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Abstract: Root water uptake is an important process in the terrestrial water cycle. How this process depends on soil water 

content, root distributions, and root properties is a soil-root hydraulic problem. We compare different approaches to implement 

root hydraulics in macroscopic soil water flow and land surface models. By upscaling a three dimensional hydraulic root 

architecture model, we derived an exact macroscopic root hydraulic model. The macroscopic model uses three characteristics: 

the root system conductance, Krs, the standard uptake fraction, SUF, that represents the uptake from a soil profile with a 15 

uniform hydraulic head, and a compensatory matrix that describes the redistribution of water uptake in a non-uniform hydraulic 

head profile. Two characteristics, Krs and SUF, are sufficient to describe the total uptake as a function of the collar and soil 

water potential; and water uptake redistribution does not depend on the total uptake or collar water potential. We compared 

the exact model with two hydraulic root models that make a-priori simplifications of the hydraulic root architecture: the parallel 

and big root model. The parallel root model uses only two characteristics, Krs and SUF, that can be calculated directly following 20 

a bottom up approach from the 3D hydraulic root architecture. The big root model uses more parameters than the parallel root 

model but these parameters cannot be obtained straightforwardly with a bottom up approach. The big root model was 

parameterized using a top down approach, i.e. directly from root segment hydraulic properties assuming a-priori a single big 

root architecture. This simplification of the hydraulic root architecture led to less accurate descriptions of root water uptake 

than by the parallel root model. To compute root water uptake in macroscopic soil water flow and land surface models, we 25 

recommend the use of the parallel root model with Krs and SUF computed in a bottom up approach from a known 3D root 

hydraulic architecture.  

1 Introduction 

Plant transpiration, which corresponds with about 40% of the precipitation on land (Oki and Kanae, 2006;Trenberth et al., 

2007;Good et al., 2015) is an important component of the terrestrial water cycle. It drives water flow from the soil into the 30 

plant and plays an important physiological role for distributing minerals from the soil to the above ground part of the plant and 

for regulating the temperature of the leaves. Understanding where and when plants take up water from the soil is important to 

unravel the interaction between climate, soil and plant growth, manage soil water, and select or breed plants that are optimally 

performing in a certain soil-climate environment. Therefore, root water uptake is a sensitive process in land surface and crop 

models (Gayler et al., 2013;Wöhling et al., 2013;Vereecken et al., 2015;Ferguson et al., 2016;Vereecken et al., 2016;Whitley 35 

et al., 2017).  



2 
 

There are several ways to distinguish and classify root water uptake models: macroscopic versus microscopic, mechanistic 

versus empirical, and bottom-up versus top-down (Feddes et al., 2001;Hopmans and Bristow, 2002). Here, we will focus on 

models that describe water flow in the soil-root system mechanistically based on soil and plant hydraulics, i.e. based on water 

potential gradients in each system, on root and soil conductances, and on exchange or radial soil-root conductances. When 40 

water flow is described mechanistically in the soil-plant system, processes with an important impact on root water uptake 

emerge from the model simulations and do not have to be parameterized (Javaux et al., 2013). These include hydraulic 

redistribution when water uptake from the wetter part of the root zone is released in the drier part and root water uptake 

compensation when root water uptake shifts to wetter zones (Katul and Siqueira, 2010). The differences between different 

modeling approaches that we consider are related to the spatial representation of the root system and its architecture or 45 

topology.  

A first approach to model this system is to start with a simplified concept of the root system or its topology. Although the 

topology of the root system may also be considered as a parameterization of a model that describes water flow in the soil root 

system, we consider the root topology here as specific ‘model’ that is fixed a-priori in a kind of top-down approach and that is 

subsequently parameterized based on measurements of soil water potential, leaf water potential, transpiration fluxes and 50 

information about the root system such as the root density distribution and hydraulic properties of root segments. Two a-priori 

proposed root system topologies can be distinguished: big root and parallel root models.  

Big root models are 1D models in which the root system is represented by one vertical ‘big root’. In this model, all root 

segments in a layer at a certain depth are grouped in one ‘tube’ and these tubes are connected in series with each other. Nimah 

and Hanks (1973) used this approach for simulating root water uptake but simplified the head losses due to axial flow. The 55 

axial big-root hydraulic conductance, which determines head losses due to axial flow in the root system, and the radial big-

root conductance, which determines the exchange between the soil and the root, were obtained by scaling intrinsic root segment 

conductances with the cross sectional and surface area of the root segments in the soil profile, respectively; and the unsaturated 

soil hydraulic conductivity (Amenu and Kumar, 2008;Quijano and Kumar, 2015).  

The second simplified root topology model is what we define as the ‘parallel root model’. In the ‘parallel root model’, the root 60 

system is conceptualized to consist of branches of different lengths that take up water near their tips and that are all connected 

in parallel to a root collar node (Gou and Miller, 2014). The parallel root system considers a connection in series between the 

radial and axial conductances of a single root branch. Thus, this model can also account for axial root conductances or for head 

losses due to flow along the root branch (Hillel et al., 1976). The model is parameterized by the distribution of absorbing root 

surface with depth and the conductances of the root branches that connect these surfaces with the root collar. Although it is 65 

not identical to the parallel root model, a model that shows similarities with the parallel root model is the model by Ryel et al. 

(2002) which has been implemented in several land surface models. 

A further simplification is to neglect the axial resistance so that the water potential in the root xylem is everywhere the same 

(Gardner and Ehlig, 1962;Wilderotter, 2003;de Jong van Lier et al., 2008;Siqueira et al., 2008;de Jong van Lier et al., 

2013;Manoli et al., 2014;Daly et al., 2018). This simplification wipes out the difference between the ‘big root’ and ‘parallel 70 

root’ models.  

The second approach starts from an explicit 3D representation of the root architecture and the distribution of root segment 

conductances and describes the flow in the branched root network that is coupled to flow in the soil (Doussan et al., 

1998;Doussan et al., 2006;Javaux et al., 2008). Hydraulic characteristics of the root system such as the root system conductance 

and the root water uptake distribution for a uniform soil water potential distribution can be derived using analytical solutions 75 

of the flow equations in the root system. These characteristics were derived for single roots with constant (Landsberg and 

Fowkes, 1978) or with varying root hydraulic properties (Meunier et al., 2017b), and for branched root systems (Roose and 

Fowler, 2004;Meunier et al., 2017c). The solutions provide a direct or a bottom-up link between the root architecture and the 

hydraulic properties of root segments on the one hand and the hydraulic root system characteristics on the other hand (Meunier 
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et al., 2017a). By making assumptions about the axial conductance of the root system, Couvreur et al. (2012) derived an 80 

approximate model that simulates the uptake for arbitrary soil water potential distributions within the root zone and that uses 

these hydraulic root system characteristics. The form of the obtained model is similar to that of the parallel root model but it 

uses root system characteristics that were derived from an exact or numerical solution of the flow in the 3D hydraulic root 

architecture. In other words, even though the model formulation is similar to the parallel root model, the systems’ properties 

were not derived in a top down approach by a-priori assuming a parallel root model. The model was formulated originally to 85 

simulate the 3D distribution of the water uptake in the soil by a 3D root architecture. When it is assumed that the soil water 

potentials do not vary in the horizontal direction, the model can be scaled up to a 1D formulation of the same form to calculate 

vertical water uptake profiles (Javaux et al., 2013;Couvreur et al., 2014a). Another approach was followed by Bouda and Saiers 

(2017) who derived an upscaled 1D root water uptake model using a so-called root system architecture stencil that is calibrated 

on solutions of water flow in a 3D root architecture. Bouda (2019) showed recently that the root system architecture stencil 90 

they derived based on solutions of water flow in 3D root system architectures is similar to an analytically exact solution of the 

big root model.  

Both big root and parallel root models are approximations of the real 3D root architecture and the connectivity of the individual 

root segments and topology of the root system may have an important impact on the root system functioning (Bouda et al., 

2018). Analytical solutions of water uptake by single roots, which are represented as ‘porous pipes’ with uniform radial and 95 

axial conductances, demonstrated that water uptake takes place along the entire root length but that due to limiting axial 

conductance, uptake may decrease from the proximal to the distal part of roots (Landsberg and Fowkes, 1978). The solutions 

obtained with these models question assumptions made in parallel root models about negligible axial root resistances or about 

negligible uptake along the root and suggest that a big root model may be a better option. On the other hand, root tissue 

maturation generally leads to a decrease of radial root conductivity towards the older proximal end of roots so that root water 100 

absorbance can be larger near the root tips. A fibrous root system architecture with several lateral roots that are connected at 

the root collar and that take up water near the root tips might be represented better by a parallel root model than by a big root 

model, even when axial resistances cannot be neglected. In case of several parallel root branches, the xylem water potentials 

may differ between the different branches at a given depth and a big root model is not able to account for these variations in 

xylem water potentials.  105 

Upscaling of water flow in 3D root architectures to models that describe 1D root water uptake profiles in soils is crucial to 

implement root hydraulics in land surface models that describe exchanges of water and energy between the land surface and 

the atmosphere at catchment, continental and global scales. Also for crop models, which predict crop growth and yield at the 

field scale, an upscaling to 1-D uptake profiles is necessary. Root hydraulics has been implemented in 1D land surface models 

using big root or parallel root models to represent emerging processes like hydraulic redistribution and root water uptake 110 

compensation, which have an important impact on transpiration, assimilation and biogeochemical cycles during dry spells and 

seasons (Quijano et al., 2013;Liu et al., 2020). Yan and Dickinson (2014) and Fu et al. (2016) implemented the parallel root 

like model of Ryel whereas Tang et al. (2015) implemented a big root model. Kennedy et al. (2019) implemented a parallel 

root model in CLM and Sulis et al. (2019) implemented an approach proposed by Couvreur et al. (2012), which is for a certain 

parameterization equivalent to a parallel root model. Nguyen et al. (2020) demonstrated that differences in drought stress and 115 

crop growth in different soils with different soil hydraulic properties could be predicted by a crop model that considers root 

hydraulics whereas commonly used empirical relations failed. Root hydraulics are also important to describe the interaction 

of different species that share the same soil volume . Quijano et al. (2012) developed a multispecies model that simulates root 

water uptake by different species from a shared soil water reservoir based on their big root model. Each species was represented 

by its own big root model and the different big root models took up water from the shared soil water profile. The model 120 

demonstrated the impact of hydraulic redistribution on the uptake by the different species and their mutualistic dependencies. 

