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Abstract:  19 

Reliable modeling of carbon and water fluxes is essential for understanding the terrestrial carbon 20 

and water cycles and informing policy strategies aimed at constraining carbon emissions and improving 21 

water use efficiency. We designed an assimilation framework (LPJ-Vegetation and soil moisture Joint 22 

Assimilation, or LPJ-VSJA) to improve gross primary production (GPP) and evapotranspiration (ET) 23 

estimates globally. The integrated model, LPJ-PM (LPJ-PT-JPLSM Model) as the underlying model, was 24 

coupled from the Lund-Potsdam-Jena Dynamic Global Vegetation Model (LPJ-DGVM version 3.01) and 25 

a hydrology module (i.e., the updated Priestley–Taylor Jet Propulsion Laboratory model, PT-JPLSM). 26 

Satellite-based soil moisture products derived from the Soil Moisture and Ocean Salinity (SMOS) and 27 

Soil Moisture Active and Passive (SMAP) and leaf area index (LAI) from the global Land and Ground 28 

satellite (GLASS) product were assimilated into LPJ-PM to improve GPP and ET simulations using a 29 

Proper Orthogonal Decomposition-based ensemble four-dimensional variational assimilation method 30 

(PODEn4DVar). The joint assimilation framework LPJ-VSJA achieved the best model performance (with 31 

an R2 of 0.91and 0.81 and an ubRMSD reduced by 40.3% and 29.9% for GPP and ET, respectively, 32 

compared with those of LPJ-DGVM at the monthly scale). The GPP and ET resulting from the 33 

assimilation demonstrated a better performance in the arid and semi-arid regions (GPP: R2=0.73, 34 

ubRMSD=1.05 g C m-2 d-1; ET: R2=0.73, ubRMSD= 0.61 mm d-1) than in the humid and sub-dry humid 35 

regions (GPP: R2=0.61, ubRMSD=1.23 g C m-2 d-1; ET: R2=0.66; ubRMSD=0.67 mm d-1). The ET 36 

simulated by LPJ-PM that assimilated SMAP or SMOS had a slight difference, and the SMAP soil 37 

moisture data performed better than that of SMOS data. Our global simulation modeled by LPJ-VSJA 38 
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was compared with several global GPP and ET products (e.g., GLASS GPP, GOSIF GPP, GLDAS ET, 39 

GLEAM ET) using the triple collocation (TC) method. Our products, especially ET, exhibited advantages 40 

in the overall error distribution (estimated error (μ): 3.4 mm month-1; estimated standard deviation of μ: 41 

1.91 mm month-1). Our research showed that the assimilation of multiple datasets could reduce model 42 

uncertainties, while the model performance differed across regions and plant functional types. Our 43 

assimilation framework (LPJ-VSJA) can improve the model simulation performance of daily GPP and 44 

ET globally, especially in water-limited regions. 45 

Keywords: Data Assimilation; SMOS; SMAP; Gross primary production (GPP); evapotranspiration 46 

(ET); GLASS LAI 47 

 48 

1. Introduction 49 

Gross primary production (GPP) and evapotranspiration (ET) are essential components of the carbon 50 

and water cycles. Carbon and water fluxes are inherently coupled on multiple spatial and temporal scales 51 

(Law et al. 2002; Sun et al. 2019; Waring and Running 2010). Terrestrial biosphere models are the most 52 

sophisticated approach for providing a relatively detailed description of such interdependent relationships 53 

regarding water and carbon fluxes and understanding the response of terrestrial ecosystems to changes in 54 

atmospheric CO2 and climate (Kaminski et al. 2017). The dynamic global vegetation models (DGVMs) 55 

are process-based dynamic terrestrial biosphere models, which can simulate water, carbon, and energy 56 

exchange between vegetation and the atmosphere under different conditions accounting for vegetation 57 
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physiological processes, and are widely used to estimate carbon and water fluxes of terrestrial vegetation.  58 

However, there are still large uncertainties in carbon and water flux estimates at regional to global scales. 59 

Both diagnostic and prognostic models show substantial differences in the magnitude and spatiotemporal 60 

patterns of GPP and ET. For example, the global annual GPP estimates exhibited a large range (130–169 61 

Pg C yr-1) among 16 process-based terrestrial biosphere models (Anav et al. 2015). The global ET ranged 62 

from 70,000 to 75,000 km3 yr−1, and the uncertainty of regional or global ET estimates was up to 50% of 63 

the annual mean ET value, especially in the semi-arid regions (Miralles et al. 2016). These uncertainties 64 

mainly arise from the forcing datasets, simplification of mechanisms or imperfect assumptions in 65 

processes, and uncertain parameters in the processed models and assimilation methods (Xiao et al. 2019).  66 

In the last two decades, remote sensing products have been assimilated into DGVMS to reduce the 67 

uncertainty in modeled carbon and water fluxes (MacBean et al. 2016; Scholze et al. (2017); Exbrayat 68 

et al. (2019)). Data assimilation (DA) is an effective approach to reduce uncertainties in terrestrial 69 

biosphere models by integrating satellite products with models to constrain related parameters or state 70 

variables. A DA system contains four main components: a set of observations, an observation operator, 71 

an underlying model, and an assimilation method. The assimilation method considers the errors from both 72 

models and observations, and reduces model uncertainties by minimizing a cost function. The Ensemble 73 

Kalman Filter (EnKF) has been widely applied in land surface process models for parameter optimization, 74 

which significantly improve simulations by periodically updating state variables (e.g., LAI and soil 75 

moisture) using remote sensing data without altering the model structure ( Rahman et al. 2021; Bonan et 76 

al. 2020; Xu et al. 2021). Yet, the EnKF relies on the instantaneous observations to update the state 77 
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variable at the current time, and gives the predicted value at the next time based on the forward integration 78 

of the updated state variable. The four-dimensional variational method (4DVar) assimilation method can 79 

obtain the dynamic balance of the estimation in the time window when it is applied to the long-series 80 

forecast model (Bateni et al. 2014; Xu et al. 2019). In particular, the Proper Orthogonal Decomposition 81 

(POD)-based ensemble 4DVAR assimilation method (referred to as PODEn4DVar) (Tian and Feng 2015) 82 

requires relatively less computation and can simultaneously assimilate the observations at different time 83 

intervals. Meanwhile, it maintains the structural information of the four-dimensional space. This method 84 

has a satisfactory performance in land DA for carbon and water variables (Tian et al. 2009; Tian et al. 85 

2010) and can better estimate GPP and ET than EnKF (Ma et al. 2017).  86 

Multiple sources of remote sensing data streams have been used to constrain models for assimilation. 87 

As a critical biophysical parameter of the land, leaf area index (LAI) is closely related to many land 88 

processes, such as photosynthesis, respiration, precipitation interception, ET, and surface energy 89 

exchange (Fang et al. 2019). LAI has a lot of impact on the simulation of carbon and water fluxes (Liu et 90 

al. 2018), and accurate LAI estimates can improve the simulations of the carbon and water fluxes (Bonan 91 

et al. 2014;; Mu et al. 2007). He et al. (2021) assimilated land surface temperature and LAI observations 92 

into the 4DVar framework and improved ET and GPP estimates. Soil moisture is a major driving factor 93 

affecting vegetation production in arid ecosystems, especially, in semi-arid areas (Liu et al. 2020). 94 

Introducing surface soil moisture (SSM) into the model can significantly improve GPP and ET simulation, 95 

particularly in water-limited areas (He et al. 2017; Li et al. 2020).  96 

The advancement of earth observation, machine learning, inversion algorithms, and computer 97 
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technology has improved the accuracy of global LAI products and boosted model-data fusion studies 98 

(Fang et al. 2019; Kganyago et al. 2020; Xiao et al. 2017). The Advanced Very High-Resolution 99 

