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Abstract

Adaptive time stepping with embedded error control is applied to the mixed form of Richards equation. It is the first mathe-
matically based adaptive scheme applied to this form of Richards equation. The key to the method is the approximation of the local
truncation error of the scheme in terms of the pressure head, although, to enforce mass conservation, the principal time approx-
imation is based on the moisture content. The time stepping scheme is closely related to an implicit Thomas—Gladwell approxi-
mation and is unconditionally stable and second-order accurate. Numerical trials demonstrate that the new algorithm fully
automates stepsize selection and robustly constrains temporal discretisation errors given a user tolerance. The adaptive mechanism
is shown to improve the performance of the non-linear solver, providing accurate initial solution estimates for the iterative process.
Furthermore, the stepsize variation patterns reflect the adequacy of the spatial discretisation, here accomplished by linear finite
elements. When sufficiently dense spatial grids are used, the time step varies smoothly, while excessively coarse grids induce stepsize

oscillations. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Accurate, reliable and efficient simulations of
moisture fluxes through porous media are desirable in
hydrological and environmental studies, as well as in
civil and environmental engineering. The ability to
model time dependent flows in composite soil forma-
tions that may be intermittently saturated and drained is
particularly important from the point of view of physi-
cal realism. This paper focuses on appropriate and
controlled treatment of the time dependence of variably
saturated flows, ensuring accuracy and efficiency in a
simple and robust time stepping algorithm.

Richards equation is the mathematical model typi-
cally used to describe variably saturated flows [6]. It is
defined by coupling a statement of flow continuity with
the Darcy equation and is commonly cast into one of the
following forms:
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where V is the pressure head [L], 6(y/) is the volumetric
moisture content, ¢ is time [T], z is the (positive down-
ward) depth [L], ¢ is the porosity, S; is the specific
storativity [L™'] and V is the gradient operator with
respect to the spatial coordinates x, y and z. The solu-
tion of Richards equation requires the specification of
soil constitutive functions: the hydraulic conductivity
K () [L/T], the specific capacity C(y) = do/dy [L™']
and the diffusivity D(0) = K(0)/C(0) [L*/T].

The combination of highly non-linear constitutive
functions with non-trivial boundary and initial con-
ditions precludes all but the most simplified analytic
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approaches to the solution of (1)—(3). Common practical
approaches for the analysis of variably saturated flows
are mixed and pressure-based numerical formulations,
which employ low-order finite difference or finite el-
ement spatial discretisation and simple Euler time step-
ping [1,3,13,15]. The numerical stability of the temporal
approximation is enforced by employing implicit (typi-
cally, backward Euler) time stepping, while oscillations
in the finite element spatial discretisation are controlled
by lumping [3,7]. Substantial research has also been
dedicated to the solution of the non-linear discrete sys-
tems that arise in implicit time stepping schemes
[9,10,13], and to the incorporation of the soil constitu-
tive relationships [10].

In view of the discretisation error that invariably
arises in numerical approximations, quality control of
the convergence of the approximation to the true solu-
tion is of great importance. However, the reliability and
efficiency of common temporal discretisations of Rich-
ards equation remain problematic, since very few
schemes attempt to gauge internal errors or optimise
time step selection.

Uniform stepsize schemes are clearly inadequate
when the solution changes in character throughout the
simulation. Indeed, the strong non-linearity of Richards
equation, coupled with non-trivial boundary conditions
encountered in practice, induce appreciable changes in
the behaviour of the solution. As a result, uniform time
stepping schemes may spend valuable computing time
scrutinising regions of simple solution behaviour with
time steps that are excessively small, while incurring
large unknown errors when integrating fast non-linear
flow regions, where the same time steps may be too
large. It can be seen that uniform time integrators lack
quality control and are computationally inefficient.

Variable stepsize schemes are now standard in ODE
theory [14], yet most variable stepsize schemes applied to
Richards equation are heuristic and lack generality and
mathematical rigour. Heuristic methods (e.g. [15]) re-
quire manual optimisation and considerable insight of
the user into the numerical performance of the al-
gorithm. More importantly, most heuristic schemes vary
the time step according to the performance of the iter-
ative non-linear solver and do not provide a mathe-
matically rigorous assessment of the potential numerical
discretisation errors. Therefore, although in principle
overcoming the efficiency shortcomings of uniform time
stepping algorithms, heuristic schemes can produce un-
reliable or misleading results.

Recently, Tocci et al. [20], Miller et al. [10] and Wil-
liams and Miller [21] described the application of several
existing variable-order variable-stepsize differential-
algebraic equation (DAE) solvers (e.g., DASPK) to the
pressure form of Richards equation. Sophisticated high-
order methods provided appreciable improvements over
existing low-order uniform-stepsize algorithms when a

fine error tolerance is imposed. However, many black-
box ODE integrators have certain limitations in
the practical context of modelling variably saturated
flows.

