower part of Fig. 10. The overestimation of the iterative coupling scheme is also visible there,

but is clearly smaller. Besides, there is a shift in the shape of the groundwater table. The iterative coupling scheme shows the

largest difference to the Parflow model close to the boundary at x= 4000m which will be discussed further in Section 4.5. The

largest difference between the non-iterative coupling and the Parflow run occurs at around x= 1000m. The results by Beegum

et al. (2018) have a similar accuracy and shape as the results of the iterative coupling approach.415

When considering the non-iterative model, it is notable that initial time steps are an issue, as the model starts almost imme-

diately with a too high groundwater table. However, the difference also grows slowly over time. Both of these issues occur as

well when using smaller time step sizes and may be related to the reference model essentially acting as a bucket without any

plausible steady state solution (i.e. steady state for the groundwater model would have groundwater tables far above the top of

the domain). As such, an initial error in the model can never be compensated and will also lead to feedback effects, such as an420

overestimation of the groundwater recharge due to too short unsaturated zone model columns. In this respect, the 2D flow test

case is of limited use when evaluating simplified models for realistic setups.

The lateral fluxes in this setup cause a temporally and spatially changing value of the specific yield in the iterative model,

which can be seen in the left plot of Fig. 11. However, the differences among the predefined zones (different lines) and also the

temporal fluctuations are rather small. All values are smaller than the proposed value of 0.28, although the difference is less425

than 0.03. The temporal fluctuations of Sy suggest a dependence on the fluctuations of the groundwater table which also show

a repeating pattern due to the cyclic forcing whereas its spatial differences indicate the dependence on the water table position.

The right plot of Fig. 11 shows the specific yield over the groundwater table position. The least squares regression line reveals
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Figure 10. Results of the 2D flow problem. Upper: Groundwater table elevation over time in the center of the domain. Lower: Groundwater

table along the width of the domain at the final time step.

a linear relationship between these two variables, where Sy is increasing with increasingHGW . Nevertheless, the temporal and

the spatial differences of Sy are small here, which might be due to the homogeneity of the soil.430

For this setup, again the non-iterative coupling is faster than the iterative coupling (see Table 4) but the difference is very

small, especially compared to the high run time used for the full 3D Parflow model.

4.3 Results 3D flow

In Fig. 12 the position of the groundwater table at the center of the domain is plotted over time (upper part). Both coupling

schemes show a good agreement with the fully integrated 3D model. Similar behavior is found at other positions in the domain.435

The non-iterative scheme has a slight delay when the groundwater table is rising more rapidly, e.g. around t= 1000d and

t= 2250d. The groundwater table along the width of the domain (y = 400m) at the end of the simulation is plotted in the

lower part of Fig. 12. Again, both coupling approaches match the Parflow result very well with small differences between
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Figure 11. Specific yield values resulting from the iterative coupling for the 2D flow problem. Left: Specific yield over time. Each line

corresponds to a 1D model and zone of equal recharge and specific yield in the groundwater model. Right: Specific yield over groundwater

table position. The white line is the least squares regression line.

x= 300m and x= 370m. The mismatch between the fully integrated and the coupled model is even smaller than in the less

complex 2D flow case, which will be explained in the discussion part (Section 4.5).440

Figure 12. Results of the 3D flow problem. Upper: Groundwater table elevation over time in the center of the domain. Lower: Groundwater

table along the width of the domain (y = 400m) at the final time step.
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The heterogeneity of the soil causes more variability of the groundwater table throughout the domain. Figure 13 shows the

difference between the groundwater table resulting from the coupled models and the full 3D model at the last time step in

the entire domain. It can be seen that in the major part of the domain the differences are small with an average deviation

of ∆HGW = 0.12m for the iterative model and an average deviation of ∆HGW = 0.16m for the non-iterative model. Areas

with larger differences appear at similar locations for both coupling schemes showing the largest deviations close to the lower445

Dirichlet boundary (between x= 300 and x= 400m). Within these areas the differences between the iterative coupling and the

Parflow model are smaller compared to the non-iterative coupling. The reason for these differences can be seen in Fig. 14. The

left plot shows the standard deviation of HGW at the last time step within each zone corresponding to one 1D model obtained

with the fully integrated model. The right plot shows the difference to this standard deviation obtained from the iteratively

coupled model. It is evident that the variation of HGW within one zone is much larger between x= 300 and x= 400m than450

in the other parts of the domain. The lumping into zones of equal recharge, specific yield etc. reduces this variability in the

coupled model, leading to larger differences compared to the fully integrated model in these areas. A higher accuracy could be

achieved by using more 1D models but this would also increase the run times.