Radiometer (AVHRR) generates global LAI products with the longest historic record (since the early 100 

1980s). The GLASS LAI product has been verified to have a better accuracy than that of MODIS and 101 

CYCLOPES and is more temporally continuous and spatially complete (Xiao et al. 2013). Several recent 102 

studies showed that the assimilation of GLASS LAI into DGVMs enhanced the performance of the 103 

models in simulating carbon cycling (e.g., GPP, Net Ecosystem Exchange (NEE)) and hydrological (e.g., 104 

ET, SM) processes (Ling et al. 2019; Ma et al. 2017; Yan et al. 2016). 105 

Microwave remote sensors are considered effective tools for measuring SM globally (Petropoulos et 106 

al. 2015). For example, SSM products have been derived from the Soil Moisture and Ocean Salinity 107 

(SMOS) and Soil Moisture Active and Passive (SMAP) satellites equipped with an L-band microwave 108 

instrument. The products from these satellites have been evaluated against in-situ observations and other 109 

SSM products and overall have high accuracy(Burgin et al. 2017; Cui et al. 2018). Additionally, the 110 

SMAP performs better than SMOS and other SSM products (e.g., Advanced Scatterometer (ASCAT), 111 

Advanced Microwave Scanning Radiometer 2 (AMSR2)) with an overall lower error and a higher 112 

correlation based on the verification with in-situ SSM data from 231 sites (Cui et al. 2018; Kim et al. 113 

2018). The assimilation of SMAP data can improve the simulation accuracy of carbon and water fluxes 114 

(He et al. 2017; Li et al. 2020) and hydrological variables (surface soil moisture, root-zone soil moisture 115 

(RZSM), and streamflow) (Blyverket et al. 2019; Koster et al. 2018; Reichle et al. 2017). In addition, the 116 

assimilation of SMAP data performed slightly better than that of SMOS and ESA CCI data (Blyverket et 117 
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al. 2019). 118 

In the nonlinear model or nonlinear observation operator, only simultaneous assimilation makes 119 

optimal use of observations (MacBean et al. 2016). Therefore, a joint assimilation of SM and LAI can 120 

make full use of the two variables. From site (Albergel et al. (2010);Rüdiger et al. (2010); Wu et al.,2018) 121 

to regional assimilation (Ines et al. (2013)), many studies showed that joint assimilation of vegetation 122 

parameters and SM can improve the simulation of the carbon and water cycles. Over small regions and 123 

at high spatial resolution, Xie et al. (2018) and Pan et al. (2019) showed that the joint assimilation of SM 124 

and LAI improved the accuracy of crop yield estimation using high-resolution satellites products from 125 

Sentinel-1 and -2. At a large regional scale, Bonan et al. (2020) assimilated LAI and SSM together into 126 

the Interactions between Soil, Biosphere and Atmosphere (ISBA) land model and improved the modeled 127 

GPP, ET, and runoff in the Mediterranean region. Rahman et al. (2022) jointly assimilates GLASS LAI 128 

and SMAP soil moisture to improve water and carbon flux simulations within the Noah-MP model over 129 

the Continental United States domain. Albergel et al.(2020) jointly assimilates the ASCAT soil moisture 130 

index (SMI) and LAI GEOV1 into ISBA through the Global Offline Land Data assimilation system 131 

LDAS-Monde to monitor extreme events such as drought and Heatwave events. In conclusion, Kalman 132 

Filter and its variant methods are mostly used to implement joint assimilation methods at regional scale, 133 

which requires many kinds of observation data and their accuracy directly affects the assimilation 134 

performance.  135 

This study stems from the researches discussed above and further explored the potential of jointly 136 

assimilating satellite LAI and soil moisture products globally. Specifically, it was the first time that an 137 
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updated LPJ-DGVM model was used to jointly assimilate GLASS LAI and SMAP soil moisture for 138 

simulating global water and carbon fluxes. The latest global soil moisture datasets (SMOS and SMAP) 139 

were used, and the assimilation performance of these two observations was analyzed. Since previous work 140 

showed the importance of surface soil moisture in the semi-arid and arid areas, one of the specific 141 

objectives of our study is to compare the assimilation effect in the humid and arid areas and improve the 142 

understanding of the effect of surface soil moisture on vegetation activity in wet and dry zones. In addition, 143 

compared with the assimilation methods in previous studies (mostly using Kalman Filter variants), the 144 

POD-En4DVar method is used, which greatly improves the computational efficiency.  145 

2. LPJ-VSJA framework and assimilation strategy  146 

2.1. Coupled- model (LPJ-PM) for assimilation 147 

In this study, a coupled terrestrial biosphere model, LPJ-PM, was used to simulate daily GPP and 148 

ET by assimilating satellite-derived LAI and SSM. The LPJ-PM is coupled from LPJ-DGVM and PT-149 

JPLSM. The original input data in PT-JPLSM were all inherited from LPJ-DGVM, with the exception of 150 

relative humidity (RH) and surface soil moisture (SMOS and SMAP), including the initial LAI calculated 151 

by the LPJ-DGVM or assimilated LAI obtained through the LAI assimilation scheme, canopy height, and 152 

the fraction of absorbed photosynthetic effective radiation (fAPAR). The detailed processes of the LPJ-153 

PM have been described in Li et al. (2020), and the flow chart for the coupling is shown in Figure 1. 154 

Table 1. Description of the models and outputs in this study 155 
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acronyms Full name Description Output  

LPJ-DGVM 

(Sitch et al. 

2003) 

Lund-Potsdam-Jena 

Dynamic Global 

Vegetation Model 

This model is used as a model 

operator to simulated initial ET 

GPPLPJ, ETLPJ 

PT-JPLSM 

(Purdy et al. 

(2018)) 

 Updated Priestley–

Taylor Jet Propulsion 

Laboratory model 

The model is used as a module of 

the LPJ-PM and establishes a 

connection between SMAP SM and 

ET 

N/A 

LPJ-PM (Li 

et al. 

(2020)) 

Lund-Potsdam-Jena and 

Updated Priestley–

Taylor Jet Propulsion 

Laboratory coupled 

model 

An integrated model corresponding 

to the coupling of the PT-JPLSM and 

LPJ-DGVM 

GPPSM, ETPM 

LPJ-VSJA 

(this study) 

Lund-Potsdam-Jena 

Vegetation-Soil 

moisture-Joint -

Assimilation system 

A process-based assimilation 

framework for assimilating LAI 

and SSM jointly into LPJ-PM  

GPPLAI, ETLAI; GPPSM, 

ETSM; GPPjoint; ETjoint  

 156 

2.1.1 LPJ-DGVM 157 

The LPJ-DGVM is a process-oriented dynamic model, which considers mutual interaction of carbon 158 

and water cycling and is designed to simulate vegetation distribution and carbon, soil and atmosphere 159 
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fluxes (Sitch et al. 2003). For each plant functional type (PFT), the GPP is calculated by implementing 160 

coupled photosynthesis and water balance 161 

 The canopy GPP is updated daily: 162 

                     GPP =
(JE+Jc−√(JE+Jc)2−4θJEJc)

2θ
                     （2.1） 163 

where JC is the Rubisco limiting rate of photosynthesis, JE is the light limiting rate of photosynthesis, and 164 

the empirical parameter θ represents the common limiting effect between the two terms. JE is related to 165 

APAR (absorbed photosynthetic radiation, product of FPAR and PAR), while JC is related to Vcmax 166 

(canopy maximum carboxylation capacity, μ mol CO2/m 2/s):  167 

                                                 JE = C1APAR                           （2.2） 168 

                                                 JC = C2VC max                           （2.3） 169 

where C1 and C2 are determined by a variety of photosynthetic parameters and the intercellular partial 170 

pressure of CO2, which is related to atmospheric CO2 content and further altered by leaf stomatal 171 

conductance (Sitch et al. 2003). APAR and FPAR are directly related to LAI. 172 

In the water cycle module, ET is calculated as the minimum of a plant- and soil-limited supply 173 

function (Esupply) and the atmospheric demand (Edemand) (Haxeltine and Prentice 1996; Sitch et al. 174 

