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Abstract

Interactions between surface and groundwater are a key component of the hydrologic budget on the watershed scale. Models that
honor these interactions are commonly based on the conductance concept that presumes a distinct interface at the land surface, sep-
arating the surface from the subsurface domain. These types of models link the subsurface and surface domains via an exchange flux
that depends upon the magnitude and direction of the hydraulic gradient across the interface and a proportionality constant (a mea-
sure of the hydraulic connectivity). Because experimental evidence of such a distinct interface is often lacking in field systems, there
is a need for a more general coupled modeling approach.

A more general coupled model is presented that incorporates a new two-dimensional overland flow simulator into the parallel
three-dimensional variably saturated subsurface flow code ParFlow [Ashby SF, Falgout RD. A parallel multigrid preconditioned
conjugate gradient algorithm for groundwater flow simulations. Nucl Sci Eng 1996;124(1):145-59; Jones JE, Woodward CS. New-
ton-Krylov-multigrid solvers for large-scale, highly heterogeneous, variably saturated flow problems. Adv Water Resour
2001;24:763-774]. This new overland flow simulator takes the form of an upper boundary condition and is, thus, fully integrated
without relying on the conductance concept. Another important advantage of this approach is the efficient parallelism incorporated
into ParFlow, which is exploited by the overland flow simulator.

Several verification and simulation examples are presented that focus on the two main processes of runoff production: excess
infiltration and saturation. The model is shown to reproduce an analytical solution for overland flow, replicates a laboratory exper-
iment for surface-subsurface flow and compares favorably to other commonly used hydrologic models. The influence of heteroge-
neity of the shallow subsurface on overland flow is also examined. The results show the propagation of uncertainty due to subsurface
heterogeneity to the overland flow predictions and demonstrate the usefulness of our approach. Both the overland flow component
and the coupled model are evaluated in a parallel scaling study and show to be efficient.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The subsurface and surface are complex environmen-
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and deep groundwater systems. Thus, surface—ground-
water interactions are an intrinsic component of the
hydrologic budget on the watershed scale and hydro-
logic modeling tools must account for this interaction
to provide reliable predictions. Surface-groundwater
interactions have been a widely recognized research area
by several scientific communities interested in different
spatial scales varying from bedform scale in hyporheic
exchange modeling to continental scale hydrologic re-
sponse modeling.

The occurrence of surface water and its spatial and
temporal distribution depends on climatic factors (e.g.,
amount and distribution of rainfall and temperature),
vegetation, topography (micro and macro), and on the
exchange of water between the surface and the subsur-
face. The rate and direction of exchange (groundwater
discharge at the land surface or surface water infiltration
into the subsurface) depend on the rainfall rate, direc-
tion of the hydraulic gradient and hydraulic characteris-
tics of the land surface.

The two major processes of runoff production are
commonly referred to as Hortonian and Dunne runoff.
Hortonian runoff, often referred to as excess infiltration,
occurs when the rainfall rate exceeds the saturated
hydraulic conductivity of the land surface. Under excess
infiltration conditions, ponding (accumulation of water
at the surface) can occur before the subsurface becomes
entirely saturated [26]. Dunne runoff, often referred to
as excess saturation, occurs when the rainfall rate is
smaller or equal to the saturated hydraulic conductivity
of the land surface. Under excess saturation conditions,
ponding can occur only when the entire soil column be-
comes completely saturated and water exfiltrates at the
surface [26]. Although these two processes are often con-
sidered independent, in the presence of a nonuniform
distribution of soil properties, infiltration and saturation
excess are interrelated and may occur simultaneously at
various spatial and temporal scales.

Traditionally, the coupling of the surface and subsur-
face domains has been done via an exchange flux that
appears in both the groundwater and surface water flow
equations as general sink/source terms. In this ap-
proach, the exchange rate is often expressed in terms
of the conductance concept, which assumes an interface
connecting the two domains (e.g., [2,44]). This interface
is commonly characterized by a proportionality con-
stant representing the connectivity between the surface
and subsurface and generally involves the ratio of the
interface hydraulic conductivity and effective thickness
(e.g., [18]). Recent studies have included additional pro-
cesses into the conductance concept to account for the
influence of microtopography on surface saturation
[44,32]. The application of the conductance concept to
natural systems can be problematic, as some recent field
work has shown the absence of a distinct interface be-
tween the surface and subsurface [25,7]. Therefore, the

proportionality constant often is used as a lumped fit-
ting parameter (e.g. [4,15]). These studies point to the
need for an alternate, more general approach to couple
surface and subsurface systems that does not rely on an
exchange flux term.

Numerical algorithms for solving the problem of
variably saturated groundwater flow are widely avail-
able and have been published extensively (e.g., [19,24,
12,38,29,22]). Overland flow simulators have been also
studied extensively [37,14,11,21]. The coupling of sur-
face and subsurface flow also received considerable
attention recently (e.g., the review by [27]), with many
models coupled in a linked fashion, iterating over the ex-
change flux until some convergence criterion is reached.
Previous studies are summarized briefly below.

