
Replies to comments on: From hydraulic root architecture models to macroscopic 
representations of root hydraulics in soil water flow and land surface models. 

 

Below you find our replies to the comments of the two reviewers and our suggestions for 
changes to our paper. The comments of by the reviewers are given in black text, our replies in 
blue and suggestions for changes in blue italic.  

The main changes to the paper are: 

1) a more consistent notation of matrices and submatrices 
2) link the discrete solution of flow in the root network that is represented by a network 

of porous pipes to graph theory. 
3) We updated figure 3 to explain better the different models. We considered the exact 

model, the big root and parallel root approximations. The approximate parallel root 
model was parameterized in a bottom up approach (i.e. using parameters that are 
derived directly from the upscaled exact model) or using a top down approach. The 
big root model was parameterized using a top down approach.  

   



Reviewer 1 

General comments 

This article  describes how water flow within a root system which can be described in a global 
matrix form, can be decomposed into different matrix representing different processes: 
distribution of contribution of total uptake of each root segments, redistribution of water flow 
within the root system (in case of heterogeneous soil water potential). This can be done if root 
system is represented as a set of resistive links (radial and axial) for water flow.  If this set of 
links is supposed to represent the root system hydraulics, then it can be applied at any scale 
from a fine description of root system architecture (microscopic) to very coarse 1D ‘ a priori’ 
description of root system (macroscopic),  compatible with 1D description of water flow in 
soil, as done in surface model schemes. This work extends previous works of authors.  I found 
very interesting this work, which rigorously provides a “natural” upscaling of root system 
hydraulic properties. It will be very useful for modelers to go deeper in the necessary use of 
root properties in sounded “effective” representation of root systems for water transfer and 
uptake in soil. 

Thank you for this excellent summary of the paper. 

 

I think however, that the paper is a bit hard to follow at some times, even if the authors try to 
explain their derivation. The matrix notation (in particular for range indices) shall be 
explained.  

Also in response to comments by the second reviewer, we changed the notation to a more 
conventional notation: 

We will change the notation and propose the following: 

The ith element of vector Jx is Jx[i].  

The element of the ith row and jth column of matrix C is C[i,j] 

The submatrix C2 that consists of the first Nroot rows and the second to Nroot +1 columns of C 
is  2 , 1,..., , 2,..., 1root rootC i j for i N j N   C  

 

The central notion of Heff must be better explained. As presented, it appears as an added 
variable to the system. 

We include the definition of Heff directly after the equation where it is first used. This should 
make clear that Heff is not an additional variable but is obtained directly from the soil water 
potential distribution and the SUF. 

In the appendix, we derive that Heff corresponds with the SUF weighted average of Hsoil: 

T
effH  soilSUF H   [1] 



 

 I found that section 4.1 was lengthy, and also rather difficult to follow as notation of different 
“equivalent” root systems is not “fixed” and references to figures and tables to be better done. 
This could be rearranged according to type of studied model.  Some explanations on 
differences of behavior between models (in section 4) are a bit confusing. I found much more 
interesting section 4.3 compared to 4.1 + 4.2.  

Answering the detailed questions about these part helped us to make sections 4.1 and 4.2 
clearer. Since we considered two different parameterizations of the parallel root model, we 
explained better how we parameterized this model and explained why we call one 
parameterization a bottom up parameterization and the other parameterization a top down 
parameterization. In the text and figures we then refer to the bottom up parallel root model 
and the top down parallel root model. We also linked the notation in Figure 1 and 3 better 
with each other and used Kr,up and Kx,up for the radial and axial conductances of the 
elements in the big root and parallel root models, which were derived from the root segment 
conductances in a top down approach.  

 

In all the examples shown, I questioned myself if conclusions would be the same if an 
imposed water outflow (transpiration) had been used in place of xylem potential collar, as 
often the case in a 1D model. Could this possibly impact the derivation of equations and water 
redistribution? A few words about this (in conclusion) would be welcome. 

When formulating the model using graph theory, we included an extra equation for the collar 
node that includes the transpiration rate. In the appendix we added a sentence on how the 
problem can be solved when the transpiration rate is used as a boundary condition. We noted 
that using a the relation between the transpiration rate, the root system conductance, the 
effective soil water hydraulic head and the hydraulic head at the root collar, the hydraulic 
head at the root collar can be calculated directly from the transpiration rate without having to 
solve for the xylem water potentials. This means that Hcollar can be used as a boundary 
condition to solve for Hx and to determine the distribution of the water uptake.  

When the transpiration T and Hsoil are known, Hcollar and Hx can be obtained by solving the 
first Nroot +1 equations of Eq. [7]. Alternatively, Hcollar can be obtained directly from Eq. 
Error! Reference source not found.. From Hcollar and Hsoil, Hx can be derived from solving 
the 2nd to Nroot +1 equations in Eq. [7]. 

 

Always in the conclusion, regarding “bottom-up” approach, I fully agree concerning 
integrating better knowledge of root architecture, but  this should be balanced by the fact that 
(i) it is difficult to get distribution of root conductance (axial and radial) for a range of 
species, (ii) what about root growth/decay and associated parameterization 

We listed a few methods that could be used to determine the conductances of root segments: 

This information could be derived either from: direct measurements on root segments 
(Schneider et al., 2017;Zhu and Steudle, 1991;Meunier et al., 2018b); using information on 
water fluxes in the soil-plant system (e.g. water contents, collar water hydraulic heads, stable 



water isotopes in the soil and plant xylem) in combination with inverse modelling (Rothfuss 
and Javaux, 2017;Cai et al., 2018;Meunier et al., 2018a;Couvreur et al., 2020), or using 
anatomical information about root tissues in combination with flow modelling (Couvreur et 
al., 2018;Heymans et al., 2020). Overviews of hydraulic properties of crops, herbaceous 
species and trees are given in (Bouda et al., 2018;Draye et al., 2010). 