2003).The soil structure is simplified to a “two-layer bucket” model (the top soil layer at a 0-50 cm depth 175 

and the bottom layer at a 50-100 cm depth) . 176 
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                    ES = Ep × Wr20 × (1 − fv)                     （2.4） 177 

In this module, it is assumed that the soil layer above 20 cm produces water through evaporation, 178 

and Wr20 is the relative water content of the soil above 20 cm, which is used as the only soil water limit 179 

for calculating vegetation transpiration and soil evaporation. In the evapotranspiration estimation, the 180 

over-simplification of soil structure and soil water limitation lead to a large error (Sitch et al. 2003), while 181 

LPJ-DGVM cannot directly assimilate surface soil water due to the limitation of soil layer stratification  182 

, and therefore, the satellite-derived SSM cannot be assimilated into LPJ-DGVM directly. The 183 

oversimplified soil structure and single soil moisture limitation inevitably lead to sizeable uncertainty in 184 

ET simulation. Additionally, the monthly input caused a daily variation of the modeled SM, which was 185 

also not transmitted to the calculation of GPP and ET. Thus, the updated PT-JPL model (hereafter referred 186 

to as PT-JPLSM) was coupled with LPJ-DGVM and the model structure was modified so that SSM can be 187 

directly assimilated into the coupled model at the daily time step. 188 

2.1.2 PT-JPLSM 189 

In PT-JPLSM, three ET components are modelled: soil evaporation (E), vegetation transpiration (T), 190 

and leaf evaporation (I). The PT-JPLSM introduced a constraint (0–1, CRSM) of SSM for T and E, which 191 

was used to avoid the implicit soil water control (represented by fSM=RHVPD) in the PT-JPL model.  192 

Vegetation transpiration: 193 

𝐶RSM = (1 − 𝑅𝐻4(1−𝑉𝑊𝐶)(1−𝑅𝐻))𝐶𝑆𝑀 + (𝑅𝐻4(1−𝑉𝑊𝐶)(1−𝑅𝐻))𝐶𝑇𝑅𝑆𝑀              （2.5） 194 
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           𝐶𝑇𝑅𝑆𝑀 = 1 − (
𝑤𝐶𝑅−𝑤𝑜𝑏𝑠

𝑤𝐶𝑅−𝑤𝑝𝑤𝑝_𝐶𝐻
)√𝐶𝐻  ,                  （2.6） 195 

where wobs is the SMAP SSM, wpwp is the water content at the wilting point, and VWC is volumetric 196 

water content. WCR is a crucial parameter in characterizing the extent of SM restriction on ET; wpwp_CH is 197 

the canopy height (CH) adjusted surface soil moisture wilting point and is related to the potential of roots 198 

capturing water from deeper sources to limit the transpiration rate and characterize the SM availability 199 

(Purdy et al., 2018; Evensen 2003; Serraj et al., 1999). The specific formula is given in Purdy et al. (2018). 200 

Soil evaporation: 201 

             pwpfc

pwpobs

RSM
ww

ww
C

−

−
=

                          （2.7） 202 

The proportion of available water limits the soil evapotranspiration to the maximum available water. 203 

This scalar was formulated to represent the relatively accurate extractable water content for the vegetation, 204 

determined by soil properties and the water available for evaporation, which is estimated via surface water 205 

constraints. 206 

The SMAP SSM was applied to model global ET using PT-JPLSM and the results demonstrated the 207 

largest improvements for ET estimates in dry regions (Purdy et al. 2018). Due to the limitation of soil 208 

stratification in LPJ-DGVM, the model was coupled with an updated remote-sensing ET algorithm in the 209 

PT-JPLSM that could better simulate ET in water-limited regions than in humid regions (Purdy et al. 2018). 210 

2.2. Assimilation scheme and experiment procedure 211 
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To improve the prediction capability of LPJ-PM, we designed three assimilation schemes: 212 

assimilating LAI only (LAI-only, output: ETLAI, GPPLAI), assimilating SSM only (SSM-only, output: 213 

GPPSM, ETSM), and joint assimilation of LAI and SSM (Joint LAI and SSM assimilation, output: ETjoint, 214 

GPPjoint), i.e., LPJ-VSJA framework) to test the assimilation performance for simulating GPP and ET.  215 

The proposed LPJ-VSJA framework consists of four main components: the model operator (the LPJ-216 

PM), the observation operator (to establish the relation between the assimilation variable and the observed 217 

variable), the observation series (GLASS LAI and SMOS or SMAP products), and the assimilation 218 

algorithm (POD4DVar). With the surface soil moisture constraint in the PT-JPLSM, the LPJ-VSJA 219 

corrects the output fluxes (GPP and ET in this study).  220 
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 221 

     Figure 1. Flowchart of the LPJ-VSJA assimilation scheme: three assimilation schemes and the coupled 222 

model: LPJ-PM (adapted from Li et al., 2020). The abbreviation of model and assimilation framework is 223 

explained in Table 1. 224 

The experiment consisted of six steps:  225 

Step 1: initialize the LPJ-DGVM and output the reference state variables without assimilation over 226 

the experimental period (2010–2018), referred to as the “Control run” scenario. 227 

Step 2: implement three assimilation schemes respectively, and the results represent the assimilation 228 

integration state (daily GPP and ET assimilation results are referred to as the “GPPLAI” and “ETLAI” in 229 

LAI-only scheme;“GPPSM” and “ETSM” in SSM-only scheme and “GPPjoint ” and “ETjoint ” in Joint LAI 230 
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and SSM assimilation scheme. This scenario used the same input data and model parameter scheme with 231 

the “Control run” scenario. 232 

Step 3:evaluate GPP and ET results (three schemes ) by comparing the parameters, R2 (correlation 233 

coefficient), BIAS, and ubRMSD (unbiased root mean square deviation), for conditions of without-DA 234 

(“Control run” scenario) and with-DA states, and assess the assimilation performance of separate 235 

assimilation  and joint assimilation  to determine the optimal assimilation scheme for GPP and ET, 236 

respectively. 237 

Step 4:  evaluate the in-situ GPP and ET resulting from the assimilation where the sites are located 238 

in wet or dry regions by dividing these validation sites into four parts (humid, sub-dry humid, semi-arid, 239 

and arid regions), and this step was designed to assess the superiority of the proposed assimilation scheme 240 

in water-limited areas. 241 

 Step 5: compare the ET assimilation performance by assimilating the SMOS data with that by 242 

assimilating the SMAP data. 243 

Step 6: evaluate the simulated GPP and ET maps based on the optimal assimilation scheme against 244 

existing global flux products. 245 

2.2.1 LAI-only assimilation scheme 246 

In the LAI-only assimilation scheme, the observation operator determines the relationship between 247 

LAI and foliage projective cover (FPC) in the process model (equation 2.1), and the assimilated LAI will 248 
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be propagated by energy transmission and ecosystem processes (e.g. photosynthesis, transpiration of 249 

vegetative process) in the dynamic model to improve GPP and ET simulations (Bonan et al. 2014; Mu et 250 

al. 2007). FPC, the vertically projected percentage of the land covered by foliage, regulates the rate of 251 

photosynthate conversion and transpiration. In this study, the GLASS LAI with 8-day interval for the 252 

period 2010–2018 was selected as the observation dataset for assimilation, and the FPC state variable was 253 

updated daily through running the LPJ-PM (FPCDA, GPPLAI, ETLAI in this study) as shown below: 254 