Freeze and Harlan [13] provided the first compre-
hensive conceptual and theoretical framework of an
integrated hydrologic response model on the watershed
scale. Later, Govindaraju and Kavvas [16] developed a
coupled model that accounts for 1D channel and over-
land flow and 3D variably saturated groundwater flow.
They studied the response of variable source areas (sat-
urated areas adjacent to the stream) to hydrologic and
topographic variations. Woolhiser et al. [47] studied the
effect of subsurface heterogeneity in the hydraulic con-
ductivity using an overland flow model coupled to the
Smith-Parlange infiltration model. They demonstrated
the effect of heterogeneity on the hydrograph and pre-
sented a technique that accounted for the influence of
microtopography. Wallach et al. [45] studied the error
in the exchange rate between the surface and the sub-
surface when the exchange rate is calculated assuming
zero ponding depth. Fiedler and Ramirez [11] solved
the 2D hydrodynamic flow equations using a MacCor-
mack finite difference method. In their model, interac-
tive infiltration is simulated using the Green—Ampt
formulation. Gunduz and Aral [17] solved the problem
of coupled groundwater and 1D channel flow simulta-
neously, by solving the equations in a single matrix in-
stead of two separate matrices, one for each domain.
Braunschweig et al. [6] presented an integrated hydro-
logic modeling system that incorporates routing of
water inside channels and over the land surface coupled
to infiltration processes. Putti and Paniconi [34] dis-
cussed numerical issues, such as the influence of the
time step size on the global convergence behavior, in
coupling a three-dimensional, variably saturated flow
model with a 1D diffusion formulation for the overland
flow equations. VanderKwaak and Loague [44] and
Panday and Huyakorn [32] presented fully coupled ap-
proaches including land surface processes, such as
evaporation, and demonstrated their usefulness. A
common theme among much of the previous work
summarized here is that these models rely on some
form of exchange flux and use the conductance con-
cept. The current work presented in this paper differs
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from these studies in that it provides a framework for a
more general approach.

This study presents a general framework for coupling
the surface and groundwater flow equations, which does
not rely on the conductance concept. The surface water
equations are used to close the initial value problem of
variably saturated groundwater flow, which results in
an overland flow boundary condition. This overland
flow boundary condition, which has not been published
before in the presented form to our knowledge, takes
into account the free surface of water ponded at the land
surface. To demonstrate the usefulness of this approach,
a two-dimensional distributed overland flow simulator
has been implemented into the three-dimensional, vari-
ably saturated groundwater flow code ParFlow
[3,22,40]. We present verification and simulation exam-
ples that focus on the surface water component indepen-
dently and the aforementioned processes of excess
infiltration and saturation. We introduce subsurface het-
erogeneity in the hydraulic conductivity tensor resulting
in variable surface runoff and hydrograph uncertainty.
ParFlow was designed for parallel computer systems
and has been used extensively in large-scale and high
resolution modeling [3,22]. The overland flow simulator
exploits ParFlow’s parallel infrastructure effectively and
is also fully parallel, which is demonstrated in a parallel
efficiency study.

2. Theory

As mentioned in Section 1, the theory of coupled sur-
face water—groundwater systems has been the subject of
many previous studies. Hence, the governing equations
of overland flow and variably saturated groundwater
flow have been discussed in great detail in the literature.
We therefore, provide only a brief summary of these
equations that form the basis for the set of coupled
equations presented later in Section 2.4,

2.1. Shallow overland flow

In two spatial dimensions, the continuity equation
can be written as
Ve oVt a0 ), 1)
where ¢ is time [T], v is the depth averaged velocity vec-
tor [L T~ '] y is the surface ponding depth [L], ¢.(x) is
the rainfall rate [L T~'] and ¢.(x) is the exchange rate
with the subsurface [L T~'], which will be discussed in
detail below. Note, that in Eq. (1) the flow depth is ver-
tically averaged. Thus, vertical change of momentum in
the column of ponded water is neglected in this formu-
lation. This has been shown to be a good approximation
for shallow systems.

If diffusion terms are neglected the momentum equa-
tion can be written as

Sf,i = So,i» (2)

which is commonly referred to as the kinematic wave
approximation [8]. In Eq. (2), S, ; is the bed slope (grav-
ity forcing term) [-], which is equal to the friction slope
St [-]; i stands for the x- and y-direction. Although, we
consider the kinematic wave in the current work, this
formulation can be expanded to incorporate the diffu-
sive and dynamic wave equations [11].

Manning’s equation (in [8]) is used to establish a flow
depth—discharge relationship

St Sk,
Vi o VS, 8

where n [T LY 3] is the Manning’s coefficient. This
empirical relationship has been widely applied to de-
scribe surface water systems. Anisotropy in the Man-
ning’s coefficient is not considered here, though it
could easily be incorporated.

Water can leave the overland flow domain horizontally
only at an outlet. Considering a real system, the outlet can
be interpreted as the mouth of a river. At the outlet, two
types of boundary conditions were implemented into the
overland flow simulator: the gradient and critical depth
outlet conditions (Egs. (4) and (5), respectively)

vV Sf‘outlet w5/3 (4)

s,outlet?

Ve = and v, =

Dout =
Noutlet

Tout = \/ glﬁz,ouﬂew (5)

where g is the acceleration due to gravity [L/T2]. The
gradient outlet condition is equivalent to the zero depth
gradient condition of Panday and Huyakorn [32] for the
diffusive wave equation. The critical depth boundary
condition results in a constant flow depth at the outlet.

