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Abstract. The inclusion of soil wetness information in empirical landslide prediction models was shown to improve the 

forecast goodness of regional landslide early warning systems (LEWS). However, it is still unclear which source of information 10 

– numerical models or in-situ measurements – are of higher value for this purpose. In this study, soil moisture dynamics at 133 

grassland sites in Switzerland were simulated for the period of 1981 to 2019 using a physically-based 1D soil moisture transfer 

model (CoupModel). A common parametrization set was defined for all sites except for site-specific soil hydrological 

properties, and the model performance was assessed at a subset of 14 sites where in-situ soil moisture measurements were 

available on the same plot. A previously developed statistical framework was applied to fit an empirical landslide forecast 15 

model, and ROC analysis was used to assess the forecast goodness. To assess the sensitivity of the landslide forecasts, the 

statistical framework was applied to different CoupModel model parametrizations, to various distances between simulation 

sites and landslides, and to measured soil moisture from a subset of 35 sites for comparison with a measurement-based forecast 

model. We found that (i) simulated soil moisture is a skilful predictor for regional landslide activity, (ii) that it is sensitive to 

the formulation of the upper and lower boundary conditions, and (iii) that the information content is strongly distance-20 

dependent. Compared to a measurement-based landslide forecast model, the model-based forecast performs better as the 

homogenization of hydrological processes and the site representation can lead to a better representation of triggering event 

conditions. However, it is limited in reproducing critical antecedent saturation conditions due to an inadequate representation 

of the long-term water storage. 

1 Introduction 25 

Landslides are a major natural hazard causing fatalities and damages in mountainous regions worldwide (Froude and Petley, 

2018). The term “landslide” includes various types of mass movements spanning over different source materials (e.g. soil, 

rock), process dynamics (e.g. slide, flow, fall) and trigger types (e.g. water infiltration, earthquakes, human interaction) (Hungr 

et al., 2014; Varnes, 1978; Wieczorek, 1996). Here, we focus on rainfall and snow-melt triggered shallow landslides which 

occur frequently in Switzerland (Hess et al., 2014). The landslide process can be analysed by cause and trigger factors (Bogaard 30 
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and Greco, 2016): Factors that precondition the slope to sliding (“cause factors”) include the long-term weathering of the slope 

material, the topographic disposition, the characteristics of the vegetation cover, and the hydrological prewetting of the slope. 

The eventual failure of a slope along a shear plane is connected to a local and short-duration decrease in shear strength 

(“trigger”) due to pore-water pressure increase from direct rainfall or snow-melt water infiltration or due to the indirect build-

up of a perched water table or groundwater table (Bogaard and Greco, 2016; Terlien, 1998; Terzaghi, 1943).   35 

Risk awareness and the corresponding response of people is a significant factor for mortality particularly during shallow 

landslide events (Pollock and Wartman, 2020). In this respect, landslide early warning systems (LEWS), which allow the 

prediction of the landslide dangerhazard, have become an essential part of risk management in many places around the world 

(e.g. Baum et al., 2010; Guzzetti et al., 2020; Stähli et al., 2015). Regional LEWS, also referred to as territorial (Piciullo et al., 

2018) or geographical (Guzzetti et al., 2020) LEWS, make predictions for multiple landslides and operate at regional to national 40 

scale. Statistical landslide forecast models relate environmental variables such as rainfall characteristics or soil wetness 

variation to the occurrence of landslides. They are fundamentally based on time series of environmental data and a 

comprehensive landslide inventory (Guzzetti et al., 2020; Terlien, 1998).  

In the past, many regional LEWS have been based on statistical forecast models that describe empirical relationships between 

rainfall events and landslide occurrence (Caine, 1980; Guzzetti et al., 2008; Segoni et al., 2018a). While this approach benefits 45 

from widely available rainfall data, the focus on triggering factors disregards the influence of the antecedent wetness conditions 

(“cause factors”), which could be represented by including soil wetness information (Bogaard and Greco, 2018). In fact, 

forecast goodness improvement was reported after incorporation of in situ soil moisture measurements (Mirus et al., 2018a, 

2018b; Thomas et al., 2020), remotely sensed soil moisture (Bordoni et al., 2020; Brocca et al., 2016; Thomas et al., 2019; 

Zhao et al., 2019a; Zhuo et al., 2019b) or simulated soil moisture using physically-based models (e.g. Ponziani et al., 2012; 50 

Segoni et al., 2018b; Zhuo et al., 2019a). Other landslide forecast models exist that express antecedent wetness conditions in 

terms of accumulated pre-event precipitation (e.g. Aleotti, 2004; Martelloni et al., 2012), or antecedent soil wetness or 

precipitation indices (e.g. Crozier, 1999; Glade, 2000; Godt et al., 2006).  

At the point scale, in situ soil moisture sensors (time- and frequency domain reflectometry, TDR, FDR, or capacitance based) 

estimate dielectric permittivity (Babaeian et al., 2019) from which soil moisture is deduced using an empirical calibration 55 

function (for example equation of Topp et al., 1980). They are representative for a specific volume of soil and are usually 

integrated to depth profiles. While sensor networks deliver soil moisture estimates at high temporal resolution, installation and 

long-term maintenance are costly and difficult, and the representativeness for regional landslide activity decreases significantly 

with distance from the soil moisture site (Wicki et al., 2020). Larger spatial integration is achieved by using remotely sensed 

soil moisture information derived from microwave emissions (Reichle et al., 2017). However, the spatial and temporal 60 

resolution are coarse and the sensing depth is shallow, limiting the potential for LEWS applications in mountainous regions 

(Thomas et al., 2019; Zhuo et al., 2019a). 

Numerical models for the simulation of soil water dynamics may help in this regard as they provide cheap, continuous and 

spatially and temporally consistent soil moisture estimates. Such models typically simulate the accumulation and redistribution 
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of water (and heat) either in specific soil profiles (in one dimension) or for larger areas (pixels or hydrological response units) 65 

for time resolutions from minutes to days. Physically-based models explicitly represent hydrologic state variables and fluxes 

by mathematical formulations (Fatichi et al., 2016), where the variably saturated water flow is often described by the Richards’ 

equation (1931) and the mathematical expressions in form of partial differential equations are solved with a numerical method 

(Feddes et al., 1988). In comparison to simpler conceptual or bucket models, physically-based models are more time-

consuming in calculation and require more parameter settings. However, they are less dependent on specific calibration 70 

procedures, since parameter values can be constrained by observable quantities or expert decisions (Gharari et al., 2014; Gupta 

and Nearing, 2014), or they can be inferred from easier measurable quantities by means of pedotransfer functions (Van Looy 

et al., 2017; Schaap et al., 2001). One-dimensional coupled water and heat transfer models go back to the pioneering work of 

Harlan (1973) and were further developed and implemented in computer codes for example by van Genuchten (WORM, 1987), 

Jansson (CoupModel, 2012) or Šimůnek et al. (HYDRUS-1D, 2012). Two-dimensional soil hydrological models, such as 75 

PREVAH (Viviroli et al., 2009), WaSiM-ETH (Klok et al., 2001), TOPKAPI (Liu and Todini, 2002) or Tethys-Chloris (Fatichi 

et al., 2012) to name a few, are typically applied at catchment or regional scale. Due to the larger coverage, they are restricted 

by computational resources and often have to simplify the modelling process (e.g. by reducing the temporal resolution, the 

number of modelling layers or the number of processes represented), but they have the advantage of lateral connectivity and 

basin-wide coverage (Fatichi et al., 2016). Common limitations of all physically-based models are mainly related to the 80 

availability of appropriate soil physical properties to describe the soil hydraulic characteristics, simplifications of the model 

boundary conditions and the mathematical description of the hydrological processes, and the quality of the dynamic input data 

(Feddes et al., 1988; Paniconi and Putti, 2015).  

Ultimately, the question arises to what extent landslide forecast models that are based on simulated soil moisture are reliable 

and representative in comparison to models based on actual soil moisture measurements. In this study, we aim (i) to clarify the 85 

skill of a LEWS based on simulated soil moisture from a 1D soil moisture model compared to one based on in situ soil moisture 

measurements, (ii) to assess the sensitivity of this skill to model assumptions and parameters, and (iii) to evaluate the potential 

of extending a measurement-based LEWS to sites with no soil moisture measurements. This study assesses the potential and 

limitations of using a 1D soil water transfer model for regional landslide early warning and highlights the strengths and 

weaknesses compared to using soil moisture measurements. We use plot-scale soil hydrological simulations to be able to 90 

directly compare the results to a landslide forecast model based on in situ soil moisture measurements. 

2 Material and methods 

2.1 Study design 

The following section summarizes the design of this study: In a first step, soil moisture was simulated at 133 sites in 

Switzerland using a 1D soil moisture transfer model. Second, the forecast goodness for regional landslide activity was assessed 95 

by fitting and evaluating a statistical landslide forecast model to observed shallow landslides. Finally, the landslide forecast 
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goodness was compared with a landslide forecast model based on in situ soil moisture measurements available at a subset of 

the modelled sites. We used applied a statistical framework previously developed to assess the information content of in situ 

soil wetness information for regional landslide activity (Wicki et al., 2020), and we used the same soil moisture monitoring 

dataset compiled in the named study for comparison with a measurement-based forecast model. We focused on in situ 100 

information and 1D modelling because of the high temporal resolution and in-depth integration, and due to the availability of 

1D validation data.We focused on 1D soil moisture modelling because these models permit high temporal resolution, detailed 

depth integration and a good representation of physical infiltration processes, while still meeting the computational restraints. 

