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In this work, the Mixed Hybrid Finite Element (MHFE) method is combined with the Method Of Lines
(MOL) for an accurate resolution of the Richard’s Equation (RE). The combination of these methods is
often complicated since hybridization requires a discrete approximation of the time derivative whereas
with the MOL, it should remain continuous. In this paper, we use the new mass lumping technique
developed in Younes et al. [Younes, A., Ackerer, P., Lehmann, F., 2006. A new mass lumping scheme for
the mixed hybrid finite element method. International Journal for Numerical Methods in Engineering 67,
pp. 89–107.] for the MHFE method. With this formulation, the MOL is easily implemented and sophis-
ticated time integration packages can be used without significant amount of work.
Numerical simulations are performed on both homogeneous and heterogeneous porous media to show
the efficiency and robustness of the developed scheme.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Accurate numerical simulation of infiltration in the vadose zone
remains a challenge, especially in the presence of sharp wetting
fronts. This problem is often modeled using Richard’s Equation (RE)
and closed by nonlinear constitutive relations between pressure
head, hydraulic conductivity and water content (De Marsily, 1986;
Hillel, 1980). In this work, we solve the RE using efficient advanced
approximations for both spatial and temporal discretizations in
order to reduce the excessive computational requirement while
maintaining the accuracy.

For the spatial discretization, we use the Mixed Hybrid Finite
Element (MHFE) method since it is locally conservative and
produces an accurate and consistent velocity field even for highly
heterogeneous domains (Brezzi and Fortin, 1991). This method has
been successfully employed during the last few years for solving
the RE (Bause and Knabner, 2004; Farthing et al., 2003; Bergama-
schi and Putti, 1999).

For the temporal discretization, we use higher order methods
via the Method Of Lines (MOL). With the MOL, we discretize first
spatial derivatives and then integrate in time the semi-discrete
problem as a system of Ordinary Differential Equations (ODEs) or
Differential Algebraic Equations (DAEs). The advantage of the MOL
is that the temporal accuracy can be specified by the user and
All rights reserved.
therefore the error checking, robustness, order selection and time
step adaptativity features available in sophisticated ODE/DAE codes
can be applied to the time integration of the Partial Differential
Equations (PDEs) (see Tocci et al., 1997). In the context of porous
media, the MOL was shown to be very effective for the resolution of
the nonlinear RE (Li et al., 2007; Miller et al., 2006; Lee et al., 2004;
Matthews et al., 2004; Farthing et al., 2003; Kees and Miller, 2002;
Tocci et al., 1998, 1997).

The combination of the MOL with the MHFE method was shown
to be more complicated than with the standard methods (Farthing
et al., 2003, 2002). Indeed, the hybridization technique requires
a discrete approximation of the time derivative whereas the MOL
requires a continuous temporal derivative.

We show in this work that these difficulties can be circum-
vented by using the Lumped MHFE method (LMHFE). This method,
initially developed by Younes et al. (2006) to reduce unphysical
oscillations for saturated flow simulations, is extended here for
unsaturated flow simulations.
2. The mathematical model

Water flow in unsaturated porous media can be described by
Richards’ Equation which combines the mass conservation equa-
tion and the Darcy–Buckingham’s law. The mass conservation
equation can be formulated in several ways (Celia et al., 1990; De
Marsily, 1986; Milly, 1985; Huyakorn and Pinder, 1983). The
common mixed form is:
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vt
þ SsSwðqÞ

vH
vt
þ V q! ¼ f (1)
and the pressure-head based form is:

ðcðhÞ þ SsSwðqÞÞ
vH
vt
þ V q! ¼ f (2)

where H and h are respectively the hydraulic and pressure head such
as H¼ hþ z, z is the depth taken positive upward, Ss is the specific
storage, Sw is the relative saturation of the aqueous phase ðSw ¼ q=qsÞ,
q and qs are respectively the volumetric and saturated water content, c
is the specific moisture capacity (c¼ dq/dh), f is the source/sink term
and q! is the water velocity given from the Darcy’s law:

q! ¼ �KðhÞVH (3)

where K is the hydraulic conductivity.
The interdependencies of pressure head, hydraulic conductivity

and water content are characterized using constitutive relations. In
this work, we use the standard model of Van Genuchten (1980):