An appreciable advantage of a numerical scheme
based on the mixed form of Richards equation is its
inherent conservation of mass. Conversely, standard
numerical approximations based on the pressure form of
Richards equation develop undesirable mass balance
problems [3], seriously undermining their physical basis.
Although using DASPK to integrate in time the pressure
form of Richards equation constrains mass balance er-
rors, it could be argued that an inherently mass con-
servative scheme (based on (3)) is preferable. However,
many standard ODE solvers are not readily applied to
the mixed form of Richards equation because of the
difficulty of handling two state vectors (moisture and
pressure) [20]. Whilst differential-algebraic equation
solvers, such as DASPK, can be used for the mixed form
of Richards equation, this has not yet been done. The
algorithm presented in this paper overcomes these dif-
ficulties and is the first mathematically based adaptive
time stepping algorithm applied to the mixed form of
Richards equation.

In practical applications where the computational
speed of the solution is an important priority, numerical
errors of the order of 0.1-1% are typically acceptable. In
these cases low-order schemes are competitive with
higher-order solvers, and may in fact be preferred due to
their better stability and algorithmic simplicity [22].
Numerical experiments have shown, for example, that
the second-order accurate Crank—Nicolson scheme
outperformed the first-order accurate backward Euler
scheme only when relative errors below 0.005% were
required [22, p. 264]. The results of other numerical in-
vestigations (e.g., [13,20]) also suggest that low-order
schemes are competitive with higher-order schemes
when coarse time steps are used. Indeed, most practical
codes implement simple first- or second-order approxi-
mations, rather than comparatively complex ODE or
DAE solvers [3].

A potential limitation of some variable-stepsize time
stepping schemes is that they encourage the use of a
constant stepsize for significant time periods, and/or
constrain the time step variation to a certain fixed pat-
tern (e.g., halving or doubling the stepsize). The new
algorithm presented in this paper does not have this
constraint and employs subtler, smooth changes in
stepsize. It will be shown later that the smoothness of
the stepsize variation is useful in assessing the adequacy
of the spatial approximation.

Recently, Sloan and Abbo [17] introduced a new
approach for quality-controlled time approximation of
elastoplastic consolidation in geomechanics. The scheme
is based on a measure of local truncation error in the
solution, which can be used to control temporal
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discretisation errors, derive an efficient stepsize selector
and obtain second-order accuracy at minimal compu-
tational cost. The algorithm is derived from the back-
ward Euler scheme and hence is simple, yet very stable
and robust.

In this paper, the principles of the adaptive scheme of
Sloan and Abbo [17] are generalised to the more com-
plex mixed form (3) of Richards equation. The use of the
mixed form removes the limitations of pure moisture-
based models in saturated regions and heterogeneous
soils, while retaining the beneficial mass conservative
properties. The chief advantage of the scheme is that it
provides a simple and practical, yet mathematically
rigorous approach for quality control in an inherently
mass conservative model of variably saturated flows.

2. Algorithm development
2.1. Spatial approximation

The Galerkin finite element method offers a conve-
nient way to separate the boundary-value spatial com-
ponent of Richards equation from its initial-value
temporal variation. Ignoring for the moment the soil/
water compressibility terms, the finite element spatial
discretisation of (3) leads to the following first-order
ODE system:

M@ + Ky =F, 4)
ds

where 0 and  are the nodal moisture and pressure

values, M is the mass (or time) matrix, K is the con-

ductivity matrix and the force vector F contains the

gravity drainage term and other forcing data, including

boundary conditions.

The finite element (and finite difference) method leads
to the ODE system (4) regardless of the spatial dimen-
sionality of the problem. Therefore, a temporal ap-
proximation scheme designed for (4) is immediately
applicable to 1D, 2D or 3D cases. Naturally, as the
number of spatial dimensions is increased, one is faced
with more sources of error, yet, from the point of view
of the time integration, it is still an ODE system of form
(4), but with matrices M, K and F of different structure.
In this paper, the time integration algorithm is derived
for the generic ODE system (4) and tested on a 1D
problem. For one-dimensional vertical flows and linear
basis functions, the elemental matrices are given by:

) L(e)
mi = | NNz
L2 1 LEO[1 0
(e) — (e) _
= M;’ = 5
6[12} . b J’ )
Le) 3N, ON KOT 1 -1
() — e (@ —
k' | K % o z=K 7@ [_1 1], (6)

Lle) BN, d L(e)
o e
0 0z 0z 0

éF@—K@{1]+[%} (7)
1 9>

where L is the element length and K© is the element
conductivity, evaluated as the arithmetic mean of the
nodal values according to K© = 1/2(K; + K3). To im-
prove the numerical stability of the finite element ap-
proximation, the mass matrix M® is lumped, as shown
in (5). This enforces the maximum and monotonicity
principles, removing undesirable oscillations from the
numerical solution of the PDE [3]. Any other spatial
discretisation method that leads to an ODE system
similar to (4) can also be employed. The Galerkin finite
element approach is particularly simple and widely used
in practice [6].

