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Key Points
. a new method (RAT) is proposed to assess the robustness of hydrological models, as an
alternative to the classical split-sample test

. the RAT method does not require multiple calibrations of hydrological models: it is therefore

applicable to uncalibrated models

o the RAT method can be used to determine whether a hydrological model cannot be safely
used for climate change impact studies

3 success at the RAT test is a necessary (but not sufficient) condition of model robustness

Abstract

Prior to their use under future changing climate conditions, all hydrological models should be
thoroughly evaluated regarding their temporal transferability (application in different time periods)
and extrapolation capacity (application beyond the range of known past conditions). This note
presents a straightforward evaluation framework aimed at detecting potential undesirable climate
dependencies in hydrological models: the robustness assessment test (RAT). Although it is
conceptually inspired by the classic differential split-sample test of Klemes (1986), the RAT presents
the advantage to be applicable to all types of models, be they calibrated or not (i.e. regionalized or
physically based). In this note, we present the RAT, illustrate its application on a set of 21
catchments, verify its applicability hypotheses and compare it to previously published tests. Results
show that the RAT is an efficient evaluation approach, passing it successfully can be considered a
prerequisite for any hydrological model to be used for climate change impact studies.
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1 Introduction

1.1 All hydrological models should be evaluated for their robustness

Hydrologists are increasingly requested to provide predictions of the impact of climate change
(Wilby, 2019). Given the expected evolution of climate conditions, the actual ability of models to
predict the corresponding evolution of hydrological variables should be verified (Beven, 2016).
Indeed, when using a hydrological model for climate change impact assessment, we make two
implicit hypotheses concerning:

o the capacity of extrapolation beyond known hydroclimatic conditions: we assume that the
hydrological model used is able to extrapolate catchment behaviour under conditions not or rarely
seen in the past. While we do not expect hydrological models to be able to simulate a behaviour
which would result from a modification of catchment physical characteristics, we do expect them to
be able to represent the catchment response to extreme climatic conditions (and possibly to
conditions more extreme than those observed in the past);

. the independence of the model set-up period: we assume that the model functioning is
independent of the climate it experienced during its set-up/calibration period. For those models
which are calibrated, we assume that the parameters are generic and not specific to the calibration
period, i.e. they do not suffer from overcalibration on this period (Andréassian et al., 2012).

Hydrologists make the hypothesis that model structure and parameters are well-identified over the
calibration period and that parameters remain relevant over the future period, when climate
conditions will be different. Unfortunately, the majority of hydrological models are not entirely
independent of climate conditions (Refsgaard et al., 2013; Thirel et al., 2015b). When run under
changing climate conditions, they sometimes reveal an unwanted sensitivity to the data used to
conceive or calibrate them (Coron et al., 2011).

The diagnostic tool most widely used to assess the robustness of hydrological models is the split-
sample test (SST) (Klemes, 1986), which is considered by al-most hydrologists as a “good modelling
practice” (Refsgaard & Henriksen, 2004). The SST stipulates that when a model requires calibration
(i.e. when its parameters cannot be deduced directly from physical measurements or catchment
descriptors), it should be evaluated twice: once on the data used for calibration and once on an
independent dataset. This practice has been promoted in hydrology by Klemes$ (1986), who did not
invent the concept (Arlot & Celisse, 2010; Larson, 1931; Mosteller & Tukey, 1968), but who
formalized it for hydrological modelling. Klemes proposed initially a four-level testing scheme for
evaluating model transposability in time and space: (i) split-sample test on two independent periods,
(ii) proxy-basin test on neighbouring catchments, (iii) differential split-sample test on contrasted
independent periods (DSST), and (iv) proxy-basin differential split-sample test on neighbouring
catchments and contrasted periods.

For model applications in a changing climate context, Klemes’s DSST procedure is of particular
interest. Indeed, when calibration and evaluation are done over climatically-contrasted past periods,
the model faces the difficulties it will have to deal with in the future. The power of DSST can be
limited by the climatic variability observed in the past, which may be far below the drastic changes
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expected in the future. However, a satisfactory behaviour during the DSST can be seen as a
prerequisite of model robustness.

