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Key	Points	13 

•  a  new  method  (RAT)  is  proposed  to  assess  the  robustness  of  hydrological  models,  as  an 14 

alternative to the classical split‐sample test 15 

•  the RAT method does not require multiple calibrations of hydrological models: it is therefore 16 

applicable to uncalibrated models 17 

•  the RAT method can be used to determine whether a hydrological model cannot be safely used 18 

for climate change impact studies 19 

•  success at the RAT test is a necessary (but not sufficient) condition of model robustness 20 

Abstract	21 

Prior  to  their  use  under  future  changing  climate  conditions,  all  hydrological  models  should  be 22 

thoroughly evaluated regarding their temporal transferability (application in different time periods) 23 

and extrapolation capacity (application beyond the range of known past conditions). This note presents 24 

a  straightforward  evaluation  framework  aimed  at  detecting  potential  undesirable  climate 25 

dependencies  in  hydrological  models:  the  robustness  assessment  test  (RAT).  Although  it  is 26 

conceptually inspired by the classic differential split‐sample test of Klemeš (1986), the RAT presents 27 

the advantage to be applicable to all types of models, be they calibrated or not (i.e. regionalized or 28 

physically based). In this note, we present the RAT, illustrate its application on a set of 21 catchments, 29 

verify its applicability hypotheses and compare it to previously published tests. Results show that the 30 

RAT is an efficient evaluation approach, passing it successfully can be considered a prerequisite for any 31 

hydrological model to be used for climate change impact studies. 32 
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1 Introduction	33 

1.1 All	hydrological	models	should	be	evaluated	for	their	robustness	34 

Hydrologists are increasingly requested to provide predictions of the impact of climate change (Wilby, 35 

2019). Given the expected evolution of climate conditions, the actual ability of models to predict the 36 

corresponding evolution of hydrological variables should be verified (Beven, 2016). Indeed, when using 37 

a  hydrological  model  for  climate  change  impact  assessment,  we  make  two  implicit  hypotheses 38 

concerning: 39 

•  the capacity of extrapolation beyond known hydroclimatic conditions: we assume that the 40 

hydrological model used  is able to extrapolate catchment behaviour under conditions not or rarely 41 

seen in the past. While we do not expect hydrological models to be able to simulate a behaviour which 42 

would result from a modification of catchment physical characteristics, we do expect them to be able 43 

to represent the catchment response to extreme climatic conditions (and possibly to conditions more 44 

extreme than those observed in the past); 45 

•  the  independence  of  the model  set‐up  period:  we  assume  that  the model  functioning  is 46 

independent of the climate it experienced during its set‐up/calibration period. For those models which 47 

are calibrated, we assume that the parameters are generic and not specific to the calibration period, 48 

i.e. they do not suffer from overcalibration on this period (Andréassian et al., 2012). 49 

Hydrologists make the hypothesis that model structure and parameters are well‐identified over the 50 

calibration  period  and  that  parameters  remain  relevant  over  the  future  period,  when  climate 51 

conditions  will  be  different.  Unfortunately,  the  majority  of  hydrological  models  are  not  entirely 52 

independent  of  climate  conditions  (Refsgaard  et  al.,  2013;  Thirel  et  al.,  2015b). When  run  under 53 

changing  climate  conditions,  they  sometimes  reveal  an  unwanted  sensitivity  to  the  data  used  to 54 

conceive or calibrate them (Coron et al., 2011).  55 

The  diagnostic  tool most widely  used  to  assess  the  robustness  of  hydrological models  is  the  split‐56 

sample  test  (SST)  (Klemeš,  1986),  which  is  considered  by most  hydrologists  as  a  “good modelling 57 

practice” (Refsgaard & Henriksen, 2004). The SST stipulates that when a model requires calibration 58 

(i.e.  when  its  parameters  cannot  be  deduced  directly  from  physical  measurements  or  catchment 59 

descriptors),  it  should  be  evaluated  twice:  once  on  the  data  used  for  calibration  and  once  on  an 60 

independent dataset. This practice has been promoted in hydrology by Klemeš (1986), who did not 61 

invent the concept (Arlot & Celisse, 2010; Larson, 1931; Mosteller & Tukey, 1968), but who formalized 62 

it  for  hydrological  modelling.  Klemeš  proposed  initially  a  four‐level  testing  scheme  for  evaluating 63 

model transposability in time and space: (i) split‐sample test on two independent periods, (ii) proxy‐64 

basin test on neighbouring catchments, (iii) differential split‐sample test on contrasted independent 65 

periods  (DSST),  and  (iv)  proxy‐basin  differential  split‐sample  test  on  neighbouring  catchments  and 66 

contrasted periods. 67 

For model applications in a changing climate context, Klemeš’s DSST procedure is of particular interest. 68 