2.2. Variably saturated groundwater flow

The equation for variably saturated groundwater
flow is the well-known Richards’ equation [35]

o, 08w (y)

9.
SeSy —— =V- =2,
6t+¢ ot v ququrm’

q= _k(x)kr('ﬁp)v('ﬁp - Z)a

(6)

where V), is the subsurface pressure head [L], z is depth
below the surface [L], k(x) is the saturated hydraulic
conductivity [L T™'], k, is the relative permeability [-]
(a function of pressure head, /), S is the specific stor-
age coefficient [L™'], ¢ is the porosity [-], Sy is the de-
gree-of-saturation [-], ¢ is the general source/sink
term [T~'], ¢ is the exchange rate with the surface
[L T~']and m' is the thickness of an interface separating
the surface and subsurface domains [L]. The datum is
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located at the ground surface (z = 0) with the negative
z-axis pointing downward. In the current formulation,
the vanGenuchten [42] relationships are used to describe
the relative saturation and permeability functions.

Ssat — Sres
Sw(lpp) = (1 + (0(1// )n)(l—l/n) + Stess (7)
p
2
(1 C S >
(L ()7
kr(l//p) = - i) (8)

(1 (eay)")

where o [L™']and n [-] are soil parameters, s [-] is the
relative saturated water content and s, [] is the relative
residual saturation.

The boundary conditions are of the Neumann type

_k(x)kfv(lpp - Z) = e (9)

on I', but can be changed to the Dirichlet type if
necessary.

2.3. Exchange flux

In previous efforts (e.g., [43,32]), an exchange flux ¢,
was used to couple the surface and the subsurface do-
mains. It generally follows the form

qe(x) = 2x) (s = ). (10)

Thus, the exchange rate depends upon the gradient
across some interface and the proportionality constant
A(x) [T™'], which is a measure of the hydraulic connec-
tivity between the two domains (Fig. 1). This concept
has been used extensively in studies concerned with the
interactions of surface—subsurface flow and is also

(5]
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Fig. 1. Schematic of the conductance concept (left) with an interface of
thickness m1, which is represented by the conductance coefficient 4 in
theoretical models. The more general overland flow boundary is shown
on the right.

known as the conductance concept with / being the con-
ductance coefficient [18,2].

Often the system of equations outlined above is
solved iteratively. For example, one might iterate over
¢. until some convergence criteria is fulfilled. However,
since overland flow time scales may be much smaller
than groundwater flow time scales, numerical instabili-
ties often arise, necessitating adaptive time stepping
and/or a fully integrated approach to solve the system
of equations simultaneously (e.g., [32]).

This approach assumes the existence of a distinct
interface between the surface and subsurface, which re-
sults in the definition of the proportionality constant,
A. For example, 4 often depends upon the ratio of some
interface permeability &’ and the interface thickness m’.
As mentioned previously, it is difficult to establish evi-
dence of and values for such a proportionality constant
from direct field observations [7,25]. Often a simplifying
assumption of spatial uniformity in the hydraulic inter-
face properties is applied, because of this lack of field
data. In many cases, no in situ measurements are avail-
able and A is used solely as a fitting parameter [4,15].

2.4. A general coupled surface—subsurface formulation

The previous section summarizes the current ap-
proach and points to the need for a more general formu-
lation of the coupled surface-subsurface system. A
formulation that directly couples the system of equa-
tions via the boundary condition at the ground surface
is presented below. This formulation eliminates some
of the problems associated with the definition of an
interface conductance and possible numerical difficulties
associated with the solution of the coupled system.

As shown in Fig. 1, the overland flow equations may
be implemented into the Richards equation at the top
boundary cell under saturated conditions. Using condi-
tions of continuity of pressure (s =y, =1y) and flux
(¢ve = ¢e) at the ground surface (Fig. 1), Eq. (1) can be
solved for ¢.

ZW—WHMII—%(’“) (1)

ge(x)
and then substituted for ¢y, in the boundary condition
in Eq. (9):

a||y, 0
k(v =) = DO

Vv [y, 0] = g.(x), (12)
where || 4, B|| indicates the greater of A and B. This for-
mulation results in the surface water equations being
represented as a boundary condition to the Richards
Equation. The assumption of pressure continuity states
that the pressures of the surface and subsurface domains
are continuous (equal) right at the land surface. Thus,
we are left with one computational node right at the
land surface representing the surface—subsurface domain
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simultaneously via Eq. (12), which removes the conduc-
tance concept and the exchange flux ¢, from the equa-
tions. This new boundary condition is head-dependent
and accounts for the movement of the free surface of
ponded water at the ground surface. In Eq. (12), if
one assumes no lateral flow (V vy = 0)) and no re-
charge/precipitation (¢.(x) = 0) the infiltration/exfiltra-
tion rate —k(x)k, V() — z) equals the velocity % of the
free surface of ponded water, —k(x)k,V (¥ —z) = % A
similar formulation has been used by Neuman [31] and
Moench [30] to account for the movement of the free
water table of an unconfined aquifer.

Eq. (6) now reduces to

Wy
Voot
with ¢. being accounted for in the new overland flow

boundary condition (Eq. (12)), which intrinsically cou-
ples the surface and subsurface domains.

SSu g+ 63 =V KRV ~ 2] g, (13)

2.5. Discretization and numerical implementation

The discretization and numerical implementation of
the variably saturated groundwater flow equation has
been discussed in detail (e.g., [20]). The current formula-
tion builds upon the works of Jones and Woodward [22]
and only the details pertinent to the new overland flow
boundary condition are presented here. Jones and
Woodward employed an implicit backward Euler and
cell-centered finite difference scheme for the discretiza-
tions in time and space, respectively. At the cell inter-
faces, the harmonic averages of the saturated hydraulic
conductivities and a one-point upstream weighting of
the relative permeabilities are used.