1.2 Past applications of the DSST method

The DSST received limited attention up to the 2010s, with only a few studies which applied it. The
studies by Refsgaard & Knudsen (1996) and Donelly-Makowecki & Moore (1999) investigated to
which extent Klemes’s hierarchical testing scheme could be used to improve the conclusions of
model intercomparisons. Fhough-the authorsof the fi udy-did-not find-large differences-between

event-based-medels—The study by Xu (1999) questioned the applicability of models in nonstationary
conditions and was one of the early attempts to apply the Klemes’s testing scheme in this
perspective. Similarly, tests carried out by Seibert (2003) explicitly intended to test the ability of a
model to extrapolate beyond calibration range and showed limitations of the tested model, stressing

the need for improved calibration strategies. Last, Vaze et al. (2010) also investigated the behaviour
of four rainfall-runoff models under contrasting conditions, using wet and dry periods on catchments
in Australia that experienced a prolonged drought period. They observed different model behaviours
when going from wet to dry or dry to wet conditions.

More recently, Coron et al. (2012) proposed a generalized SST (GSST) allowing for an exhaustive DSST
to evaluate model transposability over time under various climate conditions. The concept of GSST
consists in testing “the model in as many and as varied climatic configurations as possible, including

similar and contrasted conditions between calibration and validation.f=

possible—configurations”. Seifert et al. (2012) used a differential split-sample approach to test a
hydrogeological model (differential being understood with respect to differences in groundwater
abstractions). Li et al. (2012) identified two dry and two wet periods in long hydroclimatic series to
understand how a model should be parameterised to work under nonstationary climatic conditions.
Teutschbein and Seibert (2013) performed differential split-sample tests by dividing the data series
into cold and warm as well as dry and wet years, in order to evaluate bias correction methods. Thirel
et al. (2015a) put forward an SST-based protocol to investigate how hydrological models deal with
changing conditions, which was widely used during an ‘AHS—workshop_ of the International

Association of Hydrological Sciences (IAHS), both with physically-oriented models (Gelfan et al., 2015;
Magand et al, 2015), conceptual models (Brigode et al., 2015; Efstratiadis et al., 2015; Hughes, 2015;
Kling et al., 2015; Li et al., 2015; Yu and Zhu, 2015) or data-based models (Tanaka and Tachikawa,
2015; Taver et al., 2015).

Recently, with the growing concern on model robustness in link with the Panta Rhei decade of the
laternational-Asseciation-of Hydrological-Seiences{IAHS) (Montanari et al., 2013), a slow but steadily
increasing interest is noticeable for procedures inspired by Klemes’s DSST (see e.g. the Unsolved
Hydrological Problem n° 19 in the paper by Bloschl et al., 2019: How can hydrological models be
adapted to be able to extrapolate to changing conditions?). A few studies used the original DSST or
GSST to implement more demanding model tests (Bisselink et al., 2016; Gelfan and Millionshchikova,
2018; Rau et al., 2019; Vormoor et al., 2018). For example, based on an ensemble approach using six
hydrological models, Broderick et al. (2016) investigated under DSST conditions how the robustness
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can be improved by multi-model combinations. Fhey—recommend—selecting—thebestavailable

A few authors also tried to propose improved implementations of these testing schemes. Seiller et al.
(2012) used non-continuous periods or years selected on mean temperature and precipitation to
enhance the contrast between testing periods. This idea to jointly use these two climate variables to
select periods was further investigated by Gaborit et al. (2015), who assessed how the temporal
model robustness can be improved by advanced calibration schemes. They showed that the
robustness of the tested model was improved when going from humid-cold to dry-warm or from dry-
cold to humid-warm conditions when using regional calibration instead of local calibration. Dakhlaoui
et al. (2017) investigated the impact of DSST on model robustness by selecting dry/wet and cold/hot
hydrological years to increase the contrast in climate conditions between calibration and validation
periods. These authors later proposed a bootstrap technique to widen the testing conditions
(Dakhlaoui et al. 2019). The investigations of Fowler et al. (2018) identified some limits of the DSST
procedure and concluded that “model evaluation based solely on the DSST is hampered due to
contingency on the chosen calibration method, and it is difficult to distinguish which cases of DSST
failure are truly caused by model structural inadequacy”. Last, Motavita et al. (2019) combined DSST
with periods of variable length, and conclude that parameters obtained on dry periods may be more
robust.

All these past studies show that there is still methodological work needed on the issue of model
testing and robustness assessment. This note is a further step in that direction.