2.2. Truncation error control and adaptive time step
selection

The adaptive time stepping algorithm is presented for
the pressure form of Richards equation and later ex-
tended to the mixed form. When applied to the spatially
discrete pressure form

dy
cr

dr
the backward Euler scheme, an O(A¢) approximation to
(8), can be written as

[C)1+1 + AtKn+l}\iln+l —

+ Ky =F, (8)

_Kn+1l|ln + Fn+1, (9)

Wi = W A (10)

where C is the mass matrix. For 1D flows and linear
elements, a lumped elemental mass matrix is given by

cto _ L[ (d0/dy + 5.0/ ¢), 0
2 0 (d0/dy + S,0/), |

(11)

The accuracy of the approximation can be raised to
O(A#*) by averaging the derivative estimates:

WS =W A ), (12)

A measure of the absolute local truncation error of the
backward Euler approximation (10) is given by the
difference between (10) and (12):

en+1 _ %At‘\l’n _ ‘i’n+1

. (13)

Eq. (12) can be shown to correspond to a member of the
Thomas-Gladwell integration family [19] with the
weighting parameters selected to make the Thomas—
Gladwell non-linear system identical to (9) and enforce
O(A#?) accuracy [8]. Approximations (10) and (12) are
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both unconditionally stable [18,19,22], and thus well
suited for stiff ODE systems such as the spatially discrete
Richards equation.

An error test takes place following the estimation of
the local truncation error. In order to generalise the
approach to simulations of flows in both saturated and
unsaturated media (where pressure iy may approach
zero), a mixed absolute-relative error test is employed.
The time step is accepted if the following condition is
satisfied.

max(ef"! —tr [ Y| —1a) <0, (14)

where 1o and 1R are, respectively, an absolute and rel-
ative truncation error tolerance and i indexes the nodes
in the spatial mesh. The node index with the largest
mixed measure of the error is stored as iCrit to be used
in the stepsize selectors described below. The mixed type
of error control is robust and works for all ranges of the
solution [5]. It can be observed that as [y| — 0, the test
becomes dominated by the absolute error criterion,
while if || is large, the procedure is governed by the
relative error restriction. If a strictly relative error test is
necessary, 7, can be set to 0, while setting tg = 0 leads
to the standard absolute error test.

If the current time step is accepted, the stepsize for
the next time step is calculated using

n
TR ’lpiCrit’ + TA

A = A7 X min | sy — 22
1 - n s fmax
max (e, EPS)

(15)

Conversely, if the time step is rejected, it is re-attempted
with a reduced stepsize based on the latest error estimate

| Widhy | +7a
n+1 > Pmin | » (16)
max(elt: ., EPS)

iCrit,j»

A = AT s max | s

where j indexes the recursive stepsize reduction. The
multiplier constraints 7y, =2 0.1 and rp. =2 4.0, the
safety factor s = 0.8-0.9 and the machine constant EPS
(~1071%) are incorporated to increase the robustness of
the algorithm by guarding against spuriously large or
small stepsize changes, as well as against time steps that
just fail to meet the error tolerance. These precautions
are necessary because the truncation error measure (13)
is not exact and may contain numerical noise.

The chief advantage of the method is that it leads to a
consistent and efficient variation of stepsize, supplies
accurate initial estimates for the non-linear iteration and
provides insights into the suitability of the spatial dis-
cretisation. The scheme performs excellently in elasto-
plastic consolidation simulations [17] and is also highly
effective for the solution of the moisture form of Rich-
ards equation [8]. The extension of the approach to the
more general mixed form of Richards equation hinges

on adequate treatment of both state variables, moisture
and pressure, in the temporal approximation.

2.3. The modified Picard (chord slope) approximation

The classic method of Celia et al. [3] is based on a
backward difference approximation to d@/ds in (4):

0n+1 "
At

This non-linear system can be solved using a modified
fixed-point (modified Picard) iteration:

[Cn+1Am +AtKn+l,m]5¢m+l
_ _{At(Fn+1,nz =+ Kn+1,m\|ln+l,m) (18)
+ sz+1,m(0n+lam _ 0”)},

+ Krz+l\|1n+1 + Fn+1 _ 07 (17)

‘|!n+1‘m+1

_ \I!nJrl,m +5‘|!m+1. (19)

Egs. (18) and (19) will be referred to as the Celia et al.
solution to Richards equation. In the Celia et al. scheme,
d0/dy in the C matrix (11) is evaluated analytically.
Rathfelder and Abriola [15] showed that the Celia et al.
scheme is equivalent to a pressure-based backward Euler
formulation (9), with the specific capacity df/dy ap-
proximated using a chord-slope estimate:

d0 n+1 A0 0n+l _ ()n
- ~ " 7 - 20
(dlp) Alp lanrl _ lﬁn ( )

A Taylor series analysis shows the truncation error of
the approximation (20) to be

n+1 N d20 n+1
nCng = ‘ﬁ ) W (dwz) +O(A‘//2)
At [ dy d20\"
:Tt <d_‘fd—w2> +O(AR) (21)

and hence the chord-slope approximation is O(A¢), i.e.,
first-order accurate in time. Since the Celia et al. scheme
and its chord-slope equivalent approximate the mass
matrix C""" in (8) using (20), they incur additional O(A¢)
error and can not form the basis for O(A#?) algorithms.