Indeed, when calibration and evaluation are done over climatically‐contrasted past periods, the model 69 

faces the difficulties it will have to deal with in the future. The power of DSST can be limited by the 70 

climatic variability observed in the past, which may be far below the drastic changes expected in the 71 
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future. However,  a  satisfactory behaviour during  the DSST  can be  seen as a prerequisite of model 72 

robustness. 73 

1.2 Past	applications	of	the	DSST	method	74 

The DSST received  limited attention up to the 2010s, with only a  few studies which applied  it. The 75 

studies by Refsgaard & Knudsen (1996) and Donelly‐Makowecki & Moore (1999) investigated to which 76 

extent  Klemeš’s  hierarchical  testing  scheme  could  be  used  to  improve  the  conclusions  of  model 77 

intercomparisons.  The  study  by  Xu  (1999)  questioned  the  applicability  of models  in  nonstationary 78 

conditions and was one of the early attempts to apply the Klemeš’s testing scheme in this perspective. 79 

Similarly,  tests  carried  out  by  Seibert  (2003)  explicitly  intended  to  test  the  ability  of  a  model  to 80 

extrapolate beyond calibration range and showed limitations of the tested model, stressing the need 81 

for  improved calibration  strategies.  Last, Vaze et al.  (2010) also  investigated  the behaviour of  four 82 

rainfall‐runoff  models  under  contrasting  conditions,  using  wet  and  dry  periods  on  catchments  in 83 

Australia  that experienced a prolonged drought period. They observed different model behaviours 84 

when going from wet to dry or dry to wet conditions. 85 

More recently, Coron et al. (2012) proposed a generalized SST (GSST) allowing for an exhaustive DSST 86 

to evaluate model transposability over time under various climate conditions. The concept of GSST 87 

consists in testing “the model in as many and as varied climatic configurations as possible, including 88 

similar  and  contrasted  conditions  between  calibration  and  validation”.  Seifert  et  al.  (2012)  used  a 89 

differential split‐sample approach to test a hydrogeological model (differential being understood with 90 

respect to differences  in groundwater abstractions). Li et al.  (2012)  identified two dry and two wet 91 

periods  in  long hydroclimatic  series  to understand how a model  should be parameterised  to work 92 

under nonstationary climatic conditions. Teutschbein and Seibert (2013) performed differential split‐93 

sample tests by dividing the data series into cold and warm as well as dry and wet years, in order to 94 

evaluate  bias  correction  methods.  Thirel  et  al.  (2015a)  put  forward  an  SST‐based  protocol  to 95 

investigate how hydrological models deal with changing conditions, which was widely used during an 96 

workshop  of  the  International  Association  of  Hydrological  Sciences  (IAHS),  both  with  physically‐97 

oriented models (Gelfan et al., 2015; Magand et al, 2015), conceptual models (Brigode et al., 2015; 98 

Efstratiadis et al., 2015; Hughes, 2015; Kling et al., 2015; Li et al., 2015; Yu and Zhu, 2015) or data‐99 

based models (Tanaka and Tachikawa, 2015; Taver et al., 2015). 100 

Recently, with the growing concern on model robustness in link with the Panta Rhei decade of the IAHS 101 

(Montanari et al., 2013), a slow but steadily increasing interest is noticeable for procedures inspired 102 

by Klemeš’s DSST (see e.g. the Unsolved Hydrological Problem n° 19 in the paper by Blöschl et al., 2019: 103 

How can hydrological models be adapted to be able to extrapolate to changing conditions?). A few 104 

studies used the original DSST or GSST to implement more demanding model tests (Bisselink et al., 105 

2016; Gelfan and Millionshchikova, 2018; Rau et al., 2019; Vormoor et al., 2018). For example, based 106 

on an ensemble approach using six hydrological models, Broderick et al.  (2016)  investigated under 107 

DSST conditions how the robustness can be improved by multi‐model combinations.  108 

A few authors also tried to propose improved implementations of these testing schemes. Seiller et al. 109 