1.3 Scope of the technical note

This note presents a new generic diagnostic framework inspired by Klemes’s DSST procedure and by
our own previous attempts (Coron et al., 2012; Thirel et al., 2015a) to assess the relative confidence

one may have whetherwith a hydrological model ean-be-considered“elimate-proef’to be used in a
changing climate contaext. One of the problems of existing methods is the requirement of multiple

calibrations_of hydrological models: these are relatively easy to implement with parsimonious
conceptual models but definitively not with complex models that require long interventions by
expert modellers and, obviously, not for those models with a once-for-all parameterisation.

Here, we propose a framework that is applicable with only one long period for which a model
simulation is available. Thus, the proposed test is even applicable to those models that do not
require calibration (or to those for which only a single calibration exists).

Section 2 presents and discusses the concept of the proposed test, section 3 presents the catchment
set and the evaluation method, and section 4 illustrates the application of the test on a set of French
catchments, with a comparison to a reference procedure.

2 The robustness assessment test (RAT) concept
The robustness assessment test (RAT) proposed in this note is inspired by the work of Coron et al.

(2014). The specificity of the RAT is that it requires only one <calibration—{er—one
parameterisation)simulation covering a sufficiently-long period (at least 36-20 years) with as much
climatic variability as possible. Thus, it applies at the same time to simple conceptual models that can

4
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be calibrated automatically, to more complex models requiring expert calibration, and to
uncalibrated models for which parameters are derived from the measurement of certain physical
properties. The RAT consists in computing a relevant numeric bias criterion repeatedly each year and
then exploring its correlation with a climatic factor deemed meaningful, in order to identify
undesirable dependencies and thus to assess the extrapolation capacity (Roberts et al., 2017) of any
hydrological model. Indeed, if the performances of a model are shown to be dependent on a given
climate variable, this can be an issue when the model is used on a period with a changing climate.
The flowchart in Figure 1 summarizes the concept.
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161
162 Figure 1. Flow chart of the Robustness Assessment Test

163  An example is shown in Figure 2, with a daily time step hydrological model calibrated on a 47-year
164  streamflow record. Note that this plot could be obtained from any hydrological model calibrated or

165  not. The relative streamflow bias ((Qg;m/Qops — 1), with Qs and Q,ps being the mean simulated
166  and observed streamflows respectively) is calculated on an annual basis (47 values in total). Then,
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the annual bias values are plotted against climate descriptors, typically the annual temperature
absolute anomaly (T—'I_", where T is the annual mean and T is the long-term mean annual
temperature), the annual precipitation relative anomaly P/I3 — 1 and the humidity index relative
anomaly HI /HI — 1, where HI = P /E,, E, being the potential evaporation). Note that the mean
annual values are computed on hydrological years (here from August 1% of year n-1 to July 31 of
year n). In this example, there is a slight dependency of model bias on precipitation and humidity
index. Clearly, this could be a problem if we were to use this model in an extrapolation mode.
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Figure 2. Robustness Assessment Test (RAT) applied to a hydrological model: the upper graph presents the
evolution in time (year by year) of model streamflow bias; the lower scatterplots present the relationship
between model bias and climatic variables (temperature T, precipitation P and humidity index HI, from left
to right)

Whereas the methods based on the split-sample test (i.e. Coron et al, 2012 and Thirel et al., 2015b)
evaluate model robustness on periods that are independent of the calibration period, it is not the
case for the RAT. Consequently, one could fear that the results of the RAT evaluation may be
influenced by the calibration process. However, because the RAT uses a very long period for
calibration, we hypothesize that the weight of each individual year in the overall calibration process
is small, almost negligible. This assumption can be checked by comparing the RAT with a leave-one-
out SST (see Appendix). The analysis showed that this hypothesis is reasonable for long time series,
but that the RAT is not applicable when the available time period is too short (less than 20 years).

Last, we would like to mention that the RAT procedure is different from the Proxy metric for Model
Robustness (PMR) presented by Royer-Gaspard et al. (2021), even if both methods aim to evaluate
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hydrological model robustness without employing a multiple calibrations process: the PMR is a
simple metric to estimate the robustness of a hydrological model, while the RAT is a method to
diagnose the dependencies of model errors to certain types of climatic changes. Thus, the RAT and
the PMR may be seen as complementary tools to assess a variety of aspects about model robustness.