𝐹𝑃𝐶 = 1 − 𝑒−0.5𝐿𝐴𝐼                            （2.1） 255 

We set the model and observation errors at a given time as 20% and 10% (scale factor) of the LAI 256 

value and the observed LAI value, respectively. By verifying the assimilation performance (R2, RMSD, 257 

BIAS) for different scale factors(f) of model simulation and observations in the range of 0.05 to 0.40, 258 

taking a step size of 0.05 (a total of 64 combinations), the optimal scale factors (0.2 and 0.1) were 259 

determined (Bonan et al., 2020).The model and observation errors was the LAI value multiplied by f. The 260 

model integration generation method described by Pipunic et al. (2008) was used to determine the 261 

minimum number of ensemble members required to achieve maximum efficiency, and the number of sets 262 

was 20.  263 

2.2.2 SSM-only assimilation scheme  264 

   In this scheme, the SSM products (SMOS or SMAP) were assimilated into LPJ-PM to obtain 265 

more accurate ET (ETSM) estimates in water-limited areas. The observation series was the SMOS or 266 

SMAP SSM product, and the observation operator was the PT-JPLSM model. The ETPM (see Table 1) was 267 
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estimated by the coupled model (LPJ-PM) introducing SSM as a diagnostic variable. The ET values 268 

resulting from the assimilation was applied to compute the top layer SM (50 cm) at the next time step (a 269 

nonlinear soil water availability function described by Zhao et al. (2013), providing feedback for 270 

subsequent hydrologic and carbon cycle processes. Then, the updated SM values regulated the GPP 271 

simulation (output: GPPSM). Different from other "constant" ET observations, the ETPM ("observation") 272 

at each time t were adjusted by absorbing intermediate variables updated after assimilation at time t-1. 273 

The ETPM was shown to be better than ET simulated by LPJ-DGVM but not as good as that simulated by 274 

the model with SMAP SSM assimilated (Li et al. 2020). Thus, it is also proven that this SSM assimilation 275 

schemes could improve the accuracy of ET simulations (Li et al. 2020). 276 

All assimilation simulations were conducted between January 2010 and December 2018. Between 277 

January 2010 and April 2015, SMOS data were used for assimilation; and after May 2015, both SMOS 278 

and SMAP data were used for assimilation. An assimilation scheme was conducted when RH and SMOS 279 

or SMAP SSM data existed simultaneously; otherwise, the original simulation of the LPJ-DGVM was 280 

conducted directly without adjustment of assimilation.  281 

Similar to the LAI assimilation scheme, the model and observation errors were set as 15% and 5% 282 

of ETLPJ and ETPM, respectively (LPJ-PM was adopted before assimilation). The number of ensemble 283 

members was set to 50.The ETPM must be rescaled to the ETLPJ distribution via their corresponding 284 

cumulative probabilities using the cumulative distribution function (CDF) matching to avoid introducing 285 

any BIAS in the LPJ-VSJA system (Li et al. 2020).  286 
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2.2.3 Joint LAI and SSM assimilation scheme  287 

In this scheme, both LAI from GLASS and SSM from SMOS or SMAP were the observation datasets. 288 

The GLASS LAI was assimilated to obtain the FPCDA and ETLAI, and then the FPCDA served as input to 289 

LPJ-PM to simulate optimized ETPM, and the ETjoint was generated using ETLAI and ETPM. Then, the SM 290 

(referred to as SMCO in Figure S1) updated by ETjoint and the FPCDA were used as input to correct GPP 291 

(ETjoint). 292 

Here, we applied the error regulation in the LAI-only scheme and maintained the error setting of the 293 

LAI observation and model simulation. Considering the transmission of integrated model error, we 294 

recalculated the model error of LPJ-PM after the LAI assimilation and set model and observation errors 295 

of ETLAI and ETPM to be 15 and 10%, respectively.  296 

2.3. POD-Based Ensemble 4D Variational Assimilation Method  297 

The Proper Orthogonal Decomposition (POD)-based ensemble four-dimensional variational (4DVar) 298 

assimilation method (referred to as PODEn4DVar) (Tian and Feng 2015) has the advantage of avoiding 299 

the calculation of adjoint patterns as its incremental analysis field, which can be represented linearly by 300 

the POD base (Transformed OP (Observing Perturbation) and MP (Model Perturbation)). Moreover, the 301 

PODEn4DVar can simultaneously assimilate multiple-time observation data and provide flow-dependent 302 

(the flow-dependent is the ensembles of forecasting statistical characteristics in the t time) error estimates 303 

of the background errors. It has shown advantages in terrestrial assimilation, Tan-Tracker system (a 304 
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Chinese carbon cycle data-assimilation system; in Chinese, “Tan” means carbon), and Radar assimilation 305 

(Tian et al. 2010; Tian et al. 2009; Tian et al. 2014; Zhang and Weng 2015).  306 

By minimizing the following initial incremental format of the cost function in the 4DVar algorithm, 307 

an analysis field can be obtained: 308 

𝑱(𝒙′) =
𝟏

𝟐
(𝒙′)𝑩−𝟏(𝒙′) +

𝟏

𝟐
[𝒚′(𝒙′) − 𝒚′𝒐𝒃𝒔]𝑻𝑹−𝟏[𝒚′(𝒙′) − 𝒚′𝒐𝒃𝒔] 309 

Here, the𝑥′ = 𝑥 − 𝑥𝑏 ,  𝑦′(𝑥′) = 𝑦(𝑥′ + 𝑥𝑏) − 𝑦(𝑥𝑏), 𝑦′𝑜𝑏𝑠 = 𝑦𝑜𝑏𝑠 − 𝑦(𝑥𝑏),𝑦 = 𝐻[𝑀𝑡𝑜→𝑡𝑘(𝑥)]. 310 

𝑥′(𝑥′1, 𝑥′2, . . . . . , 𝑥′𝑁)  is the model perturbation (MP) matrix and 𝑦′(𝑦′1, 𝑦′2, . . . . . , 𝑦′𝑁) is the 311 

observation perturbation (OP) matrix with N samples. Following Rüdiger et al. (2010), the LAI 312 

perturbation was set to a fraction (0.001) of the LAI itself. The perturbation of ETPM and ETLPJ conforms 313 

to a Gaussian distribution with a mean of 0 and a specified covariance (10 and 5% of the ETPM and ETLPJ 314 

at time t). The subscript b represents the background field, the superscript T represents a transpose, H is 315 

the observation operator of the LAI-only assimilation scheme as described in section 2.2.1, and the SSM-316 

only assimilation scheme is the PT-JPLSM (described in 2.1.2). M is the forecast model (LPJ-PM in this 317 

study), B is the background error covariance, R is the observation error covariance, and obs denotes 318 

observation. 319 

Assuming the approximately linear relationship between OP(y’) and MP(x’), POD decomposition 320 

and transformation were successively conducted for OP and MP. The transformed OP samples (𝛷𝑦 =321 
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𝑦′1, 𝑦′2, . . . . . , 𝑦′𝑛 ) are orthogonal and independent, and the transformed MP samples ( 𝛷𝑥 =322 

𝑥′1, 𝑥′2, . . . . , 𝑥′𝑛) are orthogonal to the corresponding OP samples, where n is the number of POD modes.  323 

The manifestation of the background error covariance is the same as the Ensemble Kalman filter 324 

(EnKF, Evensen (2004)), and the incremental analysis 𝑥′𝑎 was expressed by the 𝛷𝑥,𝑛, and 𝛷̃𝑦(𝛷̃𝑦 =325 

[(𝑛 − 1)𝐼𝑛×𝑛 + 𝛷𝑦,𝑛
𝑇 𝑅−1𝛷𝑦,𝑛]