2.2 Study area 

The study area covers the entire country of Switzerland (Fig. 1) and thus an area of approximately 41’300 km2. The climate in 105 

Switzerland transitions from an oceanic (wet) climate in the west to a more continental (dry) climate in the east of the country 

and the presence of the Alps strongly impacts the regional weather patterns. Hence, yearly precipitation amounts are highly 

variable and range from less than 600 mm in some inner alpine valleys to more than 3000 mm at high altitudes in the Alps. 

Precipitation falls throughout the year with peaks during the summer months in most regions whereas the fraction of snow 

strongly depends on the altitude. (CH2018, 2018) Yearly evapotranspiration is highest in lowlands (up to 600 mm over 110 

grasslands) and continuously decreases to less than 250 mm at elevations higher than 2500 m a.s.l. (Menzel et al., 1999) 

Landslides in Switzerland occur mostly along the northern pre-Alps and south of the Alps (Ticino) due to the presence of 

susceptible geological formations (Flysch, Shist or Bündner Shist, Phyllite), thick soil and debris covers on the moderately 

steep hillslopes, and the occurrence of intense rainfall events. (Schmid et al., 2004) Most landslides occur during the summer 

months due to short-term thunderstorm cells or long-standing precipitation events often caused by impingement of moist air 115 

masses on the Alps. (CH2018, 2018; Hess et al., 2014; Hilker et al., 2009) 

2.32 Soil moisture model 

In this study, the heat and mass transfer model CoupModel (P.-E. Jansson, 2012) was used to simulate soil water transfer along 

a 1D virtual soil profile. The CoupModel has been used extensively to simulate temporal soil moisture dynamics (e.g. Okkonen 

et al., 2017; Pellet et al., 2016; Scherler et al., 2010; Wu et al., 2020; Wu and Jansson, 2013) and soil water balance variations 120 

(e.g. Christiansen et al., 2006; Madani et al., 2018; Walthert et al., 2015). In the context of landslide early warning, parts of 

the CoupModel were used for soil moisture simulations within the Norwegian national forecasting service for predicting 

rainfall-induced landslides (Krøgli et al., 2018). 

At the core of the model, two coupled differential equations for water and heat transport are solved assuming that flows are 

the result of gradients (Jansson and Karlberg, 2011). The soil water flow, qw, follows Darcy’s law as generalised for unsaturated 125 

flow by Buckingham (1907) 

𝑞௪ = −𝐾௪ ቀ
ఋట

ఋ௭
− 1ቁ,            (1) 
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where Kw is the unsaturated hydraulic conductivity, ψ is the matric potential head, and z is the depth. Formulations to simulate 

vapour flow and bypass flow in macropores are implemented in the CoupModel as well but were not included in this study. 

From Eq. (1) and the law of mass conservation, the unsaturated water flow equation follows 130 

డఏ

డ௧
= −

డ௤ೢ

డ௭
+ 𝑠௪ ,            (2) 

where θ is the soil water content and sw is a source or sink term.  

To solve the water flow equation, two soil characteristic hydraulic properties need to be defined for each model layer, both of 

which are considered to be functions of the water content: the soil water retention curve characterizing the relationship between 

matric potential and water content and the unsaturated hydraulic conductivity function, describing the saturated hydraulic 135 

conductivity as a function of water saturation (or matric potential) and the saturated soil hydraulic conductivity. In this study, 

they were defined by the Mualem and van Genuchten closed-form equations (van Genuchten, 1980; Mualem, 1976) 

𝜃 = 𝜃௥ +
ఏೞିఏೝ

[ଵା(ఈట)೙]೘,           (3) 

𝐾௪ = 𝐾௦
൫ଵି(ఈట)೙షభ(ଵା(ఈట)೙)ష೘൯

మ

(ଵା(ఈట)೙)
೘
మ

,          (4) 

where θr is the residual water content, θs is saturated water content (equal to porosity), α, n and m = 1-(1/n) are empirical 140 

parameters, and Ks is the saturated hydraulic conductivity. The heat flow equation follows Fourier’s law and accounts for 

conduction and convection of heat (Appendix A). The differential equations are solved with a finite difference method (Euler 

integration), which requires a soil profile with a discrete number of layers having homogenous soil properties (Jansson and 

Karlberg, 2011). 

In the following, all other main processes represented in the CoupModel set-up are described. For a detailed description of the 145 

associated mathematical expressions, see Appendix A. At the lower boundary, water may leave the soil column by deep 

percolation. In the present study, two different lower boundary conditions were applied: Tthe first boundary condition assumes 

a non-saturated soil profile. If a pre-defined pressure head is surpassed in the lowest layer, outflow occurs as a function of the 

hydraulic conductivity (free drainage), whereas no flow occurs if the pressure head is below the specified limit. The second 

boundary condition may represent saturated conditions and a variable ground water table. Here, outflow is calculated with a 150 

seepage equation dependent on the depth and spacing distance to a drain. (Jansson and Karlberg, 2011)  

Infiltration capacity governs the infiltration of water at the upper boundary, and it is a function of top-most layer’s saturated 

hydraulic conductivity and the pressure gradient to the surface. If the infiltration rate is exceeded by the water available for 

infiltration or if over-saturation leads to an upward movement of the soil water, water may runoff laterally. Water loss by 

evapotranspiration consists of bare soil evaporation and vegetation transpiration, which in the present study was a mowed 155 

lawn. The individual evapotranspiration components were calculated using the Penman-Monteith equation (Monteith, 1965), 

which is mainly governed by aerodynamic and surface resistances (evaporation) as well as stomatal resistance (transpiration). 

The potential transpiration is limited by the availability of soil water within the rooting depth of the plants and reduced by low 

ground temperatures. Finally, a snow cover may be built-up based on the air temperature at times of precipitation. Snow melt 
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and refreezing was calculated with an empirical function depending on air temperature, global radiation and surface heat flow. 160 

(Jansson and Karlberg, 2011) 

2.34 Model set-up and parametrization 

Soil moisture was simulated at 133 sites in Switzerland where meteorological data was available from an on-site or nearby 

meteorological station and each site was parametrized as a grassland location (all sites, Fig. 1a, Table 1). At a subset of 35 

sites (monitoring sites), in situ soil moisture measurements were available, which were used for benchmarking the statistical 165 

landslide forecast model (see section “Soil moisture data”). At a subset of 14 selected sites (reference sites) in situ soil moisture 

measurements were used to assess the soil moisture simulations from the CoupModel. They were selected because they were 

located on the same plot as the meteorological station and below grassland vegetation, i.e. the soil moisture sites which were 

disregarded for model assessment were located at far distance from the meteorological site (> 2 km) and/or located in a forest 

and thus not representative for the grassland parametrization. 170 

The goal of this study was to define a common parametrization set for all sites, hence (i.e. no site-specific calibration was 

conducted) to be able to apply the model at sites where no site-specific calibration is possible because soil moisture 

measurements are missing. Most parameter values were left at the default values of the CoupModel (documented in detail by 

Jansson and Karlberg, 2011) whereas others were (i) adjusted to fit observed soil moisture dynamics, (ii) they were taken from 

literature values or (iii) they were defined by author’s judgment. A description of key parameters and chosen values are given 175 

in Appendix A. The plant properties for the grassland cover were defined by literature values (leaf area index = 0.6 m2 m-2, 

canopy height = 0.25 m, maximum root depth = 0.6 m) and they were defined as homogenous throughout the season. The 

values for the maximal conductance of fully open stomata (gmax = 0.03 m s-1) and the critical pressure head for reduction of 

potential water uptake (ψc = 1500 cm water) were chosen by comparison with observed soil moisture variation. Seasonal snow 

cover dynamics were compared with snow depth measurements available at some of the sites and tuned by adjusting the 180 

empirical snow melt coefficients (mT = 1.5 kg °C-1 m-2 d-1, mf = 0.1 m-1, mRmin = 1.5e-8 kg J-1). Different lower boundary 

conditions were tested including both saturated and unsaturated conditions, and best parameter values (ψMax = 10 cm for 

unsaturated conditions; zp2 = 7.5 m, dp2 = 100 m for saturated conditions) were defined by comparison with observed soil 

moisture variation. 

Soil profiles were defined by 11 model layers of increasing thickness with depth and a total thickness of 300 cm. To reflect 185 

regional geological differences, soil hydraulic properties were varied for each site. Since no laboratory or field data was 

available to measure or fit the soil hydraulic parameters (α, n, θr, θs, Ks), they were predicted from easier available soil texture 

and bulk density values using the Rosetta3 H3w pedotransfer function (Zhang and Schaap, 2017). Rosetta3 was derived from 

a dataset containing 2134 soil samples from North America and Europe (Schaap et al., 2001). The underlying dataset also 

includes data from Switzerland giving confidence that the pedotransfer function is suited for the application to soils in 190 

Switzerland. The required soil texture and bulk density values were derived from two sources: (1) At the 35 monitoring sites, 

texture and bulk density measurements were available from soil samples taken at various depths along the soil profiles where 
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soil moisture sensors were installed (referred to as soil samples). The data was provided by the operators of the soil moisture 

monitoring sites (see section “Soil moisture data”). (2) At all 133 sites, texture and bulk density estimates were extracted from 

the SoilGrids system (referred to as SoilGrids) which provides global predictions of various soil properties based on machine 195 

learning techniques (Hengl et al., 2017). SoilGrids is available in 250 m resolution at seven standard depths (0, 5, 15, 30, 60, 

100 and 200 cm) and permits estimates of texture and bulk density on a global scale. Comparison of the texture split values 

between the soil samples and SoilGrids datasets for the 35 common monitoring sites and two depth bands (0.0–0.4 m, 0.4–

1.0 m) reveals a narrower value distribution of SoilGrids with particularly coarse fractions missing (Fig. 2a, e). 