(2012)  used  non‐continuous  periods  or  years  selected  on mean  temperature  and  precipitation  to 110 

enhance the contrast between testing periods. This idea to jointly use these two climate variables to 111 

select periods was further investigated by Gaborit et al. (2015), who assessed how the temporal model 112 
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robustness can be improved by advanced calibration schemes. They showed that the robustness of 113 

the tested model was improved when going from humid‐cold to dry‐warm or from dry‐cold to humid‐114 

warm conditions when using regional calibration instead of local calibration. Dakhlaoui et al. (2017) 115 

investigated the impact of DSST on model robustness by selecting dry/wet and cold/hot hydrological 116 

years to increase the contrast in climate conditions between calibration and validation periods. These 117 

authors later proposed a bootstrap technique to widen the testing conditions (Dakhlaoui et al. 2019). 118 

The investigations of Fowler et al. (2018) identified some limits of the DSST procedure and concluded 119 

that  “model  evaluation  based  solely  on  the  DSST  is  hampered  due  to  contingency  on  the  chosen 120 

calibration method, and  it  is difficult  to distinguish which cases of DSST  failure are  truly caused by 121 

model  structural  inadequacy”.  Last, Motavita et al.  (2019)  combined DSST with periods of  variable 122 

length, and conclude that parameters obtained on dry periods may be more robust. 123 

All these past studies show that there is still methodological work needed on the issue of model testing 124 

and robustness assessment. This note is a further step in that direction. 125 

1.3 Scope	of	the	technical	note	126 

This note presents a new generic diagnostic framework inspired by Klemeš’s DSST procedure and by 127 

our own previous attempts (Coron et al., 2012; Thirel et al., 2015a) to assess the relative confidence 128 

one may have with a hydrological model to be used in a changing climate context. One of the problems 129 

of  existing methods  is  the  requirement  of multiple  calibrations  of  hydrological  models:  these  are 130 

relatively easy to implement with parsimonious conceptual models but definitively not with complex 131 

models that require long interventions by expert modellers and, obviously, not for those models with 132 

a once‐for‐all parameterisation.  133 

Here,  we  propose  a  framework  that  is  applicable  with  only  one  long  period  for  which  a  model 134 

simulation is available. Thus, the proposed test is even applicable to those models that do not require 135 

calibration (or to those for which only a single calibration exists). 136 

Section 2 presents and discusses the concept of the proposed test, section 3 presents the catchment 137 

set and the evaluation method, and section 4 illustrates the application of the test on a set of French 138 

catchments, with a comparison to a reference procedure. 139 

2 The	robustness	assessment	test	(RAT)	concept	140 

The robustness assessment test  (RAT) proposed  in this note  is  inspired by the work of Coron et al. 141 

(2014). The specificity of  the RAT  is that  it requires only one simulation covering a sufficiently‐long 142 

period (at least 20 years) with as much climatic variability as possible. Thus, it applies at the same time 143 

to simple conceptual models that can be calibrated automatically, to more complex models requiring 144 

expert  calibration,  and  to  uncalibrated  models  for  which  parameters  are  derived  from  the 145 

measurement of certain physical properties. The RAT consists in computing a relevant numeric bias 146 

criterion  repeatedly  each  year  and  then  exploring  its  correlation  with  a  climatic  factor  deemed 147 

meaningful,  in  order  to  identify  undesirable  dependencies  and  thus  to  assess  the  extrapolation 148 

capacity (Roberts et al., 2017) of any hydrological model. Indeed, if the performances of a model are 149 

shown to be dependent on a given climate variable, this can be an issue when the model is used on a 150 

period with a changing climate. The flowchart in Figure 1 summarizes the concept. 151 
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 152 

Figure 1. Flow chart of the Robustness Assessment Test 153 

An example  is shown in Figure 2, with a daily time step hydrological model calibrated on a 47‐year 154 

streamflow record. Note that this plot could be obtained from any hydrological model calibrated or 155 

not. The relative streamflow bias (ሺ𝑄௦ప௠തതതതതത 𝑄௢௕௦തതതതതത⁄ െ 1ሻ, with 𝑄௦ప௠തതതതതത and 𝑄௢௕௦തതതതതത being the mean simulated 156 

and observed streamflows respectively) is calculated on an annual basis (47 values in total). Then, the 157 
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annual bias values are plotted against climate descriptors, typically the annual temperature absolute 158 

anomaly (𝑇 െ 𝑇ത , where 𝑇 is the annual mean and 𝑇ത  is the long‐term mean annual temperature), the 159 

annual precipitation relative anomaly 𝑃 𝑃ത⁄ െ 1 and the humidity index relative anomaly 𝐻𝐼 𝐻𝐼തതതത⁄ െ 1, 160 