Water taken up deep in the soil profile by deep rooting trees was released in the shallower soil layers where it could be accessed 
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by shrubs or understory vegetation. Similar conclusions were drawn by Manoli et al. (2014) and Manoli et al. (2017) using a 

parallel root system model. Although all models reproduced the impact of root hydraulics on ecosystems fluxes, a model 

comparison by Zhu et al. (2017), who compared Ryel’s model with a big root model and an empirical root water uptake 125 

compensation model, highlighted that different models led to fairly different results. However, the nature of these differences 

is not well understood.  

The objective of this paper is to derive with a bottom-up approach an exact upscaled 1D model that describes root water uptake 

considering the hydraulics of the 3D root architecture and that could readily be implemented in land surface models. The model 

will be compared with parallel root and big root models that are currently used in 1D models. In order to interpret the models 130 

and their differences, we will cast in a first part the solutions of the models in a form that uses two hydraulic root system 

characteristics: the root system conductance and the root water uptake distribution for a uniform soil water potential or 

hydraulic head distribution. This was already done for a parallel root system by Couvreur et al. (2012) but an exact formulation 

of root water uptake in terms of these characteristics for a general root system model, including a 3D root model and its 

upscaled version and a big root model, is still missing. We will show that these characteristics are for all models sufficient to 135 

describe the total root water uptake as a function of soil and collar water potentials or hydraulic heads. We will further show 

that these root system characteristics fully define the parallel root model. Additional terms or factors in the equation for the 

exact root system can be used as diagnostics of the deviation between the parallel root system model and the exact 3D model 

or its upscaled version due to differences in root system topology. A second consequence of the parallel root model being fully 

defined by the two root hydraulic characteristics is that it can be parameterized straightforwardly in a bottom-up approach. In 140 

a second part, we will compare the upscaled exact model with the parallel and big root models that can be parameterized in 

two different ways: a top-down parameterization in which parameters are derived from the root segment distribution and root 

segment hydraulic parameters assuming a-priori big root or parallel root topologies, versus a bottom-up parameterization of 

the parallel root model that uses exact hydraulic root system characteristics obtained from solving the flow equations in the 

3D hydraulic root architecture (Figure 1). For the parallel root system model, we can evaluate to what extent the simulated 145 

uptake is impacted by the simplified root system topology while using exact hydraulic root system characteristics. First, the 

models will be compared for a very simple hypothetical root system that represents a hybrid form of the two ‘asymptotic’ root 

architectures (parallel root versus big root model). Second, the models will be compared for single roots with realistic 

distributions of root segment properties and for realistic root architectures of plants with a tap root or a fibrous root system. 

The objective of this paper is to derive with a bottom up approach a model that describes root water uptake considering the 150 

hydraulics of the 3D root architecture. This model will be scaled up to a 1D model that could be readily implemented in land 

surface models. The model will be compared to currently used parallel root and big root models that are parameterized using 

a top-down approach (Figure 1). In a first part, the model will be demonstrated for a very simple hypothetical root system that 

represents a hybrid form of the two ‘asymptotic’ root architectures (parallel root versus big root model). In a second part, the 

model will be demonstrated for single roots with realistic distributions of root segment properties and realistic root 155 

architectures of plants with a tap root or a fibrous root system. 
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 57 

Figure 1: Bottom-up approach versus top-down approaches for a parallel and a big root system model to derive and parameterize 58 
an upscaled one dimensional root water uptake model. 59 
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2 Set up of equations 160 

  

The flow into and within a single root can be described using the porous pipe model (Landsberg and Fowkes, 1978) with the 

following equation: 

 2x
x r soil x

dHd
k rk H H

d d
  

 
 

[1] 

where  [L] is the local axial coordinate of the root, kx (L3 T-1) and kr (T-1) are the intrinsic axial and radial root segment 

conductances, r [L] is the root segment radius, and Hx (L) and Hsoil (L) are the hydraulic heads of the water in, respectively, 165 

the xylem and the soil in contact with the root, which include both the pressure potential and the elevation potential. Intrinsic 

conductances refer here to properties of the root segments that are independent of the axial discretization that we use to solve 

the equation. We can discretize this equation for a root system network that consists of Nroot root segments (edges) that are 

connected with each other in nodes (vertices). The entire systemnetwork is connected to an extraone outlet node that represents 

the root collar where the hydraulic head, Hcollar, or the flux boundary condition is defined.  These root nodes are connected by 170 

Nroot soil-root segments to Nroot soil nodes. The entire system is connected to an extra outlet node that represents the root collar 

where the hydraulic head, Hcollar, or the flux boundary condition is defined. Since branches of a root architecture do not re-join 

distally (further away from the collar), there is only one segment that connects a certain node with the proximal (closer to the 

collar) part of the root system or each node is the distal node of only one element (except for the collar node). Therefore, the 

network of Nroot root segments connects Nroot root nodes with each other and the root collar. The root nodes (but not the collar 175 

node), are connected by Nroot soil-root segments to Nroot soil nodes.  The total number of segments (root segments connecting 

root nodes and soil-root segments connecting root with soil nodes) is 2Nroot. The total number of nodes in this system, including 

the collar node, is 2Nroot+1. Each root node (except the collar node) can be linked uniquely to two segments: a root segment 

that connects the node to the proximal part of the root system and a soil-root segment that connects the node to the soil. The 

axial conductance Kx[i] (L² T-1) of the proximal root segment and the radial conductance of the soil-root segment Kr[i] (L² T-180 
1) connected to the ith root node are defined as: 

   
 

x
x

k i
K i

l i
  

[2] 

       2r rK i r i l i k i  [3] 

where l[i] (L) is the length and r[i] (L) the radius of the proximal root segment connected to the ith root node. The 

transpiration stream to the collar, T (L³ T-1), the xylem hydraulic heads, and the fluxes from the soil to the root nodes Q (L³ 

T-1) are obtained from solving the Laplacian matrix on of the weighted directed graph of soil and root nodes, which is the 

discrete representation of the flow equation in the porous pipe root system: 185 

( )
collarH T

diag

   
           
     

T
x

soil

IM K IM H 0

H Q

 

[4] 

where IM is the (2Nroot +1 x 2Nroot) incidence matrix of the graph with 2Nroot +1 nodes and 2Nroot segments. The rows of the 

incidence matrix represent the nodes of the graph and the columns the segments. The first row represents the root collar, the 

next Nroot rows the root nodes and the last Nroot rows the soil nodes. The first Nroot columns represent the root segments and the 

last Nroot columns soil-root elements. IM[i,j]=1 when node i is a distal node of element j, IM[i,j] = -1 when i is proximal node 

of element j and IM[i,j]=0 otherwise. Hx is the Nroot vector with xylem hydraulic heads in the root nodes and Hsoil the Nroot 190 

vector with the soil water hydraulic heads in the soil nodes. diag(K) is a diagonal conductivity matrix with the first Nroot 
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diagonal elements representing the xylem conductivities and the last Nroot elements the radial conductances. 0 is an Nroot vector 

with zeros and Q is the Nroot vector with fluxes from the soil nodes to the root nodes. The derivation of Eq. [4][4] is 

demonstrated in the appendix. The first equation represents the total transpiration stream out of the network as a function of 

the hydraulic heads in the root collar and the root nodes connected to the collar and the axial conductances of the root segments 195 

connected to the root collar. The next Nroot equations close the water balances in root nodes and from solving these, the xylem 

hydraulic heads in the root nodes are obtained. The last Nroot equations yield the fluxes Q from the soil nodes to the root nodes. 