2.4. A new second-order approximation to the mixed form
of Richards equation

In order to obtain a mass conservative and pressure-
based formulation that is O(A#?), the following qua-
dratic approximation to the moisture time derivative at
"*1 can be applied to (4).

(d9>n+l N én+1 B 2(9n+1 _ 9”) _ Atén

) = " +O(AR).  (22)

The form of (22) closely resembles the derivative ap-
proximations implicitly used by other O(A#*) formula-
tions, including the Thomas—Gladwell family. It avoids
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multi-level constructs and their awkward implementa-
tion in variable-stepsize algorithms.

Substitution of the approximation (22) into the semi-
discrete system (4) leads to a non-linear algebraic system
implicity approximating Richards equation at the
(n+ 1)th time level.

2(9n+1 _ On) _ Atén
At

M 4 Kn+1‘|’n+l — Fn+1 ) (23>

Functional (fixed-point) iteration with iteration counter
m is used to linearise the system

M [2(en+l,n1+l _ Bn) o At9n

+ Kn+1,m\|1n+l,m+1 _ Fn+1.m
At '

(24)

A quasi-Newton approach, similar to that of Celia et al.
[3], is employed to reduce the system to a single un-
known vector. At a typical node i, the following ex-
pansion is used

w 1
+0(0y7), (25)

where Sy =yt it Inserting the Taylor
expansion (25) into the linearised system (24) and re-
arranging yields the following linear system

[2cn+1,m + AtKn+1,m](3\|!n7+l
= {M(2(6""" — ") + Ar0")
+ At(FrH»Lm _ Kn+l4m‘lln+1,m)}, (26)

dO n+1,m
n+1l.m+1 _ gn+lm n+1,m+1 n+1,m
g o ()Wt

i

\|Jn+lﬁm+l _ \l!nJrlA,m _|_(S‘~|!m+17 (27)

where C"™'""_ the non-linear capacitance matrix (11), is
evaluated analytically. After each iteration, all variables
are updated using """ ! as the argument. Iterations
proceed until

mflx(\5l//7+l""“| —tpw) W =) <0, (28)

where 7p(a) and tpg) are, respectively, an absolute and
relative iteration convergence tolerance. The mixed ab-
solute-relative nature of the iteration convergence test
(28) is consistent with the mixed absolute-relative trun-
cation error test (14) in the time integrator.

Norsett and Thomsen [12] have shown that, in gen-
eral, it is not necessary to set 7 < 1. However, in a
practical implementation, it may be prudent to do so to
ensure that residual non-linear solver errors do not ex-
ceed the local temporal truncation error in unfavourable
circumstances.

The vector 0", required for the following time step
as 0", is then back-computed using (22).

The poor mass balance in many pressure-based ap-
proximations of Richards equation arises due to the

presence of the analytic moisture capacity function
d6/dy [15]. It can be seen from (25) and (26) that, as the
iterations converge and oy — 0, the influence of d6/dy
on the numerical solution vanishes. In fact, mass bal-
ance errors vanish quadratically with 75 and can be
made arbitrarily small by a sufficiently stringent itera-
tion tolerance.

2.5. Truncation error control for the new second-order
scheme

Internal consistency monitoring and adaptive time
step variation are now developed. Moisture derivatives
are unsuitable for the evaluation of the trunction error,
since they vanish at saturated nodes. Instead, it is better
to use to a posteriori estimates of the pressure deriva-
tives . Adaptive ODE solvers often control the stepsize
selection according to estimates of the local truncation
error of a lower-order approximation. This improves the
reliability of the numerical integrator and makes the
actual errors linearly related to the user tolerance [16].
Since (23) is O(A#*) accurate, the error measure (13)
derived by Sloan and Abbo [17] and Kavetski et al. [§]
for the O(A¢) backward Euler scheme is a suitable
choice. The pressure derivatives for Eq. (13) are then
given by backward differences

1
\iln+l _ ‘I’n+ - "I"n
- Atn+l

The adaptive time approximation then proceeds
by testing the relative error estimate using condition
(14) and selecting the appropriate stepsize according to
Eqgs. (15) or (16).

+O(Ar). (29)

2.6. Initialisation of the adaptive time stepping scheme

Both 0(¢ = 0) and \s(¢ = 0) must be obtained prior to
the first time step. The initial pressure derivative y* can
be obtained by inverting the pressure-based ODEs (8):

V= [CT KN + F (30)

The initial moisture derivative 6° can then be evaluated
via the analytical chain rule:

o (40N
@—(wlm- G1)
The evaluation of the derivatives via (30) and (31) is
exact and therefore does not degrade the order of ac-
curacy or the mass balance of the approximation (23).
Note that, in general, at the (n+ 1)th time step, the
derivatives 0" and /" are re-used from the previous, nth
time step and hence (30) and (31) are used at the first
time step only. If explicit evaluation of the derivatives 0"
and " is performed at each time step, then the scheme is
similar to an implicit Runge-Kutta scheme that is only
conditionally stable. The conditional stability of the first
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time step is not problematic for two reasons: (i) only a
single time step with (30) and (31) is performed, pre-
venting the growth of potential instabilities and (ii) if the
error in the tentative first step is too large, the error
controller will reduce the stepsize until the error toler-
ance is met.