 

Concerning the distribution with depth of the root conductances with depth, root architecture 
models could be used which are parameterized based on measurements of root densities but 
also other information. We added: 

However, root distributions could be used to constrain parameters (Garré et al., 
2012;Vansteenkiste et al., 2014) or parameters groups (Pages et al., 2012;Morandage et al., 
2019) of RSA models. When information about distributions of root types with depth is 
available, this information could be used as well to parameterize root architecture models, 
which provides additional information about the distribution of root segment hydraulic 
properties when different root types can be associated with different hydraulic properties (De 
Bauw et al., 2020). Since root architecture models also simulate root growth, they provide 
information about root segment age, which is related to root hydraulic properties and how 
they change over time. Root growth but also decay can be modeled as a function of soil 
properties and soil conditions (e.g. water content) so that the adaptation of root systems to 
environmental conditions and two-way feedbacks between root system dynamics and soil 
water content could be represented (Somma et al., 1998).  

 

and, finally (iii) if LSM (land surface models) are to deal with a mix of species, types of 
vegetation (e.g. grass, trees…), what would be needed ? 

We added in the discussion part the following 

The upscaled root water uptake model was derived for a RSA of a single plant or species. The 
uptake by several plants from the same or from different species of which the roots share the 
same soil profile with the same Hsoil could be represented by summing up the uptake profiles 
of the individual plants. When the uptake can be described by a parallel root model, Eq. 
Error! Reference source not found., the uptake by a mixture of plants can also be described 
by an equivalent parallel root model when the SUFs of the different plants are the same. 
From Eq. Error! Reference source not found., it follows that the equivalent Krs for the 
mixture corresponds with the sum of the Krs values of the individual plants and the equivalent 
collar hydraulic head with the Krs weighted Hcollar of the different plants. The joint 
distribution of Krs and Hcollar or of Krs and the plant transpiration are required to calculate 
this weighted mean. For a mixture of plants with a different SUF, it is not possible to derive 
such an equivalent parallel root model that describes the root water uptake profile of the 
mixture. In that case, the root water uptake profile should be calculated separately for each 
species, or ‘plant functional’ type which is characterized by a specific SUF. 

 

 Specific comments  



L21  … “the big root model” : not very clear for an abstract 

This is a term that was used on some papers in which the entire root system was represented 
by one single vertical ‘big-root’. It has some similarities with the ‘big leaf’ model.  

 

L54-57 axial and radial conductivity and “the root radial conductance per root surface area; 
the axial conductivity per root cross sectional area” are essentially the same, may be better to 
express that root conductance are scaled to root surface area and root cross sectional area 

We changed as follows: 

The axial big-root hydraulic conductance, which determines head losses due to flow in the 
root system, and the radial big-root conductance, which determines the exchange between the 
soil and the root, were obtained by scaling intrinsic root segment conductances with the cross 
sectional and surface area of the root segments in the soil profile, respectively; and the 
unsaturated soil hydraulic conductivity (Amenu and Kumar, 2008;Quijano and Kumar, 
2015). 

 

L50-65: precise how is defined a root system in the big and parallel root approaches: a root 
density as a function of depth ? 

I could add the following but I do not think it fits: 

The model is parameterized by the distribution of absorbing root surface with depth and the 
conductances of the root branches that connect these surfaces with the root collar. 

 

L94 the axial conductance may limit the water absorption at the distal ends of roots: could be 
not clear for the reader : do you mean that water uptake is limited to the distal end or that 
water uptake decrease from proximal to distal part 

Changed to: 

Analytical solutions of water uptake by single roots, which are represented as ‘porous pipes’ 
with uniform radial and axial conductances, demonstrated that water uptake takes place 
along the entire root length but that due to limiting axial conductance, uptake may decrease 
from the proximal to the distal part of roots (Landsberg and Fowkes, 1978). 

L98  water absorbance : water uptake ? Changed 

Following the suggestion of the second reviewer, we will change the first part of the methods 
section until line 170. 

 

L137 hydraulic head, Hcollar: specify unit of Hcollar : (L)  OK 



 

L140 Normaly, if considering water head unit for xylem potential, units for Kx should be 
L3/T and for Kr 1/T – May be specify that conductance doesn’t consider here surface and 
length of root segments 

We start now with the continuum equation that uses the intrinsic properties kx and kr with the 
dimension given here. Then we will derive the extensive conductances that are used on the 
network equations and that depend on the length and radius of the segments used in the 
network 

 

Eq5: specify for  vector [0 Q] that 0 is N+1, and Q is N length:.OK 

 

L161 may be specify that diag(K) stands for showing a diagonal matrix, based on a vector K 
where the N first elements are Kx(i) and the others Kr(i): OK 

 

L161 add a dot before diag(K)=> IMT (2Nroot x 2Nroot+1). diag(K) OK 

 

L173 specify that SUF[i]=Q[i]/Qtot 

We wrote in the paper we submitted: SUF(i) represents the fraction of the total uptake by a 
certain root node for a uniform soil water hydraulic head. We would like to keep it with this 
since SUF[i]=Q[i]/Qtot is only true when the water hydraulic head is uniform in the soil 
profile. Otherwise, Q[i] depends also on the distribution of the soil water hydraulic head. 