Plugging the obtained xylem hydraulic heads in the last Nroot equations, the fluxes towards each root node are obtained from 

Eq. [4][4] (see Appendix) as: 

collarH 4 soil 5C H C Q  [5] 

where C4 (L² T-1) is an Nroot x Nroot symmetric matrix and C5 (L² T-1) an Nroot x 1 column. The relations between C4, C5, the 200 

root segment conductivities (stored in diag(K)) and the segment connections (defined in the incidence matrix IM) are given 

in Table 1Table 1. This equation can be written in another form that uses macroscopic characteristics of the root system: the 

root system conductance, Krs (L² T-1), and the standard uptake fraction vector SUF (Nrootx1) of the root system nodes that 

were introduced by Couvreur et al. (2012). Krs relates the total root water uptake to the difference between an average or 

effective soil water hydraulic head, Heff (L) and Hcollar:  205 

 rs eff collar
i

T K H H  Q  [6] 

SUF[i] represents the fraction of the total uptake by the ith root node for a uniform Hsoil. In the appendix, we derive that Heff 

corresponds with the SUF-weighted average of Hsoil:: 

T
effH  soilSUF H  [7] 

Eq. [7][7] implies that the effective soil water hydraulic head depends more strongly on soil water hydraulic heads where the 

root system takes up more water when the soil water hydraulic head is uniform. Eqs. [6] and [7] imply that Krs and SUF are 

sufficient root system properties to calculate the total root water uptake. Using these macroscopic root system characteristics, 210 

Eq. [5][5] can be rewritten as: 

   4rs eff collarK H H   soil effQ SUF C H H  [8] 

where Heff is a (Nrootx1) vector filled with Heff. The derivation of Eq. [8][8] is given in the appendix and we summarize the 

main properties of the equation here. The first term on the right-hand side of Eq. [8][8] represents the uptake from the soil 

profile when the soil water hydraulic head is uniform and equal to Heff. The definition of Heff as the SUF-weighted average of 

Hsoil makes that the sum of the fluxes of the second term of the right hand side of Eq. [8][8] becomes zero (see Eq. [A 33][A 215 

33]). The second term on the right-hand side represents the increase (decrease) in amount of water that is taken up by a root 

node that is connected to soil node where Hsoil is higher (lower) than Heff. This second term represents the compensatory uptake 

and we name the C4 matrix the compensatory matrix. Of note is that the second term only depends on the hydraulic root 

architecture (defining C4 and SUF) and on the soil water hydraulic head distribution. It neither depends on the water potential 

at the root collar nor on the transpiration rate. As a consequence, root water uptake compensation changes over time only due 220 

to changes in the soil water hydraulic heads but not due to e.g. diurnal changes in transpiration rate. In Table 1Table 1, relations 

between Krs, SUF, C4, Heff and the root hydraulic architecture are given. 
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Table 1: Equations to calculate the root system hydraulic conductance, Krs, the standard uptake fraction, SUF, the compensatory 
uptake matrix, C4, from the hydraulic root architecture.  225 

( )diag   T
collarC IM K IM   2 1 2 1root rootN x N   [9] 

 ,C i j1C  for i=2,…,Nroot+1, j=1 [10] 

 2 ,C i jC  for i=2,…,Nroot+1, j=2,…,Nroot+1 [11] 

 3 ,C i jC  for i=2,…,Nroot+1, j= Nroot+2,…,2Nroot+1 [12] 

 1( ) root rootdiag N xN   4 r 2 3C K I C C  [13] 

5 4[ ] [ , ]
j

C i C i j   [14] 

 4 ,rs
i j

K C i j  [15] 

 
4

4

[ , ]

[ , ]
j

i j

C i j

SUF i
C i j





 

[16] 

 

Krs and SUF can be calculated directly from the compensatory matrix C4. In the following, we will present a reformulated 

form of Eq. [8][8] that resembles the equation that is obtained for a parallel root system. For the derivation, we refer to the 

appendix and we focus here on the results. 

As is derived in the appendix, the matrix C4 in Eq. [8][8] can be ‘factorized’ in a product of two diagonal matrices: one with 230 

a diagonal that is equal to the SUF vector and one with a diagonal that represents a ‘compensatory conductivity vector’ Kcomp; 

and one matrix C7 which is close to the identity matrix I: 

       rs eff collarK H H diag diag   comp 7 soil effQ SUF K SUF C H H  [17] 

The diagonal elements of C7 are 1 and for each row of C7, the sum of the off-diagonal elements is equal to zero. To explain 

the meaning of Kcomp and how it is related to Krs in the parallel root system model, we consider a soil water hydraulic head 

distribution that is uniform except for one node i where the hydraulic head is H higher than in all other nodes (Hsoil[j] = Hsoil[i] 235 

- H for all j ≠ i). We furthermore put Hcollar equal to Heff so that there is no net uptake but only redistribution of water through 

the root system. Then the flow from node i to all other nodes in the root system, Q[i], is: 

  [ ]compQ i k i H    [18] 

where kcomp[i] (L³ T-1) represents the conductivity of the root system to transfer water from all other root elements to the root 

node i. From the definition of Heff, it follows that: 

    
   

1soil eff

soil eff

H i H SUF i H

H j H SUF i H for all j i

   

    
 

 

[19] 

Using this Hsoil-Heff in Eq. [17][17], it follows from the soil hydraulic heads Hsoil[j] being all the same for the soil nodes j 240 

different from i and from the the fact that the sum of the off-diagonal elements of a row in C7 summing up tois zero and that 

the soil hydraulic heads Hsoil[j] are all the same for the soil nodes j different from i, that: 
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        1compQ i SUF i K i SUF i H     [20] 

By comparing Eqs. [18][18] and [20][20], we find that SUF[i](1-SUF[i]) Kcomp[i]=kcomp[i]. 

For a root system in which all root nodes are connected in parallel to the root collar, kcomp[i] is equal to the equivalent 

conductance of a serial connection of a conductance from root node i to the collar, which is SUF[i] Krs, with a conductance 245 

from the collar to all other nodes, (1- SUF[i]) Krs : 

              
111

1 1comp rs rs rsk i SUF i K SUF i K SUF i SUF i K


      
[21] 

This implies that for a parallel root system, Kcomp = Krs. It can further be shown that C7 is the identity matrix for a parallel root 

system (see appendix) so that Eq. [8][8] can be written as: 

    rs eff collar rsK H H K diag   soil effQ SUF SUF H H  [22] 

The parallel root system is fully defined by the SUF and Krs and the compensatory uptake is defined when the uptake 

distribution from a soil profile with a uniform soil water hydraulic head is known. This implies that any root system can be 250 

represented by a parallel root system with the same SUF and Krs that simulates the same total root water uptake for any 

distribution of soil water hydraulic heads. However, comparing Eq. [22] with Eq. [17] shows that the compensatory uptake 

between the root system and its parallel root analogue differs and that diag(Kcomp) and C7 can be used as diagnostics for the 

difference in compensatory uptake. For the general root system, we find that Kcomp[i] is larger than Krs. This means that for a 

certain H between soil node i and all other nodes, there is more redistribution in the general root system than in the parallel 255 

root system. In the general root system, the flow from one soil-root interface to another soil-root interface does not always 

have to pass through the collar but can take a shorter way. A negative value of C7[i,j] means that for a given hydraulic head 

difference between two nodes i and j, there is more redistribution between node i and j than the average redistribution for this 

head difference between node i and another node than node j of the network. This means that node i is stronger than average 

connected to node j. 260 

3 Upscaling: 

From the matrix equations, it follows that the upscaling of the relations between the uptake rates Q and soil water hydraulic 

heads Hsoil is trivial for cases when the soil water hydraulic heads are uniform in certain regions of the soil. When we assume 

that the soil water hydraulic heads do not change in the horizontal direction, then we can simply group and sum up all SUF 

values for the soil root nodes that are in the same soil horizontal soil layer and derive an upscaled SUF vector that describes 265 

the relative uptake from each soil layer when the soil water hydraulic heads are uniformly distributed (Couvreur et al., 2014a) 

(Figure 2Figure 2). The upscaled matrix C4 that is multiplied by a vector of soil water hydraulic heads in the different soil 

layers is simply obtained by: 

   4, 4, ,
i j

upscaled
k layer l layer

C i j C k l
 

    [23] 

The dimensions of the upscaled matrices are reduced so that the number of equations that need to be solved is reduced to the 

number of layers in which the soil water hydraulic heads are uniform. This implies a massive reduction in the computational 270 

cost compared with the cost of solving equations for a large number of root segments that make up a 3D root architecture. 

Under the assumption that the soil water hydraulic heads are constant within a layer, the obtained equations are exact, 

independent of the soil water hydraulic heads, and need to be derived from the large set of equations for a given 3D root 

architecture only once. They can be used afterwards to calculate uptake from the layers for other collar and soil hydraulic 

heads. Based on the upscaled C4 and SUF, the upscaled C7 and Kcomp can be derived. It must be noted that C7 and Kcomp cannot 275 
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be scaled up directly by summing up elements in the C7 matrix and Kcomp vector. When the 3D root architecture is a parallel 

root architecture, then the upscaled model has the same form as Eq. [22] in which the upscaled SUF is used. This upscaled 

model represents an upscaled parallel root system with each root connecting one soil layer with the to the root collar. It should 

be noted that we did not derive an ‘upscaled’ root system topology for the exact model. In the following, we will always refer 

to the upscaled parallel root model. The upscaling was performed here assuming uniform soil water hydraulic heads in the 280 

horizontal direction. It can be applied for any region where soil water hydraulic heads are assumed to be uniform. The upscaled 

parallel root model then represents a root system with parallel roots that each connect one region with the root collar.  

 

Figure 2: Upscaling of the SUF and C4 matrix by simply taking the sum of elements that correspond with nodes where the soil water 
hydraulic heads are the same. Nodes with the same water hydraulic heads are grouped in layers and are marked with the same 285 
color. The elements of the marked blocks of the Q and SUF vectors and in the C4 matrix are summed up.  