For the overland flow component, a standard upwind
finite control volume scheme was used for the spatial
discretization [33] and an implicit backward Euler
scheme in time. The advantage of the spatial discretiza-
tion methods applied in this study is that they are locally
mass conservative. Discretization errors for the Rich-
ards equation have been analyzed extensively by Wood-
ward and Dawson [46].

The solver implemented in the current study is de-
scribed by Jones and Woodard [22] and is a Newton—
Krylov solution method (e.g., [36]). Newton—Krylov
methods are based on a Newton linearization of the
nonlinear system. The Jacobian is then solved with an
iterative Krylov method. An advantage of this method
is that the Krylov solver only requires matrix—vector
products not the solution of the matrix itself. Addition-
ally, Jones and Woodward [23] preconditioned the linear
system with an approximated Jacobian to improve con-
vergence. In this study, the diagonal of the precondi-
tioner matrix was modified to account for the overland
flow boundary condition. This proved to be an efficient
approximation of the Jacobian.

3. Numerical simulations, results and discussion

No analytical solution exists for the coupled surface—
subsurface system of equations presented in Section 2.
This makes model verification of the coupled system
problematic. The approach taken here is to verify the
overland flow simulator, validate the coupled model,
and present a series of coupled simulation examples.
The overland flow simulator was verified by comparing
results to an analytical solution and other overland flow
models and the coupled model was validated against a
laboratory experiment. The modeling examples pre-
sented in this section focus on the two major processes
of runoff production, that are, excess saturation and ex-
cess infiltration. The influence of spatially discrete sub-
surface heterogeneity (in form of a low-conductivity
slab) on the hydrograph is studied. Additionally, we
present the results from a simulation where the satu-
rated hydraulic conductivity is represented as a space-
random function using a small number of realizations.
This study provides an example of the uncertainty in
the simulated hydrograph due to uncertainty in subsur-
face heterogeneity. We conclude this section with a par-
allel scalability study of both the overland flow
simulator and the fully coupled surface—subsurface flow
model.

3.1. Model verification and validation

The numerical solution of the overland flow equa-
tions was verified by comparing to results published in
Panday and Huyakorn [32] and to an analytical solu-
tion. The Panday and Huyakorn [32] results are for a
two-dimensional tilted V-catchment (Fig. 2) for both,
the gradient and critical depth outlet conditions. Addi-
tionally, Panday and Huyakorn [32] provided results
from some commonly used hydrologic simulation mod-
els, such as HSPF [5] and HEC-1 [41], the results of
which are also shown here (Fig. 3). The analytical
solution used in the verification procedure describes a

Ay
S,.=-0.05 S,.=0.05
1000 m
§2,,=0.0 s,,=0.02 52,,=0.0
X
i >
800 m =20 m =+ 800 m

Fig. 2. Plan view (not to scale) of the problem setup of the tilted V-
catchment after Panday and Huyakorn [32].
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Fig. 3. Comparison of simulated hydrographs for the V-catchment problem for a number of hydrologic simulation models and ParFlow.

one-dimensional overland flow system. Note that ana-
lytical solutions only exist for the one-dimensional case.
The coupled model was validated using results from a
laboratory experiment by Abdul and Gillham [1].

3.1.1. The 2D V-catchment case

The problem setup for the tilted V-catchment after
diGiammarco et al. [9] and Panday and Huyakorn [32]
is shown in Fig. 2. We simulated a 1.62 km x 1 km
catchment slanted in the x- and y-direction with a cen-
trally-located outlet at 800 m < x > 820 m, y = 0. The
slopes of the catchment are inclined inward routing flow
into the center channel. The Manning’s roughness coef-
ficients are 1.74x 1077 and 1.74x107¢ (day/m1/3) for
the slopes and the channel, respectively. An equidistant
discretization of 20 m (Ax = Ay) was used. As described
in diGiammarco et al. [9], for 90 min the rainfall rate
was 3x 10°m/s with a subsequent 90 min recession
period (total simulation time of 180 min). A constant
time step of 100 s was used. To compare with the other
model results in Fig. 3, simulations with both outlet
types, gradient and critical depth, were performed.
Note, results of the HEC-1, HSPF, MODHMS, and
diGiammarco et al. [9] simulations stem from Panday
and Huyakorn [32].

Fig. 3 shows that the ParFlow simulations for the
critical depth and gradient outflow conditions are simi-
lar, because the kinematic wave approximation was
used. The ParFlow simulations for the gradient outflow
condition agree well with the results from MODHMS
[32] and HEC-1. The differences in model simulations
are mainly due to application of the kinematic wave
approximation. However, the differences are relatively
small, because the topographic slopes are fairly large,
which results in overland flow that is dominated by
the gravity force (or kinematic) term.

The differences become smaller in the case of the
critical depth outflow condition, due mainly to higher
outflow during earlier simulation times. This results

in a general decrease in the flow depth and less influ-
ence of the pressure force (or diffusive term) in the dif-
fusive wave approximation used in e.g., MODHMS.
The use of a constant time step in ParFlow that is
more than an order of magnitude larger than the min-
imum time step of 5s used in the MODHMS also
contributes to differences at early simulation times.
Overall the ParFlow model produces results that agree
very well with other published results and lend confi-
dence in the overland flow simulator in ParFlow. The
fact that the solution method is based on the simpler
kinematic wave approximation and does not expli-
citly distinguish between the channel and the land
surface does not appear to affect the results
significantly.