Figure 13. Difference of the groundwater table position compared to the full 3D run at the last time step. Left: Iterative coupling. Right:

Non-iterative coupling.

The heterogeneity also leads to a larger variability of the specific yield in the iteratively coupled model as can be seen in

the left plot of Fig. 15. There is a significant variation in space and time, with values ranging between approximately 0.01 and455

0.33. A clear relationship between the groundwater table and the specific yield with an increasing Sy for increasing HGW , as

in the 2D flow case, cannot be seen here. Instead, the soil heterogeneities have a stronger impact on the Sy values. The right

plot of Fig. 15 shows the normalized average specific yield and the normalized average saturated hydraulic conductivity at the

water table position Ki =Ks(HGW ). Both lines show a very similar temporal pattern and except for the time span between

t= 1400 and t= 2500d their values are even close to each other.460
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Figure 14. Left: Standard deviation of the groundwater table at the last time step within each zone corresponding to one 1D model in Parflow.

Right: Difference of this standard deviation compared to the iteratively coupled model.

Figure 15. Left: Specific yield values resulting from the iterative coupling for the 3D flow problem. The solid line is the spatial average,

the dashed lines indicate ± one standard deviation. Right: Normalized specific yield and saturated hydraulic conductivity at the water table

position over time.

For this case the iteratively coupled model needs roughly twice as much run time as the non-iteratively coupled model (see

Table 4). Both coupled models are notably faster than the fully integrated 3D model.

4.4 Results GSA

A global sensitivity analysis is performed to identify the most influential parameters of the coupled model regarding the

groundwater dynamics, i.e. the groundwater table elevation HGW and its daily fluctuation ∆HGW , both taken at the center465

of the domain. The resulting normalized transient activity scores NAS are plotted in the lower plots of Figs. 16 and 17. The

upper plots of Figs. 16 and 17 show the water table elevation and fluctuation of the coupled model averaged over all realisations,

respectively. Low values of the saturated hydraulic conductivity of the groundwater model KGW result in a higher curvature
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of the groundwater table which in some cases reaches the land surface at the center of the domain. All these realisations are

removed from the analysis as the model is not able to represent overland flow properly. Therefore, 316 out of initially 500470

realisations are used. The polynomial representation (Eq. 16) was cross validated with 26 randomly chosen parameters and

found to be appropriate (result not shown).

Figure 16 shows that the saturated hydraulic conductivity of the groundwater domain KGW is by far the most influential

parameter, except for in the beginning. There, the van Genuchten parameter α is dominant but its influence decreases with

time. This is probably due to a spin up effect. When the model reaches the dynamic steady state (last two cycles), the influence475

of α has basically vanished. Additionally, porosity φ and the specific yield Sy still have a small influence, especially when

the water table starts to rise again after a draining period. Note again that the specific yield in the iteratively coupled model is

calculated by the model during the simulation. All other parameters play a minor role.

Figure 16. Upper: Averaged water table elevation. Lower: Transient normalized activity scores.

The activity scores concerning the water table fluctuations look different as can be seen in Fig. 17. Here, the most influential

parameters are porosity φ, the saturated hydraulic conductivity of the groundwater model KGW and the specific yield Sy .480

The dominance of these parameters is alternating. The saturated hydraulic conductivity KGW is the most important parameter

during no rain periods. The fluctuations are then mainly caused by lateral fluxes, which depend strongly on this parameter. In

the iteratively coupled model, when a high or low peak in ∆HGW is reached, the recharge is the main driving force which is

then mostly influenced by porosity. When looking at Eqs. 1 and 7, one sees that Sy can be eliminated when lateral fluxes are

negligible compared to the recharge fluxes, which explains why there is no influence of Sy under these conditions. These are485

the extreme conditions and inbetween the specific yield has the largest influence. At these times, there is also an increase in the

influence of KUZ . As will be shown later this is because the calculated specific yield mainly depends on this parameter.