4 Demonstrations: 

In order to demonstrate the model, its upscaling, and comparison with big root and parallel root approximations, we considered 

in a first step an abstract ‘hybrid’ parallel-big root system, which is a mixture of the parallel and big root systems. It consists 

of three parallel branches of different length that each take up water along their length and not only at the root tip as supposed 290 

in the parallel root system. Since the water fluxes in each of the three branches are different because of their different length, 

the water hydraulic heads in the xylem at a given depth differ between the three roots even when the soil water hydraulic heads 

do not vary at a given depth. Therefore, this ‘hybrid’ root system represents an intermediate model that matches with neither 

the parallel root nor the big root model perfectly. This model should demonstrate the upscaling and the difference between the 

approximate models. We used a dummy parameterization of the root hydraulic properties and of the vertical distribution of the 295 

soil water hydraulic heads (i.e. the parameters were chosen to represent certain differences but the actual values of the 

parameters and their units were not of interest). We considered a case in which all the root segments had the same radial 

conductance and a case in which the radial conductance at the root tips were a factor 10 larger.  

In a second step, we considered a single root with either constant or changing root hydraulic parameters along the root axis.  

In a third step, we considered root systems that correspond in terms of complexity and parameterization to more realistic root 300 

systems and represent three different crops: grass, maize and sunflower.  
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4.1 Simple hybrid root system: 

a) Hybrid parallel-big root system 

  

b) Big root  

  

 
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c)Parallel root with bottom up parameterization 

 

d) Parallel root with top down parameterization 
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Figure 3: Resistance nets representing the hybrid parallel-big root system consisting of three primary root branches of different 
length a); and approximations by: the big root model b); the parallel root model using a bottom up parameterization c); and the 
parallel root model with a top down parameterization d). The closed circles represent root nodes and the open circles soil nodes; the 305 
brown and green resistors represent radial and axial root segment conductances, respectively. The approximate models describe 
upscaled root water uptake from 4 depths. The SUFbr, Krs,br, Kcomp,br and C7,br of the big root model are calculated from the segment 
axial and radial conductances that are arranged following the big root topology in parallel within a soil layer from which upscaled 
big root segment conductances Kr,up,br and Kx,up,br are calculated (top down parameterization). The SUF and Krs of the parallel root 
model with bottom up parameterization c) are matched to those of the upscaled hybrid model by adapting the axial conductance 310 
Kx,up,eff of the segment that connects the xylem node at a certain depth to the collar node. The SUF of the parallel root model with 
top down parameterization assuming infinite Kx,up d) is derived from the distribution of radial root segment conductances with 
depth, which are scaled to Kr,up,eff so that Krs matches that of the hybrid root system. The equations below the resistance nets 
represent the equations that calculate the upscaled water uptake Q in a horizontal layer.  

Figure 3Figure 3 a) shows the hybrid parallel-big root system that consists of three primary root branches of different length 315 

which take up water from up to 4 different depths. This root system was scaled up to a model that describes uptake from the 4 

depths assuming that the soil water hydraulic head is uniform at a given depth (the exact model). The upscaled SUF, which 

represents the uptake by all root segments at a certain depth, was equal to the sum of the SUFs of the individual root segments 

at that depth. The upscaled hybrid parallel-big root system model was approximated by parallel and big root system models. 
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The big root approximation assumes that the root segments are organized and connected following the a-priori defined big 320 

root architecture so that the upscaled axial Kx,up,br and radial Kr,up,br conductance in a certain layer is the sum of the axial and 

radial conductances of the individual root segments in that layer (Figure 3Figure 3 b). Since we assume a-priori a certain 

topology of the root segments and parameterize the model directly based on the number of root segments in a soil layer and 

their properties (radial and axial conductances), we called this a top down parameterization. For the parallel root 

approximation, we considered a root system with the same SUF and Krs as the upscaled hybrid model (Figure 3Figure 3 c). 325 

For a given distribution of radial conductances, Krs and SUF can be defined by adapting an upscaled effective Kx,up,eff of virtual 

root branches that connect a certain depth with the root collar. This parameterization, which is based on calculations for the 

3D hydraulic root architecture, corresponds with a bottom up parameterization. For the upscaled parallel root model, the 

number of parameters that needs to be defined is equal to the number of soil layers, ndepths: ndepths Kx,up,eff values or Krs and 

ndepths-1 SUF values (sum of SUF =1). In contrast, the big root model requires 2 ndepths parameters. Unlike for the parallel 330 

root system, there is no simple relation between Krs and SUF on the one hand and the compensatory uptake term on the other 

for the big root model. Therefore, the structure of the big root model does not lend itself to calculating its parameters directly 

from characteristics of the 3D hydraulic root architecture in a bottom up approach. The third model that we considered is a 

parallel root model with an infinitely large axial conductance (Kx,up = ∞) in which the SUF is derived in a top down approach 

directly from the distribution of the upscaled radial conductances, Kr,up,eff, with depth. The Krs of this root system was adjusted 335 

to the Krs of the hybrid root system, which comes down to a scaling of the radial conductance of all root nodes with the same 

factor.  

We considered two parameterizations of the root hydraulic conductances. In the first case, the conductances of all root 

segments are uniform: Kx=10 and Kr =1. In the second case, the radial root hydraulic conductance is larger at the root tips 

(Kr=1) than in the other parts along the primary roots (Kr=0.1). To evaluate the effect of a non-uniform hydraulic head in the 340 

soil, the soil water hydraulic heads varied from top to bottom as: -0.5, 0, 0.5, 1 and were assumed to be the same for root nodes 

at the same depth. The hydraulic head at the root collar was set to -1. The Krs, SUF and Kcomp and their upscaled values for the 

hybrid root system and the three approximations are given in Table 2Table 2 and Table 3Table 3 for the root system with 

homogeneous root segment conductances and for the root system with higher radial conductances at the root tips, respectively. 

The root water uptake profiles that are simulated by the different models for the two parameterizations of the root segment 345 

conductivities are given in Figure 4Figure 4 and Figure 5Figure 5. 

 The parallel root system with a top down parameterization and using the distribution of root segment radial conductances with 

depth to estimate SUF overestimates the SUF deeper in the soil profile and underestimates it at shallower depths. The resistance 

to axial flow reduces the SUF of distal root segments compared to the SUF of more proximal root segments. The big root 

model can better account for the impact of the axial resistance on the SUF. However, the assumption of equal xylem hydraulic 350 

head in all root segments at a certain depth leads to an underestimation of the SUF of the proximal root segments (Table 2Table 

2) . This underestimation was not important when the radial conductance was larger near the root tips (Table 3Table 3).  

For a non-uniform distribution of the soil water hydraulic head, which increased with depth, the uptake at greater depths 

increased and that at shallower depths decreased as compared to the uptake under uniform soil water hydraulic head (Figure 

4Figure 4 and Figure 5Figure 5). All models reproduced this compensation of root water uptake. The parallel root model with 355 

bottom up parameterization, which used the exact root system SUF and Krs, underestimates the root water uptake compensation 

whereas the big root model overestimates it. The parallel root model uses Krs to calculate the compensatory uptake and Krs was 

smaller than Kcomp. (Table 2 and Table 3). The big root model overestimates the compensation since it assumes that all root 

segments in a certain layer are directly connected to all the root segments in the overlying or underlying layers and that the 

xylem hydraulic heads are the same in all root segments at a certain depth. This implies that redistribution of water between 360 

the soil layers via the root system can occur directly without flow having to pass the collar first before it returns to another 

layer. The Kcomp that is derived for the big root model is only slightly higher, except for the deepest root node, than the Kcomp 
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of the exact model. The larger uptake from the deeper layer simulated by the big root model is therefore linked to the larger 

SUF in the deeper soil layers. This is also the case for the parallel root model with bottom up parameterization for which the 

higher SUF at greater depths in combination with higher soil water hydraulic heads at greater depths led to a larger simulated 365 

water uptake.  

Also of interest is that the upscaled Kcomp values are not equal to the average of the Kcomp values of the root nodes in a soil 

layer. For the top layer, the upscaled Kcomp is even larger than the largest Kcomp value of the three primary root branches. Smaller 

radial conductance away from the root tips led to a root system that behaves more like a parallel root system (Figure 5Figure 

5). This is reflected in the Kcomp values that are closer to Krs and the C7 matrix that is closer to the identity matrix than the C7 370 

matrix of the hybrid parallel-big root system with uniform root segment hydraulic properties (Table 3Table 3). The higher 

radial root segment conductances near the root tips make that water transfer between two soil layers through  root tips in these 

soil layers, which passes via the root collar, is more efficient than water transfer between a root tip segment and a root segment 

with lower radial conductance that is directly connected to it. In the big root model, the root tip segment with higher radial 

conductance in one layer is assumed to be directly linked to the root tip segment in another layer so that the water flow between 375 

these layers occurs more efficiently than via the root collar. This is reflected in the higher Kcomp and the larger deviation of the 

C7 matrix from the identity matrix for the big root model than for the hybrid parallel-big root model, which leads to an 

overestimation of the root water uptake compensation by the big root model.  