3.1.2. Comparison with 1D analytical solution

There exist few analytical solutions for overland flow
problems. The one compared to here (e.g., [14]) is for a
one-dimensional channel of constant slope and rough-
ness. The parameters used in this comparison were ob-
tained from Gottardi and Venuttelli [14] and Jaber
and Mohtar [21] and are as follows: S, = 0.0005, n =
2.3x 1077 (day/m'?), and ¢, = 0.33 (mm/min). Rainfall,
¢, was applied for 200 min followed by 100 min of
recession (¢, = 0), which resulted in 300 min total simu-
lation time. The time step size was constant at 180 s, as
was the spatial discretization, Ax =80 m. There were
five cells in the x-direction (nx = 5) resulting in a total
flow length of 400 m. The flow outlet was located at
x =0 and was simulated as a gradient outlet. For the
remainder of the section this particular simulation is re-
ferred to as the base case.

Fig. 4 shows the comparison between the analytical
and numerical solutions. Note that the differences at
the time of concentration (z., when the outflow equals
the rainfall rate) and at the end of the recession are
due to the coarse spatial resolution used in the simula-
tion. This figure also illustrates the improvement in
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Fig. 4. Comparison between the numerical (symbols) and analytical
solution (solid line) for two different Ax values.

reproducing the analytical solution, when the lateral dis-
cretization is decreased to Ax = I m (increasing the spa-
tial resolution to nx = 400).

3.1.3. Validation of integrated surface—subsurface flow

Abdul and Gillham [1] reported the results of a labo-
ratory experiment of overland flow generation. The
experiments they performed consisted of a plexiglass
tank 140 cm long, 8 cm wide, and 120 cm high. This
tank was packed with medium-fine sand generating a
sand body with a porosity of 0.34, a uniform slope of
12° and a Mannings surface roughness of 0.04 s/em'’3.
An outlet was located at the right side of the box at a
height of 74 cm. In one of their experiments, which
was used in this study to validate the integrated sur-
face/subsurface flow model, the initial water table was
assigned at a height of 74 cm coinciding with the height
of the outlet. A constant rainfall rate of 4.3 cm/h was
applied uniformly for 20 min. At the outlet, the dis-
charge was monitored continuously during the rainfall
event and for a few minutes during the recession period
after cessation of the rain.

Abdul and Gillham [1] also obtained the primary dry-
ing and wetting curves of the sand used in the experi-
ments and the saturated hydraulic conductivity of
3.5cm/s via permeameter tests. We visually fit the
vanGenuchten model to both the drying and wetting
curves to obtain « and n of Egs. (7) and (8) (Fig. 5).
The wvalues are oyering = 0.024 cm !, Hyetting = J»
Oldrying = 0.015 cm” !, Ndrying = 8. Note that it may be
possible to arrive at better fits to the data using nonlin-
ear regression techniques. For the purpose of testing the
flow model, however, this visual fit proved sufficient to
capture the general behavior of the saturation—pressure
relationship.

In the flow model, the vertical and lateral discretiza-
tion was 1 and 2 cm, respectively and a constant time

1.09 —— VG By
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Fig. 5. Water content pressure head relationships: measured data
(symbols) from Abdul and Gillham [1] and simulated data using the
vanGenuchten model, VG (tyegiing = 0.024 cem™!, Twetting = 9 Adrying =
0.015 cm ™", ngrying = 8).

step of 10 s was used. No-flow boundaries were assigned
at the bottom and vertical sides of the domain allowing
water to leave the domain only at the outlet.

Fig. 6 shows the measured data from Abdul and Gill-
ham [1] and the simulation results using the parameters
from the primary wetting curve. VanderKwaak [43]
used the same experiment to verify the Integrated
Hydrology Model (InHM). We included his simulation
results here to additionally compare our results with a
well-established flow model. Fig. 6 shows that the simu-
lations results from ParFlow compare favorably with
the results from InHM. Both models simulate earlier
times of concentration and faster recession compared
to the measured data, which can be explained with the
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Fig. 6. Comparison of measured hydrograph by Abdul and Gillham
[1] with simulation results using ParFlow and InHM [43].
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lack of air phase compression in the applied models
[1,43].

3.2. Integrated modeling examples

In this section, we present simulations that focus on
the interaction of flow between the surface and subsur-
face. The runoff generating processes of excess satura-
tion and infiltration are examined and compared to
the 1D base case, which we defined in the comparison
with the 1D analytical solution in Section 3.1. The influ-
ence of vertical spatial discretization and subsurface het-
erogeneity in the hydraulic conductivity on the resulting
hydrograph is also investigated. In all cases, the gradient
outlet condition is employed and a constant rainfall rate
of ¢, =0.33 (mm/min) is applied for 200 min followed
by 100 min of recession. Table 1 provides a summary
of the different simulations.