A consistent estimate of the first time step Afy com-
pletes the algorithm:

0
Aty = min (toutpul - tO)a min Sw
i max(|\;|, EPS)

(32)

This procedure (described by Shampine [16]) provides a
reliable approach to Af-selection, taking into account
the distance to the first output point fyupue, the expected
solution behaviour given by \, and the mixed absolute-
relative character of the error control.

2.7. Intermediate output times

An efficient treatment of output times can be ac-

complished by the “look-ahead” technique:

1. Check whether #,upu can be reached in a single step
Atn+ls i-e~: Teurrent At’Hl = output;

2. Yes = truncate At to produce output at
output Atn - toutput — ‘tcurrent- Perform time Step;

3. No = check whether fu e can be reached in two
steps Atha i.e., Teurrent + 2Atn+1 = toutput;

4. Yes = equalise the time steps, that, is set
A" =1/2(toutput — Leurrent)- Perform time step;

5. No = proceed with un-altered time step A"*!.

The chief advantage of this approach is that it avoids

undesirable abrupt changes in time step size [16].

2.8. Non-linear iteration. accurate initial estimates

In order to provide accurate initial estimates for the
iterative process and accelerate its convergence, linear or
quadratic extrapolation can be undertaken. The qua-
dratic estimate is given by

\|!71+1,0 _ ‘I’n 4 Atn+l‘lln 4 E (Atn+])2‘|’n71. (33)

The acceleration " is given by the finite difference
V'l = (§" — " )/Ar". The estimate (33) is clearly
more consistent with the O(A#?) accuracy of the gov-
erning approximation than the commonly used "™ =
\". The reliability of (33) is enhanced by the truncation
error controller, which enforces solution linearity within
the time step, that is, 1/2(Ar"*")*" /" o . < 1 for
all nodes. Since /"' ~ " + O(A¢), the truncation error
of the prediction (33) is also reduced, improving the
accuracy of the extrapolation.

2.9. The discrete chain rule

The lack of mass conservation in standard pressure-
based numerical models of Richards equation has been
attributed to a failure to satisfy a discrete equivalent of
the chain rule [15]. The chord-slope pressure-based
scheme of Rathfelder and Abriola [15] employs a first-
order approximation to the analytic chain rule to en-
force correct mass balance:

o _ fdoyau
o | dy | ot
0n+1 _ 9;1 9n+l _ 0;1 lanrl _ wn
At = {l//rH»l o l//n} A[
The new scheme (23) can also be derived from the
pressure-based ODEs if a higher-order discrete form of

the chain rule is employed to approximate the specific
capacity d0/dy.

%:{dw}aw

2(0n+1 _ 6”) _ Atén

=

+O(AY).  (34)

At
_ { 200 — ) — AP }
207 )~ A
2T ) A gy (35)

At

The specific capacity is hence approximated by the ratio
of the time rates of its components. This observation
theoretically justifies the mass conservative properties of
(26), established empirically under both uniform and
variable-stepsize conditions.

3. Results and discussion

An empirical assessment of the proposed time step-
ping scheme is carried out by solving the vertical infil-
tration problem analysed by Celia et al. [3] and
Rathfelder and Abriola [15]. The 60-cm column of New
Mexico soil is parameterised by the following van
Genuchten relationships:

0s — 0,

e o
LGl '+ Gy )

KW) = K, SNED

[+ (o |y )"

where the saturated hydraulic conductivity K; = 0.00922
cm/s, residual moisture content 0, = 0.102, saturated
moisture content 6, = 0.368 and the parameters are
given as o = 0.0335, n =2, m =0.5. Boundary con-
ditions are chosen as Y(z=0, {)=-75 cm and
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W(z =60, t) = —1000 cm. The initial pressure profile is
specified as

~1000, 2> 0.6,

w(z,tzo)z{_75_%z7 0<z<0.6. (38)

These forcing conditions lead to the development of a
sharp infiltration front and induce large gradients in the
solution. This type of problem provides a rigorous test
case for time integrators and is well suited for the
analysis of numerical convergence and efficiency.

We also note that nothing in the time stepping al-
gorithm precludes its use for 2D and 3D spatial con-
figurations. The only difference is the structure of the
finite element (or finite difference) matrices M, K and F.
An analysis of the influence of these changes is impor-
tant, but separate to the time integration per se; it could
be an area for further research.

In order to simplify the evaluation of the scheme, the
absolute temporal error tolerance 5 and the absolute
iteration error tolerance tp s are set to zero, thus en-
forcing a strict relative error test. In the remainder of the
text, 7 refers to tr and tp refers to Ty r).