 

L173 Specify what means Heff : what is an “effective” soil water potential around roots ? 

We defined Heff earlier in the text. 

In the appendix, we derive that Heff corresponds with the SUF weighted average of Hsoil:: 

T
effH  soilSUF H  [2] 

Eq. [2] implies that the effective soil water hydraulic head depends more strongly on soil 
water hydraulic heads where the root system takes up more water when the soil water 
hydraulic head is uniform. 

 



L175-180: the aim of deriving the equations shall be given before (eg after eq 6), introducing 
the idea of defining Heff whether Hsoil is constant or not. As presented now the derivation is 
not very easy to understand… 

The aim of transforming Eq. 6 is to represent it in terms of effective root system parameters 
like Krs and SUF. We defined these parameters now first before introducing them in the 
reformulated equation. 

This equation can be written in another form that uses macroscopic characteristics of the root 
system: the root system conductance, Krs (L² T-1), and the standard uptake fraction SUF of the 
root system that were introduced by Couvreur et al. (2012). Krs relates the total root water 
uptake to the difference between an average or effective soil water hydraulic head, Heff (L) 
and Hcollar: 

 rs eff collar
i

T K H H  Q  [3] 

and SUF[i] represents the fraction of the total uptake by the ith root node for a uniform Hsoil. 

 

L178.. write the equation of the weighted average: OK 

 

L179-180 the sum of the fluxes of the second term…: not easy to understand, may be add : 
sum_i ( C4(I,j) (Hs(i)-Hef(i) ) =0 

It is unfortunately more complex than that. We added a reference to the equation in the 
appendix.  

 

L180 .. “The second term on the right-hand side represents the amount of water that is taken 
up more (less) by a certain root node than in case the soil water….. “ : may be rephrase for 
more clarity with something like :  on right-hand side represents the increase (decrease) in 
amount of water that is taken up by a root node when Hsoil is higher (lower) relative to Heff 

We rephrased to: 

The second term on the right-hand side represents the increase (decrease) in amount of water 
that is taken up by a root node that is connected to soil node where Hsoil is higher (lower) 
relative to Heff 

 

 L211 conductance form root node i => conductance from node: OK 

 

L203-212 : not easy to follow… 



We add why we show and derive these equations:  

To explain the meaning of Kcomp and how it is related to Krs in the parallel root system model, 
we consider a soil water hydraulic head distribution that is uniform except for one node i 
where the hydraulic head is H higher than in all other nodes (Hsoil[j] = Hsoil[i] - H for all j 
≠ i). 

 

L217-221 : not easy to follow… Useful here ? 

We now moved the text that was originally in the appendix to the main body: 

For the general root system, we find that Kcomp[i] is larger than Krs. This means that for a 
certain H between soil node i and all other nodes, there is more redistribution in the general 
root system than in the parallel root system. In the general root system, the flow from one 
soil-root interface to another soil-root interface does not always have to pass through the 
collar but can take a shorter way. A negative value of C7[i,j] means that for a given hydraulic 
head difference between two nodes i and j, there is more redistribution between node i and j 
than the average redistribution for this head difference between node i and another node than 
node j of the network. This means that node i is stronger than average connected to node j. 

 

Figure 3: Possibly, add in the figure the limits of soil layers in order for the reader to make a 
link between subfigures and number / distribution of hydraulic resistances. 

We added the soil nodes and defined the number of soil depths in the figure.  

 

L271 : precise that your figure 3 shows some equivalent, upscaled root system where root are 
distributed along 4 soil layers. 

We added ‘soil depths’ to the text: 

Error! Reference source not found. a) shows the hybrid parallel-big root system that 
consists of three primary root branches of different length which take up water from up to 4 
different depths. This root system was scaled up to a model that describes uptake from the 4 
depths assuming that the soil water hydraulic head is uniform at a given depth (the exact 
model) and that was approximated by upscaled parallel and big root systems. 

 

L276  “comes down to a top down parameterization” : ? meaning ? 

We explain what we mean with top-down parameterization 

Since we assume a-priori a certain topology of the root segments and parameterize the model 
directly based on the number of root segments in a soil layer and their properties (radial and 
axial conductances), we called this a top down parameterization. 



 

L281 “Parallel root … parameters… is equal to ndepths+1” : (i) isn’t it ndepth? Why +1 ?  (ii) 
There are 2 parallel root models , could you annotate them differently, e.g. parallel –axial and 
parallel-no-axial (or parallel –Kx and parallel-Inf) to differentiate them. We often get lost in 
your description of different models… 

Indeed, it shoud be ndepths parameters for the parallel root model. We updated: 

For the upscaled parallel root model, the number of parameters that needs to be defined is 
equal to the number of soil layers, ndepths : ndepths Kx,eff values or Krs and ndepths-1 SUF 
values (sum of SUF =1). 

In fact, for the parallel root model, it does not matter whether Kx is finite or infinite. Since the 
model is defined by the total conductance from the root tip to the collar, any combination of 
Kx and Kr for a certain depth that gives the same total conductance will result in the same 
uptake. So defining the two parallel root models in terms of the Kx they used is maybe 
confusing. Therefore, we propose to change to: parallel root model bottom up vs parallel root 
model top down. We added the nomenclature to figure 3 and changed it in the other figures.  