3.2.1. Runoff production by excess saturation, Ky, > q,
The process of excess saturation involves the com-
plete saturation of the subsurface and the intersection
of the land surface by the water table, where the exposed
water table produces the runoff. To accomplish this, the
hydraulic conductivity must be larger than the rainfall
rate. We simulated two cases with a shallow water table
initially located at a depth of 0.5 and 1.0 m below the
ground surface. The vanGenuchten parameters and sat-
urated hydraulic conductivity are as follows: K, =
1.0 m/day, n=2.0, « = 1.0, 0,x = 0.08, 0y, =0.4. The
results of these two cases are shown in Fig. 7. Addition-
ally, for each case, the sensitivity of runoff to the vertical
discretization was explored. This was achieved by vary-
ing the constant vertical discretization from Az = 0.05 to
0.2 m. Fig. 7 also shows the results from the base case
for comparison. For excess saturation, Fig. 7 reveals,
that the vertical discretization does not have a signifi-
cant impact on the predicted outflow hydrograph. This
can be seen by comparing the curves using different Az
values for a given water table depth. For the water table

Table 1
Summary of the integrated modeling examples
Type WT depth (m) Az (m) K, (m/day)
Excess saturation, 1.0 0.2 1.0
Ksal > qr 0.05
0.5 0.2
0.05
Excess infiltration, 1.0 0.05 0.1
Ksat < qr 001
0.05 0.01
0.01
Slab 1.0 0.05 Aquifer: 1.0,
slab: 0.01
Monte Carlo 1.0 0.05 K, =0.4752,

o{In(Ksr)] = 3.0
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0.00054 [ ¢
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Fig. 7. Comparison of the base case with simulations using ¢, < K,
and different vertical discretizations for water table depths of 0.5 and
1.0 m.

depth of 0.5 and 1 m, the times of ponding are some 19
and 117 min, respectively. For the 1 m initial water table
depth, no steady state is reached and the outflow rate is
always smaller than rainfall rate multiplied by the length
of the channel.

3.2.2. Runoff production by excess infiltration, K, < q,

The more complex process of excess infiltration in-
volves the saturation of the surface and ensuing ponding
of water, before the subsurface saturates completely.
For excess infiltration to occur the saturated hydraulic
conductivity of the surface must be smaller than the
rainfall rate.

The results of these coupled simulations are shown in
Fig. 8. The water table is initially located 1 m below the
ground surface. The vanGenuchten parameters are the
same as the previous set used in the excess satura-
tion simulations. The saturated hydraulic conducti-
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Fig. 8. Comparison of the base case with simulations using ¢, > K,
and different vertical discretizations.
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vity was varied from K, = 0.1 to 0.0l m/day and two
different vertical discretizations were used (Az =0.05
and 0.01 m).

For cases where runoff is produced by excess infiltra-
tion, the vertical discretization has a significant impact
on the ponding time (Fig. §). This is because the top
model layer holds a finite storage volume that must be
saturated for ponding to occur (e.g., [10]). Thus, the
solution becomes less accurate for large Az values near
the ground surface. A possible remedy to this problem
is to make Az very small at the land surface.

3.2.3. Subsurface heterogeneity in Ky,

A nonuniform spatial distribution of the hydraulic
properties of the subsurface may have a significant impact
on the observed hydrograph [47]. Therefore, it is impor-
tant that an integrated flow model be able to account
for subsurface heterogeneity. The ability of ParFlow to
accommodate strongly heterogeneous parameter distri-
butions has been demonstrated previously by Jones and
Woodward [22], Tompson et al. [40] and Maxwell et al.
[28] for subsurface flow problems. The following two
examples will demonstrate the usefulness of this modeling
approach in simulating interactions between surface
water and groundwater under heterogeneous subsurface
conditions.

The first example is a variation of the excess satura-
tion case described above. The difference is the inclusion
of a 100 m long, low-conductivity slab, K, =0.01 m/
day, located in the center of the domain extending from
the land surface to a depth of 0.05 m. The initial water
table was set to a depth of 1.0 m below the land surface
and the vertical discretization was Az = 0.05 m. Fig. 9
shows the resulting hydrograph and a comparison with
the base case and the homogeneous excess saturation
case.
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Outflow rate (m”/sec)
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0.0000
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0 50 100 150 200 250 300

Time (minutes)

Fig. 9. Plot of the outflow hydrograph as a function of time with and
without a low-conductivity slab located in the center of the domain
along with the base case.
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Fig. 10. Plot of simulated flow depth as a function of x (lateral profiles
at the land surface) for different simulation times.

The simulated hydrograph is characterized by four
distinct segments: two steep segments separated by a flat
segment and a recession period after cessation of the
rain (at ¢ =200 min), which makes up the fourth seg-
ment. Fig. 10 shows the temporal evolution of the flow
depth distribution at the land surface, i.e., each curve
represents a snapshot in time of the depth of ponded
water at the land surface. Fig. 11 contains a time series
of plots of the vertical relative saturation profiles of the
domain starting from the initial conditions at ¢ = 0. The
step-like representation of the topography in ParFlow
(e.g., Fig. 11) is a result of the lateral discretization,
the topographic slope and the finite difference grid. Figs.
9-11 demonstrate the interactions and interdependence
of excess infiltration and saturation processes in the
presence of subsurface heterogeneity and are discussed
in detail below.

The time series in Fig. 11 (z =39 min) shows that
ponding first occurs in the region of the low-Kj,, slab,
because of excess infiltration. This is also illustrated by
the flow depth distribution in Fig. 10 at early times.
The ponded water is routed over the slab and infiltrates
downhill of the slab causing saturation of the subsur-
face, which subsequently reaches the ground surface.
This process causes a saturation front to form and move
from the slab toward the outlet (see plots for ¢ = 60—
102 min in Fig. 11).