SeðhÞ ¼
q� qr

qs � qr
¼
(

1
ð1þjahjnÞm h < 0

1 h � 0
(4)

where qr is the residual volumetric water content, a is a parameter
related to the mean pore size, n is a parameter for the uniformity of
the pore size distribution and m¼ 1�1/n. For the conductivity–
saturation relationship we use the Mualem’s model (1976) given by:

KðSeÞ ¼ KsS1=2
e

n
1�

�
1� S1=m

e

�mo2
(5)

where Se is given by equation (4) and Ks is the saturated
conductivity.

Often the pressure-head form (2) is avoided since the mixed
form (1) presents better conservation properties. However, it was
demonstrated in (Miller et al., 1998; Tocci et al., 1997) that higher
order numerical integration is effective for solving the pressure-
head form of RE. This form was used with the MOL for solving the
RE in (Miller et al., 1998, 2006; Tocci et al., 1998, 1997; Li et al., 2007)
and will be adopted in this work.

The systems (2) and (3) are solved with the corresponding initial
and boundary conditions which can be of Dirichlet or Neumann
type. The domain is discretized with unstructured triangular
meshes. These meshes are suitable for practical problems with
complex geometry and local mesh refinement.

3. Numerical discretization

3.1. The spatial discretization

The spatial discretization is based upon the LMHFE method. In
the following, we recall the main stages in order to use this
formulation within a MOL context.

The velocity inside the element E is approximated using the
lowest-order Raviart-Thomas space (Brezzi and Fortin, 1991):

qE
�! ¼ X3

i¼1

QE;iuE;i
��! (6)

where QE,i denotes the flux leaving E through the ith edge, taken
positive outward.

The vectorial basis function uE;i
��! verifies,Z

Ej

uE;i
��!hEj

�! ¼ dij (7)
hEj

�! being the unit outward vector normal to the edge Ej of the
element E.

The variational formulation of (3) using (7) leads to:

Z
E

K�1
E qE
�!uE;i
��! ¼ X3

j¼1

QE;j

Z
E

uE;i
��!K�1

E uE;j
��! ¼ �Z

E

VHuE;i
��!

¼ HE � THE;i (8)

where HE and THE,i are respectively, the mean hydraulic head on the
element E and on the edge Ei. KE the value of the parameter K in the
element E.

Using the local matrix ME;ij ¼
R
E

uE;i
��!K�1

E uE; j
��!, we obtain

QE;i ¼
X3

j¼1

M�1
E;ij

�
HE � THE;j

�
(9)

In the numerical codes, the hydraulic conductivity KE of the
element E is evaluated using the arithmetic mean of conductivities
at element edges (Belfort and Lehmann, 2005).

With the LMHFE method, we approximate the flux by (see
Younes et al. (2006) for details):

QE;i ¼ QE;i þ
QE;s

3
� jEj

3

�
cE þ Ss;ESw;E

�dTHE;i

dt
(10)

where QE,s is the sink/source term over the element E (of area jEj),
Ss,E, Sw,E and cE are respectively the specific storage, the relative
saturation of the aqueous phase and the specific moisture capacity
of E.

In (10), QE;i is the flux corresponding to the stationary problem
without sink/source terms,

QE;i ¼
X3

j¼1

NE;ijTHE;j (11)

Finally, the general expression of the flux (10) writes,

QE;i ¼
X3

j¼1

NE;ijTHE;j þ
QE;s

3
� jEj

3

�
cE þ Ss;ESw;E

�dTHE;i

dt
(12)

The final system with the LMHFE method is obtained when using
continuities of flux and hydraulic head between adjacent elements:
each line i of the global matrix is formed by QE;i þ QE0 ;j ¼ 0 and
THE;i ¼ THE0 ;i where E and E0 are the two elements sharing the edge
i which leads to,

jEj
3

�
cE þ Ss;ESw;E

�dTHE;i

dt
þ
��E0��
3

�
cE0 þ Ss;E0Sw;E0

�dTHE0;i

dt

¼
X3

j¼1

NE;ijTHE; j þ
X3

j¼1

NE0;ijTHE0; j þ
QE;s

3
þ

QE0;s

3
(13)