 

L282 “requires 2ndepth parameters”: requires 2 ndepth parameters: OK 

 

Table2 Why 4 digit for SUf except for Parallel root system, which does not exactly sum(s) to 
1; eg SUFupscale of hybrid-parallel-big at the first depth is 0.406,  not 0.3988.  Specify in the 
legend that root hydraulic conductances are constant along roots 

We added for the parallel root model top down 4 digits. We also noticed a typo that we 
corrected.  

 

Table 3 in the legend specify that Kr=0.1 along roots except at root tip Kr=1: OK 

 

Figure 2: change the place of the legend box: OK 

 

L299-300: add a reference to table 2, this is true for the constant conductance example, not 
the other.  

The top-down parallel root model overestimates the SUF for the shallow depth and 
underestimates it for the deeper depths in the two cases.  

 



L303-304 No real underestimation of uptake figure 2 on proximal segments but rather 
overestimation at distal end from fig 2 ! please check. 

The fact that we were referring here to uptake in case of a uniform soil water hydraulic head 
whereas figure 2 shows uptake for a non-uniform hydraulic head was confusing. Therefore, 
we changed uptake to SUF. 

 

L304-305: On fig 3 this follows more less the same pattern as figure 2 but with less 
discrepancy. 

We are discussing the SUF in Table 2 and 3 here and not the uptake for a non-uniform 
hydraulic head distribution that is shown in figure 3and 4.  

 

L305-306: Is it useful here? where do we see this equality which is not the really the case 
from table 2. 

We moved this sentence to the beginning of the discussion of Table 2 and 3. We corrected an 
entry of Table 2 so that the sum matches now.  

 

L314 implies that redistribution flow => implies that redistribution of flow 

We changed to: redistribution of water 

 

L325 in these layers soil => soil layers: OK 

 

L324-327: hard to follow….. 

We changed to: 

The higher radial root segment conductances near the root tips make that water transfer 
between two soil layers through root tips in these soil layers, which passes via the root collar, 
is more efficient than water transfer between a root tip segment and a root segment with 
lower radial conductance that is directly connected to it. 

 

L354-355: conductance have now units which differ from their previous definition. It would 
be good to clarify the text with more adequate and explained  words: conductance: when there 
is no normalization by geometry (ie length or area), conductivity when geometry normalized 
(as the case of these lines).  “Intrinsic” conductivity is, classically in the field of porous media 
flow, related to conductivity of the matrix only, independently of the fluid… 



We start the set up of equations part now with defining the intrinsic root segment hydraulic 
properties where we introduce the porous pipe model. Intrinsic properties refer here to 
properties of the root segments which are independent of the axial discretisation that we use to 
solve the equation. But these root segment properties are still not fully ‘intrinsic’ properties or 
conductivities since they still depend on the radius of the segments. The ‘intrinsic’ axial and 
radial segment conductances depend on the root tissue conductivities which need to be scaled 
with the root radius and root cross sectional area (the root segment axial conductance must be 
divided by the xylem cross sectional area to obtain the xylem conductivity and the root 
segment radial conductance needs to be multiplied by the radius of the root to obtain the 
radial conductivity of the root tissue. We propose to add: 

Intrinsic conductances refer here to properties of the root segments which are independent of 
the axial discretisation that we use to solve the equation.  

For the hybrid parallel-big root model, we used a dummy parameterization with dummy units. 
But, this does not mean that we used intrinsic parameters or dimensionless parameters. Since 
we use a discretized network model, the parameters are extensive properties that depend on 
the size of the elements that were considered.  

We used a dummy parameterization of the root hydraulic properties and of the vertical 
distribution of the soil water hydraulic heads (i.e. the parameters were chosen to represent 
certain differences but the actual values of the parameters and their units were not of 
interest). 

 

L357-358 the roots was assumed… with 1 cm long… : => rather the “reference “ exact model 
was based on a root 50 cm long discretized with 1 cm long root segments of uniform… OK 

 

L358 The soil collar potential: ??? the water potential of root collar: OK 

 

L361 As to be expected => As expected, due to the series-pathway of water, 

Figure 6a: distribution of hydraulic condutances is given as function of age, but in the text and 
result a distribution as function space (depth) is considered. A distribution of conductance as 
function or root collar distance would be rather needed here 

We changed the x-axis and plotted conductances versus depth for the single root system. For 
the realistic root architecture, we kept root segment age.  

  

Figure 7 : Sink term (in legend and axis) => Root sink term: OK 

 

Figure 8 Specify for which model are these figures (parallel—Kx): OK 



 

L364-376: That the parallel model with distribution fluxes behaves well, and better than 
parallel infiny is not really surprising. And all this section could be shorten… 

We agree that this was not surprising. What we did not expect was that the top-down 
parameterized parallel root model would overestimate the uptake compensation since a 
parallel root model underestimates Kcomp. But, neglecting axial resistance leads to an 
overestimation of the water uptake from the distal ends of the roots.  

 

L396 Why did you choose these 3 root systems ?  which main differences ? add a reference to 
figure 9 here 

We added: 

The grass root system with several primary roots and few laterals may represent a parallel 
root system. The maize root system with several primary roots that each take up water along 
their axis by lateral roots may represent a hybrid parallel big root system whereas as the 
sunflower root system with a single main root and several lateral roots might rather represent 
a big root system (Error! Reference source not found.). 

 

L410 cross the layer is calculated… => cross the layer i is calculated: OK 

 

L415 …as above…, as in section 4.1 ? This was changed 

For the parallel root system with bottom up parameterization, we used the SUF and Krs 
values of the exact upscaled model. 