To further test the model sensitivity to the soil hydraulic properties, four soil profiles with uniform texture (referred to as 200 

uniform-texture profiles) were defined and soil hydraulic properties were defined based on literature values. The profiles 

include homogeneous parameter values at all depths and correspond to extreme and typical coarse- and fine-grained soils. If 

the derived soil hydrological properties are compared between all sources, a narrower value distribution is again visible for the 

SoilGrids dataset compared to the soil samples, however, median values are similar or in the same order of magnitude (Fig. 

2b-d, f-h). Parameter values of the four uniform-texture profiles vary considerably, whereas the normal fine-grained uniform-205 

texture profile shows similar parameter values as the median values derived from the soil samples and SoilGrids. 

2.45 Meteorological input data 

The CoupModel was run at hourly time-steps using measurements of the five properties precipitation, air temperature, wind 

speed, relative humidity and global radiation. Data were available from meteorological stations of various monitoring 

networks: (1) SwissMetNet is the automatic monitoring network of the national meteorological agency MeteoSwiss. Data from 210 

114 monitoring sites were used in this study dating back up to 1981. (2) DTN (former MeteoGroup) is a provider of 

meteorological measurements and a partner network of MeteoSwiss, and two sites were included in this study 

(https://www.dtn.com). (3) The Long-Term Forest Ecosystem Research Programme (LWF) of the Swiss Federal Research 

Institute WSL conducts research on forest ecosystem processes on forested monitoring plots in Switzerland and Europe. At 14 

sites, from which 8 were included in this study, collocated meteorological measurements are taken in an open-field in less than 215 

2 km distance from the plots (Rebetez et al., 2018). (4) The Swiss FluxNet initiative includes 8 long-term ecosystem sites with 

eddy-covariance flux measurements in Switzerland (www.swissfluxnet.ch). In this study, meteorological measurements from 

two sites were included. (5) Finally, meteorological measurements from one site at the Rietholzbach Research Catchment were 

included, which is operated by the Land-Climate Dynamics Group (ETH, Zurich; https://iac.ethz.ch/group/land-climate-

dynamics/research/rietholzbach.html).  220 

At each site, all available meteorological data was included from the first point at which all five parameters were available (as 

early as 1981) until the end of 2019. Data gaps are generally short (hours to days) and were linearly interpolated in the 

CoupModel except for precipitation, for which zero precipitation was assumed. Each complete time series was replicated prior 

to the first measurement by two randomly selected consecutive hydrological years (spin-up period). Both data gaps and spin-

up periods as well as the first 3 months after the spin-up period were removed for the statistical analysis. 225 
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2.56 Soil moisture data 

For assessing the CoupModel performance and for comparison of the simulation-based forecast model with a forecast model 

based on measurements (see section “Statistical landslide forecast model”), soil moisture measurements from 35 sites in 

Switzerland were included in the study (monitoring sites, Fig. 1a, Table 1). Soil moisture is measured with TDR or capacitance-

based sensors at various depths along a soil profile with the lowest sensors typically located at depths of 80–120 cm. The 230 

dataset includes sites from monitoring networks of various research institutions and authorities, and measurements were 

available earliest from 2008 until end of 2018. The dataset was compiled and described in detail in a previous study (Wicki et 

al., 2020). 

2.67 Landslide data 

Landslide records from the Swiss flood and landslide damage database (Swiss Federal Research Institute WSL, Hilker et al., 235 

2009) were used to fit the landslide forecast model (see section “Statistical landslide forecast model”). The database includes 

landslide events which were identified from news articles in all of Switzerland since 1972. Records include coordinates, the 

date and time of the event (if known), and an event description. 

For this study, events recorded from 1981 until end of 2019 were included. Following the approach of Wicki et al. (2020), 

deep-seated and human-induced landslides (e.g. pipe breaks, road embankment slips) were removed if explicitly mentioned in 240 

the event description. Further, if no time of occurrence was specified, it was set to 12:00 p.m., or, if the approximate timing 

was given in the event description, the timing was assumed (e.g. 09:00 a.m. for “in the morning”). In total, 2969 events were 

included in this study (Fig. 1a), 1041 of which contained a precise time information. 

2.78 Statistical landslide forecast model 

To assess the information content of the simulated soil moisture dynamics for regional landslide warning, a statistical 245 

framework was applied to the simulated soil moisture time series. This framework was developed in a previous study where it 

was applied to in situ measured soil moisture in Switzerland (for a detailed description see Wicki et al., 2020). It included first 

a normalization of soil moisture values by the minimum and the 99.5 percentile values to represent soil saturation, and the 

calculation of mean and standard deviation saturation at each soil profile for all model layers until 140 cm depth. At each 

profile, periods of continuous saturation increase (infiltration events) were then identified automatically based on the mean 250 

saturation time series. Each infiltration event was characterized by a set of event properties derived from both the mean and 

standard deviation time series (see Table 2). Finally, infiltration events were flagged as landslide triggering or landslide non-

triggering providing that a landslide was observed or not observed, respectively, during the event period and within a specific 

distance from the modelling site (forecast distance).  

A multiple logistic regression model was then fitted to the set of infiltration events where the binary outcome variable (i.e. the 255 

landslide triggering class “yes” or “no”) was modelled as a function of the independent infiltration event properties 
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(explanatory variables). The logistic regression model yields a probability for each infiltration event to belong to the landslide 

triggering class (triggering probability). A 5-fold cross-validation (CV) scheme was applied to assess the robustness of the 

model fit with equally sized folds and randomly selected infiltration events. Four folds were used to fit the model and the 

remaining fold was used as the to make predictions. This approach is referred to as the validation set approach, as opposed to 260 

the all dataset approach where the statistical model is fit to all the infiltration events. 

2.89 Skill of the landslide forecast 

To assess the forecast goodness of each specific statistical model fit, receiver operating characteristic analysis (ROC) was 

performed according to Fawcett (2006). First, a threshold was applied to reclassify the triggering probabilities of the infiltration 

events into the binary triggering classes landslide triggering or landslide non-triggering. A confusion matrix was constructed 265 

between observed and modelled triggering classes counting the number of true positives (TP), true negatives (TN), false 

positives (FP) and false negatives (FN). The true positive rate, TPR = TP / (TP + FN), and false positive rate, FPR = FP / (FP 

+ TN) were computed accordingly. To assess the overall potential of a model fit for multiple thresholds, the threshold was 

varied 5000 times in equal steps between the minimum and maximum triggering probability, thus resulting in 5000 confusion 

matrices. The 5000 TPR and FPR pairs were then plotted in a 2D plot (ROC space), resulting in a cumulative curve (ROC 270 

curve) for which the area under the curve (AUC) was computed.  

The forecast goodness of different model fits was assessed qualitatively by comparing the ROC curve and quantitatively by 

comparing the AUC value, which corresponds to the probability of listing a positive instance higher than a negative instance 

if sorted by the observed triggering class. A perfect classifier plots near the top left corner of the ROC space (AUC = 1.0) 

whereas it is no better than random guessing if it plots along the (0/0) to (1/1) diagonal (AUC = 0.5). To assess the distance-275 

dependence of the forecast models, each model set-up was fit using eight different forecast distances ranging in equal steps 

from 5 to 40 km. We chose the ROC curve and AUC value as performance indicators because they assess the general forecast 

goodness of a statistical model in contrast to many other performance indicators that quantify the forecast goodness of specific 

threshold values (Piciullo et al., 2020). 

3 Results 280 

3.1 General model performance 

The performance of the soil moisture model and the corresponding triggering probabilities according to the landslide forecast 

model are illustrated for a model set-up using a lower boundary condition with groundwater and soil hydrological information 

from SoilGrids during a sample period from mid-April to mid-May 2015 (Fig. 3a). During this time period, a series of intense 

precipitation events led to wide-spread landslide activity in central Switzerland with numerous landslides observed from 30 285 

April until 4 May 2015 (black dots on Fig. 1b and colour filled background on Fig. 3a, b). Profile saturation for a subset of 11 

sites in the region of interest (coloured points on Fig. 1b) remained low and inhomogeneous prior to the landslide period. It 
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increased to near-saturated conditions and remained very wet for a couple of days which coincides with the period of landslide 

activity. This development is confirmed by the landslide forecast model (fitted here for the 15 km forecast distance), which 

shows a low triggering probability at the beginning of the period (red horizontal lines; note that landslide probability is only 290 

computed for periods of saturation increase). Triggering probability increased significantly across all sites during the period 

of landslide activity and descended again after that. While the relative triggering probability increases are considerable, 

absolute probability values remain low even during landslide-triggering events. This is the case for all infiltration events and 

can be attributed to an unbalanced dataset (i.e. the ratio of landslide triggering to landslide non-triggering events is very low, 

ratio not shown). It is commonly reported for logistic regression models with these types of datasets (King and Zeng, 2001). 295 

These patterns can be compared to in situ soil moisture measurements at the same sites and the corresponding landslide 

forecasts of a forecast model fitted to the soil moisture measurements (Fig. 3b). Temporal evolution of the profile saturation 

shows similar regional-scale patterns with variably-saturated conditions during the first half of the sample period followed by 

an increased saturation during the period of landslide activity. Further, the measurement-based landslide forecast model shows 

a similar triggering probability development as the simulation-based model with significantly higher triggering probabilities 300 

for all sites during the days of observed landslide events compared to the periods prior and after that. Yet, distinct differences 

are apparent: The temporal evolution of simulated profile saturation appears to be more homogeneous between different sites, 

the desaturation immediately after an infiltration event is slower and it reaches drier conditions after sustained periods of no 

infiltration. Triggering probabilities are generally lower for the measurement-based landslide forecast model. 