3 Material and methods

3.1 Catchment set

We employed the dataset previously used by Nicolle et al. (2014), comprising 21 French catchments
(Figure 3), with complementary data until 2020. Catchments were chosen to represent a large range
of physical and climatic conditions in France, with sufficiently-long observation time series (daily
streamflow from 1974 to 2020) in order to provide a diverse representation of past hydroclimatic
conditions. Streamflow data come from the French HYDRO database (Leleu et al., 2014) and with
quality control performed by the operational hydrometric services. Catchment size ranges from 380
to 4,300 km? and median elevation from 70 to 1020 m.

The daily precipitation and temperature data originate from the gridded SAFRAN climate reanalysis
(Vidal et al., 2010) over the 1959-2020 period. More information about the catchment set can be
found in Nicolle et al. (2014). Aggregated catchment files and computation of Oudin potential
evaporation (Oudin et al., 2005) was made as described in Delaigue et al. (2018).

Elovation

Figure 3. Location of the 21 catchments in France. Red dots represent the catchment outlets

3.2 Hydrological model

The RAT diagnostic framework is generic and can be applied to any type of model. Here daily
streamflow was simulated using the daily lumped GR4J rainfall-runoff model (Perrin et al., 2003).
The objective function used for calibration is the KGE criterion (Gupta et al., 2009) computed on
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square-root-transformed flows. Model implementation was done with the airGR R package (Coron et
al., 2017, 2018).

3.3 Evaluation of the RAT framework

The RAT was evaluated against the GSST of Coron et al. (2012) used as a benchmark, in order to
check whether it yields similar results. The GSST procedure was applied to each catchment using a
10-year period to calibrate the model. For each calibration, each 10-year sliding period over the
remaining available period, strictly independent of the calibration one, was used to evaluate the
model. The results of the two approaches were compared by plotting on the same graph the annual
streamflow bias obtained from the unique simulation period for the RAT, and the average
streamflow bias over the sliding calibration-validation time periods for GSST, as a function of
temperature, precipitation and humidity anomalies as in Figure 2. The similarity of the trends
(between streamflow bias and climatic anomaly) obtained by the two methods was evaluated on the
catchment set by comparing the slope and intercept of the linear regressions obtained in each case.

We then identified the catchments where the RAT procedure detected a lack-ef-dependency of
streamflow bias to one or several climate variables,era-dependency-to-one-orseveral-variables. The

Spearman correlation between model bias and climate variables was computed and a significance
threshold of 5% was used (p-value 0.05).

4 Results

4.1 Comparison between the RAT and the GSST procedure

Figure 4 presents an example for the Orge River at Morsang-sur-Orge: GSST points are represented
by black dots and RAT points by red squares. Let us first note that since red points represent only
each of the N years of the period for the RAT and black points represent all GSST possible
independent calibration-validation pairs (a number close to N(N-1)), black points are much more
numerous. We can observe that the amplitude of both streamflow bias and climatic variable change
is larger for the GSST than for the RAT as there are more calibration periods, whatever the climatic
variable (P, T or HI). However, the trends in the scatterplot are quite similar. Graphs for all
catchments are provided as supplementary material.
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Figure 4. Streamflow bias obtained with the RAT (red squares) and the GSST (black dots), as a function of
temperature, precipitation and humidity index anomalies, for the Orge River at Morsang-sur-Orge
(H4252010) (934 km?).
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To summarize the results on the 21 catchments, we present on Figure 5 the slope and intercept of a
linear regression computed between model streamflow bias and climatic variable anomaly, for the
GSST and the RAT over the 21 catchments: the slope of the regressions obtained for both methods
are very similar and the intercept also exhibits a good match (although somewhat larger differences).
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Figure 5. Comparison of slopes and intercept of linear regressions between streamflow bias and temperature
(T), precipitation (P) and humidity index (HI) anomalies (from left to right) obtained by the GSST and the RAT
procedures (each point represents one of the 21 test catchments)

We can thus conclude that the RAT reproduces the results of GSST, but at a much lower
computational pricecost, and this is what we were aiming at. One should however acknowledge that
switching from the GSST to the RAT unavoidably reduces the severity of the climate anomalies we
can expose the hydrological models to: indeed, the climate anomalies with the RAT are computed
with respect to the mean over the whole period, whilst with the GSST they are computed between
two shorter (and hence potentially more different) periods.