 

L417-418 of the radial root segment conductance… => radial root segment conductance 
upscaled as in the big root model OK 

 

L421 to  parameterize hydraulic root water uptake => to parameterize hydraulic macroscopic 
root water uptake OK 

 

L431 but is more outspoken => ?? but the difference is amplified: We skipped this. 

 

L433 add a reference to figure 10 here: OK 



 

L434 an overestimation … distal ends of roots=> (i) there is no distal end of roots here but 
rather only soil depths, (ii) there is only a slight overestimation at depth, overestimation 
occurs at shallower to mid depth for maize and sunflower and seem not be related to a 
variation in distribution of roots in figure 9… 

We rewrote this as: 

For the maize and sunflower root systems, the parallel root system using a top down 
parameterization and assuming no axial resistance to flow underestimated the SUF at 
shallower depths and overestimated it at intermediate (maize) and deeper (sunflower and 
maize) depths (Error! Reference source not found. a,c). 

We related the overestimation to the combination of high radial conductance and low axial 
conductance at lateral root tips and made a reference to the single root case with varying 
conductances along the root (figure 7b). 

Not considering axial resistance to flow leads to an overestimation of the uptake capacity of 
the distal ends of roots, especially when the axial conductivity decreases and the radial 
conductance increases towards the root tip (see also Error! Reference source not found. b). 
Depths where the SUF is strongly overestimated correspond with depths with high densities 
of younger lateral roots. 

 

L435 opposite was observed => mostly for sunflower, for other plants only slight variations 

We first included that the big root model reproduced the exact SUF better. 

The SUF of the big root model corresponded better with the exact SUF. But, in the big root 
model, the axial resistance to flow from the distal ends of the deep primary roots to the collar 
is apparently overestimated and the SUF in the deeper soil layer underestimated. 

 

L435-444 May be a more straightforward and concise interpretation, given the difference 
between the maize and sunflower, would be that as root act in parallel in a layer , and that 
most roots are laterals of lower conductance, this leads to higher SUF at shallower depth 
compared to greater depth 

We agree that the lateral roots within a layer act in parallel. But, they are still connected to a 
primary root in series. For the parameterization of the big root model, it was assumed that all 
roots in a layer act in parallel. We rewrote as follows: 

In the big root model, the xylem water potentials in the secondary and primary roots in a 
certain layer are assumed to be equal since it is assumed that all root segments in a layer act 
in parallel. However, because of the lower axial conductance of secondary roots (see Error! 
Reference source not found.) which are connected in series to primary roots, the xylem water 
heads can be considerably higher in the secondary than in the primary roots in a certain 
layer. Assuming similar xylem water heads in secondary and primary roots in a certain soil 



layer reduces the xylem heads in the secondary roots and generates too much uptake by the 
secondary roots in that layer. An overestimation of uptake in a more ‘downstream’ or 
shallower soil layer will lead to an underestimation in the more ‘upstream’ or deeper layers 

 

Figure 11 to which model (big root ?) refer these figures? We added to the figure caption that 
these C7 and Kcomp/Kres are for the exact model. 

 

L452 The parallel root model => Which one, the parallel with Kx ? 

We added:  

The parallel root model with bottom up parameterization that uses the exact Krs and SUF 
profile but approximates Kcomp by Krs and C7 by the identity matrix, predicts almost the same 
sink term distribution profile as the exact model. This bottom up parallel root model slightly 
underestimates the compensatory root water uptake, i.e. too much uptake near the soil surface 
and too little deeper in the soil profile. 

 

L453 – 455 I can’ understand the meaning of this sentence, which model is on figure 11? 

The exact Kcomp/Krs trace and C7 matrix of the root systems are shown in Figure 11. 

 

L455 impact of approximations of Kcomp and the C7 matrix… of the parallel Kx model? 

We specified now always the parameterization of the parallel root model that is discussed. 

 

L472 RSA is not defined… OK 

 

L491 LSM is not defined..  OK 

 

Appendix  

Eq A3 and connectivity matrix: may be state that IM(i,j)=0 if I and j are not connected and 
what about IM(I,j) if j is a proximal node of I ? 

We redefined the incidence matrix in the main text. The rows refer to the nodes and the 
columns to elements.  



IM[i,j]=1 when node i is a distal node of element j, IM[i,j] = -1 when i is proximal node of 
element j and IM[i,j]=0 otherwise.  

 

Eq A10 verify indices of matrix C that should be C[Nr+1:2Nr, 2Nr+1] 

It should be the last Nroot rows of the C matrix and all the columns  

 

Eq A14 verify indices of CL3 matrix, this rather be CL3[N+1:2N, N+2,2N+1]: OK 

 

L603 in “Considering Eq. [A 31], we can write:”, may be better “indeed, when 
considering…” OK 

 

In A38 What is ones ? where ones is the Nroot all-ones vector. 

 

L638 add also that SUF_T Heff= Heff to get A40: OK 

 

L656 What means “are connected more strongly” 

We moved this part to the main text and explain now what we mean with node i being 
stronger connected to node j.  

For the general root system, we find that Kcomp[i] is larger than Krs. This means that for a 
certain H between soil node i and all other nodes, there is more redistribution in the general 
root system than in the parallel root system. In the general root system, the flow from one 
soil-root interface to another soil-root interface does not always have to pass through the 
collar but can take a shorter way. A negative value of C7[i,j] means that for a given hydraulic 
head difference between two nodes i and j, there is more redistribution between node i and j 
than the average redistribution for this head difference between node i and another node than 
node j of the network. This means that node i is stronger than average connected to node j. 