where   𝐻𝐼 ൌ 𝑃 𝐸଴⁄ , 𝐸଴  being  the  potential  evaporation).  Note  that  the  mean  annual  values  are 161 

computed on hydrological years (here from August 1st of year n‐1 to July 31st of year n). In this example, 162 

there is a slight dependency of model bias on precipitation and humidity index. Clearly, this could be a 163 

problem if we were to use this model in an extrapolation mode. 164 

 165 

Figure 2. Robustness Assessment Test (RAT) applied to a hydrological model: the upper graph presents the 166 

evolution  in  time  (year by year) of model  streamflow bias;  the  lower scatterplots present  the  relationship 167 

between model bias and climatic variables (temperature T, precipitation P and humidity index HI, from left to 168 

right) 169 

Whereas the methods based on the split‐sample test (i.e. Coron et al, 2012 and Thirel et al., 2015b) 170 

evaluate model robustness on periods that are independent of the calibration period, it is not the case 171 

for the RAT. Consequently, one could fear that the results of the RAT evaluation may be influenced by 172 

the  calibration  process.  However,  because  the  RAT  uses  a  very  long  period  for  calibration,  we 173 

hypothesize that the weight of each individual year in the overall calibration process is small, almost 174 

negligible.  This  assumption  can  be  checked  by  comparing  the  RAT  with  a  leave‐one‐out  SST  (see 175 

Appendix). The analysis showed that this hypothesis is reasonable for long time series, but that the 176 

RAT is not applicable when the available time period is too short (less than 20 years). 177 

Last, we would like to mention that the RAT procedure is different from the Proxy metric for Model 178 

Robustness (PMR) presented by Royer‐Gaspard et al. (2021), even if both methods aim to evaluate 179 
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hydrological model robustness without employing a multiple calibrations process: the PMR is a simple 180 

metric to estimate the robustness of a hydrological model, while the RAT is a method to diagnose the 181 

dependencies of model errors to certain types of climatic changes. Thus, the RAT and the PMR may be 182 

seen as complementary tools to assess a variety of aspects about model robustness. 183 

3 Material	and	methods	184 

3.1 Catchment	set	185 

We employed the dataset previously used by Nicolle et al. (2014), comprising 21 French catchments 186 

(Figure 3), extended up to 2020. Catchments were chosen to represent a large range of physical and 187 

climatic  conditions  in  France, with  sufficiently‐long  observation  time  series  (daily  streamflow  from 188 

1974  to  2020)  in  order  to  provide  a  diverse  representation  of  past  hydroclimatic  conditions. 189 

Streamflow data come from the French HYDRO database (Leleu et al., 2014) and with quality control 190 

performed by the operational hydrometric services. Catchment size ranges from 380 to 4,300 km² and 191 

median elevation from 70 to 1020 m. 192 

The daily precipitation and temperature data originate from the gridded SAFRAN climate reanalysis 193 

(Vidal et al.,  2010) over  the 1959–2020 period. More  information about  the catchment set  can be 194 

found  in  Nicolle  et  al.  (2014).  Aggregated  catchment  files  and  computation  of  Oudin  potential 195 

evaporation (Oudin et al., 2005) was made as described in Delaigue et al. (2018). 196 

 197 

Figure 3. Location of the 21 catchments in France. Red dots represent the catchment outlets 198 

3.2 Hydrological	model	199 

The  RAT  diagnostic  framework  is  generic  and  can  be  applied  to  any  type  of  model.  Here  daily 200 

streamflow was simulated using the daily lumped GR4J rainfall–runoff model (Perrin et al., 2003). The 201 

objective function used for calibration is the KGE criterion (Gupta et al., 2009) computed on square‐202 
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root‐transformed flows. Model implementation was done with the airGR R package (Coron et al., 2017, 203 

2018).  204 

3.3 Evaluation	of	the	RAT	framework	205 

The RAT was evaluated against the GSST of Coron et al. (2012) used as a benchmark, in order to check 206 

whether it yields similar results. The GSST procedure was applied to each catchment using a 10‐year 207 

period to calibrate  the model. For each calibration, each 10‐year sliding period over  the remaining 208 

available period,  strictly  independent of  the  calibration one, was used  to evaluate  the model.  The 209 

results of the two approaches were compared by plotting on the same graph the annual streamflow 210 

bias obtained from the unique simulation period for the RAT, and the average streamflow bias over 211 

the sliding calibration‐validation time periods for GSST, as a function of temperature, precipitation and 212 

humidity anomalies as in Figure 2. The similarity of the trends (between streamflow bias and climatic 213 

anomaly) obtained by the two methods was evaluated on the catchment set by comparing the slope 214 

and intercept of the linear regressions obtained in each case. 215 

We then identified the catchments where the RAT procedure detected a dependency of streamflow 216 

bias to one or several climate variables. The Spearman correlation between model bias and climate 217 

variables was computed and a significance threshold of 5% was used (p‐value 0.05). 218 