4.2 Application of the RAT procedure to the detection of climate dependencies

We now illustrate the different behaviours found among the 21 catchments when applying the RAT
procedure. The significance of the link between model bias and climate anomalies was based on the
Spearman correlation and a 5 % threshold. Five cases were identified:

1. No climate dependency (Figure 6): This is the case for 6 catchments out of 21 and the
expected situation of a “robust” model. The different plots show a lack of dependence,
for temperature, precipitation and humidity index alike. For the catchment of Figure 6,
the p-value of the Spearman correlation is guite-high (between 0.23 and 0.98) and thus
not significant.

10
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Figure 6. Streamflow annual bias obtained with the RAT function of time (top), temperature absolute
anomalies (bottom left), and precipitation P (bottom centre) and humidity index P/E, (bottom right)
anomalies, for the Orne Saosnoise River at Montbizot (M0243010) (510 km?).

2.

Significant dependency on annual temperature, precipitation and humidity index
(Figure 7): This is a clearly undesirable situation illustrating a lack of robustness of the
hydrological model. It happens on only two catchments out of 21. The Spearman
correlation between model bias and temperature, precipitation and humidity index
anomalies (respectively 0.49, -0.36 and -0.46) is significant (i.e. below the classic
significance threshold of 5%). In Figure 7, the annual bias shows an increasing trend with

annual temperature and a decreasing trend with annual precipitation and humidity

index.
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Figure 7. Streamflow annual bias obtained with the RAT function of time (top), temperature absolute
anomalies (bottom left), and precipitation P (bottom center) and humidity index P/E, (bottom right)
anomalies, for the Arroux River at Etang-sur-Arroux (K1321810) (1790 km?)

11



282 3. Significant climate dependency on precipitation and humidity index but not on

283 temperature (Figure 8). This case happens on 5 of the 21 catchments.
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285 Figure 8. Streamflow annual bias obtained with the RAT function of time (top), temperature absolute
286 anomalies (bottom left), and precipitation P (bottom center) and humidity index P/E, (bottom right)
287 anomalies, for the Seiche River at Bruz (J7483010) (810 km?)

288 4. Significant climate dependency on temperature but not on precipitation and humidity
289 index (Figure 9). This case happens on 3 of the 21 catchments.
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291 Figure 9. Streamflow annual bias obtained with the RAT function of time (top), temperature absolute
292 changes (bottom left), and precipitation P (bottom center) and humidity index P/E, (bottom right)
293 anomalies, for the Ill at Didenheim (A1080330) (670 km?)

294 5. Significant climate dependency on temperature and humidity index but not on
295 precipitation (Figure 10). This case happens on 5 of the 21 catchments.
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297 Figure 10. Streamflow annual bias obtained with the RAT function of time (top), temperature absolute
298 changes (bottom left), and precipitation P (bottom center) and humidity index P/E, (bottom right)
299 anomalies, for the Briance River at Condat-sur-Vienne (L0563010) (597 km?)

300 4.3 How to use RAT results? -« - - {Mis en forme : Titre 2
301 A question that many modelers may ask us is what can be done when different types of model failure _ - {Mis en forme : Police :Italique
302 are identified? Some of the authors of this paper have long be fond of the concept of Crash test - {Mis en forme : Police :Italique

303 (Andréassian et al., 2009), and we would like to argue here that the RAT too can be seen as a kind of

304 crash-test. As all crash tests, it will end up identifying failures. But the fact that a car may be

305 destroyed when projected against a wall does not mean that it is entirely unsafe, it rather means that

306 it is not entirely safe. Although we are conscious of this, we keep driving cars... but, we are also

307 willing to pay (invest) more for a safer car (even if this safer-and-more-expensive toy did also

308 ultimately fail the crash test). We believe that the same will occur with hydrological models: The RAT

309 may help identify safer models, or safer ways to parameterize models. If applied on large datasets, it

310 may help identify model flaws, and thus help us work to eliminate them. It will not however help

311 identify perfect models: these do not exist.