Complete saturation of the subsurface results in the
formation of a surface wave that reaches the outlet at
about 110 min, which is reflected in the curves for
t <110 min in Fig. 10. The outflow rate increases shar-
ply as the wave arrives at the outlet (first segment of
the hydrograph shown in Fig. 9). At this time, the
subsurface uphill from the slab is not fully saturated
yet (¢= 111 min). Shortly after the entire domain
becomes saturated, the hydrograph flattens, and a
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Fig. 11. Snapshots of vertical profiles of relative saturation at different simulation times (note the strong vertical exaggeration).

quasi-steady-state flow regime is reached for the period
135 < ¢ <150 min (second segment). This is due to the
stabilization of the flow depth profile along the slope
downhill from the slab.

As soon as the subsurface is saturated completely up-
hill of the slab and, thus over the entire domain, a second
wave is generated uphill of the slab that starts traveling to-
ward the outlet (from ¢ = 117 to 150 min). At 150 min, the
outflow rate again increases sharply (third segment), when
the second wave reaches the outlet (# = 150-200 min in
Fig. 9). A second steady-state is not reached in this case,
because there is not enough time for the flow depth profile
to stabilize over the entire domain.

After cessation of the rain at = 200 min, the outflow
rate decreases monotonically during the recession peri-
od. The subsurface beneath the slab remains partially
unsaturated over the entire simulation period, though
lateral redistribution of soil moisture is clearly detect-
able from the plots in Fig. 11.

The second heterogeneous example consists of a set of
simulations, where each simulation is based on a realiza-
tion of random subsurface heterogeneity in K,;. We used
a hypothetical, correlated Gaussian random field to de-
scribe the distribution of the saturated hydraulic conduc-
tivity [39] with the following properties: geometric mean:
K, = 0.4752 m/day; standard deviation: o[In(k)]= 3.0;
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correlation lengths in horizontal and vertical direction,
respectively: #, = 50.0 m, 5, = 1.0 m. Different random
seeds were used to generate four equally likely realiza-
tions of the Kj,, distribution. Note that the geometric
mean of the distribution is equal to the rainfall rate. This
allows both runoff-generating processes (excess satura-
tion and infiltration) to occur simultaneously in the sim-
ulations. The spatial distribution of these processes
depends on the lateral K, distribution in the top layer
of an individual realization. The initial water table depth
was set at 1.0 m below the ground surface. The horizon-
tal and vertical discretizations were set to 10 and 0.05 m,
respectively, to capture the scale of the heterogeneity and
the infiltration excess timing. For comparison, the model
was also run for a case with effective parameters, a homo-
geneous saturated hydraulic conductivity, K= K, =
0.4752 m/day, referred to below as the geometric mean
simulation.

Fig. 12 shows the hydrographs for four realizations
of subsurface heterogeneity, the geometric mean simula-
tion, and the base case. The spread in the curves for the
different realizations is a measure of the uncertainty
associated with the hydrograph due to uncertainty in
the subsurface heterogeneity. Because all other parame-
ters were kept constant and the rainfall rate was applied
uniformly in space, this figure illustrates the direct im-
pact of subsurface heterogeneity on the outflow rate.
Comparing the geometric mean simulation with the dif-
ferent realizations, it can be seen that the geometric
mean simulation provides generally smaller runoff rates
at earlier times (¢ < 150 min), when the process of excess
infiltration plays a dominant role in the production of
runoff. For the duration 150 < ¢ > 200 min, the geomet-
ric mean simulation is bounded by the set of curves from
the different realizations. During this time period excess
saturation is the main runoff-generating process. The
peak outflow rate, which occurs at # = 200 min, is larger

0.0025
base case
P
0.0020 /
i /
8 /
L 0.0015- //
2 /
g [
g 0.0010 /
g /
=
o //
0.0005
)—o— geometric mean
random field

0.0000 -EmnmmEEEEEss BS T T T 1
0 50 100 150 200 250 300

Time (minutes)

Fig. 12. Results from the four Gaussian random field and geometric
mean simulations. The base case is shown for comparison.

for the geometric mean simulation compared to the val-
ues from the four realizations.

Another process of runoff production, which can also
occur due to aquifer heterogeneity, but can be seen as
being different from the processes of excess infiltration
and saturation, is the formation of a perched water table
that intersects the ground surface. This process of runoff
production is different from excess infiltration in that it
forms saturated regions in the shallow subsurface not
merely the ground surface itself. A perched water table
and associated runoff can only be accounted for by
explicitly incorporating aquifer heterogeneity into the
flow model. This runoff-generating process contributed
some of the early-time runoff in the different realiza-
tions. This resulted in larger runoff rates for some of
the realizations of hydraulic conductivity when com-
pared to the geometric mean simulation, which cannot
account for a perched water table.

Fig. 13 shows the interdependence of the different
runoff generating processes, such as a perched water
table, due to the presence of aquifer heterogeneity
for a single realization. The aquifer heterogeneity is
indicated at the top, with K, varying over orders of
magnitude. Inspection of the saturation profile at the

0 100 200 300 400

0.2 04 06 08 1.0
Saturation
Fig. 13. Example of a K, distribution of a single realization (top) and

the associated relative saturation profile after 45 min simulation time
(bottom).
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bottom of Fig. 13 reveals that there are regions of
ponded water due to a region of low-conductivity heter-
ogeneity right at the surface and in the shallow subsur-
face (e.g., perched water table at around x = 180 m).
The profile also exhibits an interesting feature at
x =280, where a high conductivity path conveys the
ponded water from the surface directly into the deeper
aquifer, highlighting the importance of aquifer heteroge-
neity characterization and representation in coupled sur-
face water groundwater systems. These features also
indicate the importance of subsurface heterogeneity in
coupled surface-subsurface problems concerned with
mass transport.