4 Results	219 

4.1 Comparison	between	the	RAT	and	the	GSST	procedure	220 

Figure 4 presents an example for the Orge River at Morsang‐sur‐Orge: GSST points are represented by 221 

black dots and RAT points by red squares. Let us first note that since red points represent only each of 222 

the  N  years  of  the  period  for  the  RAT  and  black  points  represent  all  GSST  possible  independent 223 

calibration‐validation pairs (a number close to N(N‐1)), black points are much more numerous. We can 224 

observe that the amplitude of both streamflow bias and climatic variable change is larger for the GSST 225 

than  for  the RAT as  there are more calibration periods, whatever  the climatic variable  (P, T or HI). 226 

However,  the trends  in the scatterplot are quite similar. Graphs  for all catchments are provided as 227 

supplementary material. 228 

 229 

Figure 4. Streamflow bias obtained with  the RAT  (red squares) and the GSST  (black dots), as a  function of 230 

temperature, precipitation and humidity index anomalies, for the Orge River at Morsang‐sur‐Orge (H4252010) 231 

(934 km²). 232 
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To summarize the results on the 21 catchments, we present on Figure 5 the slope and intercept of a 233 

linear regression computed between model streamflow bias and climatic variable anomaly,  for  the 234 

GSST and the RAT over the 21 catchments: the slope of the regressions obtained for both methods are 235 

very similar and the intercept also exhibits a good match (although somewhat larger differences). 236 

 237 

Figure 5. Comparison of slopes and intercept of linear regressions between streamflow bias and temperature 238 

(T), precipitation (P) and humidity index (HI) anomalies (from left to right) obtained by the GSST and the RAT 239 

procedures (each point represents one of the 21 test catchments) 240 

We can thus conclude that the RAT reproduces the results of GSST, but at a much lower computational 241 

cost, and this is what we were aiming at. One should however acknowledge that switching from the 242 

GSST  to  the  RAT  unavoidably  reduces  the  severity  of  the  climate  anomalies  we  can  expose  the 243 

hydrological models to: indeed, the climate anomalies with the RAT are computed with respect to the 244 

mean over the whole period, whilst with the GSST they are computed between two shorter (and hence 245 

potentially more different) periods. 246 

4.2 Application	of	the	RAT	procedure	to	the	detection	of	climate	dependencies	247 

We now illustrate the different behaviours found among the 21 catchments when applying the RAT 248 

procedure. The significance of the link between model bias and climate anomalies was based on the 249 

Spearman correlation and a 5 % threshold. Five cases were identified: 250 

1. No climate dependency  (Figure 6): This  is  the case  for 6 catchments out of 21 and the 251 

expected situation of a “robust” model. The different plots show a lack of dependence, for 252 

temperature, precipitation and humidity index alike. For the catchment of Figure 6, the p‐253 

value of the Spearman correlation is high (between 0.23 and 0.98) and thus not significant. 254 
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 255 

Figure  6.  Streamflow  annual  bias  obtained  with  the  RAT  function  of  time  (top),  temperature  absolute 256 

anomalies  (bottom  left),  and  precipitation  P  (bottom  centre)  and  humidity  index  P/E0  (bottom  right) 257 

anomalies, for the Orne Saosnoise River at Montbizot (M0243010) (510 km²).  258 

2. Significant dependency on annual temperature, precipitation and humidity index (Figure 259 

7): This is a clearly undesirable situation illustrating a lack of robustness of the hydrological 260 

model. It happens on only two catchments out of 21. The Spearman correlation between 261 

model  bias  and  temperature,  precipitation  and  humidity  index  anomalies  (respectively 262 

0.49, ‐0.36 and ‐0.46) is significant (i.e. below the classic significance threshold of 5%). In 263 