 

Figure 4: Upscaled water uptake profile (left axis) and soil water potential distribution (right axis, red line) for the hybrid parallel-380 
big root system with constant radial conductances along the primary root branches; the parallel root model with bottom up 
parameterization (SUF and Krs derived from exact model); the big root model; and the parallel root model with top down 
parameterization. 
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 385 

 

Figure 5: Upscaled water uptake profiles (left axis) and soil water potential distribution (right axis, red line) for the hybrid parallel-
big root system with radial conductances along the primary root branches that vary along the branches (radial conductance is 1 at 
root tips and 0.1 at other nodes); the parallel root model with bottom up parameterization (SUF and Krs derived from exact model); 
the big root model; and the parallel root model with top down parameterization. 390 
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Table 2: Krs, SUF, Kcomp and upscaled values and C7 matrices for the hybrid parallel-big root system with constant Kr along the 
roots , the big root system and the parallel root system (with infinite Kx)  using top down parameterization 

 Hybrid Parallel-Big root  Big root 

(top down) 

Parallel 

(top down) 

 Kr=1, Kx=10, Krs= 6.0147  Krs= 6.1122 Inf Kx,  

Krs= 6.0147 

 Prim. root 1 Prim. root 2 Prim. Root 3 Upscaled   

Depth SUF SUF SUF SUF SUF SUF 

1 0.1396 0.1319 0.1273 0.3988 0.3908 0.3333 

2 0.1269 0.1108 0.1010 0.3387 0.3299 0.3333 

3  0.1007 0.0848 0.1855 0.1920 0.2222 

4   0.0771 0.0771 0.0873 0.1111 

 Kcomp Kcomp Kcomp Kcomp   

1 6.65 7.13 7.44 7.52 7.68  

2 6.70 7.98 8.94 8.41 8.65  

3  8.09 10.09 9.35 9.39  

4   10.26 10.26 10.00  

C7 matrix of the upscaled hybrid parallel-big root system 

1 0 0 0 

0.042 1 -0.030 -0.012 

0.078 -0.014 1 -0.064 

0.106 0.017 -0.123 1 

C7 matrix big root system 395 

1 0 0 0 

0.044 1 -0.030 -0.014 

0.071 -0.022 1 -0.050 

0.091 0 -0.091 1 
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Table 3: Krs, SUF, Kcomp and upscaled values and C7 matrices for the hybrid parallel-big root system with variable root radial root 
segment conductances along the roots (Kr=0.1 along roots except at root tip Kr=1), for the big root system, and for the parallel root 
system (with infinite Kx) using top down parameterization 400 

 Hybrid Parallel-Big root  Big root 

(top down) 

Parallel 

(top down) 

 Kr=1, Kx=0.1, Krs= 2.7673  Krs= 2.7673 Inf Kx,  

Krs= 2.7673 

 Prim. root 1 Prim. root 2 Prim. root 3 Upscaled   

Depth SUF SUF SUF SUF SUF SUF 

-1 0.0328 0.0328 0.0328 0.0984 0.0984 0.0833 

-2 0.2984 0.0298 0.0298 0.3580 0.3576 0.3333 

-3  0.2709 0.0270 0.2979 0.2979 0.3056 

-4   0.2457 0.2457 0.2462 0.2778 

 Kcomp Kcomp Kcomp Kcomp   

-1 3.0274 3.0295 3.0313 3.0485 3.0485  

-2 2.8067 3.3170 3.3213 2.9419 3.3373  

-3  2.8815 3.6389 2.9847 3.5590  

-4   2.9892 2.9892 3.5898  

C7 matrix of the upscaled hybrid parallel big-root sytem 

1 0 0 0 

-0.004 1 0.002 0.002 

-0.002 0.007 1 -0.005 

-0.002 0.008 -0.006 1 

C7 matrix of the big root system 

1 0 0 0 

0.009 1 -0.005 -0.004 

0.014 0.017 1 -0.031 

0.015 0.02 -0.035 1 

4.2 Single root branches 

We considered two single root branches, one with homogeneous (intrinsic) root segment conductances (kx= 0.171 cm³ d-1, kr= 

1.81 10-4 d-1) and one with conductances that changed along the root axis due to maturation of the root tissue (Figure 6Figure 405 

6). This generally leads to an increase in axial conductance and a decrease in radial conductance with age or distance from the 

root tip (Doussan et al., 1998;Doussan et al., 2006;Zarebanadkouki et al., 2016;Couvreur et al., 2018;Meunier et al., 2018b). 

The “reference “ exact model was a 50 cm long root discretized in 0.5 cm long root segments.  

The collar water hydraulic head was assumed to be -4000 cm and the soil water hydraulic head varied linearly between -3000 

cm at the soil surface and 0 cm at the lowest depth of the root system. The upscaled model considered 2 cm long segments.  410 

As expected, the big root system matches nearly perfectly with the exact model (Figure 7Figure 7). The deviations are due to 

the upscaling and the variations of soil water and xylem hydraulic heads along a root segment that is represented by a single 

node (Bouda, 2019). Nevertheless, the close agreement indicates that the 0.5 cm discretization of the root approximates the 

exact solution of the flow equation in the single root well. Details on the convergence of this discretization and on exact 

solutions for arbitrary root segment sizes (given that the soil water potentials do not vary along the root segments) are given 415 
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by Meunier et al. (2017b);Meunier et al. (2017c). For large root segment sizes or small Kx, when the discrete approximation 

becomes inaccurate, exact solutions can be implemented in a complex root architecture (see Bouda (2019)) but this should 

lead to a different coefficient matrix C4 and C5 vector. The parallel root model with a top down parameterization that derives 

the SUF based on the radial root segment conductances assuming an infinite Kx overestimates the SUF in the distal part of the 

root since the impact of the axial resistance to flow is not considered. For a larger soil water hydraulic head near the distal end 420 

of the root, the overestimation of the SUF in this region results in an overestimation of the root water uptake from the deeper 

soil and an overestimation of the apparent root water uptake compensation. The opposite is the case for the parallel root system 

with a bottom up parameterization, which uses the exact SUF. This model underestimates the uptake near the distal end of the 

root due to an underestimation of Kcomp by the parallel root model. However, for a root with non-uniform root segment 

conductances, uptake simulated with this parallel root system represents nearly perfectly the exact uptake and even slightly 425 

better than the big root system. Even for a single root, which can be considered to be a ‘perfect’ big root system, the parallel 

root model may perform quite well when it uses the exact SUF. This is even better when root segment conductivities vary 

along the root. The Kcomp profiles and C7 matrices, which are shown for the two root systems in Figure 8Figure 8, may be used 

as diagnostics of the approximation of the root water uptake by the parallel root model. Rather than the absolute values of the 

ratios of Kcomp/Krs and of the entries in the C7 matrix, the distributions of these values along the root profile seem to indicate 430 

whether a parallel root model can describe the uptake profile. For the root with uniform root segment conductances, larger 

values of Kcomp/Krs and off-diagonal entries in C7 that deviated from zero were distributed more over the entire root length 

whereas for the root with non-uniform root segment conductivities, these larger values and deviations where concentrated near 

the root tips.  
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 435 

 

 

Figure 6: Radial (left), kr, and axial (right), kx, intrinsic root conductances for the single root (top) and root system architectures 
(bottom). For the single root, conductances are plotted versus depth and for the root system architectures versus root segment age. 
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a) 

 

b) 

c) 

 

d) 

Figure 7: Standard uptake for homogeneous soil water potential (SUF) (a,b) and root sink term for a linear increase of water 
potential with depth (c,d) of a single root branch with uniform (a,c) and age dependent (b,d) root segment conductances. 
Approximations are calculated for the parallel root with a bottom up parameterization using the exact SUF and Krs, the big root 
model, and parallel root model with a top down parameterization with SUF estimated from the radial root segment conductivities. 
Sink terms are divided by the thickness of the soil layer, 2cm, over which the root segment sink terms are summed.  445 
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a) b) 

Figure 8: C7 matrices and profiles of the ratio of Kcomp/Krs of the exact single root model with uniform (a) and non uniform (b) root 
segment hydraulic conductances along the root. The labels on the axes of the C7 matrices represent the root segment numbers, which 
increase from the proximal to the distal end of the root, i.e. from top to bottom. For visualization, the diagonal elements of the C7 
matrix were set to 0.  450 

4.3 Realistic root systems: 

We generated root systems of three different plants: maize, sunflower and grass using the CRootBox shiny app 

(https://plantmodelling.shinyapps.io/shinyRootBox/) (Schnepf et al., 2018). The grass root system with several primary roots 

and few laterals may represent a parallel root system. The maize root system with several primary roots that each take up water 

along their axis by lateral roots may represent a hybrid parallel big root system whereas the sunflower root system with a single 455 

main root and several lateral roots might rather represent a big root system (Figure 9Figure 9). The intrinsic radial and axial 

root segment conductances depended on the root order and varied with age (Figure 6Figure 6). We assumed that this relation 

between root age and segment conductance did not vary between the crops. It should be noted that the root architectures and 

intrinsic root segment conductances were chosen to illustrate the difference between the different root water uptake modeling 

approaches for more realistic root systems. However, the derived root system characteristics should not be interpreted as the 460 

characteristics of a certain crop. As for single root branch simulations, the collar water potential was -4000 cm, the soil water 

potential at the soil surface -3000 cm and 0 cm at the maximal rooting depth of the root system. The SUF and root water uptake 

distributions were scaled up to and derived for 2cm thick horizontal soil layers yielding 1D vertical profiles.  