 

   



Reviewer 2: 

The paper presents a model of root water uptake based on a distributed root architecture 
system and tries to perform upscaling to make the proposed approach suitable for land-surface 
models. 

This interesting paper focuses on a topic of great interest to the hydrological community. 
However I have a number of reservations on the current manuscript and thus I suggest some 
revisions that I consider necessary for a better collocation of the research. 

Thank you for your comments and suggestions. They helped us to make the paper clearer by 
providing a link to graph theory and improving the notation. 

 

Here is the (unordered) list of comments that should be addressed by the authors. 

1. Notation. I do not like the non-standard Matlab-like notation. I think it is confusing and 
misleading, taking away the attention from the essntial components of the model. I had a hard 
time reading through it . The paper feels more  like a cut-and-paste from the matlab code (see 
supplementary information) rather than the description of a model. 
We changed the notation and propose the following: 

The ith element of vector Jx is Jx[i].  

The element of the ith row and jth column of matrix C is C[i,j] 

The submatrix C2 that consists of the first Nroot rows and the second to Nroot +1 columns of C 
is The submatrix C2 that consists of the first Nroot rows and the second to Nroot +1 columns of 
C is  2 , 1,..., , 2,..., 1root rootC i j for i N j N   C  

In the main part of the paper, we focus on the results of the derivations that are given in the 
appendix. In the appendix, we explain how the root system scale properties like Krs and SUF 
are obtained, how the equation for the general root system and the parallel root systems are 
obtained and we derive some properties of the equation matrices that are important to 
interpret the main equations.  

In order to improve the readability, we rewrote equations so that the form (order of terms and 
factors) is repeated through the manuscript and appendix.  

 

 
For example, if we read through the indices of eq. [5], this is nothing else than a weighted 
graph Laplacian defined on the graph with wich the root system is discretized. It took me a 
long time to understand this, also because of the uncommon wording (e.g., the connectivity 
matrix is typically called the incidence matrix in graph theory). 
 

We changed the start of the setup of equation section. We start now from the continuum 
equation for flow in a porous pipe, discretize it on a network of root and soil nodes and derive 



the equations in line with the formalisms of graph theory. However, after having setup the 
equations, we do not use graph theory further: i) to derive root system characteristics such as 
Krs and SUF, ii) to prove that these two characteristics are sufficient to describe total root 
water uptake as a function of soil water potential distributions, iii) to prove that redistribution 
of uptake when soil water hydraulic heads vary in space is independent of the transpiration 
rate (a finding that is in contradiction to how root water uptake compensation is implemented 
in a few macroscopic root water uptake models), iv) to derive upscaled root water uptake 
models, and v) to compare solutions for more complex root architectures with simplified 
models such as the parallel root and big root models. All these derivations are presented in the 
Appendix. 

The flow into and within a single root can be described using the porous pipe model 
(Landsberg and Fowkes, 1978) with the following equation: 
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where  [L] is the local axial coordinate of the root, kx (L3 T-1) and kr (T-1) are the intrinsic 
axial and radial root segment conductances, r [L] is the root segment radius, and Hx (L) and 
Hsoil (L) are the hydraulic heads of the water in, respectively, the xylem and the soil in contact 
with the root, which include both the pressure potential and the elevation potential. Intrinsic 
conductances refer here to properties of the root segments which are independent of the axial 
discretisation that we use to solve the equation. We can discretize this equation for a root 
system network that consists of Nroot root segments (edges) that are connected with each 
other in nodes (vertices). These root nodes are connected by Nroot soil-root segments to 
Nroot soil nodes. The entire system is connected to an extra outlet node that represents the 
root collar where the hydraulic head, Hcollar, or the flux boundary condition is defined. Since 
branches of a root architecture do not re-join distally (further away from the collar), there is 
only one segment that connects a certain node with the proximal (closer to the collar) part of 
the root system or each node is the distal node of only one element (except for the collar 
node). The total number of segments (root segments connecting root nodes and soil-root 
segments connection root with soil nodes) is 2Nroot. The total number of nodes in this system, 
including the collar node, is 2Nroot+1. Each root node (expect the collar node) can be linked 
uniquely to two segments: a root segment that connects the node to the proximal part of the 
root system and a soil-root segment that connects the node to the soil. The axial conductance 
Kx[i] (L² T-1) of the proximal root segment and the radial conductance of the soil-root 
segment Kr[i] (L² T-1) connected to the ith root node are defined as: 
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where l[i] (L) is the length and r[i] (L) the radius of the proximal root segment connected to 
the ith root node. The transpiration stream to the collar, T (L³ T-1), the xylem hydraulic heads, 
and the fluxes from the soil to the root nodes Q (L³ T-1) are obtained from solving the 
Laplacian on the weighted directed graph of soil and root nodes, which is the discrete 
representation of the flow equation in the leaky root system: 
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where IM is the (2Nroot +1 x 2Nroot) incidence matrix of the graph with 2Nroot +1 nodes 
and 2Nroot segments. The rows of the incidence matrix represent the nodes of the graph and 
the columns the segments. The first row represents the root collar, the next Nroot rows the 
root nodes and the last Nroot rows the soil nodes. The first Nroot columns represent the root 
segments and the last Nroot columns soil-root elements. IM[i,j]=1 when node i is a distal 
node of element j, IM[i,j] = -1 when i is proximal node of element j and IM[i,j]=0 otherwise. 
Hx is the Nroot vector with xylem hydraulic heads in the root nodes and Hsoil the Nroot vector 
with the soil water hydraulic heads in the soil nodes. diag(K) is a diagonal conductivity 
matrix with the first Nroot diagonal elements representing the xylem conductivities and the 
last Nroot elements the radial conductances. 0 is an Nroot vector with zeros and Q is the 
Nroot vector with fluxes from the soil nodes to the root nodes. The derivation of Eq. ?? is 
demonstrated in the appendix. The first equation represents the total transpiration stream out 
of the network as a function of the hydraulic heads in the root nodes connected to the collar 
and in the root collar and the axial conductances of the root segments connected to the root 
collar. The next Nroot equations close the water balances in root nodes and from solving 
these, the xylem water potentials in the root nodes are obtained. The last Nroot equations 
yield the fluxes Q from the soil nodes to the root nodes. 