Figure 7, the annual streamflow bias shows an increasing trend with annual temperature 264 

and a decreasing trend with annual precipitation and humidity index. 265 

 266 

Figure  7.  Streamflow  annual  bias  obtained  with  the  RAT  function  of  time  (top),  temperature  absolute 267 

anomalies  (bottom  left),  and  precipitation  P  (bottom  center)  and  humidity  index  P/E0  (bottom  right) 268 

anomalies, for the Arroux River at Etang‐sur‐Arroux (K1321810) (1790 km²) 269 
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3. Significant  climate  dependency  on  precipitation  and  humidity  index  but  not  on 270 

temperature (Figure 8). This case happens on 5 of the 21 catchments. 271 

 272 

Figure  8.  Streamflow  annual  bias  obtained  with  the  RAT  function  of  time  (top),  temperature  absolute 273 

anomalies  (bottom  left),  and  precipitation  P  (bottom  center)  and  humidity  index  P/E0  (bottom  right) 274 

anomalies, for the Seiche River at Bruz (J7483010) (810 km²) 275 

4. Significant climate dependency on temperature but not on precipitation and humidity 276 

index (Figure 9). This case happens on 3 of the 21 catchments. 277 

 278 

Figure 9. Streamflow annual bias obtained with the RAT function of time (top), temperature absolute changes 279 

(bottom left), and precipitation P (bottom center) and humidity index P/E0 (bottom right) anomalies, for the 280 

Ill at Didenheim (A1080330) (670 km²) 281 

5. Significant  climate  dependency  on  temperature  and  humidity  index  but  not  on 282 

precipitation (Figure 10). This case happens on 5 of the 21 catchments. 283 
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 284 

Figure 10. Streamflow annual bias obtained with the RAT function of time (top), temperature absolute changes 285 

(bottom left), and precipitation P (bottom center) and humidity index P/E0 (bottom right) anomalies, for the 286 

Briance River at Condat‐sur‐Vienne (L0563010) (597 km²) 287 

4.3 How	to	use	RAT	results?	288 

A question that many modelers may ask us is what can be done when different types of model failure 289 

are  identified?  Some  of  the  authors  of  this  paper  have  long  be  fond  of  the  concept  of  Crash  test 290 

(Andréassian et al., 2009), and we would like to argue here that the RAT too can be seen as a kind of 291 

crash‐test. As all crash tests, it will end up identifying failures. But the fact that a car may be destroyed 292 

when projected against a wall does not mean that it is entirely unsafe, it rather means that it is not 293 

entirely safe. Although we are conscious of this, we keep driving cars… but, we are also willing to pay 294 

(invest) more for a safer car (even if this safer‐and‐more‐expensive toy did also ultimately fail the crash 295 

test). We believe that the same will occur with hydrological models: The RAT may help identify safer 296 

models, or safer ways to parameterize models. If applied on large datasets, it may help identify model 297 

flaws, and thus help us work to eliminate them. It will not however help identify perfect models: these 298 

do not exist. 299 

 300 

5 Conclusion	301 

The proposed robustness assessment test (RAT) is an easy‐to‐implement evaluation framework that 302 

allows robustness evaluation from all types of hydrological models to be compared, by using only one 303 

long  period  for  which  model  simulations  are  available.  The  RAT  consists  in  identifying  undesired 304 

dependencies  of  model  errors  to  the  variations  of  some  climate  variables  over  time.  Such 305 

dependencies can indeed be detrimental for model performance in a changing climate context. This 306 

test can be particularly useful for climate change impact studies where the robustness of hydrological 307 

models is often not evaluated at all: as such, our test can help users to discriminate alternative models 308 

and  select  the  most  reliable  models  for  climate  change  studies,  which  ultimately  should  reduce 309 

uncertainties on climate change impact predictions (Krysanova et al., 2018). 310 
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The proposed test has obviously its limits, and a first difficulty that we see in using the RAT is that it is 311 

only applicable in cases where the hypothesis of independence between the 1‐year subperiods and 312 

the whole period is sufficient. This is the case when long series are available (at least 20 years, see last 313 

graph in appendix). If it is not the case, the RAT procedure should not be used. Therefore, we would 314 

indeed recommend its use in cases where modellers cannot “afford” multiple calibrations, or where 315 

the parameterisation strategy is considered (by the modeller) as ‘calibration free’ (i.e. physically‐based 316 

models). A few other limitations should be mentioned: 317 

1. In this note, the RAT concept was illustrated with a rank‐based test (Spearman correlation) and 318 

a significance threshold of 0.05. Like all thresholds, this one is arbitrary. Moreover, other non‐319 

parametric tests could be used and would probably yield slightly different results (we also tested 320 

the Kendall tau test, with very similar results, but do not show the results here); 321 

2. Detecting a relationship between model bias and a climate variable using the RAT does not allow 322 

to directly conclude on a lack of model robustness, because even a robust model will be affected 323 

by a trend in input data, yielding the impression that the hydrological model lacks robustness. 324 