For the parameterization of the big root model, we calculated the axial conductance of the big root for each soil layer i, Kx,up,br[i], 

from the length, orientation, and intrinsic axial conductances of all the root segments in that layer as follows. First we calculated 465 

an ‘effective’ intrinsic axial conductance for flow in the vertical direction in the ith soil layer, kx,eff,[i] 

 
      

 ,

cos x
j

x eff

j

l j j k j

k i
l j






 

[24] 

where [j] the angle of the segment with the vertical and j the indices of root segments in layer i. To obtain Kx,up,br[i] we 

multiplied the effective intrinsic axial conductance by the number of roots that cross the layer and divided it by the layer 

thickness. The number of roots that cross the layer i is calculated from the sum of the vertical increments of the root segments 

divided by the layer thickness so that we obtained: 470 
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[25] 

The radial conductance of the big root system in layer i, Kr,up,br[i] was calculated by simply adding up the radial conductances 

of the root segments. 

For the parallel root system with bottom up parameterization, we used the SUF and Krs values of the exact upscaled model. 

For the parallel root model with the top down parameterization, assuming an infinite Kx, the SUF was be directly calculated 

directly from the distribution of the radial root segment conductances that were upscaled as in the big root model: 475 

   
 

, ,

, ,

r up br

r up br
i

K i
SUF i

K i



 
[26] 

To account for the effect of resistance to axial flow, the exact Krs is used in the top-down parameterized parallel root model. It 

should be noted that Eqs. [24][24], [25][25], and [26][26] use information about root segments such as their orientation, 

age and root type dependent conductance, and surface which is mostly not used or available to parameterize macroscopic 

hydraulic root water uptake models. Mostly, the root segment conductances and root radii are assumed to be constant so that 

root length density is used to estimate the hydraulic properties. Since we focus in this paper on the differences between different 480 

model structures, we used the more detailed information to avoid differences due to differences in information that was used 

for parameterization.  

The root system conductances that are estimated from the root segment conductances considering the 3D hydraulic root 

architectures, Krs, or using a big root representation, Krs,br, are given in Table 4Table 4. The root system conductances for 

sunflower are considerably smaller than those of maize and grass. This is attributed to sunflower having only one single tap 485 

(primary) root with a high intrinsic axial conductance (Figure 6Figure 6) versus maize and grass having many primary roots. 

Krs,br is larger than the exact Krs. The top down parameterization of the big root model (Eqs. [24][24] [25][25]) in combination 

with the assumption that the root architecture can be represented by a single big root leads to an overestimation of the root 

system conductance. This was also observed for the simple hybrid big-parallel root model (Table 2Table 2).  

For the grass root system, which consists of several short primary roots with high axial conductance, SUF is almost not 490 

sensitive to the assumed root architecture (Figure 10Figure 10 e). For the maize and sunflower root systems, the parallel root 

system using a top down parameterization and assuming no axial resistance to flow underestimated the SUF at shallower 

depths and overestimated it at intermediate (maize) and deeper (sunflower and maize) depths (Figure 10Figure 10 a,c). Not 

considering axial resistance to flow leads to an overestimation of the uptake capacity of the distal ends of roots, especially 

when the axial conductivity decreases and the radial conductance increases towards the root tip (see also Figure 7Figure 7 b). 495 

Depths where the SUF is strongly overestimated correspond with depths with high densities of younger lateral roots. The SUF 

of the big root model corresponded better with the exact SUF. But, in the big root model, the axial resistance to flow from the 

distal ends of the deep primary roots to the collar is apparently overestimated and the SUF in the deeper soil layer 

underestimated. In the big root model, the xylem water potentials in the secondary and primary roots in a certain layer are 

assumed to be equal since it is assumed that all root segments in a layer act in parallel. However, because of the lower axial 500 

conductance of secondary roots (see Figure 6Figure 6) which are connected in series to primary roots, the xylem water heads 

can be considerably higher in the secondary than in the primary roots in a certain layer. Assuming similar xylem water heads 

in secondary and primary roots in a certain soil layer reduces the xylem heads in the secondary roots and generates too much 

uptake by the secondary roots in that layer. An overestimation of uptake in a more ‘downstream’ or shallower soil layer will 

lead to an underestimation in the more ‘upstream’ or deeper layers. These effects may explain the underestimation of the SUF 505 

below approximately 50 cm depth in the maize and sunflower root systems that is compensated by an overestimation in 

shallower depths.  
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The non-uniform soil water hydraulic heads resulted in an increased uptake deeper in the soil profile (compare the shape of 

the SUF and sink term profiles in Figure 10Figure 10). For the grass root system, the sink distributions for the different models 

are very similar. The higher uptake predicted by the big root model is due to the higher Krs,br than the true Krs. For the other 510 

root system models, the differences between the sink term distributions of the exact model, the big root model, and the parallel 

root model with top down parameterization assuming infinite axial conductance are caused by differences in Krs, SUF, and 

compensatory uptake resulting from approximations of Kcomp and the C7 matrix (Figure 11Figure 11). The parallel root model 

with bottom up parameterization that uses the exact Krs and SUF profile but approximates Kcomp by Krs and C7 by the identity 

matrix, predicts almost the same sink term distribution profile as the exact model. This bottom up parallel root model slightly 515 

underestimates the compensatory root water uptake, i.e. too much uptake near the soil surface and too little deeper in the soil 

profile. The exact Kcomp/Krs trace and C7 matrix of the root systems (Figure 11Figure 11) suggest the largest deviations between 

the sink term distributions of the exact model and the bottom up parallel root model for the sunflower root system, which 

corresponds with the results shown in Figure 10Figure 10. The impact of approximations of Kcomp and the C7 matrix on the 

sink term distribution is apparently of second order importance compared to the impact of the estimated Krs (big root model) 520 

and SUF (big root model and top down parallel root model with infinite axial conductance).  

 

Table 4: Root system conductances, Krs and root system conductances of the big root model, Krs,br estimated from root segment 
conductances,  

 Krs (cm²/d) Krs,br (cm²/d) 

Maize 0.0576 0.0781 

Sun flower 0.00555 0.0068 

Grass 0.045 0.0489 

 525 
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a)  

 

b) 

 

c) 

 

Figure 9: Root systems generated with the CRootbox shiny app: a) maize, b) sunflower, c) grass. Colors refer to the root order. 

Z
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a) b) 

c) 

 

d) 

e) f) 

Figure 10: Depth profiles of scaled up Standardized Uptake Fractions (SUF) (a,c,e) and sink term distribution normalized by the 
considered soil layer thickness (2 cm) for a non-uniform soil water potential distribution (-3000 cm at the soil surface and 0 cm at 
the maximal root depth) (b,d, f) for maize (a,b), sunflower (c,d) and grass (e,f) root systems shown in Figure 9Figure 9. 530 
Approximations are calculated for the parallel root with a bottom up parameterization using the exact SUF and Krs, the big root 
model, and parallel root model with a top down parameterization with SUF estimated from the radial root segment conductivities. 
Sink terms are divided by the thickness of the soil layer, 2cm, over which the root segment sink terms are summed.  
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a)

 

b)

 

c)

 

Figure 11: C7 matrices and ratios of Kcomp/Krs of the exact model for the maize a), sunflower b), and grass c) root systems 
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5 Discussion and Conclusion 535 

We analysed the equation that describes water flow in a network of root segments, which constitutes a root system architecture 

(RSA) and reformulated it into a form that lends itself to upscaling and to deriving simpler or parsimonious root water uptake 

models. 

In line with Couvreur et al. (2012), we deduced that the total uptake by a root system is a simple function of a weighted soil 

water hydraulic head and the weights are equal to the water uptake by the RSA in a uniform soil water hydraulic head field. 540 

The root system conductance, Krs, and the uptake distribution for uniform soil water hydraulic head, i.e. the standardized 

uptake fraction SUF, are the two properties of the root system that define the relation between the transpiration, the collar 

hydraulic head, and the distribution of the soil water potentials. This implies that for any distribution of soil water hydraulic 

heads that leads to the same weighted hydraulic head, transpiration rate and collar hydraulic head are uniquely related. 

We found that the uptake distribution is the sum of the uptake for the case of a uniform soil water hydraulic head, i.e. the 545 

weighted hydraulic head, and a correction or compensation term that depends on the difference between the local and weighted 

soil water hydraulic head. Unlike how it is defined in other approaches (Simunek and Hopmans, 2009;Jarvis, 2011), tThis 

compensation term does not depend directly on the collar hydraulic head or transpiration rate, which is a consequence of the 

compensation being a passive redistribution process that is not influenced by the transpiration rate as long as the soil water 

hydraulic heads do not change by the plant water uptake. 550 

When soil water hydraulic heads are assumed to be uniform in certain regions, e.g. in horizontal soil layers, the upscaling of 

the root water uptake model is trivial and leads to the same form as the detailed model. Whether soil water hydraulic heads 

remain uniform during root water uptake depends on spatial distribution of the root segments and on the water redistribution 

in the soil that cancels out spatial variations in root water uptake (Couvreur et al., 2014a). Further work is needed to evaluate 

this assumption and to develop upscaling methods when soil water hydraulic heads cannot be assumed to be uniform in the 555 

horizontal direction. 