−1
𝛷𝑦,𝑛

𝑇 𝑅−1). Finally, the optimal analysis 𝑥𝑎 is calculated as 𝑥𝑎 = 𝑥𝑏 +326 

𝛷𝑥,𝑛𝛷̃𝑦𝑦′𝑜𝑏𝑠. The detailed derivation process of the algorithm is described by a previous study (Tian et 327 

al. 2011). 328 

In the ensemble-based method (Evensen et al.,2004), the number of ensemble members is usually 329 

fewer than that of the observation data and the degrees of freedom of the model variables, and spurious 330 

long-range correlations occur between observation locations and model variables. A practical method, the 331 

localization technique, is applied to address this issue (Mitchell et al. 2002). The final incremental analysis 332 

is rewritten as: 333 

𝑥′𝑎 = 𝛷𝑥,𝑛𝛷̃𝑦𝑦′𝑜𝑏𝑠𝐶0(
𝑑ℎ

𝑑ℎ,0
) ⋅ 𝐶0(

𝑑𝑣

𝑑𝑣,0
) 334 

where 𝑑ℎ and 𝑑𝑣 are the horizontal and vertical distances between the spatial positions of state and 335 

observed variables, respectively; and 𝑑ℎ,0and 𝑑𝑣,0 are the horizontal and vertical covariance localization 336 

Schur radii, respectively. The filtering function 
0C is expressed as: 337 
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𝐶0(𝑟) = {

−
1

4
𝑟5 +

1

2
𝑟4 +

5

8
𝑟3 −

5

3
𝑟2 + 1,                                  0 ≤ 𝑟 ≤ 1,

1

12
𝑟5 −

1

2
𝑟4 +

5

8
𝑟3 +

5

3
𝑟2 − 5𝑟 + 4 −

2

3
𝑟−1,           1 ≤ 𝑟 ≤ 2,

0,                                                                                                2 < 𝑟

, 338 

where r is the radius of the filter. 339 

    The assimilation algorithm is mainly divided into two steps: (1) prediction: run LPJ-PM in the 340 

current assimilation window and generate simulation results and background field vectors; (2) update: the 341 

algorithm is used to calculate the optimal assimilation increment 𝑥′𝑎 and analysis solution 𝑥𝑎, and the 342 

simulation results and the initial conditions of the model in the current window are updated using the 343 

analysis solution. The updated initial conditions were applied for model LPJ-PM prediction, and the above 344 

process was repeated. 345 

2.4. Validation method for assimilation performance  346 

The R2 (coefficient of determination), BIAS, and ubRMSD (unbiased root mean square deviation) 347 

between simulation and tower-based observations were applied for evaluation. In addition, a Taylor chart 348 

was also used to demonstrate the performance of two ET estimations with different SSM observations in 349 

terms of R, ubRMSD, and Normalized Standard Deviation (NSD) on 2D plots, to display how closely the 350 

datasets matched observations in one diagram (Taylor 2001). In the Taylor diagram, NSD represents the 351 

radial distance from the origin point and the correlation with the site observations as an angle in the polar 352 

plot. The ubRMSD is the distance between the observation and the model and is represented in the Taylor 353 

chart as a green semi-circular arc with point A as the center of the circle. The closer the model point to 354 
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the reference point (Point A), the better the performance. This diagram is convenient and visual in 355 

evaluating multiple aspects of various models. 356 

The error variance of GPP and ET products was estimated using the triple collocation (TC) approach 357 

(Stoffelen 1998) to validate the global simulation in this study. The method has been extensively applied 358 

in the study of hydrology and oceanography (Caires and Sterl 2003; Khan et al. 2018; O’Carroll et al. 359 

2008; Stoffelen 1998), particularly in SM studies (Chan et al. 2016; Kim et al. 2018). The TC provides a 360 

reliable platform for comparison of spatial assimilation results and in-situ measurements. In this 361 

experiment, no calculation was performed on the non-vegetated areas where the correlation was lower 362 

than 0.2 to have independent datasets and avoid correlated errors (crucial assumptions in TC) (Yilmaz 363 

and Crow 2014).  364 

In this study, the five products were divided into three product categories, including satellite product 365 

(MODIS, GOSIF GPP), reanalysis product (GLASS, GLDAS) and data assimilation product (GLEAM 366 

ET, LPJ-VSJA) (Li et al.,2018). One product in each category was selected to form a group to calculate 367 

their error. The LPJ-VSJA product was set as the reference data.  368 

For GPP products, GOSIF, GLASS, and LPJ-VSJA were treated as a group, and MODIS, GLASS 369 

and LPJ-VSJA were treated as another group to calculate the errors; the final errors were determined by 370 

the average of these two.  371 

Similarly, to calculate the errors for ET, GLEAM, GLASS, and MODIS were chosen as a group; 372 

LPJ-VSJA, GLDAS, and MODIS were treated as a group; LPJ-VSJA, GLASS and MODIS were 373 
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considered as a group. In order to reduce the influence of orthogonality hypothesis of error, the first and 374 

third groups are for indirect and effective comparison between LPJ-VSJA product and GLEAM product. 375 

3.  Experiment sites and data 376 

3.1. Description of flux tower sites 377 

  We screened over 300 EC flux sites across the globe from the FLUXNET2015 378 

(https://fluxnet.fluxdata.org/data/fluxnet2015-dataset/), AmeriFlux (http://public.ornl.gov/ameriflux), 379 

and the HeiHe river basin (Liu et al. (2018), http://www.heihedata.org)) for the evaluation of assimilation 380 

performance over the period from January 2010 to December 2018. The in-situ half-hourly LE and GPP 381 

data from the sites were aggregated into daily data. The daily gap-filled data were excluded if the 382 

percentage of gap-filled half-hourly values was more than 20%. Then we corrected the data of energy 383 

non-closure by using the Bowen ratio closure method (Twine et al. 2000) to improve the energy closure 384 

rate (Huang et al. 2015; Yang et al. 2020). The data were selected to cover the 2010–2018 period with at 385 

least one year of reliable data, and the result from the error of assimilation is relative to the LE value and 386 

seasonal variation (Purdy et al. 2018; Zou et al. 2017). It is essential to have available data every month 387 

during a one-year period, and only days with less than 25% missing data were processed per month (Feng 388 

et al. 2015). In addition, for flux tower data, the data were also excluded for the analysis if the 389 

SMAP/SMOS SSM data were not of good quality. 390 

Finally, we identified a total of 105 sites across the globe encompassing five major biomes: grassland 391 

(18 for GPP and 19 for ET), savanna (11), shrubland (4), forest (49 and 53), and cropland (13 and 14). In 392 
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the comparative analysis of the performance for simulating ET by assimilating SMOS and SMAP SSM 393 

data separately, we selected 46 AmeriFlux sites (Figure S3) with at least one year of reliable data from 394 

2015 to 2018 based on the simultaneous availability of SMAP and SMOS data, including grassland (19), 395 

savanna (11), shrubland (5), forest (23), and cropland (7). Figure S2 and S3 illustrate the location and 396 

distribution of the 105 and 46 EC flux tower sites, respectively. A more detailed description is 397 

summarized in the Supporting Information Table S1. 398 

3.2. Remote sensing datasets: LAI and SSM 399 

The GLASS LAI product with an 8-day time step (8-day average) and 5 km resolution was derived 400 

from MODIS and CYCLOPES surface reflectance and ground observations using general regression 401 

neural networks (GRNNs)  (Xiao et al. 2013; Xiao et al. 2016). The verification of the product using the 402 

mean values of high-resolution LAI maps showed that the GLASS LAI values were closer to these high-403 

resolution LAI maps (RMSD= 0.78 and R2= 0.81) (Xiao et al. 2016; Liang et al. 2013). Therefore, the 404 

GLASS LAI product has satisfactory performance and can be assimilated into terrestrial biosphere models. 405 