312

313 5 Conclusion

314  The proposed robustness assessment test (RAT) is an easy-to-implement evaluation framework that
315 allows robustness evaluation from all types of hydrological models to be compared, by using only
316  one long period for which model simulations are available. The RAT consists in identifying undesired
317 dependencies of model errors to the variations of some climate variables over time. Such
318  dependencies can indeed be detrimental for model performance in a changing climate context. This
319  test can be particularly useful for climate change impact studies where the robustness of hydrological
320 models is often not evaluated at all: as such, our test can help users to discriminate alternative
321 models and select the most reliable models for climate change studies, which ultimately should
322 reduce uncertainties on climate change impact predictions (Krysanova et al., 2018).
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The proposed test has obviously its limits, and a first difficulty that we see in using the RAT is that it is
only applicable in cases where the hypothesis of independence between the 1-year subperiods and
the whole period is sufficient. This is the case when long series are available (at least 20 years, see
last graph in appendix). If it is not the case, the RAT procedure should not be used. Therefore, we
would indeed recommend its use in cases where modellers cannot “afford” multiple calibrations, or
where the parameterisation strategy is considered (by the modeller) as ‘calibration free’ (i.e.
physically-based models). A few other limitations should be mentioned:

1. In this note, the RAT concept was illustrated with a rank-based test (Spearman correlation) and
a significance threshold of 0.05. Like all thresholds, this one is arbitrary. Moreover, other non-
parametric tests could be used and would probably yield slightly different results (we also
tested the Kendall tau test, with very similar results, but do not show the results here);

2. Detecting a relationship between model bias and a climate variable using the RAT does not
allow to directly conclude on a lack of model robustness, because even a robust model will be
affected by a trend in input data—trdeed,—changes-in-theprecipitation-monitoring-network-or
in—the—hydrometricrating—eurves—can—also—give—thefalse, vielding the impression that the

hydrological model lacks robustness. Such an erroneous conclusion could also be due to

widespread changes in land use, construction of an unaccounted storage reservoir or the
evolution of water uses. Some of the lacks of robustness detected among the 21 catchments
presented here could be in fact due to metrological causes;

3. Also, because of the ongoing rise of temperatures (over the last 40 years at least), we have a
correlation between temperature and time since the beginning of streamgaging. If for any
reason, time is having an impact on model bias, this may cause an artefact in the RAT in the
form of a dependency between model bias and temperature;

4. Similarly to the Differential Split Sample Test, the diagnostic of model climatic robustness is
limited to the climatic variable against which the bias is compared. As such, the RAT should not
be seen as an absolute test, but rather as a necessary but not sufficient condition to use a
model for climate change studies: because the climatic variability present in the past
observations is limited to the historic range, so is the extrapolation test. With Popper’s words
(Popper, 1959), the RAT can only allow falsifying a hydrological model... but not proving it
troeright;

5. Although it would be tempting to transform the RAT into a post-processing method, we do not
recommend it. Indeed, detecting a relationship between model bias and a climate variable
using the RAT does not necessarily mean that a simple (linear) debiasing solution can be
proposed to solve the issue (see e.g. the paper by Bellprat et al. (2013) on this topic). What we
do recommend is to work as much as possible on the model structure, to turn it less climate
dependent;

6. Some of the modalities of the RAT, that we initially thought of importance, are not really+« - - {Mis en forme : Retrait : Gauche : 0 cm, Suspendu : 1 cm ]

important: this is for example the case with the use of hydrological years. We tested the

twelve possible annual aggregations schemes (see https://doi.org/10.5194/hess-2021-147-

AC6) and found no significant impact;

5.7.  Upon recommendation by one of the reviewers, we tried to assess the possible impact of the
quality of the precipitation forcing on RAT results (see https://doi.org/10.5194/hess-2021-147-
AC5) and found that the type of forcing used does have an impact on RAT results (interestingly,

the climatic dataset vielding the best simulation results was also the dataset yielding the less
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catchments failing the robustness test). It seems unavoidable that forcing data quality will

impact the results of RAT, but we would argue that it would similarly have an impact on the

results of a Differential Split Sample Test. We believe that there is no way to avoid entirely this

dependency, and that evaluating the quality of input data should be done before looking at

model robustness;

6:8. lLast, we could mention that a model showing a small overall annual bias (but linked to a
climate variable) could still be preferred to one showing a large overall annual bias (but
independent of the tested climate variables): the RAT should not be seen as the only basis for

model choice.