 

The use of standard mathematical (linear algebra) notation is welcome. 

See proposal above 

 

(in line 160 the product between IM^Tdiag(K) is not diagonal. May be the authors refer only 
to diag(K). Please correct.) 

In the previous version, we had missed a comma in between. In the new version, this sentence 
was changed to: 

diag(K) is a diagonal conductivity matrix with the first Nroot diagonal elements representing 
the xylem conductivities and the last Nroot elements the radial conductances. 

 

2. The authors describe a discrete model without ever looking at the continuous counterpart. 
Thus, one is forced to wonder how the discretization affects the parametrization and the 
solution. There is no answer to this question and it should be discussed at least in the 
numerical experiments. 

We included now the continuous equation. In the part on the single root simulations, we add a 
comment on the discretization. We do not consider the discretization of the flow equation in 
the root system to be a topic of this paper but we analyzed this in other studies to which we 



refer here. Spatial variations and gradients in soil water potentials might as well be the 
limiting factor that determine the spatial discretization of the root network.  

The deviations are due to the upscaling and the variations of soil water and xylem hydraulic 
heads along a root segment that is represented by a single node (Bouda, 2019). Nevertheless, 
the close agreement indicates that the 1cm discretisation of the root approximates the exact 
solution of the flow equation in the single root well. Details on the convergence of this 
discretization and on exact solutions for arbitrary root segment sizes (given that the soil 
water potentials do not vary along the root segments) are given by Meunier et al. 
(2017a);(Meunier et al., 2017b). For large root segment sizes or small Kx, when the discrete 
approximation becomes inaccurate, exact solutions can be implemented in a complex root 
architecture but this leads to a different coefficient matrix C4 and C5 vector (see Bouda 
(2019)). 

 

3. The distinction between parallel/big root systems and the proposed model really boils down 
to parametrization of the same model: all of them are based on a linear diffusion-like 
equation, making the assumption that a potential function exists, and then proceed to 
upscaling in order to find the K-Q relationship.  For example, the parallel root system makes 
the assumption that resistance inside the root system is negligible with respect to resistance at 
the soil-root interface and use it throughout to solve (exact upscaling) the related mass 
conservation equation (i.e. the diffusion-like equation).  In this case, the approach is exactly 
the approach proposed in this paper, as argued also by the authors themselves in a simpler 
case. Isn't then the difference only related to a different paramterizations of the same model? 

We are not sure whether we understood this comment. It is unclear to us what is meant by 
‘model’. If the model refers to a network of resistances (which are independent of the 
potential) and if the connection of these resistances are interpreted as a ‘parameterization’ of 
the network, then the complex root network model, the big root and parallel root models are 
all different parameterizations of the same model. However, we considered the way the 
segments were connected to each other as a ‘model’ of the root system. In that sense, we have 
an ‘exact’ model (representing the connections of a true root architecture), a parallel root 
system model, and a big root model. In the introduction part, we can add: 

A first approach to model this system is to start with a simplified concept of the root system or 
its topology. Although the topology of the root system may also be considered as a 
parameterization of a model that describes water flow in the soil-root system, we consider the 
root topology here as specific ‘model’ that is fixed a-priori in a kind of top-down approach 
and that is subsequently parameterized based on measurements of soil water potential, leaf 
water potential, transpiration fluxes and information about the root system such as the root 
density distribution and hydraulic properties of root segments. Two a-priori proposed root 
system topologies can be distinguished: big root and parallel root models. 

 

 For the parallel root model, we have two ‘parameterizations’: one that assumes infinite axial 
conductances and that derives the radial conductances from the root segment radial 
conductances (which are all scaled by the same factor to obtain the same root system 
conductance as the ‘exact’ model), and one that adapts axial conductances for each soil depth 
so that the SUF of the parallel root model matches with the SUF of the exact model.  



It must be noted that the parallel root model does not presume a priori an infinite axial 
conductance. It assumes that all nodes are directly connected to the collar. Furthermore, the 
upscaling of the exact model does not make any assumptions or simplifications about the 
connections of the segments. For the upscaled exact model, we did not derive an ‘upscaled’ 
network model. The parallel and big root models are network models that approximate the 
exact upscaled model, but they are not exact analogues. We had already in the appendix: 

We call this root system the ‘parallel root system’. The radial and axial resistances for each 
soil node can however be different. Also a root system in which there is no resistance to axial 
flow can be considered as a system in which all soil nodes are connected directly to the root 
collar. But, it is important to keep in mind that systems with a significant axial root resistance 
can also be considered, as long as there is a direct connection between the soil node and the 
root collar without additional intermediate nodes that connect to the soil. For instance, 
fibrous root systems with only primary roots, in which uptake takes only place near the root 
tip but not at the more basal ends, can also be represented by this root system model.  