3.2 Performance assessment of the soil hydrological model 305 

The agreement between simulated and observed soil wetness was analysed for the 14 reference sites by the mean error (ME) 

and coefficient of determination (R2) statistics computed for the hourly soil moisture values. The skill of the model set-up was 

generally solid but strongly varied from site to site and with depth of sensors (Fig. 4a). Best agreement was found for the top-

most sensors (median ME = 0.00 m3 m-3, median R2 = 0.55–0.60). At depths of 30 and 50 cm, ME values were similar but R2 

values were lowest across all depths (median R2 = 0.40–0.45). R2 statistics were better at 80 cm depth (median R2 = 0.50–310 

0.55), however, mean error was greater than at all other depths (median ME = 0.02–0.05 m3 m-3), indicating too dry conditions 

at the lower boundary probably due to overestimation of deep percolation. This skill is comparable or slightly lower than 

reported skills for other soil moisture models used in landslide early warning (e.g. Brocca et al., 2008; Thomas et al., 2018) or 

for CoupModel set-ups with different purposes (e.g. Conrad and Fohrer, 2009; He et al., 2016). However, it has to be noted 

that these models are mostly validated for one or two sites only and were partially calibrated site-specifically. 315 

Not much difference in model skill was found between using a lower boundary condition without groundwater (Fig. 4a) and 

with groundwater (Fig. 4b). When a lower boundary with groundwater was defined, ME statistics remained very similar 

(median ME = 0.00–0.05 m3 m-3) and R2 statistics slightly improved at the lowest depths (median R2 = 0.45 at 50 cm, median 

R2 = 0.60 at 80 cm). Best model fit of the groundwater-based model set-up was found for a parametrization indicative for a 

well-drained site. 320 
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Another important part in the parametrization is the site-specific definition of the soil hydrological properties. Since texture 

and bulk density information from soil samples were available for the monitoring sites only, they were derived from a gridded 

product (SoilGrids) in addition in order to be able to apply the CoupModel with the same general set-up at all sites. Comparison 

of a soil samples based model setup (Fig. 4a, b) with a model set-up based on SoilGrids information (Fig. 4c, d) revealed very 

similar model skill, with a slightly decreased mean error (median ME = 0.00 m3 m-3 at all depths) and slightly larger range of 325 

R2 values for the SoilGrids-derived model set-up. This indicates that SoilGrids adequately represents the regional variation in 

soil hydrological variability and can be used to extend the model to all other sites. Further, the effect of having no regional 

variation in soil hydrological properties was tested by deriving them from the normal fine-grained uniform-texture profile (Fig. 

4g). Mean error statistics remained in a similar range (median ME = 0 m3 m-3 at all depths), however R2 values were 

significantly lower at all depths (median R2 = 0.30–0.55). This demonstrates the value of including regionally-varying soil 330 

hydrological properties. 

Finally, large sensitivity of the model skill was found for variation of the saturated hydraulic conductivity, which was tested 

by deriving the soil hydrological properties from the other, more extreme uniform-texture profiles. Above-average Ks values 

were defined for profiles representing extreme coarse-grained and normal coarse-grained soils (Fig. 4e, f), and Ks values were 

below average for the extreme fine-grained uniform texture-profile (Fig. 4h). Model skill showed a very poor model fit for the 335 

coarse-grained profiles (median R2 = 0.05–0.20) and very high mean error values indicative for too dry conditions (median 

ME = 0.25 m3 m-3 at all depths). Model fit was better for the extreme fine-grained profile (median R2 = 0.40–0.50) but ME 

statistics showed too wet conditions (median ME = -0.10 m3 m-3 at all depths). This indicates that the SoilGrids and soil samples 

derived saturated hydraulic conductivity values are in an adequate order of magnitude. 

One important result of our soil moisture model assessment was the fact that the deviation between model and measurement, 340 

i.e. the residuals, were not varying randomly, but had a seasonal trend (Fig. 5a, b, residuals were computed as mean daily 

values across all 14 sites). With a CoupModel set-up using SoilGrids information and a bottom boundary condition with 

groundwater, winter months showed positive anomalies (i.e. modelled soil moisture was drier than observed) whereas negative 

anomalies (i.e. wetter than observed) were apparent during summer months. Both effects were more pronounced in near-

surface layers. Further, near-surface layers showed wetter than observed anomalies after the exceptionally dry summer in 2015 345 

and negative trends not seen in the modelling.indicating that the extreme drying could not be reproduced very well. We explain 

this the underestimation of the seasonal variation with an underestimation of evapotranspiration in summer (too wet conditions 

in summer when evapotranspiration is high) and a generally faster drainage than observed (too dry conditions in winter when 

evapotranspiration is low). Comparison with the long-term evolution of simulated soil moisture (mean daily values across all 

14 sites, Fig. 5c) showed no apparent trend, thus the intra-year variability of residuals can be explained with variations in 350 

precipitation and evaporation. The overall negative trend in the anomalies (dashed lines in Fig. 5c) may be explained by an 

underrepresentation of evapotranspiration in exceptionally dry summers. However, it might as well be related to data quality 

issues and reduced homogeneity of the long-term soil moisture measurements which have been partially running for up to 10 

years (e.g. due to compaction of the soil or enhanced root development around the sensors towards the end of the monitoring 
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period). Further, the different sites each have different lengths of records which may impact the homogeneity of the aggregated 355 

signal. 

3.3 Performance of the statistical landslide forecast model 

3.3.1 Simulated versus observed soil moisture; 35 monitoring sites 

ROC curves and AUC values for a CoupModel set-up with groundwater and using soil hydrological properties derived from 

soil samples are shown in Fig. 6a. For comparison with a measurement-based statistical model fit, the dataset contains the 35 360 

monitoring sites only and modelling periods were limited to the same periods as soil moisture measurements were available 

(2008–2018). ROC curves of all forecast distances clearly deviated from the (0/0) to (1/1) line and most AUC values were 

larger than 0.8 indicating that all forecast distances bore some information content on the regional landslide activity. Forecast 

goodness was strongly distance dependent with short forecast distances having a better forecast goodness (AUC = 0.86 at 5 

km, AUC = 0.79 at 40 km, all dataset approach). This is in good agreement to the results of Wicki et al. (2020) for measured 365 

soil moisture. The robustness of the statistical model fit was assessed by comparison with the AUC values and ROC curves of 

the validation set approach (Fig. 6e). Values were very similar for most forecast distances indicating a robust model fit, 

however, robustness was slightly lower at short forecast distances probably due to the low number of landslides records (7% 

of all landslides were within the 5 km radius of the 35 sites; see Table 3). 

Compared to a statistical model derived from measured soil moisture (Fig. 6d, h), the number of infiltration events was similar, 370 

yet the overall forecast goodness of the measurement-based forecast model was lower at all forecast distances (AUC = 0.83 at 

5 km, AUC = 0.72 at 40 km, all dataset approach). This is remarkable as the simulated soil moisture was shown to contain 

specific uncertainty particularly related to the long-term water storage in the soil. We explain the better forecast goodness of 

the simulation-based landslide forecast model by a more homogeneous representation of infiltration characteristics in space 

(less influence of local conditions such as groundwater influence or preferential infiltration) and in time (no drift or trend as 375 

might be observed for some erroneous or badly coupled soil moisture sensors), as well as a more homogeneous site 

representation (number of sensors and depth levels included in the analysis). 

3.3.2 Simulated soil moisture using in situ soil physical properties versus using SoilGrids 

A similar forecast goodness resulted for a simulation with SoilGrids-derived soil hydrological properties compared to a 

simulation with soil hydrological properties derived from soil samples (Fig. 6b, f). AUC values and number of infiltration 380 

events were in the same range (AUC = 0.87 at 5 km, AUC = 0.78 at 40 km, all dataset approach), and ROC curves followed a 

similar shape with more robust model fits at large forecast distances. This finding is in line with the similar goodness of fit as 

shown in the previous section and demonstrates the validity of using soil hydrological properties derived from SoilGrids. It 

permits to extend the approach to all 133 sites for most of which no in situ soil sample information was available. 