Such an erroneous conclusion could also be due to widespread changes in land use, construction 325 

of  an  unaccounted  storage  reservoir  or  the  evolution  of  water  uses.  Some  of  the  lacks  of 326 

robustness  detected  among  the  21  catchments  presented  here  could  be  in  fact  due  to 327 

metrological causes; 328 

3. Also, because of the ongoing rise of temperatures (over the last 40 years at least), we have a 329 

correlation  between  temperature  and  time  since  the  beginning  of  streamgaging.  If  for  any 330 

reason, time is having an impact on model bias, this may cause an artefact in the RAT in the form 331 

of a dependency between model bias and temperature; 332 

4. Similarly  to  the Differential  Split  Sample Test,  the diagnostic of model  climatic  robustness  is 333 

limited to the climatic variable against which the bias is compared. As such, the RAT should not 334 

be seen as an absolute test, but rather as a necessary but not sufficient condition to use a model 335 

for climate change studies: because the climatic variability present in the past observations is 336 

limited to the historic range, so is the extrapolation test. With Popper’s words (Popper, 1959), 337 

the RAT can only allow falsifying a hydrological model… but not proving it right; 338 

5. Although it would be tempting to transform the RAT into a post‐processing method, we do not 339 

recommend it. Indeed, detecting a relationship between model bias and a climate variable using 340 

the RAT does not necessarily mean that a simple (linear) debiasing solution can be proposed to 341 

solve the issue (see e.g. the paper by Bellprat et al. (2013) on this topic). What we do recommend 342 

is to work as much as possible on the model structure, to turn it less climate dependent; 343 

6. Some  of  the  modalities  of  the  RAT,  that  we  initially  thought  of  importance,  are  not  really 344 

important: this is for example the case with the use of hydrological years. We tested the twelve 345 

possible  annual  aggregations  schemes  (see  https://doi.org/10.5194/hess‐2021‐147‐AC6)  and 346 

found no significant impact; 347 

7. Upon recommendation by one of the reviewers, we tried to assess the possible impact of the 348 

quality of the precipitation forcing on RAT results (see https://doi.org/10.5194/hess‐2021‐147‐349 

AC5) and found that the type of forcing used does have an impact on RAT results (interestingly, 350 

the climatic dataset yielding the best simulation results was also the dataset yielding the less 351 

catchments  failing  the  robustness  test).  It  seems  unavoidable  that  forcing  data  quality  will 352 

impact the results of RAT, but we would argue that  it would similarly have an impact on the 353 

results of a Differential Split Sample Test. We believe that there is no way to avoid entirely this 354 
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dependency, and  that evaluating  the quality of  input data  should be done before  looking at 355 

model robustness; 356 

8. Last, we could mention that a model showing a small overall annual bias (but linked to a climate 357 

variable) could still be preferred to one showing a large overall annual bias (but independent of 358 

the tested climate variables): the RAT should not be seen as the only basis for model choice. 359 

Beyond the limitations, we also see the perspective for further development of the method: although 360 

this note only considered overall model bias (as the most basic requirement for a model to be used to 361 

predict the  impact of a future climate), we think that this methodology could be applied to bias  in 362 

different flow ranges (low or high flows) or to statistical indicators describing low‐flow characteristics 363 

or  maximum  annual  streamflow.  And  characteristics  other  than  bias  could  be  tested,  e.g.  ratios 364 

pertaining to the variability of flows. Further, while we only tested the dependency to mean annual 365 

temperature, precipitation and humidity index, other characteristics, such as precipitation intensity or 366 

fraction of snowfall, could be considered in this framework. 367 
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11 Appendix	 –	 Checking	 the	 impact	 of	 the	 partial	 overlap	 between	563 

calibration	and	validation	periods	in	the	RAT	564 

In  this  appendix,  we  deal  with  calibrated  models,  for  which  we  verify  that  the  main  hypothesis 565 

underlying the RAT is reasonable, i.e. that when considering a long calibration period, the weight of 566 

each individual year in the overall calibration process is almost negligible. We then explore the limits 567 

of this hypothesis when reducing the length of the overall calibration period.  568 

 569 

 Evaluation method 570 

In order to check the impact of the partial overlap between calibration and validation periods in the 571 

RAT, it is possible (provided one works with a calibrated model) to compare the RAT with a “leave‐one 572 

out” version of it, which is a classical variant of the Split Sample Test (SST): instead of computing the 573 

annual bias after a single calibration encompassing the whole period (RAT), we compute the annual 574 

bias with a different calibration each time, encompassing the whole period minus the year in question 575 