A surrogate “‘exact” solution is evaluated numerically
by the adaptive scheme with a truncation error tolerance
7=10""7 and an iteration tolerance 5, = 10~°. Unless
stated otherwise, a uniform finite element mesh with 100
linear elements is used. It is noted that the mesh type
and configuration affect spatial errors. When temporal
errors alone are assessed, spatial errors can conveniently
be excluded by employing identical spatial approxima-
tions. The difference between the trial and exact solu-
tions of the ODE:s is then pure time discretisation error,
which is to be controlled by the proposed algorithm.

The propagation of the solution through the domain
is shown in Fig. 1. Results of the adaptive scheme with
7= 1072 are already indistinguishable from the exact
solution at any time within the simulation. Fig. 1 shows

-200

-400 -
0 t=10s

50,0008
95,0008

-600 -

t
t

Initial condition

Pressure head y (cm)

-800 -

-1000

Depth z (cm)

Fig. 1. Solution of the test problem: pressure profiles at various times
throughout the simulation. The approximate solution was obtained
using the adaptive scheme with t = 0.01 and 5 = 107*.

the formation of a steep infiltration front (shock) and its
wave-like propagation through the soil column. Tem-
poral (and spatial) gradients within the highly non-lin-
ear region at the toe of the shock vary significantly.

The ability of the adaptive scheme to control tem-
poral errors is assessed using an error measure defined
as

¢(f",7) = max u , (39)

i

where 1}/ is the exact solution and i indexes the nodes in
the spatial mesh. The evolution of the error is shown in
Fig. 2 and is obtained by computing the exact and ap-
proximate solutions at a series of a priori specified
output times. As Fig. 2 shows, the adaptive integration
constrains the global errors throughout the simulation
within the prescribed limits, with the actual errors being
linearly related to the tolerance. In fact, ¢(¢,7) ~ 0.17.
The second-order convergence of the adaptive scheme is
evident from Table 1 (which presents the statistics of the
runs shown in Fig. 2), with the number of successful
time steps decreasing by a factor of ~+/10 for a reduc-
tion in error by a factor of ~10. The number of steps
where the scheme failed to meet the error tolerance (and
it was necessary to re-attempt the time step with a
smaller stepsize) is small in all cases, below 1% of the
number of successful steps.

The performance of the new automatic time stepping
algorithm can be compared with results of the Celia et al.
scheme, shown in Table 2. The Celia et al. scheme is
coupled with a heuristic time step selector described by
Rathfelder and Abriola [15]. When the number of Picard
iterations falls below Nj,, the stepsize for the next time
step is increased by a factor of F,.(>1). When the
number of iterations exceeds Nge., the next time step is
multiplied by Fy.(< 1). Table 2 shows that error is

Error &(f)

0 20000 40000 60000 80000 100000

Time (s)

Fig. 2. Relation between the user-prescribed temporal error tolerance
7 and the actual temporal errors €(7) for the adaptive scheme.
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Table 1
Performance statistics for the automatic scheme®
Error tolerance Maximum error Number of Number of Number of CPU time
7, (ty = 0.017) max(e) successful steps failed steps iterations (s)
10~! 9.1 x 1073 256 2 1053 1.4
1072 1.0 x 1073 731 1 2230 3.1
10°3 1.2x10* 2242 1 6557 9.0
10~4 1.3x10°3 6988 1 16,818 23

#CPU times refer to runs on a Pentium II 350 MHz processor with 128 MB SDRAM. 32-bit precision used in all calculations.

Table 2

Results of empirical optimisation of the Celia et al. algorithm with the heuristic time step selection to produce uniform temporal error profiles®
Iteration Ninc/Fne Naec/Faec Maximum Number of Number of CPU time
tolerance tp error max(e) time steps iterations (s)
1072 3/1.05 15/0.9 1.53 x 107! 382 843 1.2
1074 2/1.02 3/0.9 1.05 x 1072 4697 9016 12
1073 2/1.01 3/0.9 3.28 x 1073 14,944 28,506 39

%Aty = 0.1 s. Note that the CPU times (PII 350) listed do not include the time spent manually optimising the heuristic parameters.

linearly related to the number of time steps, indicating
that the scheme is first-order accurate in time.

In this study, the computational efficiency of the
schemes is compared on the basis of the total number of
iterations required by the algorithm to achieve a certain
error. It is noted that the overhead cost of the automatic
time step selection is very small compared with the cost
of matrix formation and inversion at each non-linear
iteration. The slower convergence of the Celia et al.
solution with heuristic stepsize selection makes the
scheme inefficient when errors of 1.0-0.1% and below
are required. For example, 4697 time steps (9016 itera-
tions) are required for the Celia et al. scheme to yield an
accuracy of 1072 (1%). The new adaptive algorithm re-
quires only 256 time steps (1053 iterations) for the same
accuracy. CPU times reflect these observations, with the
adaptive scheme using ~1.4 s and the heuristic scheme
12 s on PII 350 MHz machine. These are worthwhile
savings in computational effort, especially when con-
sidering benefits for larger problems. The relative ef-
ficiency of the second-order adaptive scheme increases
further as finer accuracy requirements are imposed. It is
also noted that the improved initial estimate (33) for the
non-linear solver in the Celia et al. scheme has been
used. More iterations would have been required if the
standard approach (""" = ") was used.