13 
 

3.3.3 Increase of number of soil moisture sites 385 

Extending the analysis to all 133 sites and to the entire input data time period (1981–2019) resulted in a considerably higher 

number of infiltration events (N = 142’311) and thus much smoother ROC curves (Fig. 6c, g). Further, the model fits became 

very robust even at short forecast distances (i.e. same AUC values for the all dataset and validation set approach). AUC values 

were slightly lower than when the 35 monitoring sites were used, but in the same range (AUC = 0.87 at 5 km, AUC = 0.76 at 

40 km), and ROC curves bulged slightly less to the top, indicating a worse performance for optimistic thresholds.  390 

Increasing the number of sites also increased the area and number of landslides covered, as illustrated with Table 3. When all 

133 sites were used, almost the whole country and all landslides were covered by using a 15 km forecast distance. When the 

35 monitoring sites were used only (as was the case for the measurement-based forecast model), the same coverage is only 

possible when a 40 km forecast distance is used. This is due to the lower number of sites and because the available sites are 

distributed inhomogeneously including large gaps in alpine areas and in the eastern part of the country (Fig. 1a). 395 

3.3.4 Sensitivity of the landslide forecast model to the definition of the lower boundary condition and soil properties 

The sensitivity of the landslide forecast model to changes in the lower boundary condition was assessed by testing different 

lower boundary parametrizations for CoupModel set-up using all 133 sites (Fig. 7, grey boxes highlight the model 

parametrization that was chosen for the goodness of fit analysis). Low sensitivity of the landslide forecast goodness was found 

for variations of the lower boundary conditions without groundwater (Fig. 7a), which was defined by the maximum pressure 400 

head of the lowest layer above which outflow occurs as gravitational outflow. In contrast, when the lower boundary was 

defined with a seepage function, the landslide forecast goodness was very variable. Best results were obtained for a fairly steep 

gradient to the drain, i.e. a larger depth to drain (Fig. 7b) or a shorter distance to drain (Fig. 7c). This indicates a better landslide 

forecast goodness for well drained sites. As shown previously, the landslide forecast goodness was similar for both, a 

CoupModel parametrization with and without groundwater, which is in line with the very similar goodness of fit values for 405 

the two parametrizations. 

Low sensitivity of the landslide forecast model was found when using soil hydrological properties derived from uniform-

texture profiles (Fig. 8), resulting even in a slight forecast goodness increase for the extreme and normal coarse-grained 

uniform-texture profiles. This is surprising, since by using uniform-texture profiles the regional variation of soil hydrological 

properties is disregarded and Ks values partially deviate substantially from what can be expected in reality, both of which was 410 

reflected with a substantially worse agreement with measured soil moisture in a previous section. The reasons behind this are 

studied in more detailed in the discussion section.   

3.4 Most important explanatory variables for landslide forecast model 

In the previous section, the landslide prediction models were fitted including all explanatory variables (also referred to as event 

properties) as listed in Table 2. In order to analyse the contribution of individual explanatory variables to the overall forecast 415 
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goodness, the landslide prediction model was fitted to individual explanatory variables only, as illustrated in Fig. 9 (first 

column) where AUC values were plotted for different statistical model fits. Explanatory variables can be grouped into variables 

describing the antecedent wetness conditions (underlain in red) and into variables describing the infiltration event dynamics 

(underlain in orange). For reference, a model fit including two explanatory variables only (antecedent saturation and saturation 

change, second column) and a model fit including all explanatory variables (third column) were plotted too. As to be expected, 420 

the forecast goodness of individual explanatory variables was significantly lower than when all explanatory variables were 

included. Further, model fits using the two explanatory variables antecedent saturation and saturation change had almost the 

same forecast goodness as if all event properties were used. 

When looking at individual explanatory variables in detail, distinct differences become apparent between statistical model fits 

based on simulated and measured soil moisture. For the simulation-based landslide forecast models, the increase of the forecast 425 

goodness was mostly driven by explanatory variables that describe the triggering event dynamics (e.g. saturation change during 

the infiltration event, maximum 3-hours infiltration rate, infiltration rate, standard deviation change, Fig. 9a, d, g). Inversely, 

for a measurement-based landslide forecast model, explanatory variables related to the antecedent wetness conditions were 

more important (e.g. antecedent saturation, 2-week preceding maximum saturation, Fig. 9k). 

The worse performance of explanatory variables related to the antecedent wetness conditions for the simulation-based forecast 430 

models can be related to the reduced ability of the CoupModel set-up to reflect long-term seasonal water storage, as described 

previously (Fig. 5). The better forecast goodness of explanatory variables related to the triggering event dynamics of the 

simulation-based landslide forecast model can be explained by a more homogeneous site set-up, no impact by very site-specific 

conditions (e.g. preferential flow, interaction with a local groundwater table, interaction with the vegetation), and by the 

elimination of measurement errors (e.g. sensor drift, sensor uncertainties, bad sensor contact to surrounding).  435 

The better performance of explanatory variables related to event dynamics compared to those related to antecedent conditions 

was even more accentuated in the case of the extreme coarse-grained uniform-texture profile with a better forecast goodness 

of most of the event dynamics-related explanatory variables (Fig. 9g). Conversely, the antecedent saturation explanatory 

variable even showed a slight forecast goodness decrease. 

4 Discussion 440 

4.1 Limitations of the soil moisture model 

The soil moisture model incorporates errors and uncertainties connected to the parametrization and the quality of the input 

data, limiting the availability to reproduce soil moisture variation as observed with soil moisture sensors. A large component 

of uncertainty originates from the definition of the soil hydrological properties, which in previous studies were shown to have 

a great impact on simulated soil moisture and landslide forecasts (e.g. Thomas et al., 2018). Here, uncertainty is added both 445 

from the definition of the site-specific texture and bulk density values as well as from the estimation of the soil physical 

properties with a pedotransfer function. No substantial differences in the goodness of fit of simulated versus observed soil 
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moisture were found between using soil hydrological properties derived from soil samples and taken from SoilGrids. Yet, a 

decrease in coefficient of correlation was found when using the same normal fine-grained uniform-texture profile for all sites. 

From that we can conclude that the soil hydrological properties differences between using soil samples and SoilGrids weigh 450 

smaller than the missing regionalization inferred by using a uniform-texture profile only. This underlines the importance of 

using regionally varying soil physical information for simulating soil moisture which is often omitted due to a lack of field 

data or because too many parameters may lead to overfitting problems (e.g. Posner and Georgakakos, 2015; Zhao et al., 2019b). 

Larger uncertainty is probably introduced by the use of a pedotransfer function to infer the soil hydrological properties from 

soil physical information. This point cannot be validated directly since field data on site-specific soil hydrological properties 455 

is missing, however, the large ME spread across the 14 reference sites points towards partially incorrect residual θr and 

saturated water content θs values. Further, many studies highlight that pedotransfer functions incorporate a bias towards loamy 

agricultural soils and lack a representation of soil structure such as the presence of macropores or concretisations (e.g. Or, 

2020; Zhang and Schaap, 2019). This may lead to an underestimation of Ks values which in return impacts surface runoff 

generation, water infiltration and discharge (Fatichi et al., 2020). 460 

A second major source of uncertainty originates from the definition of homogeneous upper and lower boundary conditions. In 

general, seasonal soil moisture variation was underestimated, a problem reported also in other modelling studies (Okkonen et 

al., 2017; Orland et al., 2020; Zhuo et al., 2019a), and which may be partially attributed to the definition of the vegetation and 

soil resistances and the potential evapotranspiration calculation. Calibration is difficult due to missing evapotranspiration 

measurements. We compared our evapotranspiration estimates with a countrywide evapotranspiration estimation function for 465 

grassland locations depending on elevation (Hydrological Atlas of Switzerland HADES, Menzel et al., 1999) and with 

estimations from lysimeter measurements at the Rietholzbach site (RHB, Hirschi et al., 2017). It was shown that 

evapotranspiration estimates slightly underestimated the HADES values, however they followed the same elevation 

dependence (Fig. 10a). When comparing with field lysimeter data, evapotranspiration estimates were lower too (Fig. 10b), but 

followed the general seasonal variation and showed similar inter-annual variation except for the year of 2008 (Fig. 10c). This 470 

may explain the underestimated drying-out of the model compared with the observations as shown previously, which could be 

improved by a more elaborate or site-specific vegetation parametrization. Nevertheless, it has to be noted that the 

evapotranspiration data presented here is only weakly representative and serves as a rough point of reference as it is based on 

simulations as well and shows regional values (in case of HADES) and lysimeter measurements were available for one site 

only (RHB).  475 

At the lower boundary of the soil profile, the definition of well-drained conditions showed best results. However, soil 

hydrological conditions might differ substantially for individual sites if shallow groundwater tables are present (Marino et al., 

2020) or if soil depths vary between the sites (Anagnostopoulos et al., 2015), hence a site-specific parametrization might 

improve the goodness of fit with observed soil moisture variation. While no seepage data on regional scales was available for 

calibration or validation, site-specific definition of lower boundary conditions could be achieved by consideration of nearby 480 



16 
 

groundwater level measurements or regional groundwater distribution maps when defining the depth and distance to drain for 

a lower boundary with groundwater. 

Finally, when comparing the goodness of fit with observed soil moisture measurements, it has to be noted that the soil moisture 

measurements bear uncertainties too and might be erroneous or contain a signal shift or trend due to bad contact with the 

surrounding material, sensor deterioration, or structural changes in soil. Thus, a thorough quality assessment is needed when 485 

using soil moisture data for calibration or validation. Further to that, measurement uncertainties of the meteorological input 

data may have a considerable impact if comparing the simulated soil moisture time series with observed soil moisture variation. 

Particularly rainfall data may lack from undercatch problems pronounced at high and exposed locations, which was not 

corrected for in the meteorological time series used in this study (MeteoSwiss 2020, personal communication).  