The SMAP mission (Entekhabi et al. 2010) and SMOS mission (Jacquette et al. 2010), the two 406 

dedicated soil moisture satellites currently in orbit equipped with L-band microwave instruments, provide 407 

SSM retrievals. We chose the SMOS-L2 product and the SMAP-L3-Enhanced product, which both 408 

provide global coverage every three days for soil depth of 5 cm. Only good-quality SMAP and SMOS 409 

data were used. The grid cells with water areas larger than 10% and those with less than 50% good-quality 410 

data in one year were masked out, which alleviates the undesirable model simulations caused by the 411 
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decrease in SMAP retrieval accuracy (Chan et al. 2016; O'Neill et al. 2010). We only adopted the data 412 

with an uncertainty below 0.1 m3 m-3, in the actual range (0.00–0.6 m3 m-3), and the temperature of the 413 

LSM observation layer (the second layer) was higher than 2 °C (Blyverket et al. 2019). 414 

The GLASS LAI, SMOS and SMAP observations were resampled to 9 km for site simulation and 415 

0.25° for regional simulation. The 8- day average of GLASS LAI were assimilated for each day, and the 416 

SMAP or SMOS SSM was assimilated every 3 days. 417 

3.3. Model-forcing and validation datasets  418 

In this study, the meteorological, soil property, and CO2 concentration datasets were used to drive 419 

the LPJ-PM. The climate-driven datasets used for the initialization of the LPJ-DGVM are the atmospheric 420 

CO2 concentrations (1901-2018) of ice-core measurements and atmospheric observations at the Mauna 421 

Loa Observatory and CRU TS4.03 version Climate data from 1901 to 1930 provided by the Climatic 422 

Research Unit (CRU) of the Climate Laboratory, University of East Anglia, UK, including monthly 423 

precipitation, surface temperature, cloud cover and wet day. In the simulation period of 2010-2018, the 424 

Modern Era Retrospective-Analysis for Research and Applications Version 2 (MERRA-2) was adopted, 425 

and the variables used included precipitation, temperature, cloud cover and relative humidity. Soil 426 

properties (including limited water content of vegetation at wilting points, field capacity and Soil porosity) 427 

from Harmonized World Soil Database (HWSD) V1.2 dataset (Wieder et al. 2014) were selected as inputs 428 

to the PT-JPLSM model. Table 2 provides the spatial and temporal characteristics of the model-forcing 429 

datasets in the LPJ-PM (submodule: LPJ-DGVM and PT-JPLSM). 430 



 

26 

 

The GLASS LAI product, SMOS-L2 product and the SMAP-L3-Enhanced product were assimilated  431 

to simulate GPP and ET.For site simulation, in order to maintain consistency with the SMAP Enhanced 432 

3 Level product (Entekhabi et al. 2010), model-forcing data were resampled to a 9 km spatial resolution 433 

based on EASE-2 projection grid. In the global spatial simulation, the model-forcing datasets were 434 

resampled to 0.25° based on the bilinear method to ensure the consistency of spatial representation.  435 

 436 

Table 2. List of the selected forcing and remote-sensing datasets used in this study 437 

Datasets Variable Period 

Spatial 

resolution 

References 

CRU TS v4.1a 

Cloud cover, 

temperature, 

precipitation, wet 

day 

1901-

1930 

0.5°× 0.5° 

New et al. 

(2000), 

https://crudat

a.uea.ac.uk/c

ru/data/hrg/ 

Ice-core 

measurements and 

atmospheric 

observations at the 

Mauna Loa 

Observatory a 

Atmospheric CO2 

concentrations 

1901-

2018 

NA 

(Etheridge et 

al. (1996); 

Keeling et al. 

(1995)) , 

https://scrippsc

o2.ucsd.edu/da
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ta/atmospheric

_co2/ 

MERRA-2 a 

Precipitation, surface 

temperature, cloud 

fraction, relative 

humidity 

2010-

2018 

0.5°× 0.625° 

Rienecker et 

al. (2011) 

（https://www.

esrl.noaa.gov/p

sd/） 

HWSD (v121)b Soil texture data NA 1 km×1 km 

Wieder et al. 

(2014) 

（http://daac.or

nl.gov） 

SPL3SMP_Eb Surface soil moisture 

2015.4–

present 

9 km×9 km 

Entekhabi et 

al. (2010), 

(https://smap.

jpl.nasa.gov/) 

GLASS LAI a,b Leaf area index 

2010-

2018 

5 km×5 km 

Xiao et al. 

(2016), 

(http://www.

glass.umd.ed

u/Download.
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html) 

SMOS_L3 CATDSb Surface soil moisture 

2010-

present 

25km×25 km 

Jacquette et al. 

(2010),( https:

//earth.esa.int

/eogateway/

missions/smo

s) 

a: forcing dataset for LPJ-DGVM  438 

b: external input dataset for PT-JPLSM  439 

 440 

We used four global ET products and three global GPP products (Li et al. 2018; Li and Xiao 2019; 441 

Wang et al. 2017) that was resample to 0.25°to evaluate the performance of the model with the joint 442 

assimilation scheme. Table 3 shows the details of these GPP and ET products. 443 

Table 3. Global GPP and ET products for comparison in this study 444 

Product Dataset 

Temporal 

resolution 

Spatial 

resolution 

Retrieval algorithm References 
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MOD17A2 GPP and ET 

8-day 

average 

1 km × 1 km 

GPP: Based on the light 

use efficiency (LUE) 

model 

ET: Improved Penman 

formula 

Running et 

al. (2004) 

GLASS GPP and ET 

8-day 

average 

5 km × 5 km 

GPP: EC-LUE model 

ET: Combining five 

Bayesian averages based 

on process models (BMA) 

Yuan et al. 

(2010) 

GOSIF 

GPP 

GPP 

8-day 

average 

0.05° × 0.05° 

Estimated from solar-

induced chlorophyll 

fluorescence with GPP-

SIF relationships  

Li and Xiao 

(2019) 

GLDAS ET ET daily 0.25°× 0.25° 

Processed model 

assimilation 

Fang et al. 

(2009) 

GLEAM 

v3a ET 

ET daily 0.25°× 0.25° 

Processed model 

assimilation 

Martens et 

al. (2017) 

 445 

4. Results  446 
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4.1. Performance of LPJ-PM for simulating GPP and ET with the assimilation of LAI and soil moisture 447 

4.1.1 Accuracy assessment of GPP for separate and joint assimilation      448 

In general, the R2 between GPPLPJ and GPPOBS was above 0.4 at most of the sites (62 sites) and 449 

were relatively weak for some sites. The LAI assimilation improved the simulations at most sites (R2 450 

value increased at 82 sites), particularly for sites in the U.S. and Europe (Figure S4). The R2 451 

improvement from the LAI assimilation (LAI-only assimilation) was superior to that from the SSM 452 

assimilation (Figure S4- (b) and (c)). The performance of the joint assimilation was similar to that of 453 

LAI-only assimilation. Sites (Figure S5 (a)) showed positive BIAS (GPPOBS-GPPLPJ) were mainly 454 

distributed in the humid and sub-dry humid forest, grassland, and arid cropland regions, showing an 455 

underestimation for GPPOBS. The assimilation improved the accuracy for overestimated sites, but there 456 

was no significant improvement for underestimated sites. The ubRMSD implied that the SSM 457 

assimilation alone had a better performance than the LAI assimilation alone, especially for sites in arid 458 

areas(Figure 2). The analysis of the above three statistical measures (R2, BIAS, and ubRMSD) indicated 459 

that the accuracy of joint assimilation was much better than that of separate assimilation.  460 

At the seasonal scale, all three assimilation schemes corrected the model trajectory and 461 

significantly improved the growing season simulations, especially for peak values (IT-Tor, US-NR1, 462 