In comparison, the use of uniform time steps (not
shown here) leads to large, of the order of 100%, errors
in the initial flows and is thus inappropriate.

It is of practical interest to examine the pattern of
stepsize variation, shown in Fig. 3. The stepsize evolu-
tion revealed in Fig. 3 is generally intuitive. Early times
are characterised by rapid and non-linear moisture flows
due to abrupt forcing, while during the remainder of the
simulation, as the infiltration front attains its terminal
velocity and shape, an increase in stepsize is appropriate.
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Fig. 3. Time step variation throughout the integration with 100 and
10,000 spatial elements.

The automatic algorithm is also able to detect the steady
state condition once the infiltrating front reaches the
boundary of the solution domain (at ¢ ~ 95,000 s) and
increases the time step accordingly.

The number of iterations at each step of the adaptive
scheme is fairly constant, 3-4 iterations per step for the
100-element simulation and 4 iterations per step for the
10,000-clement solution. This suggests that the heuristic
guidelines for stepsize adjustment based on constraining
the time step to maintain a constant number of itera-
tions per step are qualitatively valid. However, the op-
timal values of the heuristic settings may vary
throughout the integration. Since the heuristic technique
is normally implemented with fixed time step accelera-
tion parameters for the entire integration, it cannot
operate as efficiently as the new algorithm, which con-
tinuously varies the stepsize multipliers to meet the re-
quested error tolerance.
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The technique used to regulate the stepsize is im-
portant for both accuracy and efficiency, and the theo-
retically based approach presented in this paper clearly
provides more control over the temporal approximation
error. Its central appeal is the fully automatic stepsize
selection, simplifying the task of the user and also re-
ducing the ultimate CPU cost of the solution of a given
problem.

A major disadvantage of the heuristic algorithm is its
requirement for manual optimisation in a series of runs
with trial parameters. This procedure relies heavily on
the ability and experience of the user. Conversely, the
automatic algorithm requires a single run to automati-
cally optimise the stepsize selection and perform
the integration. In a practical situation, a verification
of the results by using a series of tolerances (e.g.,
1072 — 103 — 10™%) is recommended to ensure that
consistent results are being obtained. Such verification
procedure must be performed after any numerical
solution, be it a simple scheme or a sophisticated black-
box integrator. The advantage of the proposed adaptive
scheme over fixed or heuristic time steppers is that each
new run with a different tolerance will be automatically
optimised by the error control mechanism. Conversely,
the user of a heuristic scheme must carry out both
(i) optimisation for efficiency and (ii) verification of
accuracy.

The sensitivity of the adaptive scheme to the safety
factor s in (15) and (16) is shown in Fig. 4. The figure
shows the trade-off between a more conservative ap-
proach to time stepping (smaller s), resulting in more
time steps but less iterations (since the non-linearities are
lesser and more amenable to iterative solution), and a
more aggressive approach (larger s), leading to less steps
but more iterations. The number of failed steps is small
unless s is very close to 1. The optimum s, corresponding
to the minimum number of iterations (including both
successful and failed steps), is 0.8. Other values of s do
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Fig. 4. Sensitivity of the adaptive scheme to the safety factor s. The
following settings are used: ©=001, 15 =107 7y =4 and
rmin = 0.1. 100 spatial elements are employed.

not lead to excessive losses of efficiency, attesting to the
operational robustness of the algorithm. The bounds
Fmin = 4.0 and rp,, = 0.1 have negligible impact on the
simulation, confirming that no drastic time step changes
were necessary. Conversely, the performance of the
heuristic scheme is quite sensitive to all four heuristic
parameters (and the iteration tolerance), further com-
plicating its optimisation and verification.

Having demonstrated the utility of the adaptive
scheme for accurate and efficient handling of the time
dependence of variably saturated flows, it is of interest
to examine its compatibility with the spatial discretisa-
tion. Indeed, the oscillations in stepsize (Fig. 3), which
appear associated with abrupt interelemental transition
of the moisture front in the crude mesh, suggest that the
time step history can be used for an indirect assessment
of the adequacy of the spatial mesh. Fig. 5 shows the
influence of the number of elements in the spatial grid
on the number of time steps selected by the adaptive
scheme with the tolerance t of 1%. Also shown is the
total number of iterations in the simulation and an av-
erage Courant number Cr,y,, calculated as

Cr — AtNC . Aty Lz (Lt [Lz\ Nz
PEON T e T e =\ N ) N2 ) TN
(40)

where v is the velocity at which the solution front
propagates through the spatial domain, Lz and Lt de-
note, respectively, the spatial and temporal dimensions
of the domain and Nz and Nt are the number of el-
ements in the spatial mesh and the number of time steps
selected by the automatic scheme. The infiltration ve-
locity is approximated as v,,, = Lz/Lt, since the duration
of the simulation corresponds roughly to the front
travelling across the entire depth. It is noted that, since
the stepsize increases as the simulation proceeds (Fig. 3),
the Courant number at the end of the simulation will be
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Fig. 5. Effect of the number of spatial elements on the performance of
the adaptive time stepping scheme. The temporal truncation error
tolerance is fixed at 1%.