Following from this, the goodness of fit might improve significantly by applying a site-specific calibration scheme to better 490 

characterize boundary conditions or to derive soil hydrological conditions during the calibration process. While this would 

allow to reflect complex local conditions, site-specific calibration is limited by the availability of field data for calibration (e.g. 

soil moisture or evapotranspiration data), the quality of this field data, and it is restricted by the number of parameters to fit. 

Further, site-specific calibration is not possible if the model should be applied at places where no measurements are available 

(e.g. for complementing an existing soil moisture monitoring network). Grouping sites into areas of similar physiographic 495 

characteristics, e.g. based on soil type, land-use or geological data, to further constrain parameter values may be a first step 

towards this (Fatichi et al., 2016). Further, the use of simpler model formulations with less parameters to fit would be worth 

exploring, as this could help transferring the model to places where no calibration is possible. Finally, data assimilation 

techniques, often applied with land-surface models (Reichle et al., 2014) or in models used for landslide early warning (Krøgli 

et al., 2018), could help to adjust for the seasonal misfit of the long-term water storage term, but again depend on the availability 500 

of field data and are thus limited to locations with soil moisture measurements. 

4.2 The value of simulated soil moisture for landslide early warning 

Our results showed that the simulation-based landslide forecast models performed slightly better than a forecast model based 

on soil moisture measurements, implying that simulation-based soil moisture information is overall more representative for 

regional landslide occurrence. This can be explained by considering different time scales and the hydrological processes 505 

associated with them: The overall improvement with a simulation-based forecast model is based on a better representation of 

the triggering conditions, notably the infiltration of water during precipitation or snow melt events. In this domain, processes 

typically range in time scales of hours to days and are highly influenced by local factors such as preferential infiltration along 

macropores and fissures in the ground, surface ponding and runoff due to an impeding surface layer, interception by the 

vegetation cover, interactions with impeding layers within the soil columns or at the soil-bedrock transition, as well as 510 

interactions with a ground-water table. While the spatial variability of these processes can be high in reality, they are simplified 

and represented homogeneously in the model. In addition to this homogenization in the process domain, the statistical variation 

is homogenized over time (no sensor errors or drifts as may be observed for single sensors) and between sites (depth levels 
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and number of depth levels considered). We assume that the homogenized representation of the processes in space leads to a 

more robust statistical model fit and hence an improved landslide forecast goodness. 515 

With regard to the antecedent conditions, the measurement-based landslide forecast model performed better. The hydrological 

processes associated with this domain are governed by the redistribution of soil water after rainfall events, by the steady 

drainage of water at the bottom of the profile and by evapotranspiration from the soil surface. Simplification and 

misrepresentation of some of these processes in the CoupModel set-up may lead to an underestimation of the seasonal soil 

moisture variation, which in Switzerland is high, with generally wet conditions from fall to spring and a dry period with 520 

intermittened intermittent wetting events during summer (Pellet and Hauck, 2017). A limited seasonal representation may 

reduce the forecast model’s ability to separate triggering from non-triggering conditions, as reported for regional landslide 

forecast models where regions with different seasonal soil moisture variation were compared (Thomas et al., 2020). 

Particularly in regions with a high seasonal evapotranspiration variation, wet and dry periods may be controlled by different 

soil moisture fluxes with vertical fluxes being dominant during dry periods and lateral fluxes during wet periods (e.g. Grayson 525 

et al., 1997), thus a physically-based representation of the processes is important and a spatial representation may improve the 

seasonal soil moisture variation. 

While the two process domains (antecedent conditions and event dynamics) can be analysed individually, they also influence 

each other due to the limited value distribution of soil saturation ranging from 0 % (residual soil water content) to 100 % (full 

saturation). If water drains quicker, more pore space is available for rainfall to infiltrate in the next event and intense rainfall 530 

events may show a stronger soil moisture response. Conversely, soil moisture responses to precipitation events are weaker in 

wetter and more fine-grained soils due to slower infiltration, less available pore space due to pre-saturation and more surface 

runoff due to impeding conditions near the surface. Hence, in a more conductive soil, the statistical model is more able to 

separate triggering from non-triggering events at the expense of the loss of long-term water storage information. These effects 

were most clearly visible when soil hydraulic properties of an extremely coarse-grained uniform-texture profiles were used in 535 

the CoupModel, which showed an even better landslide forecast goodness. The fast drainage causes the evapotranspiration 

loss to be ineffective and thus, the model becomes more a representation of rainfall characteristics demonstrating the high 

information content in precipitation for landslide prediction. 

To validate this hypothesis, we applied the same statistical model to the precipitation time series only, which were used to 

drive the soil moisture model. Individual precipitation events were defined as continuous periods of rainfall (> 0.5 mm h-1) 540 

separated by gaps of at least 3 hours of no rainfall. Precipitation event sums were computed and (1) normalized with the total 

porosity of the uppermost 100 cm taken from SoilGrids and resulting event sums were normalised with the 99.5 percentile of 

each time series to represent some soil information (Fig. 11a), or (2) event sums were solely normalized by 99.5 percentile of 

the event time series (Fig. 11b). While the first statistical model includes some information on the regional soil physical 

conditions (porosity from SoilGrids), the latter includes rainfall information only. The number of precipitation events was 545 

about the double compared to the simulations with soil hydraulic properties (i.e. not all precipitation events were manifested 

as infiltration events in simulations of soil water dynamics). Despite the larger number of precipitation events (the classification 
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between triggering and non-triggering events is typically easier with a higher number of events), the distance-averaged AUC 

value dropped from 0.82 for simulations of soil water dynamics to 0.79 for rainfall signatures. But both approaches (based on 

precipitation and infiltration events, respectively) showed similar landslide forecast goodness and similar forecast distance 550 

dependence, highlighting that the landslide forecast goodness is mainly driven by spatial rainfall variation. 

While it is discouraging that similar landslide forecast goodness can be achieved with a forecast model that is based on rainfall 

information only or with a heavily simplified model representation (e.g. based on the extreme coarse-grained uniform-texture 

profiles), the benefit of a well parametrized physically-based soil moisture transfer model or of using soil moisture 

measurements remains in the quantification of the antecedent wetness conditions, particularly if a strong seasonal variation 555 

persists. This is often missed by less physically-based approaches using e.g. antecedent wetness indexes or antecedent 

precipitation indexes (e.g. Brocca et al., 2012). The added value of soil wetness information was tested by comparing a 

landslide forecast model based on rainfall amounts only (Fig. 12a) with a forecast model based on a combination of rainfall 

amounts and antecedent saturation derived from measured soil moisture (Fig. 12b) or derived from simulated soil moisture 

(Fig. 12c). Forecast goodness increase was found for both cases where antecedent saturation was added to the model, 560 

demonstrating the information content of soil wetness information. However, the extent of improvement was only minor if 

simulated soil moisture was added, which can be explained by the described and discussed underrepresentation of the seasonal 

soil moisture cycle of the soil moisture model that was used. 

5 Conclusions 

The present analysis demonstrated a high information content of simulated soil moisture for regional landslide activity, which 565 

was even higher than when in situ soil moisture measurements were used. The forecast goodness of such a landslide warning 

system strongly depends on the distance between soil moisture stations and landslide location, i.e. on the soil moisture station 

density, because of more robust model fits at near forecast distances and a greater spatial coverage of landslide events and 

regions of interest. The advantage of soil moisture simulations over in situ soil moisture measurements is the better 

representation of triggering event conditions, probably due to homogenization of the hydrological processes and the site 570 

representation (number and depths of sensors included). On the other hand, the simulation-based forecast model performed 

worse than the measurement-based at reproducing critical antecedent saturation conditions, possibly due to the inadequate 

representation of the long-term water storage.  

In comparison with a statistical landslide forecast model that only uses precipitation or that simulates soil moisture with very 

simplified (uniform) soil hydraulic properties, the main added value of a comprehensive physically-based soil moisture 575 

simulation is the representation of critical antecedent wetness conditions. To improve the soil moisture model in this respect, 

further explorations in the use of site- or regional-specific calibration schemes are needed and other calibration data than soil 

moisture measurements should be incorporated. 
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Figures 

 580 

Figure 1: Map of Switzerland showing the locations of the soil moisture modelling sites (coloured points) and the landslide locations 
(black points) including (a) all sites and all landslides of the entire study period from 1981 to 2019 and (b) a subset of sites and 
landslides that were triggered during a series of rainfall events between 30 April and 3 May 2005. 
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Figure 2: Soil texture splits (a, e) and soil hydraulic properties Ks (saturated hydraulic conductivity), n (van Genuchten coefficient) 585 
and α (van Genuchten coefficient) (b-d, f-h) of the 35 monitoring sites averaged for the model layers in 0–40 cm (a-d) and 40–100 cm 
depth (e-h); the point and boxplot colours indicate different sources of information (soil samples, SoilGrids, uniform-texture 
profiles). 
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 590 

Figure 3: Profile saturation (grey lines) of a selection of 11 sites in central Switzerland (as depicted on Figure 1b) with the mean 
profile saturation across all selected sites (black line) during a period of increased landslide activity in April and May 2015 for (a) 
simulated (lower boundary with groundwater, soil hydrological properties from SoilGrids) and (b) measured soil moisture. Colour 
filled background denotes days with observed landslide events within 15 km of any of the sites with the colour indicating the number 
of landslide records. The red lines show the associated landslide triggering probability from the statistical model (based on the nine 595 
infiltration event properties listed in Table 2) at each site which was computed for periods of saturation increase only. 