 

Note that the assumption of existence of a potential is reasonable in the linear regime but is 
prone to fail in a nonlinear regime, not addressed here. The authors at some point comment on 
linear vs nonlinear models, but they should elaborate more on this.  In addition, it is linearity 
that allow the upscaling, which can be done equivalently (from the mathematical point of 
view) using a "series/parallel resistance" analogy or inverting the resulting weighted graph-
Laplacian (the diffusion-like equation enforcing mass conservation of the system).  

Assuming that Kx and Kr do not depend on the hydraulic heads leads to linear equations 
which simplify the problem considerably. Nonlinearity would make the diagonal matrix 
diag(K) a function of the Hcollar, Hx and Hsoil. This would imply that the full set of (non-linear) 
equations must be solved iteratively and upscaling would be of limited use since the upscaled 
equations would have to be changed every time Hcollar, Hx and Hsoil change. We elaborate in 
the discussion why the root system can be assumed to behave as a linear system in many 
cases. But, the soil-root resistance is non-linear when the soil resistance becomes limiting. We 
are currently developing an upscaling approach that consider this non-linearity.  

We found that the linearity of the root system can be used quite elegantly to scale up the 
linear root-system part first which can subsequently be coupled to non-linear soil system part. 
This upscaling of the linear part first makes that the non-linear part needs to be solved for 
much less equations. Given the length of the current paper we would like to keep the focus on 
the linear flow equation in the root system and how it can be scaled up and represented by a 
parallel root system model that parameterized based on the upscaled equations.  

We propose to add the following in the conclusion part of the paper:  

The nonlinearities render the diagonal conductivity matrix diag(K) a function of the hydraulic 
heads Hcollar, Hx and Hsoil. This implies that the full set of (non-linear) equations must be 
solved iteratively to derive ‘exact’ upscaled root system properties, Krs, SUF every time 
Hcollar, Hx and Hsoil change. For large root systems, this approach would be unfeasible so that 
approximations are required. One approach would be to derive functional relations between 
the upscaled properties and hydraulic head distributions, root and soil hydraulic properties, 
and root architectures based on a large set of simulations and advanced data analytics. 
Another approach would be to start with simplifying assumptions that reduce the complexity 



of the system. A simplification that we are currently testing exploits the linear behavior of the 
root hydraulics for upscaling RSA first, using the approach developed in this paper, and 
couple the upscaled equations subsequently to a non-linear rhizosphere flow model. 

 

We indeed scaled up the inverted Laplacian. Then we rewrote this inverted Laplacian into a 
form from which root system characteristics such as the root system conductance, the 
standard uptake fraction and the root water uptake compensation could be derived. This form 
was then further analyzed to come to a form that shows similarities with the parallel root 
model analogy. However, this parallel root model analogy is not an exact representation of the 
upscaled root model but a quite good approximation. This is different for upscaled root 
models that use the parallel or series (big root) analogies that are parameterized directly (in a 
top down approach) based on root segment conductances.  

 

In addition, linearity is the main limitation of the proposed approach, as it cannot be extended 
to the nonlinear case since there is no analytically expressable upscaling and numerics 
(Newton method) has to be used everytime parameters are changed. 

Yes, that is correct. See our reply to the previous comment  

- 

4. Appendix: I don't understand the wording "distal" and "proximal" that have a relative 
meaning. Eq. [A1] is just the sum of the fluxes entering/exiting node i, i.e., div q =0. Also I do 
not understand the change in sign convention for the first term. Also eq. [A2] has a different 
sign convention. Then, one has to be overly careful in assembling all the fluxes.  

Distal and proximal are anatomical terms with proximal referring to closer to the collar and 
distal referring to further away from the collar. Concerning the sign, the first term is what 
flows out of the node towards the collar. The other terms is what flows towards the node from 
the distal parts. Fluxes in the network are positive when they are towards the collar.  

 

Again, I think it wouldn't be bad to use standard linear algebra (graph theory) notation and 
call IM the incidence matrix of the graph instead of the connectivity matrix. Then it becomes 
obvious that [A4] is just Darcy's (Ohm) law and [A3] is the mass balance (-div k grad h=q). 

Thank you for the suggestion. We renamed IM to incidence matrix and we added the collar 
node to the set of nodes in the graph (so we don’t have a distinction between IMcollar and IM 
anymore) 

 

The developments starting after equation [A5] seems just an application of Gaussian 
elimination. Is this needed? I am in favor of summarizing the model with some basic 
equations and then describe the steps used to solve it (finding the K-Q relationship) giving 
some physical meaning to intermediate steps is necessary only after the full algorithm 



description is reported. Or the authors could add to all this lengthy (and to me useless) 
equations a summary of the basic idea (solve for Q when H is known to get the effective 
conductivity). 

We tried to make the summary of these equations in the main text. In fact, the ‘effective 
conductivity’ that we find is the root system conductance: Krs and Eq. 8 (or Eq. A 24) 
represents the K-Q relation for the entire root system.  

The following equations are used to develop characteristic properties of the root system: Krs 
and SUF which have a clear meaning. We also develop these equations to show that these are 
the two characteristics that fully characterize a parallel root system. What we derive is how 
these two characteristics are implemented in a general root architecture and how the 
formulation for the general root architecture differs from the formulation of the parallel root 
system. By casting the exact solution (or its finite difference approximation) in the same form 
as the solution for the parallel root model (Eq. A41), we can identify the nature of these 
differences. We find that this difference can be brought back to a difference in how the water 
uptake compensation is described.  
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