(“leave‐one‐out SST”). 576 

The comparison between the RAT and the SST can be quantified using the root mean square difference 577 

(RMSD) of annual biases: 578 

𝑅𝑀𝑆𝐷஻௜௔௦ ൌ  2SSTRAT BiasBias   
Eq.1

where BiasRAT  is  the bias of  validation  year n when  calibrating  the model over  the  entire 579 

period (RAT procedure), and BiasSST the bias of validation year n when calibrating the model 580 

over the entire period minus year n (leave‐one‐out SST procedure). 581 

The difference between the two approaches is schematized in Figure 11: the leave‐one‐out procedure 582 

consists  in  performing  N  calibrations  over  (N‐1)‐year‐long  periods  followed  by  an  independent 583 

evaluation on the remaining 1‐year‐long period. As shown in Figure 11, the two procedures result in 584 

the same number of validation points (N). Eq. 1 provides a way to quantify whether both methods 585 

differ, i.e. whether the partial overlap between calibration and validation periods in the RAT makes a 586 

difference. 587 
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 588 

Figure 11. Comparison of the RAT procedure with a leave‐one‐out split‐sample test (SST). Both methods have 589 

N  validation  periods  (one  per  year).  The  RAT  needs  only  one  calibration,  whereas  the  SST  requires  N 590 

calibrations. Dark grey squares represent the years used for calibration or validation 591 

 592 

 Comparison between the RAT and the leave‐one‐out SST 593 

Figure 12 plots the annual bias values obtained with the RAT versus the annual bias obtained with the 594 

leave‐one‐out SST  for  the 21 test catchments,  showing a  total of 21x47 points. The almost perfect 595 

alignment  confirms  that  our  underlying  "negligibility"  hypothesis  is  reasonable  (at  least  on  our 596 

catchment set). 597 

 598 
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 599 

Figure 12. Comparison of the annual bias obtained with the RAT with the annual bias obtained with the leave‐600 

one‐out SST. Each of the 21 catchments is represented with annual bias values (47 points by catchment, 21x47 601 

points in total) 602 

Figure 13 presents  the Spearman correlation p‐values  for  the correlation between annual bias and 603 

changes in annual temperature, precipitation, and humidity index (P/E0), for the RAT and the leave‐604 

one‐out SST. The results from the RAT and the SST show the same dependencies on climate variables 605 

(similar p‐values).  606 

 607 

 608 

Figure  13.  Spearman  correlation  p‐value  from  the  correlation  for  annual  bias  and  annual  temperature, 609 

precipitation, and humidity index (P/E0). Comparison between RAT and SST (one point per catchment) 610 

 611 

 Sensitivity of the RAT procedure to the period length 612 

It is also interesting to investigate the limit of our hypothesis (i.e. that the relative weight of one year 613 

within a long time series is very small) by progressively reducing the period length: indeed, the shorter 614 
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the  data  series  available  to  calibrate  the model,  the more  important  the  relative  weight  of  each 615 

individual year. Figure 14 compares the annual bias obtained with the RAT procedure with the annual 616 

bias obtained with the leave‐one‐out SST, for 10‐, 20‐, 30‐, and 40‐year period lengths (selection of the 617 

shorter periods was realized by sampling 10, 20, 30, and 40 years regularly among the complete time 618 

series). The shorter the calibration period, the larger the differences between both approaches (wider 619 

points scatter): there, we reach the limit of the single calibration procedure. We would not advise to 620 

use RAT with time series of less than 20 years. 621 

 622 

 623 

Figure 14. Annual bias obtained with  the RAT procedure vs. annual bias obtained with  leave‐one‐out SST. 624 

Shorter time periods are obtained by sampling 10, 20, 30, and 40 years regularly among the complete time 625 

series. Each of the 21 catchments is represented with annual bias values 626 

These differences can be quantitatively measured by computing  the RMSD  (see Eq.1) between  the 627 

annual bias obtained with the RAT procedure and with the SST for different calibration period lengths 628 

(see Figure 15). The RMSD tends to increase when the number of years available to calibrate the model 629 

decreases, but it seems to be stable for periods longer than 20 years. 630 

 631 

Figure 15. RMSD between annual bias obtained with the RAT procedure and with the leave‐one‐out SST for 632 

different calibration period  lengths  for each catchment. The dotted  line represents the mean RMSD for all 633 

catchments. Each grey line represents one of the 21 catchments. 634 