US-NE1) (Figure 3). In addition, the linear fitting of GPPjoint and GPPOBS on a monthly scale was closer 463 

to 1:1 (y= 0.92x + 21.66 p < 0.001) than that of GPPLAI (y= 0.89x + 28.3, p < 0.001) and GPPSM (y= 464 

0.86x + 41.70, p < 0.001) (Figure S9). The results in Table S2 support the above analysis, and the joint 465 
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assimilation showed advantages in overall accuracy in both arid and humid areas.  466 

 467 

 468 

 469 

 470 

 471 

 472 

Figure 2  (a)The Unbiased Root Mean Square Error (ubRMSD) between the GPPLPJ and the site observations, 

the yellow/blue indicating low/high ubRMSD; (b)△ubRMSD（GPPLAI- GPPLPJ）;(c)△ubRMSD（GPPSM- GPPLPJ）; 

(d)△ubRMSD（GPPJoint- GPPLPJ） , blue/red represent positive/negative values. 
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 474 

Figure 3. Seasonal cycles of tower GPP and simulated gross primary productivity (GPP) from Lund-475 

Potsdam-Jena (LPJ), LAI-only assimilation, SSM-only assimilation and joint assimilation for six sites 476 

representing six PFTs. 477 

The residual analysis indicated that the three assimilation schemes for GPP (Figure S11 (left)) were 478 

different. For the assimilation results, most of the errors were distributed around –70 ~ 60 g C m- 2 month- 479 

1. The high GPPOBS values were considerably underestimated. The maximum negative error reached 100 480 

g C m- 2 month- 1. The error distribution of GPPSM was more dispersed than that of GPPLAI and GPPjoint. 481 

Among the residuals of these three schemes, GPPSM significantly overestimated the GPPOBS, mainly 482 

distributed in the 0–200 g C m- 2 month- 1 range. GPPLAI showed significant improvement in the 483 

overestimation of GPPOBS compared with GPPjoint. In general, the GPPjoint with the most concentrated 484 

error distribution had significant improvement. 485 

 486 
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Figure 4. Scatterplots of daily GPPLPJ (left) and GPPjoint (right) versus tower GPP for different PFTs. 487 

After determining the optimal assimilation scheme (Joint LAI and SSM assimilation scheme), we 488 

evaluated the GPPLPJ and GPPjoint at the site level (Figure.4). The results showed that GPPjoint performed 489 

better (R2= 0.83, ubRMSD= 1.15 g C m-2 d-1) than GPPLPJ (R
2= 0.69, ubRMSD= 1.91 g C m-2 d-1). The 490 

noticeable underestimation in all PFTs and overestimation at most forest sites for GPPLPJ were corrected 491 

by joint assimilation (GPPjoint). Our joint assimilation methods had better performance in forests, 492 

shrublands, and grasslands than in croplands and savannas. Except for the cropland, the linear fitting 493 

results of other types were all below the 1:1 line, showing the overall underestimation. Superior 494 

performance in both original simulation and assimilation occurred at shrubland (R2= 0.93, ubRMSD= 495 

0.89 g C m- 2 d- 1) and grassland (R2= 0.97, ubRMSD= 0.83 g C m- 2 d- 1) sites. However, the standard 496 

deviation of GPPjoint and GPPOBS at savanna sites was relatively large, and the GPPjoint at several savanna 497 

sites was significantly underestimated. 498 

4.1.2 Accuracy assessment of ET for separate and joint assimilation     499 

In general, the coefficient of determination (R2) between ETLPJ and ETOBS was generally over 0.4 500 

(the simulations were superior to GPPLPJ) (Figure S6). ETLAI showed slightly higher R2, while some 501 

sites showed reduced values (41 sites). The ETSM and ETjoint were significantly improved compared 502 

with the ETLAI. The R2 increased considerably in Australia but declined at some sites in the United 503 
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States after assimilation. For ubRMSD, ETjoint performed better than ETSM and ETLAI. The SSM 504 

assimilation improved more in humid regions, while the ubRMSD of ETSM was slightly higher in South 505 

America (Figure 5). In the original LPJ-DGVM simulation, the sites with a negative BIAS were mostly 506 

located in the humid and sub-dry humid regions, while most of the sites in arid and semi-arid regions 507 

had underestimation (Figure. S7- (a), Table S3). The assimilation improved ET at some of the 508 

overestimated sites, but the underestimation over these sites showed little improvement.  509 

510 

Figure 5 (a) The Unbiased Root Mean Square Error (ubRMSE) between the ET simulated by the LPJ-

DGVM and the site observations, with yellow/blue indicating low/high ubRMSD; (b)△ubRMSD（ETLAI- 

ETLPJ）;(c) △ubRMSD（ETSM- ETLPJ）; (d)△ubRMSD（ETJoint- ETLPJ）, blue/red represent positive/negative 

value. 
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At the seasonal scale, the model simulations were able to capture the temporal trend of ETOBS, and 512 

joint assimilation significantly improved the simulation in the growing season (US-NR1, US-NE1); 513 

overall underestimation was observed for ETOBS, especially in winter (Figure 6). Overall, the linear fitting 514 

of monthly ETjoint and ETOBS was closer to 1:1 than that of ETLAI and ETSM (Figure S6). The simulation 515 

accuracy of joint assimilation was better than that of separate assimilation, and the performance of the 516 

SSM assimilation was better than that of the LAI assimilation.  517 

The ET residual analysis (Figure S11 (right)) indicated that the three assimilation scheme errors 518 

showed underestimation for ETOBS. In general, the error distribution of separate assimilations was more 519 

dispersed than that of the joint assimilation. Similar to the assimilation performance of GPP, ETjoint and 520 

ETSM significantly improved the overestimation of ETOBS, but did not significantly improve the 521 

underestimation. For the ETjoint, most of the errors were distributed around -30–18 mm month-1. The 522 

region with high ETOBS was considerably underestimated, and the maximum negative error reached –57 523 

mm month-1.  524 

We also evaluated the ET assimilation results at the PFT scale (Figure 7). The results showed that 525 

our ET values resulting from the assimilation performed better at the site level (R2= 0.77, ubRMSD= 0.65 526 

mm d- 1) than that of ETLPJ (R
2= 0.67, ubRMSD=0.95 mm d- 1). Joint assimilation significantly reduced 527 

the errors of those shrubland sites with overestimation for ETOBS, and the site distribution was closer to 528 

the 1:1 line. Our assimilation methods had better performance in forest, savanna, and grassland 529 

ecosystems than in cropland and shrubland (Table S3). The linear fitting results of grassland and 530 

shrubland were all above the 1:1 line, showing overall overestimation. Although the original simulation 531 
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and assimilation performance were superior at savanna sites (R2= 0.95, ubRMSD= 0.78 mm d- 1), the 532 

standard deviations of ETjoint and ETOBS at savanna sites were relatively large, which was similar to the 533 

GPP results at savanna sites. 534 
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Figure 6. Seasonal cycles of tower-based and simulated ET from Lund-Potsdam-Jena (LPJ), LAI-only 536 

assimilation, SSM-only assimilation and joint assimilation for the six sites representing six PFTs during the 537 

study period. 538 

 539 

Figure 7. Scatter plots of daily ETjoint versus tower ET under different PFTs. 540 

4.2. Comparison of assimilation performance in semi-arid and arid regions with that in humid and sub-541 

dry humid regions 542 
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 543 
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Figure 8. Scatter plots of daily tower GPP and ET versus GPPjoint and ETjoint under arid and humid sites: 544 

(a) and (c) are the fitting results of GPP and ET in arid and semi-arid regions, respectively; (b) and (d) are 545 

the fitting results of GPP and ET in humid and dry sub-humid zone, respectively. 546 