 

Figure 4: Goodness of fit of simulated versus measured soil moisture variation at the 14 reference sites: Mean error (ME, top panels) 
and coefficient of determination (R2, bottom panels) by sensor depths (different colours) for various CoupModel parametrizations 
(a-h). Lower boundary conditions with and without groundwater (GW) are distinguished. 600 



22 
 

 



23 
 

 

Figure 5: Temporal evolution and seasonal variation of mean daily residual VWC (a, b), i.e. deviation between simulated and 
observed soil water content, and mean daily measured (c, d) and simulated VWC (ce, df). Means are calculated across all 14 reference 
sites by sensor depths (different colours) for a CoupModel set-up using soil hydrological properties derived from SoilGrids and a 605 
lower boundary condition with groundwater. 
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Figure 6: ROC plots and AUC values of landslide forecast model fits based on simulated soil moisture (SM) at the 35 monitoring 
sites including soil hydrological properties from soil samples (a, e) and SoilGrids (b, f), at all 133 sites including soil hydrological 
properties from SoilGrids (c, g) and based on measured soil moisture at the 35 monitoring sites (d, h). All CoupModel set-ups include 610 
a lower boundary condition with groundwater. Upper panels (a-d) show landslide forecast model fits using all the dataset whereas 
lower panels (e-h) show model fits based on the 5-fold cross-validation scheme. 

 

Figure 7: AUC values of landslide forecast model fits with different parametrizations of the lower boundary condition by varying 
(a) the maximum pressure head of the lowest layer above which exfiltration occurs, (b) depth to the drain, and (c) the distance to 615 
the drain. Grey shaded model runs correspond to the CoupModel parametrization used in all other analyses. 
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Figure 8: AUC values of landslide forecast model fits based on CoupModel set-ups with varying soil hydrological properties (derived 
from SoilGrids and uniform-texture profiles) and a lower boundary condition with groundwater. 
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 620 

Figure 9: AUC values of model fits based on simulated soil moisture (SM) at all 133 sites (upper three rows) and based on measured 
soil moisture at the 35 monitoring sites (lowest row). Model fits include individual explanatory variables only (a, d, g, j), the 
explanatory variables antecedent saturation and saturation change only (b, e, h, k) and all nine explanatory variables (c, f, i, l). 
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Figure 10: Simulated evapotranspiration (ET) from the CoupModel versus validation data. (a) Yearly average ET versus elevation 625 
function from the Swiss Hydrological Atlas, (b) day of the year average ET and (c) yearly ET at the Rietholzbach site (RHB) vs. 
lysimeter data measured at this site. 

 

Figure 11: ROC curves and AUC values of model fits (a) based on normalized rainfall information scaled by porosity and (b) based 
on normalized rainfall information only for all 133 sites and the entire modelling period (1981–2019). 630 
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Figure 12: ROC curves and AUC values of model fits (a) based on normalized rainfall information only, (b) based on normalized 
rainfall and measured antecedent saturation, and (c) based on normalized rainfall and simulated antecedent saturation for all 35 
monitoring sites and the period of 2008 to 2019. 

  635 
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Tables 

Table 1: Sets of sites, available datasets and number of sites.  

Sites set Texture and bulk density information Co-located soil moisture measurements N sites 

 SoilGrids Soil samples  
 

All sites Yes No No 133 

 └ Monitoring sites Yes Yes Yes 35 

     └ Reference sites Yes Yes Yes (grassland only, at < 2 km distance) 14 

 

Table 2: List of event properties to describe infiltration events. To classify between triggering and non-triggering infiltration events, 
the nine event properties marked with “x” are used. Time series of the mean of water saturation and standard deviation (SD) of 640 
saturation were used. 

Process domain Event property description Name Profile Mean Profile SD 

Antecedent conditions Saturation at the onset of infiltration event Antecedent sat. x x 

 2-week preceding maximum saturation 2 week-prec. max sat. x  

 2-week preceding mean saturation 2 week-prec. mean sat. x  

Event dynamics Saturation change during an infiltration event Sat. change x x 

 Infiltration rate Infiltration rate x  

 Maximum 3-hours infiltration rate Max inf. rate x  

 Event duration Duration x  

 

Table 3: Percentage of country (area of Switzerland) and number of landslides (percentage of all landslides recorded from 1981 to 
2019) covered by the soil moisture simulations and measurements as a function of the forecast distance used. 

 All sites (133 sites) Monitoring sites (35 sites) 

Forecast distance % of total area % of all landslides % of total area % of all landslides 

5 km 22.6 26.8 6.4 7.1 

10 km 65.6 73.7 22.1 26.0 

15 km 91.4 95.4 41.5 49.6 

20 km 98.6 99.2 58.0 65.8 

25 km 99.7 99.8 70.3 76.4 

30 km 100.0 100.0 79.3 83.1 

35 km 100.0 100.0 87.0 88.6 

40 km 100.0 100.0 92.6 93.7 
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Appendix A 645 

Table A1: Key equations of the CoupModel used for this study (Jansson and Karlberg, 2011 for more details). 

Nr Equation Description 

Deep percolation (unsaturated conditions) 

(A1) 
𝑞ௗ௘௘௣ = ൜

𝑘௪௟௢௪ , 𝜓 > 𝜓ெ௔௫

0, 𝜓 ≤ 𝜓ெ௔௫
 

Deep percolation, qdeep, under unsaturated conditions 
as a function of the hydraulic conductivity of the 
lowest layer, kwlow, and the simulated pressure head of 
the lowest layer, ψ. Deep percolation occurs if the 
maximum pressure head, ψMax, is exceeded. Below 
the threshold, no flow of water occurs.    

Deep percolation (saturated conditions) 

(A2) 
𝑞ௗ௘௘௣ =

8𝑘௦௟௢௪(𝑧௦௔௧ − 𝑧௣ଶ)ଶ

𝑑௣ଶ
ଶ  

Saturated deep percolation (qdeep) depends on the 
saturated hydraulic conductivity of the lowest layer 
(kslow). Drainage is at a spacing distance dp2 and at 
depth zp2, both of which are parameters. The 
simulated ground water table depth is at zsat. 

Infiltration and surface runoff 

(A3) 
𝑞௜௡ = ൜

𝑞௧௛, 𝑖௖௔௣ > 𝑞௧௛

𝑖௖௔௣, 𝑖௖௔௣ ≤ 𝑞௧௛
 

The infiltration rate (qin) is simulated as a function of 
the surface infiltration capacity (icap). It equals the 
precipitation throughfall rate (qth) if throughfall is 
smaller than the infiltration rate. 

(A4) 
𝑞௦௨௥௙ = ቊ

𝑎௦௨௥௙(𝑊௣௢௢௟ − 𝑤௣௠௔௫)

0

, 𝑊௣௢௢௟ > 𝑤௣௠௔௫

, 𝑊௣௢௢௟ ≤ 𝑤௣௠௔௫
 

Surface runoff (qsurf) is generated if throughfall 
exceeds the infiltration capacity and a surface pool of 
water is formed, with Wpool being the total water 
amount. The amount of water which can be stored 
(wpmax) is a parameter and asurf is an empirical 
coefficient.  

Potential transpiration 

(A5) 

𝐿௩𝐸௧௣ =
∆R௡ + 𝜌௔𝑐௣

(𝑒௦ − 𝑒௔)
𝑟௔

∆ + 𝛾 ቀ1 +
𝑟௦

𝑟௔
ቁ

 

The Penman’s combination equation (Monteith, 
1965) is used to calculate potential transpiration (Etp). 
It depends on net radiation (Rn), the difference of 
saturation and actual vapour pressure (es-ea), the 
aerodynamic resistance (ra) and the surface resistance 
(rs). It further depends on air density (ρa), specific 
heat of air (cp), latent heat of vaporization (Lv) and 
the psychometric constant (γ) which are all 
considered physical constants, and the slope of 
saturated vapour pressure vs. the temperature curve 
(Δ). 

(A6) 

𝑟௔ =
𝑙𝑛ଶ ൬

𝑧௥௘௙ − 𝑑
𝑧଴

൰

𝑘ଶ𝑢
 

The aerodynamic resistance (ra) is depending on the 
wind speed (u) measured at the reference height (zref). 
It is proportional to the displacement height (d) and 
inversely proportional to the roughness length (z0). k 
is the von Karman’s constant.  

(A7) 
𝑟௦ =

1

max (𝐴௟𝑔௟ , 0.001)
 

Surface resistance (rs) inversely proportional to the 
leaf area index (Al) and the leaf conductance (gl). 

(A8) 
𝑔௟ =

𝑅௜௦

𝑅௜௦ + 𝑔௥௜௦

𝑔௠௔௫

1 +
(𝑒௦ − 𝑒௔)

𝑔௩௣ௗ

 
The leaf conductance (gl) is calculated by the 
Lohammar equation (Lindroth, 1985; Lohammar et 
al., 1980). It depends on global radiation (Ris) and the 
vapour pressure deficit (es-ea) with gris, gmax and gvpd 
being parameter values. 
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Actual transpiration 

(A9) 𝐸௧௔ = 𝐸௧௔
∗ + 𝑓௨௠௢௩൫𝐸௧௣

∗ − 𝐸௧௔
∗൯ Actual transpiration (Eta) may compensate for soil 

layers with water stress by a two-step calculation. The 
left term (Eta

*) corresponds to the water uptake 
without compensation. The right term is the 
difference of the potential transpiration (Etp

*, with a 
reduction due to interception evapotranspiration) and 
actual transpiration, and the degree of compensation 
is governed by the parameter fumov.  