3.2.4. Parallel scalability

A major advantage of ParFlow over other existing
integrated hydrologic modeling tools is the infrastruc-
ture devised for massively parallel computer systems
[3,22]. The overland flow simulator discussed here is de-
signed to exploit this infrastructure and is, thus, mas-
sively parallel as well. A determining factor of parallel
efficiency is the time the code spends on inter-processor
communications (communication overhead) relative to
the computation time. When the ratio between commu-
nication overhead and computation time is small, the
parallel efficiency is large. Parallel efficiency of the over-
land flow simulator in ParFlow was studied by perform-
ing simulations of varying problem sizes and analyzing
the respective run times. Following Jones and Woodard
[22] the scaled efficiency, E, is defined as E(n,p)=
T(n,1)/T(pn,p), where T is the run time as a function
of the problem size, n, which is distributed across a num-
ber of processors, p. For the case of a perfectly efficient
parallel simulator, E(n,p) = 1, doubling the problem size
and the number of processors will result in the same run
time.

To test the parallel efficiency of the overland flow
simulator, the base case from the comparison with the
1D analytical solution was used. In case of the inte-
grated flow simulations, we used the excess infiltration
case detailed in Section 3.2. In the latter, the unsaturated
zone extended over five layers in the subsurface. The
runs were performed on MCR at the Open Computing
Facility of the Lawrence Livermore National Labora-
tory. MCR is a tightly coupled Linux cluster with a total
of 2304 CPU’s (Intel Xeon). In the scaling study, we
used a maximum of 100 CPU’s.

Fig. 14 shows E for two different model problems:
overland flow only (surface) and for the case of excess
infiltration produced runoff (surface/subsurface). The
two different problems were run for a smaller number
of model cells (nx,ny,nz) per processor (20,20,1 and
20,20,5) and for are larger number (100,100,1 and
100,100, 5) to test the performance of the code for differ-
ent communication overhead and computation time
ratios.
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Fig. 14. Scaled parallel efficiency for simulations of surface flow only
and surface/subsurface flow using small and large problem sizes per
processor.

For the smaller problem size, the parallel efficiency of
the excess infiltration case is significantly higher than for
the overland flow only case. The scaled efficiency for the
excess infiltration case declines steadily and approaches
a value of around 0.4, whereas the scaled efficiency for
the overland flow only case approaches a value of about
0.3 for 100 processors. This is due to relatively small
computational times at individual processors for the
overland flow only case and, thus, large communication
overhead versus computation time ratios.

This trend, however, is reversed when the problem
size at each processor is increased to 100,100,1 and
100,100,5. Fig. 14 shows a significant increase in the
scaled efficiency for the overland flow only case, which
now levels of at about 0.82. An increase, though smaller,
1s also observed in the saturation excess case, which now
levels off at 0.72. This is due to larger increases in the
computation time compared to the communication
overhead and results in a smaller communication over-
head versus computation time ratio demonstrating the
parallel efficiency of ParFlow. Jones and Woodward
[22] also performed a scalability study with ParFlow
and arrived at 0.6 scaled efficiency for large problems
and variably saturated flow. This compares well with
the results of the presented scalability study in Fig. 14.
In cases where ponding and overland flow occurs only
in certain areas of the domain, load balancing may be-
come an issue, i.e. processors with overland flow have
considerable more computational work to do than other
processors causing low parallel inefficiency.

4. Conclusions

A new formulation of coupled surface water—ground-
water flow, which does not depend on a conductance-
like relationship, has been described. This formulation
forms the basis of an overland flow simulator based
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on the kinematic wave approximation that has been
implemented in the parallel, three-dimensional, variably
saturated flow code ParFlow. The overland flow simula-
tor takes the form of a free-surface upper boundary
condition for the problem of variably saturated ground-
water flow and is therefore fully integrated.

The overland flow simulator was verified using previ-
ously published data and an analytical solution. The
fully coupled model was compared against a laboratory
experiment and showed good agreement. Simulation
examples were presented that focused on the two main
processes of runoff production, excess saturation and
infiltration. The effect of varying vertical discretization
was also studied. Changes in the vertical discretization
had a significant impact on the solution only in the case
of excess infiltration, due to dependence of the time of
ponding on the finite storage of the top layer.

We have shown that shallow subsurface heterogene-
ity may have a strong influence on the outflow rate
and may cause a segmented hydrograph. A set of simu-
lations where a heterogeneous subsurface was simulated
as a correlated random field was used to demonstrate
how uncertainty due to subsurface heterogeneity influ-
ences uncertainty in runoff predictions. A comparison
with a homogeneous geometric mean simulation of the
hydraulic conductivity showed that the geometric mean
simulation may not account for excess infiltration and,
thus, underestimates early parts of the hydrograph. Be-
cause the new, coupled formulation can explicitly ac-
count for subsurface heterogeneity, the production of
runoff due to the formation of a perched water table
can be simulated. This process of runoff production is
often neglected by other hydrologic modeling tools, such
as land surface models, and acts on a time scale between
excess infiltration (short time scale) and excess satura-
tion (long to very long time scale) depending on the
depth of the water table from the ground surface.

A parallel efficiency study showed the excellent scala-
bility of the overland flow simulator and the fully cou-
pled surface-subsurface simulator for large problems.
This makes this new, coupled model especially suitable
for small and large watershed modeling, where the effi-
cient use of large computational resources is vital.
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