 

The simplified root architectures that are used in land surface models (LSM), big root and parallel root models, are special 

cases of RSAs and the root water uptake models for these architectures can be cast in the same form as the model for a general 

RSA. For the parallel root model, we could show that the root water uptake model is fully defined by the Krs and SUF of the 560 

root system. Krs and SUF of the parallel root system model that is used in a 1D LSM assuming horizontally uniform soil water 

hydraulic heads can be derived directly and exactly from upscaled Krs and SUF of a general root system. The impact of the 

root segment connections and their root hydraulic properties are directly represented in the Krs and SUF, which can be 

calculated and scaled up without making any simplifying assumptions about the RSA. The bottom-up approach to parameterize 

a parallel root model from 3D RSA models is therefore straightforward. For the big root model, we could not find such a 565 

simple relationship and upscaling was carried out by first deriving the effective conductances of the big root segments based 

on the intrinsic conductances of the root segments in a certain layer. From the obtained big root model conductances, Krs and 

SUF were derived. Since the derivation of big root conductances cannot account exactly for the 3D RSA and its hydraulic 

properties, the obtained Krs and SUF for the big root model are approximations. Another approach that could be pursued is to 

derive upscaled Krs and SUF directly from the 3D RSA (as was done for the parallel root model) and fit the conductances of 570 

the big root model. However, for each layer, only one SUF value is available whereas two conductances (radial and axial) need 

to be estimated for the big root segment in that layer. This implies that more information about water uptake by the 3D RSA 

is required, such as compensatory uptake, in order to parameterize the big root model conductances. The big root model lends 

itself less for a bottom-up parameterization approach than the parallel root model. Krs and SUF of the parallel root model could 

also be estimated following a top down approach from intrinsic root segment conductances without solving the 3D RSA model. 575 
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But, then it needs to be assumed that the axial root segment conductances are large so that they do not limit the uptake. This 

assumption led, for the considered root segment hydraulic properties, to an overestimation of the uptake by the distal parts of 

the roots.  

When the exact Krs and SUF are used in the parallel root system model, the approximations in the parallel root system model 

lead to an underestimation of redistribution of the water uptake for non-uniform distributions of the soil water hydraulic head. 580 

However, the typical distribution of radial conductances along a root with lower radial conductances in older more proximal 

root segments than in younger distal segments that result from aging of root tissues make that the underestimation of the root 

water uptake redistribution by the parallel root system model is not so important. Even the redistribution of the uptake along a 

single long root with age dependent root segment conductances can be represented well with a parallel root system model that 

uses the exact Krs and SUF. The big root model overestimates the root water uptake redistribution. But, the estimated root 585 

water uptake profiles by this model seem to be affected more by the approximate estimation of Krs and SUF from the root 

segment hydraulic properties. We therefore conclude that bottom-up approaches that start from 3D root architecture models 

and that use age dependent and/or root order dependent hydraulic properties of root segments are promising approaches to 

parameterize root water uptake modules of LSMs or crop models. This approach is more reliable than the top-down approach 

that starts from an upscaled root water uptake model (big root or parallel root model) and derives the effective parameters of 590 

these models from root segment hydraulic properties. Since we used information about root segment hydraulic properties and 

their orientation, the top-down estimated parameters will deviate even more from the correct parameters when proxies of the 

hydraulic RSA, which are mostly limited to root length density distributions, are used. An often used argument against RSA 

models and the proposed bottom-up approach, is that they require a lot of input parameters which are hardly available.  Indeed, 

root density distributions are mostly the only information that is available about the RSA. However, root distributions could 595 

be used to constrain parameters (Garré et al., 2012;Vansteenkiste et al., 2014) or parameters groups (Pages et al., 

2012;Morandage et al., 2019) of RSA models. When information about distributions of root types with depth is available, this 

information could be used as well to parameterize root architecture models, which provides additional information about the 

distribution of root segment hydraulic properties when different root types can be associated with different hydraulic properties 

(De Bauw et al., 2020). Since root architecture models also simulate root growth, they provide information about root segment 600 

age, which is related to root hydraulic properties and how they change over time. Root growth but also decay can be modeled 

as a function of soil properties and soil conditions (e.g. water content) so that the adaptation of root systems to environmental 

conditions and two-way feedbacks between root system dynamics and soil water content could be represented (Somma et al., 

1998). Next to the RSA architecture, also information about the root segment hydraulic properties is required. Overviews of 

hydraulic properties of different crops, herbaceous species, and trees are given in Bouda et al. (2018) and Draye et al. (2010). 605 

But, variations of root hydraulic properties between different root orders or with root age can be very large (Rewald et al., 

2011). This informationRoot segment hydraulic properties could be derived either from: direct measurements on root segments 

(Schneider et al., 2017;Zhu and Steudle, 1991;Meunier et al., 2018b); using information on water fluxes in the soil-plant system 

(e.g. water contents, collar water hydraulic heads, stable water isotopes in the soil and plant xylem) in combination with inverse 

modeling (Rothfuss and Javaux, 2017;Cai et al., 2018;Meunier et al., 2018a;Couvreur et al., 2020), or using anatomical 610 

information about root tissues in combination with flow modelingmodeling  (Couvreur et al., 2018;Heymans et al., 2020). The 

latter approach implies a further downscaling to tissue and cellular levels, which could be used to characterize the variability 

of root segment properties efficiently. A framework for such a multi-scale approach is presented in Passot et al. (2018). With 

stochastic simulations of hydraulic RSAs, the impact of the variability of root segment properties on root system scale 

properties and upscaled root water uptake could be derived using the approach presented in this paper.   Overviews of hydraulic 615 

properties of different crops, herbaceous species, and trees are given in Bouda et al. (2018) and Draye et al. (2010). 
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The uptake profiles and their approximations by the simplified models were calculated for a given non-uniform soil water 

hydraulic head distribution. Even though the approximations of the uptake profiles are very good, it still requires testing how 

this evolves over time and affects the dynamics of root water uptake.  

The upscaled root water uptake model was derived for a RSA of a single plant or species. The uptake by several plants from 620 

the same or from different species of which the roots share the same soil profile with the same Hsoil could be represented by 

summing up the uptake profiles of the individual plants. When the uptake can be described by a parallel root model, Eq. 

[22][22], the uptake by a mixture of plants can also be described by an equivalent parallel root model when the SUFs of the 

different plants are the same. From Eq. [22][22], it follows that the equivalent Krs for the mixture corresponds with the sum 

of the Krs values of the individual plants and the equivalent collar hydraulic head with the Krs weighted Hcollar of the different 625 

plants. The joint distribution of Krs and Hcollar or of Krs and the plant transpiration are required to calculate this weighted mean. 

For a mixture of plants with a different SUF, it is not possible to derive such an equivalent parallel root model that describes 

the root water uptake profile of the mixture. In that case, the root water uptake profile should be calculated separately for each 

species, or ‘plant functional’ type which is characterized by a specific SUF.  

In the current study, we considered a linear flow model in the root system (i.e. root segment hydraulic conductances are not a 630 

function of the water pressure heads). Cavitation in the root xylem or changes in radial conductances due to for instance 

aquaporin activation are not considered. Since we focussed on the root system hydraulic architecture, we did not consider 

water potential gradients in the rhizosphere between the bulk soil and the soil-root interface. These gradients can be important 

and generate an additional non-linear resistance to radial flow. It is still debated whether root xylem cavitation or rhizosphere 

resistance triggers the non-linear system behavior but there seems to be more and more evidence that rhizosphere properties 635 

trigger the non-linear behavior of the soil-root system (Carminati et al., 2020). Most root water uptake modules that consider 

root hydraulics in LSMs already include non-linear rhizosphere resistances. How the root water uptake model and its upscaled 

and simplified versions that are based on a bottom-up analysis of the hydraulic root architecture can be coupled with approaches 

that consider non-linear resistances to radial flow in the soil (e.g. (Gardner and Ehlig, 1962;Hillel et al., 1976;de Jong van Lier 

et al., 2008;de Jong van Lier et al., 2013)) requires further research. Different proposals were made and implemented by 640 

(Couvreur et al., 2014b;Meunier et al., 2018a) but a crucial aspect is how these approaches can be scaled up to 1D models. 

The nonlinearities render the diagonal conductivity matrix diag(K) a function of the hydraulic heads Hcollar, Hx and Hsoil. This 

implies that the full set of (non-linear) equations must be solved iteratively to derive ‘exact’ upscaled root system properties, 

Krs, SUF every time Hcollar, Hx and Hsoil change. For large root systems, this approach would be unfeasible so that 

approximations are required. One approach would be to derive functional relations between the upscaled properties and 645 

hydraulic head distributions, root and soil hydraulic properties, and root architectures based on a large set of simulations and 

advanced data analytics. Another approach would be to start with simplifying assumptions that reduce the complexity of the 

system. A simplification that we are currently testing exploits the linear behavior of the root hydraulics for upscaling RSA 

first, using the approach developed in this paper, and couple the upscaled equations subsequently to a non-linear rhizosphere 

flow model.  650 

 

 

6 Appendix 

For a given root node i in the discretized root network, the mass balance is: 
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        
 

    

       0

x x x x x x
j distal i

r soil x

K i H i H prox i K j H j H i

K i H i H i



    

  


 

[A 1]  

where prox(i) represents the proximal (closer to the collar) node of the segment connected to node i and distal(i) the distal 655 

(further from the collar) node of a segment that is connected to i. Note that  xH prox i    may also be Hcollar when node i 

is connected to the root collar. The flow from a soil node i to xylem node i is: 

        r soil xK i H i H i Q i   
[A 2] 

The flow from the collar node is the transpiration rate T: 

 
 

  x x collar
j distal collar

K j H j H T


     [A 3] 

When we define dH[i] as the difference between the pressure head of node i, which can also be a soil node, and its proximal 

node (note that each node is connected to only one proximal node, except the collar which has no proximal node), then it 660 

follows that: 

( )

T

diag

 
     
  

IM K dH 0

Q

 

[A 4] 

where IM is incidence matrix. The differences in pressure heads dH can be expressed as: 

collarH 
   
  

T
x

soil

dH IM H

H

 

[A 5] 

Plugging Eq. [A 5][A 5] in Eq. [A 4][A 4] leads to Eq. [4][4].  