(A10) 
𝐸௧௔

∗ = 𝐸௧௣
∗ න 𝑓

଴

௭ೝ

൫𝜓(𝑧)൯𝑓൫𝑇(𝑧)൯𝑟(𝑧) 
Response functions for soil water potential, f(ψ(z)), 
and for soil temperature, f(T(z)) are used to reduce 
potential transpiration (Etp

*) to calculate actual 
transpiration (Eta

*). It is calculated for each soil layer 
and integrated with r(z) being the distribution of 
relative root density and zr being the maximal root 
depth.  

(A11) 
𝑓൫𝜓(𝑧)൯ = 𝑚𝑖𝑛 ቆ൬

𝜓௖

𝜓(𝑧)
൰

௣భா೟೛ା௣మ

, 𝑓ఏቇ 
Transpiration is reduced under dry conditions by 
stomatal mechanism and xylary tissue resistance and 
becomes zero at the wilting point becomes. p1, p2 and 
ψc are parameters, and fθ is an additional response 
function (not shown). 

(A12) 
 න 𝑟(𝑧)

௭

௭ೝ

=
1 − 𝑒ି௞ೝೝ(௭/௭ೝ)

(1 − 𝑟௙௥௔௖)
 

The distribution of root density is represented in 
exponential form. Below a depth z, the fraction of 
roots depends on the extinction coefficient krr 
whereas rfrac is a parameter. The integral calculated on 
the entire soil profile equals unity. 

Soil evaporation 

(A13) 

𝐿௩𝐸௦ =
∆(𝑅௡௦ − 𝑞௛) + 𝜌௔𝑐௣

(𝑒௦ − 𝑒௔)
𝑟௔௦

∆ + 𝛾 ቀ1 +
𝑟௦௦

𝑟௔௦
ቁ

 

The Penman’s equation (Monteith 1965) is used for 
calculation of soil evaporation (Es). It is calculated 
from the surface latent heat flux (LvEs) which 
depends on the energy available at the surface (Rns-qh, 
i.e. available net radiation minus soil surface heat flux 
from previous step), the aerodynamic resistance (ras), 
the surface resistance (rss), the difference of saturation 
and actual vapour pressure (es-ea). All other terms are 
equal to the terms in (A5). 

(A14) 𝑟௦௦ = max ൫0, 𝑟టଵ𝑚𝑎𝑥൫𝜓௦ − 𝑟టଶ, 0൯ − 𝑟టଷ𝛿௦௨௥௙൯ Soil surface resistance (rss) is governed by the 
parameters rψ1, rψ2 and rψ3. It accounts for the water 
tension in the uppermost layer (ψs) and the mass 
balance at the soil surface (δsurf). 

Radiation processes 

(A15) 𝑅௡,௧௢௧ = 𝑅௜௦(1 − 𝑎௥) + 𝑅௟௡௘௧ Net radiation (Rn,tot) is the sum of global radiation 
(Ris) minus the surface albedo (ar), and net long-wave 
radiation (Rlnet).  

(A16) 𝑅௟௡௘௧ = 86400𝜎(𝜀௦(𝑇௦ + 273.15)ସ − 𝜀௔(𝑇௔ + 273.15)ସ) The Brunt’s formula is used to calculate net long-
wave radiation (Rlnet) where the surface emissivity 
(εs) is assumed equal to 1 and the atmosphere 
emissivity (εa) is calculated by Konzelmann et al. 
(1994). Ts is the surface temperature. 

Snow dynamics 

(A17) 𝑃௥௔௜௡ = 𝑃൫1 − 𝑄௣൯ The fraction of solid precipitation (Qp) determines the 
snow and rain partitioning of precipitation (P). 
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(A18) 
𝑄௣ = ቐ

𝑚𝑖𝑛 ൬1, ൫1 − 𝑓௟௜௤௠௔௫൯ + 𝑓௟௜௤௠௔௫

𝑇௔ − 𝑇ோ௔௜௡௅

𝑇ௌ௡௢௪௅ − 𝑇ோ௔௜௡௅
൰ , 𝑇௔ ≤ 𝑇ோ௔௜௡௅

0, 𝑇௔ > 𝑇ோ௔௜௡௅

 

  Qp is a function of air temperature (Ta), with TRainL 
and TSnowL being parameters describing the 
temperature range of mixed ice and liquid water 
precipitation and fliqmax being the maximal liquid 
water content of falling snow (equals 0.5).  

(A19) 
𝑀 = 𝑀்𝑇௔ + 𝑀ோ𝑅௜௦ +

𝑓௤௛𝑞௛(0)

𝐿௙
 

Snow melt (M) is calculated from a temperature 
function (MT) and air temperature (Ta), a solar 
radiation function (MR) and global radiation (Ris), as 
well as from surface heat flow (qh), a scaling 
coefficient (fqh) and the latent heat of freezing (Lf). 

(A20) 
𝑀் = ቐ

𝑚் , 𝑇௔ ≥ 0
𝑚்

∆z௦௡௢௪𝑚௙
, 𝑇௔ < 0 

Snow melt and refreezing are governed by the 
empirical parameters mT and mf. Refreezing is 
simulated only for a limited surface layer and is thus 
inversely proportional to snow depth (Δzsnow). 

Soil heat flow 

(A21) 
𝑞௛ = −𝑘௛

𝜕𝑇

𝜕𝑧
+ 𝐶௪𝑇𝑞௪ 

Soil heat flow (qh) is calculated as the sum of 
conduction (first term) and convection (second term) 
where kh is the soil heat conductivity, T is 
temperature, Cw is heat capacity of liquid water and 
qw is the liquid water flow. In this model set-up, latent 
heat flow by water vapour was disregarded. 

(A22) 𝜕(𝐶𝑇)

𝜕𝑡
− 𝐿௙𝜌

𝜕𝜃௜

𝜕𝑡
=

𝜕

𝜕𝑧
(−𝑞௛) 

The heat flow equation includes changes in sensible 
and latent heat contents (left side) and input or output 
of heat from the soil layer (right side) and is 
calculated for each soil layer. It follows from 
combining (A36) with the law of energy 
conservation. C is the heat capacity, T is temperature, 
Lf is latent heat of freezing, ρ is density, θi is the 
water content of ice. 

 

Table A2: Description of the most important parameter values used in the CoupModel set-up along with the associated equations 
(Jansson and Karlberg, 2011 for more details). 

Symbol Description Unit Value Eq. 

Deep percolation, unsaturated conditions 

𝜓ெ௔௫ Maximum pressure head in lowest layer, above which outflow 
occurs 

cm 10 (A1) 

Deep percolation, saturated conditions 

𝑧௣ଶ Drain level depth m 7.5 (A2) 

𝑑௣ଶ Spacing distance to drain m 100 (A2) 

Infiltration and surface runoff 

𝑎௦௨௥௙ Empirical coefficient used to calculate runoff from surface pool. 1 d-1 0.8 (A4) 

𝑤௣௠௔௫ Maximum water amount stored in surface pool. mm 0 (A4) 

Potential transpiration 

𝑧଴ Roughness length - 0.1 (A6) 

𝑑 Displacement height - 0.66 (A6) 
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𝑧௥௘௙ Height above ground of wind speed, air humidity and air 
temperature measurements. 

m 2 (A6) 

𝐴௟ Leaf area index m2 m-2 0.6 (A7) 

𝑔௥௜௦ Global radiation intensity at which light response is at half-light 
saturation. 

J m-2 d-1 5e+6 (A8) 

𝑔௠௔௫ Maximum conductance of fully open stomata. m s-1 0.03 (A8) 

𝑔௩௣ௗ Vapour pressure deficit at which stomatal conductance is reduced 
by 50%. 

Pa 100 (A8) 

Actual transpiration 

𝑓௨௠௢௩ Degree of compensation for compensatory water uptake. - 0.6 (A10) 

𝑧௥ Maximum rooting depth m -0.6 (A10) 

𝑝ଵ Empirical coefficient for soil water potential response function. 1 d-1 0.3 (A11) 

𝑝ଶ Empirical coefficient for soil water potential response function. kg m-2 d-1 0.1 (A11) 

𝜓௖ Pressure head above which potential water uptake is reduced. cm water 1500 (A11) 

𝑟௙௥௔௖ Fraction of roots remaining below a given root depth. - 0.1 (A12) 

Soil evaporation 

𝑟టଵ Governing parameter for the calculation of the surface resistance.  s m-1 0.5 (A14) 

𝑟టଶ Governing parameter for the calculation of the surface resistance.  s m-1 300 (A14) 

𝑟టଷ Governing parameter for the calculation of the surface resistance.  s m-1 mm-1 80 (A14) 

Snow dynamics 

𝑇ோ௔௜௡௅ Temperature above which all precipitation is rain. °C 2 (A18) 

𝑇ௌ௡௢௪௅ Temperature below which all precipitation is snow °C 0 (A18) 

𝑓௤௛ Contribution coefficient of ground heat flow on snow melt. - 0.5 (A19) 

𝑚் Temperature coefficient for snow melt calculation.  kg °C-1 m-2 

d-1 
1.5 (A20) 

𝑚௙ Efficiency constant for refreezing calculation.  m-1 0.1 (A20) 
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