604 D. Kavetski et al. | Advances in Water Resources 24 (2001) 595-605

substantially larger than Cr averaged over the entire
simulation period.

Fig. 5 shows that there is an asymptotic influence of
the number of spatial elements in the mesh on the
number of time steps taken by the adaptive scheme to
obtain a certain temporal accuracy. Initially, as the
spatial grid is refined, more time steps are required to
achieve the same temporal accuracy. However, once a
certain spatial accuracy is attained, further spatial re-
finement does not influence the behaviour of the adap-
tive temporal discretisation. When five elements are
used, the average time step is 1055 s, while in the sim-
ulation with 40,000 elements the average time step is
reduced to 33 s. The total number of iterations taken by
the scheme also exhibits an asymptotic convergence
pattern, reaching a plateau as the number of elements is
increased beyond approximately 10,000. These results
can be interpreted from the following point of view. As
the number of elements in the grid increases, the ODE
system (4) becomes effectively infinite and continuous in
space, with negligible spatial discretisation errors. It is
then intuitive that a further grid refinement will not
change the behaviour of the ODE system and will not
have an effect on the adaptive temporal integration.

The Courant number is often used as a stability cri-
terion for explicit approximations to purely advective
(hyperbolic) systems. Stability is ensured when

At
— o2 41
Cr UAZ (41)

The Courant criterion also applies to the stability of
approximations to the family of advective-diffusive
equations, including Richards equation [2]. In particu-
lar, Daus et al. [4] and Noorishad et al. [11] derive ap-
proximate Courant conditions for the formally stable
Crank—Nicolson approximation to the standard advec-
tion—diffusion equation. Since Fig. 5 shows successful
simulations where Cr > 1, it demonstrates that the
Courant number is not a necessary condition for the
stability of the adaptive time integration scheme, as
expected for an unconditionally stable implicit scheme.
The value of the Courant number is that it provides a
useful criterion for balancing the errors of the temporal
and spatial approximations. Fig. 3 shows that the os-
cillations in the stepsize take place when the Cryy, < 1
and are dramatically reduced when Cr,, > 1. In the
former case, the infiltrating wave shifts on average one
element per time step, while the later condition corre-
sponds to the infiltrating front traversing several el-
ements in a single step. Time step oscillations are
inconsistent with the smooth dissipative character of the
solution. Hence, these oscillations suggest that the
spatial grid should be refined to reduce the spatial errors
and increase the smoothness of the ODE systems (4).
However, the approximation with 40,000 elements
(Fig. 5) is evidently unbalanced: the dense spatial mesh

provides no benefit since the overall accuracy is limited
by the temporal errors. When using the adaptive time
stepping scheme, a useful approach to balancing space—
time accuracy is to specify an acceptable temporal error
tolerance, and then refine the spatial grid until Cr ~ 1
and stepsize oscillations disappear. Further analysis is
required to refine this heuristic rule as it may depend on
the spatial approximation.

4. Conclusions

The study presents a new adaptive approximation
technique for the numerical temporal integration of the
mixed form of Richards equation. The algorithm is
second-order accurate in time and is inherently mass
conservative. Implementation of the adaptive error
control leads to a consistent and efficient selection of
time steps, constraining temporal errors below a user-
prescribed error tolerance. An additional benefit of the
algorithm is the availability of improved initial solution
estimates for the initialisation of iterative non-linear
solvers. Another feature of the adaptive time step se-
lection is its interaction with the spatial approximation,
with adequate spatial grids leading to a smooth time step
size variation. It is shown that the adaptive time stepping
procedure satisfies the primary objectives of accuracy
and computational efficiency. The simplicity and effec-
tiveness of the method make it an attractive approach
for numerical simulations of variably saturated flows.

Further research could examine the performance of
adaptive time stepping schemes in more complex flow
cases, e.g., in 2D and 3D systems. Moreover, an im-
portant step forward would be to combine an adaptive
time stepping scheme with an adaptive spatial grid
generation procedure. This combined algorithm would
control numerical errors comprehensively, rather than
being limited to only the temporal discretisation. In-
deed, an accurate approximation of a system with highly
transient flow patterns requires a time-space grid that is
dynamically adaptive in each dimension. Furthermore,
the inter-relation between the temporal and spatial dis-
cretisation errors suggests that temporal and spatial grid
adaptations will be mutually beneficial. Studies in these
areas would address the current imbalance between the
rigorous treatment of temporal errors and somewhat
less-researched treatment of spatial errors in numerical
approximations of Richards equation.
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