To analyze the sensitivity for different flow conditions, the observations (HGW and ∆HGW at the center of the domain) dur-

ing the last seven year cycle, when the spin up is finished, are divided into three categories based on their average groundwater
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Figure 17. Upper: Averaged water table fluctuation. Lower: Transient normalized activity scores.

table position during that period: dry (3− 7m), medium (7− 11m) and wet (12− 15m). For each category the normalized490

activity scores are calculated and averaged over time. These averaged scores are shown in Fig. 18. The scores shown in Fig. 16

and 17 correspond to the medium case. One can see that for both, the water table position and its daily fluctutation, the sensitiv-

ity towards the saturated hydraulic conductivity of the groundwater model is increasing with decreasing depth to groundwater

table. Under drier conditions, the influence of porosity and the specific yield is stronger, especially regarding the water table

fluctuation. Here, those two parameters become the most influential parameters while for the water table position, the dom-495

inance of KGW remains. The influence of KUZ on the water table fluctuations is also increasing with increasing depth to

water table. Under drier conditions, the unsaturated zone parameters have a stronger impact on the recharge which explains

this behavior. Interestingly, there is no increase of sensitivity towards the van Genuchten parameters α and n.

Overall, we see the importance of the specific yield for the groundwater table dynamics. With the iterative calculation of the

specific yield a prior calibration of one of the most influential parameters is not needed. To see whether this calculated parameter500

behaves reasonably, a sensitivity analysis towards the calculated Sy at the center of the domain was conducted. The results are

shown in Fig. 19. Note that the Sy in the parameter list is now an initial value to which no sensitivity is expected. The average

calculated Sy value shows some smaller fluctuations, but overall it converges to a value around Sy = 0.17, which is a plausible

value. The activity scores are also on the whole constant in time with the two most influential parameters being porosity φ and

the saturated hydraulic conductivity of the unsaturated zone modelKUZ . The strong dependency onKUZ is consistent with the505

results of the heterogeneous test case (see Fig. 15). These two parameters are followed by the van Genuchten parameters α and

n, whose influence is already much smaller, though. Besides, there is a small influence of the saturated hydraulic conductivity

of the groundwater model KGW . This means that the specific yield is mainly depending on the unsaturated zone parameters.

This is reasonable as its intention is to represent the missing unsaturated zone in the groundwater model.
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Figure 18. Averaged normalized activity scores of the last seven year cycle over the average water table position during that period. Upper:

Normalized activity scores for the water table position HGW . Lower: Normalized activity scores for the water table fluctuation ∆HGW .

Figure 19. Upper: Averaged specific yield values. Lower: Transient normalized activity scores.

4.5 Discussion510

The above described numerical experiments show that both coupling methods presented in this work are well suitable to

substitute a full 3D model under certain conditions. They can correctly capture the dynamics of the groundwater table in

presence of lateral groundwater flow and soil heterogeneities. The iterative model outperforms the fast but rather approximate

non-iterative model in terms of accuracy for all applied test cases, especially in the second one. Its accuracy is comparable
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to that of other coupling approaches (Beegum et al., 2018), but it is easy to implement, fast and the model compartments are515

consistent.

One general problem of the coupled model can be seen in the second test case. Because of the low groundwater table and the

large gradient at the lower Dirichlet boundary (x= 400m), water is also leaving the domain laterally via the unsaturated zone.

This cannot be captured by the coupled model. The water thus has to first move vertically through the 1D model before it can

leave the domain through the groundwater. This leads to a pile-up of water and therefore an overestimation of the groundwater520

table along that boundary. This can also be seen in Beegum et al. (2018) which supports the assumption that it is a general issue.