Contrarily to the standard MHFE method, the hybridization
procedure with the LMHFE method is performed without dis-
cretizing the temporal derivative which allows to obtain the system
(13) of ODEs. Note also that the lumped formulation avoids
unphysical oscillations for triangular meshes without additional
numerical errors (see Younes et al., 2006).

3.2. Time integration

The time integration of the previous system of ODEs is per-
formed with the DLSODIS solver (Double precision Livermore
Solver for Ordinary Differential Equations – Implicit form and
Sparse matrix) (Seager and Balsdon, 1982; Hindmarsh, 1980).



Table 1
Materials Properties.

Parameters Homogeneous Heterogeneous

Upper Layer Lower Layer

qr 0.01 0.0001 0.045
qs 0.3 0.399 0.43
a(cm�1) 0.033 0.0174 0.145
n 4.1 1.3757 2.68
K(�10�4 cm s�1) 97.22 3.45 82.5
Ss(�10�10 cm�1) 1 1 1

Table 2
CPU time, total number of time steps (ndt) and number of linear system resolutions
(nl) required by MF_PI, MOL_1 and MOL_V for the variably water-table problem.

CPU (s) ndt nl

MF_PI 187.65 1925 10,777
MOL_1 90.68 6126 308
MOL_V 25.28 507 148
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DLSODIS is a variable time step size, variable order integrator of
ODE/DAE system given in the implicit form (A(t,y)dy/dt¼G(t,y)).
The solver is used with the fixed coefficient implementation of the
Backward Difference Formula (BDF).

The algebraic nonlinear system is solved with the modified
Newton iteration (Radhakrishnan and Hindmarsh, 1993) where the
Jacobian matrix is calculated numerically using finite difference
approximation and the column grouping technique of Curtis et al.
(1974) (see Hindmarsh (1982)).

DLSODIS uses the direct solver CDRV (Eisenstat et al., 1982, 1977)
to solve linear systems that arise. All the matrices involved (mass
and Jacobian matrices) are assumed to be sparse.

Note that periodically, the DSLODIS solver attempts to change
the step size and/or the method order to minimize computa-
tional work while maintaining prescribed accuracy. The local
accuracy is specified to the code by both a relative 3r and abso-
lute 3a local error tolerances. All tolerances are fixed to 10�6 in
this work. The implementation of DLSODIS requires the
following subroutines:

- Subroutine for the calculation of the mass matrix A(t,y), which
is simple in our case since A is a diagonal matrix given by:

Ai;i ¼
jEj
3

�
cE þ Ss;ESw;E

�
þ
��E0��
3

�
cE0 þ Ss;E0Sw;E0

�
(14)

- Subroutine for the calculation of the second member G(t,y),
which is given by:

Gi ¼
X3

j¼1

NE;ijTHE;ij þ
X3

j¼1

NE0;ijTHE0;j þ
QE;s

3
þ

QE0;s

3
(15)
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Fig. 1. Comparison between experiment (,) and numerical (d) results for the var-
iably water-table problem.
- Optionally, a subroutine to provide the solver with the sparsity
structure of the Jacobian.

4. Numerical experiments

The performance of the LMHFE/MOL scheme is studied using
the transient variably water-table recharge problem of Vauclin et al.
(1979) and the heterogeneous bidimensional infiltration problem
of Huang et al. (1996).