Beyond the limitations, we also see the perspective for further development of the method: although
this note only considered overall model bias (as the most basic requirement for a model to be used
to predict the impact of a future climate), we think that this methodology could be applied to bias in
different flow ranges (low or high flows) or to statistical indicators describing low-flow characteristics
or maximum annual streamflow. And characteristics other than bias could be tested, e.g. ratios
pertaining to the variability of flows. Further, while we only tested the dependency to mean annual
temperature, precipitation and humidity index, other characteristics, such as precipitation intensity
or fraction of snowfall, could be considered in this framework.
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8 Appendix - Checking the impact of the partial overlap between

calibration and validation periods in the RAT
In this appendix, we deal with calibrated models, for which we verify that the main hypothesis
underlying the RAT is reasonable, i.e. that when considering a long calibration period, the weight of
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each individual year in the overall calibration process is almost negligible. We then explore the limits
of this hypothesis when reducing the length of the overall calibration period.

e Evaluation method

In order to check the impact of the partial overlap between calibration and validation periods in the
RAT, it is possible (provided one works with a calibrated model) to compare the RAT with a “leave-
one out” version of it, which is a classical variant of the Split Sample Test (SST): instead of computing
the annual bias after a single calibration encompassing the whole period (RAT), we compute the
annual bias with a different calibration each time, encompassing the whole period minus the year in
question (“leave-one-out SST”).

The comparison between the RAT and the SST can be quantified using the root mean square
difference (RMSD) of annual biases:

RMSDpiqs = +(Biasg,, — Biasg, )’ Fat
where Biasgar is the bias of validation year n when calibrating the model over the entire
period (RAT procedure), and Biasssr the bias of validation year n when calibrating the model
over the entire period minus year n (leave-one-out SST procedure).

The difference between the two approaches is schematized in Figure 11: the leave-one-out
procedure consists in performing N calibrations over (N-1)-year-long periods followed by an
independent evaluation on the remaining 1-year-long period. As shown in Figure 11, the two
procedures result in the same number of validation points (N). Eq. 1 provides a way to quantify
whether both methods differ, i.e. whether the partial overlap between calibration and validation
periods in the RAT makes a difference.
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Figure 11. Comparison of the RAT procedure with a leave-one-out split-sample test (SST). Both methods have
N validation periods (one per year). The RAT needs only one calibration, whereas the SST requires N
calibrations. Dark grey squares represent the years used for calibration or validation

e Comparison between the RAT and the leave-one-out SST

Figure 12 plots the annual bias values obtained with the RAT versus the annual bias obtained with
the leave-one-out SST for the 21 test catchments, showing a total of 21x47 points. The almost perfect
alignment confirms that our underlying "negligibility" hypothesis is reasonable (at least on our
catchment set).
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Figure 12. Comparison of the annual bias obtained with the RAT with the annual bias obtained with the
leave-one-out SST. Each of the 21 catchments is represented with annual bias values (47 points by
catchment, 21x47 points in total)

Figure 13 presents the Spearman correlation p-values for the correlation between annual bias and
changes in annual temperature, precipitation, and humidity index (P/E), for the RAT and the leave-
one-out SST. The results from the RAT and the SST show the same dependencies on climate variables
(similar p-values).
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Figure 13. Spearman correlation p-value from the correlation for annual bias and annual temperature,
precipitation, and humidity index (P/E,). Comparison between RAT and SST (one point per catchment)
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e Sensitivity of the RAT procedure to the period length

It is also interesting to investigate the limit of our hypothesis (i.e. that the relative weight of one year
within a long time series is very small) by progressively reducing the period length: indeed, the
shorter the data series available to calibrate the model, the more important the relative weight of
each individual year. Figure 14 compares the annual bias obtained with the RAT procedure with the
annual bias obtained with the leave-one-out SST, for 10-, 20-, 30-, and 40-year period lengths
(selection of the shorter periods was realized by sampling 10, 20, 30, and 40 years regularly among
the complete time series). The shorter the calibration period, the larger the differences between
both approaches (wider points scatter): there, we reach the limit of the single calibration procedure.
We would not advise to use RAT with time series of less than 20 years.
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Figure 14. Annual bias obtained with the RAT procedure vs. annual bias obtained with leave-one-out SST.
Shorter time periods are obtained by sampling 10, 20, 30, and 40 years regularly among the complete time
series. Each of the 21 catchments is represented with annual bias values

These differences can be quantitatively measured by computing the RMSD (see Eq.1) between the
annual bias obtained with the RAT procedure and with the SST for different calibration period lengths
(see Figure 15). The RMSD tends to increase when the number of years available to calibrate the
model decreases, but it seems to be stable for periods longer than 20 years.
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645 Figure 15. RMSD between annual bias obtained with the RAT procedure and with the leave-one-out SST for
646 different calibration period lengths for each catchment. The dotted line represents the mean RMSD for all
647 catchments. Each grey line represents one of the 21 catchments.
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