When the transpiration T and Hsoil are known, Hcollar and Hx can be obtained by solving the first Nroot +1 equations of Eq. 

[4][4]. Alternatively, Hcollar can be obtained directly from Eq. [6][6]. From Hcollar and Hsoil, Hx can be derived from solving 665 

the 2nd to Nroot +1 equations in Eq. [4][4]. The xylem hydraulic heads are obtained from: 

 1

collar

collar

H

H

  

  
1 2 x 3 soil

x 2 3 soil 1

C C H C H 0

H C C H C
 

[A 6] 

where 

( )diag   T
collarC IM K IM   [A 7] 

 ,C i j1C  for i=2,…,Nroot+1, j=1    1[ ] xC i K i if prox i collar    [A 8] 

 2 ,C i jC  

for i=2,…,Nroot+1, j=2,…,Nroot+1 

   
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   
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C i j K i if prox i j

C i j K j if j distal i



  

  

  



 

[A 9] 

 3 ,C i jC   

for i=2,…,Nroot+1, j= Nroot+2,…,2Nroot+1 

 3[ , ]root rC i i N K i    [A 10] 

Note that C2 and C3 are symmetric matrices. 

For the fluxes, we can write using the lower part of the C matrix that: 
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[A 11] 

This can be written out as:  670 

collarH  L1 L2 x L3 soilQ C C H C H  [A 12] 

where  

 ,C i jL1C  for 2,..., 2 1, 1root rooti N N j     [A 13] 

 2 ,C i jLC  for 2,..., 2 1, 2,..., 1root root rooti N N j N      [A 14] 

 3 ,C i jLC  for 2,..., 2 1, 2,..., 2 1root root root rooti N N j N N       [A 15] 

working out Eq. [A 7][A 7], it is found that all entries in CL1 are 0, CL2 = -diag(Kr) and CL3 = diag(Kr), so that Eq. [A 12][A 

12] corresponds with: 

 ( )diag r soil xQ K H H  [A 16] 

which is the matrix form of Eq. [A 2][A 2]. Plugging Eq. [A 6][A 6] into the general form of Eq. [A 12][A 12] gives: 

 1collar rootH N x 4 soil 5C H C Q  [A 17] 

where  675 

  -1
4 L2 2 3 L3C C C C + C  [A 18] 

1
2 1

 5 L1 L 2C C C C C  [A 19] 

Note that since C2 and C3 are symmetric matrices, also C4 is a symmetric matrix and C4 and C5 simplify due to the simple 

forms of CL1, CL2, and CL3: 

 1( ) root rootdiag N xN   4 r 2 3C K I C C  [A 20] 

 1
1( ) 1rootdiag N x5 r 2C K C C  [A 21] 

When we consider the case of a uniform soil hydraulic head, Heff, then we can write  

  4 5[ , ] [ ]eff collar
j

Q i H C i j H C i   [A 22] 

When Heff = Hcollar, there is neither flow from the soil to the collar nor flow through the root system from one soil node to the 

other. From this follows that: 680 

4 5[ , ] [ ]
j

C i j C i   [A 23] 

If we consider now the total root water uptake, Qtot, which is equal to the transpiration rate, T, then  

 5[ ] [ ]tot eff collar
i i

Q Q i C i H H      
[A 24] 

From this follows that we can derive the root system conductance Krs directly from: 

 
 5 4[ ] ,

tot
rs

eff collar

rs
i i j

Q
K

H H

K C i C i j




   
 

[A 25] 
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The standardized uptake fraction SUF[i], which is defined as the fraction of the uptake by a root node to the total root water 

uptake under uniform soil water hydraulic head, is related to the matrix C4 and vector C5 as:  

    4

5

4 5

[ , ]
[ ]

[ , ] [ ]
j

tot
i j i

C i j
Q i C i

SUF i
Q C i j C i

  

 

 

[A 26] 

So we can write for uniform soil water hydraulic heads: 685 

    rs eff collarQ i K SUF i H H   
[A 27] 

For the general case that the soil water hydraulic heads are not uniform, we can define the effective soil water hydraulic head, 

Heff, as: 

T
effH  soilSUF H  [A 28] 

 

After adding and subtracting C5 Heff = Krs SUF Heff = Krs SUFꞏSUFT Hsoil in Eq. [A 17][A 17], we obtain the following equation 

for the root water uptake Q: 690 

 rs eff collarK H H   6 soilQ SUF C H  [A 29] 

T
rsK  6 4C C SUF SUF  [A 30] 

From the definitions of C6, C4, SUF and Krs follows that the sum of the elements in the rows of C6 is zero for all rows. This 

implies that when C6 is multiplied with an Nroot x 1 vector with constant elements, a zero vector is obtained. Therefore, we can 

reformulate the equation for the root water uptake as:  

   rs eff collarK H H   6 soil effQ SUF C H H  
[A 31] 

Since SUFT Hsoil = Heff and since the sum of all elements in SUF is one so that SUFT Heff=Heff, it follows also that: 

   rs eff collarK H H   4 soil effQ SUF C H H  
[A 32] 

The definition of Heff (Eq. [A 28][A 28]) makes that sums of all the fluxes in the second term of Eq. [A 31][A 31] and in the 695 

second term of Eq. [A 32][A 32] are both zero. Indeed, when considering Eq. [A 32][A 32], we can write: 
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[A 33] 

since C4[i, j]=C4[j ,i] 

Eqs. [A 31][A 31] and [A 32][A 32] have a similar form as the equation that was proposed by Couvreur et al. (2012) to 

describe water uptake by a root network. In order to draw the analogy and identify differences between the two approaches, 

we will discuss the nature of the C6 matrix and how it can be transformed or approximated. From the definition of C6, it also 700 

follows that the sum of all the elements in the vector  6 soil effC H H is zero. Therefore, this vector represents the 
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perturbations of the uptake Q at a certain depth due to the perturbation of the soil water hydraulic head at this depth compared 

to the uptake when the soil water hydraulic head is uniform in the root zone. When there is no net uptake, i.e. when Heff = 

Hcollar, then  6 soil effC H H  represents the redistribution water fluxes through the root system due to spatial variations in 

Hsoil. When we consider now that the soil water hydraulic head around node i is H higher than the hydraulic head in all other 705 

nodes, then we can define Q[i]= kcomp[i] H.  kcomp[i] represents the compensatory root system conductance to transfer water 

from node i towards all other nodes when there is a hydraulic head difference between the soil water at node i and the soil 

water next to all other nodes in the root system. Q[i] and kcomp[i] are related to the C6 matrix and SUF vector as:  

          6 61 , ,
j ì

Q i SUF i C i i SUF i C i j H


 
     

 
  

[A 34] 

              6 6 61 , , ,comp
j ì

Q i
k i SUF i C i i SUF i C i j C i i

H 

 
       

  
[A 35] 

since 

   6 6, , 0
j ì

C i i C i j


   [A 36] 

We assume now a root system in which all soil nodes are connected via one radial and one axial resistance to the collar node 710 

so that the overall resistance to flow from one soil-root node to the collar is equal to the sum of the axial plus radial resistances. 

We call this root system the ‘parallel root system’. The radial and axial resistances for each soil node can however be different. 

Also a root system in which there is no resistance to axial flow can be considered as a system in which all soil nodes are 

connected directly to the root collar. But, it is important to keep in mind that systems with a significant axial root resistance 

can also be considered, as long as there is a direct connection between the soil node and the root collar without additional 715 

intermediate nodes that connect to the soil. For instance, fibrous root systems with only primary roots, in which uptake takes 

only place near the root tip but not at the more basal ends, can also be represented by this root system model. For such a root 

system, it follows that: 

      1comp rsk i SUF i SUF i K   
[A 37] 

In the same vein, it can be deduced that for such a parallel root system:  
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[A 38] 

The jth column of the C6 matrix represents to what extent water from the jth node can flow to the other nodes in the system. For 720 

a parallel root system, in which the flow must pass through the collar node, the flow from node j to node i is proportional to 

the conductance for the flow from node j to the collar node and hence to SUF[j]. Based on this, we can write the C6 matrix for 

this root system as: 

 
       6 ,

1 rs

C i i
diag K diag SUF i

SUF i

 
        

T T
6C I ones SUF I ones SUF  

[A 39] 

where ones is the Nroot all-ones vector.  

Since SUFT Hsoil = SUFT Heff = Heff, it follows that for a parallel root system: 725 

    rsK diag  6 soil eff soil effC H H SUF H H  [A 40] 

This implies that we can obtain the following equation to simulate root water uptake for the parallel root system: 

    rs eff collar rsK H H K diag   soil effQ SUF SUF H H  
[A 41] 
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which is identical to the equation proposed by Couvreur et al. (2012).  

For a general root system, we can rewrite the general equation which takes a similar form as the equation that we obtained for 

the parallel root system.  

       rs eff collarK H H diag diag   comp 7 soil effQ SUF K SUF C H H  [A 42] 
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[A 43] 
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T
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[A 44] 

For the parallel root system, C7 equals the identity matrix and Kcomp[i] equals Krs.  730 
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