The test cases are simulated using three numerical codes:

� MF_PI (Mixed Form with Picard Iteration): In this code the
mixed form of RE given by equations (1) and (3) is solved using
the LMHFE method with the fixed point (Picard) linearization.
The water content is expanded using a first-order Taylor series
with respect to the hydraulic head (Celia et al., 1990). The time
step management during the simulation is of heuristic type and
the tolerance on the pressure head is fixed to 10�6.
� MOL_1 (First order with MOL): The order of the integration

method with the DLSODIS solver is fixed at one. The code in
this configuration only adapts the time step size.
� MOL_V (variable order with MOL): The system of ODEs is solved

with DLSODIS using variable time step size and variable order.
4.1. The transient variably water-table recharge problem

This test case is based on the laboratory experiments performed
by Vauclin et al. (1979) to evaluate the transient position of the
water table in a laboratory scale soil box. The domain consisted of
a rectangular soil slab of 600 cm� 200 cm with an initial horizontal
water table located at a height of 65 cm from the base. A recharge of
355 cm/day was applied over a width of 100 cm in the centre of the
soil surface. Because of the symmetry, only the right hand side of
the domain needs to be modelled with a no flow boundary
prescribed along the axis of symmetry. No flow boundaries were
also imposed along the lower and upper boundaries with the
exception of the recharge zone. For the right face, a fixed head of
65 cm is imposed below the initial water table, and no flow
boundary above the initial water table. The soil system is assumed
to be initially at hydrostatic equilibrium with respect to the water
table throughout the flow domain. The material properties are
obtained from Clement et al. (1994) and given in Table 1.

The simulation of this test case is performed using a triangular
mesh of 1990 elements. Fig. 1 shows the experimental and the
simulated water table at different times. Results with the three
codes are in very good agreement with the experimental results.

Table 2 gives the total CPU time, the number of time steps (ndt)
and the number of linear solutions performed (nl) with the three
codes. These results show that MOL_V is more efficient than MOL_1
and MF_PI for the following reasons: (i) MOL_V allows large time
steps because the time integration can use several previous solu-
tions and (ii) the number of linear systems solved by MOL_V is
reduced since the iteration matrix can be approximated from the
previous iterate and/or time level whenever possible (see Rad-
hakrishnan and Hindmarsh (1993) for details).
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Fig. 2. Results for the bidimensional heterogeneous infiltration problem.
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4.2. The bidimensional heterogeneous infiltration problem

This test case was previously investigated by Huang et al. (1996).
The problem involves infiltration under a constant head boundary
condition into an initially dry heterogeneous porous media. The
spatial domain is 125 cm width and 230 cm depth.

The initial problem of Huang et al. (1996) contains two hori-
zontal layers: a surface clayey soil layer (40 cm) and a subsurface
loamy soil layer (190 cm). In the following and in order to increase
the soil contrast in the domain, the loamy subsurface layer is
replaced by a sandy layer. The properties of theses layers are given
in Table 1. Boundary conditions are a constant pressure head
(�10 cm) in a strip of 20 cm at the inflow boundary (0�x�20 cm)
and a constant pressure head (�104 cm) at the bottom of the
domain. The other sides are impervious. The final simulation time is
22 days.

This problem is simulated using a triangular mesh of 1700
elements. The results of the three codes are in very good agreement
(Fig. 2). However, large differences can be observed between the
three CPU times. As previously, MOL_V runs much faster than both
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Fig. 3. The variation of CPU time as function of number of elements.
MOL_1 and MF_PI. The gain with MOL_V is more pronounced for this
heterogeneous problem. Indeed, in this case the MF_PI code requires
very small time steps to reach the convergence. This highlights the
efficiency and robustness of the LMHFE/MOL scheme to handle
infiltration problems with highly heterogeneous porous media.

The effect of the number of unknowns on the total CPU time is
also studied with the three codes. To this aim, 4 runs are performed
with each code by increasing the number of elements (1700, 2400,
4000, 16,150 respectively). Fig. 3 highlights the efficiency of MOL_V
especially for fine meshes.

5. Conclusion

In this work, the nonlinear RE is solved using a combination of
LMHFE method and the MOL. Contrarily to the standard formula-
tion of MHFEs, the lumped formulation can be easily implemented
with existing sophisticated ODE codes.

The LMHFE/MOL scheme was used to simulate homogeneous
and heterogeneous infiltration problems. The numerical results
highlight the efficiency of the developed scheme especially for
heterogeneous domains and fine meshes.
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