In the 3D flow case (the third test case) the gradient at this boundary is smaller causing smaller lateral fluxes in the groundwater

and thus also in the unsaturated part. Therefore the results of the coupled model are on average more accurate even though this

test case is more complex than the 2D flow case. Here, on the other hand, we see the influence of the simplified recharge and

specific yield pattern, which is however unavoidable for the efficiency of the coupled model.525

The global senstivity analysis shows that the groundwater table positionHGW is mainly depending on the saturated hydraulic

conductivity in the groundwater modelKGW . This was to be expected as it is the main parameter in the steady state formulation

of Eq. 1. The initially high and then decreasing influence of the van Genuchten parameter α indicates larger fluxes in the

unsaturated zone at the beginning of the simulation. This is most likely due to the rather artificial initial condition in the

unsaturated zone which enforces unit gradient flow down to 1.25m above the groundwater table and no flow below. The530

temporal fluctuations of the groundwater table are influenced by more parameters, namely the saturated hydraulic conductivity

in the groundwater model KGW , the specific yield Sy and porosity φ. Which parameter is dominating depends on the current

flow conditions as described in Section 4.4.

The dynamic formulation of the specific yield in the iterative coupling approach allows the groundwater model and the

unsaturated zone model to respond consistently to the given fluxes. So far this has been a challenge when using an overlapping535

coupling approach (Zeng et al., 2019). The specific yield values obtained in these experiments confirm the assumption that

it is depending on the saturation profile, the fluctuations of the groundwater table and the soil properties. However, these

values should be interpreted with some caution. In this model, the specific yield also needs to compensate the influence of the

lateral fluxes on the recharge, which cannot be quantified properly. The sensitivity analysis for the parameters’ influence on

the calculated specific yield shows that it behaves reasonably, though. It depends on the parameters of the unsaturated zone540

models, especially on porosity φ and the saturated hydraulic conductivityKUZ . The aim of the specific yield is to represent the

missing unsaturated zone in the groundwater model, therefore a strong dependency on the unsaturated zone model’s parameters

is plausible.

5 Conclusions

In this work, two different ways of coupling a 2D groundwater model with multiple 1D unsaturated zone models are presented545

and compared in terms of accuracy and efficiency. The first approach uses a moving boundary formulation and couples the two

domains non-iteratively. In the second approach they are coupled iteratively and the 1D models overlap with the groundwater
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model throughout the entire saturated part. A recalculation of the specific yield value during the iteration is applied to get to

the same water table position in both model compartments.

The results and run times of the two coupling methods are compared to those of fully integrated model runs. While the550

iterative coupling shows a higher accuracy, the non-iterative approach is faster. Both coupled models are significantly faster

than the fully integrated model. Besides that, the iterative model is more robust having a decent accuracy for all applied test

cases, which is not the case for the non-iterative model, and can keep the consistency of the two model compartments.

A global sensitivity analysis revealed that the groundwater table position and its dynamics depend mainly on three param-

eters: the saturated hydraulic conductivity of the groundwater model, the specific yield and porosity. The specific yield is,555

however, hard to quantify especially because it is usually not constant over time, fluctuations can be large in the presence of

soil heterogeneities. In the iteratively coupled model the specific yield is calculated by the model itself during the iterations

accounting for this variability. It depends mainly on one additional parameter which is the saturated hydraulic conductivity of

the unsaturated zone model. This is an advantage of this method over other existing coupling strategies as this parameter is

easier to be quantified and constant over time.560

In general, both models qualify for substituting a fully integrated model when computational efficiency is more important

than highly accurate results. The iterative approach is more robust and accurate and is recommended for most applications.

When speed is essential, the usage of the non-iterative model is also an option. Erdal et al. (2019) used a version of the

here described non-iteratively coupled model successfully to reduce the compute time needed for model spin-up. Another

application where such surrogate models can play an important role is data assimilation. Data assimilation often requires an565

ensemble of model realisations which comes with a strong computational burden. How well the here presented 2.5D model

can replace a fully integrated model in this context is part of ongoing research.

Code and data availability. The MATLAB code to run the coupled model using the two presented coupling strategies and to visualize the

output is available at http://doi.org/10.5281/zenodo.4737010. This code also includes the input and reference data for the three used test

cases.570
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