    During the period 2010–2014, monthly GPPjoint and ETjoint performed differently in humid and 547 

sub-dry humid regions and semi-arid and arid regions (Figure 8, Table S2,3). Overall, the GPP and ET 548 

simulations had good consistency with the tower data in the two regions. For GPPjoint, there was no 549 

significant difference in the correlation and fitting coefficients between the two regions. As for ETjoint, 550 

the fitting results and R2 values in the semi-arid and arid regions performed better than those in the 551 

humid and sub-dry humid regions, which also suggested the importance of SSM for ET estimation in 552 

water-limited areas. 553 

 On the daily scale, the original GPP simulations (GPPLPJ) performed better in the semi-arid and 554 

arid regions than in the humid and sub-dry humid regions with higher R2 and lower ubRMSD (Table S2).  555 

the R2 and BIAS implied that the LAI assimilation alone had a better performance than the SSM 556 

assimilation alone. However, for sites in arid and semi-arid areas, the ubRMSD showed that the GPPSM 557 

improved better than GPPLAI, which both demonstrated SSM data are essential in water-limited regions. 558 

For GPPjoint, the shrubland in the semi-arid and arid regions had the lowest R2 values and the second 559 

lowest ubRMSD. The forest in the semi-arid and arid regions had the largest improvement after 560 

assimilation. In the humid and sub-dry humid regions, the GPPjoint of the savanna and cropland showed 561 
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the largest improvement (R2 increased by 64.7% and 71.1%, respectively; ubRMSD decreased by 47.0% 562 

and 31.8%, respectively). The grassland in the semi-arid and arid regions had the highest R2, and the 563 

savanna by combining all indicators had the best assimilation results compared to other types in both 564 

regions. 565 

Similar to ETjoint, the ETLPJ in the semi-arid and arid regions was better than that in humid and sub-566 

dry humid regions in terms of four evaluation indicators (ubRMSD decreased by 34.4% in semi-arid and 567 

arid regions and the ubRMSD decreased by 30.9% in humid and sub-dry humid regions compared with 568 

ETLPJ). The R2 and ubRMSD implied that the SSM assimilation alone had a better performance than the 569 

LAI assimilation alone, especially for sites in arid areas. and the BIAS showed that the ETLAI improved 570 

better than ETSM for sites in humid and sub-dry humid areas. The performance of the original simulation 571 

and assimilation of grassland sites in the semi-arid and arid regions was the best among all five PFTs. 572 

 573 

 574 
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Figure 9. Boxplots of R2, ubRMSD and BIAS for GPPSM (left) and ETPM (right). A represents the sites in arid 575 

and semi-arid areas, and B represents the sites in humid and dry sub-humid areas. 576 

To investigate the reasons for better assimilation performance in water-limited regions, we evaluated 577 

the GPP and ET simulated by the LPJ-PM according to R2, ubRMSD, and BIAS (Figure 7). Compared 578 

with the semi-arid and arid regions, the humid and sub-dry humid region had smaller R2 mean, larger 579 

BIAS, and no significant difference in mean ubRMSD for GPPSM. In general, the evaluation results of 580 

joint assimilation for ETPM were generally consistent with those for GPPSM and GPPSM. ETPM showed 581 

underestimation, which was consistent with the underestimation in SSM assimilation. These results 582 

indicated that, both GPP and ET modeled by LPJ-PM with joint assimilation were less stable and had a 583 

lower performance in the humid and sub-dry regions than in the semi-arid and arid regions. 584 

4.3. Comparison of assimilation performance in assimilating SMOS and SMAP soil moisture data  585 
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 586 

Figure 10. Taylor diagram (left) comparing ET simulations with observations at all 46 AmeriFlux sites 587 

at the daily time step between April 2015 and December 2018. Blue dots represent results based on 588 
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assimilation with SMAP SSM only and red dots represent results based on assimilation with SMOS SSM 589 

only. Reference points A and B-F correspond to the vegetation functional types (PFTs). The grid diagram 590 

(right) compares the evaluation indices of ET simulations with those of the observed values at all 46 591 

AmeriFlux sites with different wet and dry zones at the daily time step; the yellow cells indicate that ETSMAP 592 

performs better in the metric, and green cells indicate that ETSMOS performs better in the metric.  593 

The Taylor chart was used to compare the assimilation performance of ETSMAP and ETSMOS at 46 594 

AmeriFux sites (Figure 10-left). The results showed that ETSMAP performed better than ETSMOS for most 595 

PFTs, except forest. Both ETSMAP and ETSMOS performed well for grassland (closer to point A), and there 596 

was little difference between R2 and ubRMSD. The NSD of ETSMAP in grassland was 0.88, which was 597 

closer to 1 than that of ETSMOS. The assimilation of ET in the forest had a lower R2 and higher ubRMSD 598 

(0.7-0.8) than those of other PFTs, and the NSD of cropland and shrubland was lower than that of other 599 

PFTs (0.6-0.8), indicating that the assimilation for cropland and shrubland could not reproduce the 600 

variations in ET effectively. However, ETSMAP showed significant improvement in R2 compared with 601 

ETSMOS for shrubland and cropland. The assimilation performance of ETSMAP and ETSMOS for savanna 602 

showed the greatest difference. In general, the ETSMAP and ETSMOS were slightly different, and the ETSMAP 603 

was more improved than ETSMOS. 604 

Figure 10 (right) shows the assimilation accuracy of ETSMOS and ETSMAP in different humid and arid 605 

regions. The ETSMAP had significant advantages for the four indicators. The R2 of ETSMAP was higher than 606 

that of ETSMOS in all the areas. However, ETSMOS in some evaluation indicators showed a better 607 

performance than ETSMAP (BIAS in the humid region; ubRMSD in the sub-dry humid region). This may 608 

be due to the overall more humid nature of SMOS SSM than the SMAP SSM. Moreover, the sensitivity 609 
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of deep soil moisture contributed more to the ET in humid areas than in the water-limited areas. 610 

4.4. Global simulations of GPP and ET with joint assimilation of LAI and soil moisture data 611 

To assess the spatial scalability of the LPJ-VSJA assimilation scheme, we simulated the global daily 612 

GPP and ET for 2010–2018 with a spatial resolution of 0.25°. The original results simulated by the LPJ-613 

DGVM and LPJ-VSJA were referred to as LPJ-DGVM GPP(ET) and LPJ-VSJA GPP(ET), respectively. 614 

We compared the annual spatial GPP and ET values and the error standard deviation of the LPJ-VSJA 615 

with several existing flux products. 616 

Figures 11 and 12 depict the spatial distribution of the annual mean and the differences between our 617 

simulation results and the global independent satellite-based products. The developed LPJ-VSJA GPP 618 

was the closest to GOSIF GPP (Li and Xiao 2019) in most regions with the lowest spatial mean deviation 619 

(LPJ-VSJA-GOSIF) (27.9 g C m-2 yr-1), followed by GLASS GPP (51.2 g C m-2 yr-1) (Yuan et al. 2010), 620 

LPJ-DGVM ( -73.4 g C m-2 yr-1), and MODIS GPP (93.1 g C m-2 yr-1). LPJ-VSJA had higher GPP values 621 

than GOSIF GPP in tropical regions, such as Amazonia, Central Africa, and Southeast Asia. In general, 622 

the annual mean and differences between MODIS, GOSIF GPP, LPJ-DGVM, and our LPJ-VSJA were 623 

in broad agreement (with higher R2 ranging from 0.74 to 0.95). 624 

LPJ-VSJA ET was the closest to GLEAM ET on the spatial average with the least spatial average 625 

deviation (-13.9 mm yr-1) and highest R2 (0.88), followed by GLASS ET (-23.1 mm yr-1and 0.82), GLDAS 626 

ET (-34.7 mm yr-1 and 0.73), LPJ-DGVM (-48.7 and 0.66 mm yr-1), and MODIS ET (-122.1and 0.54 mm 627 

yr-1).628 
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 629 

 630 

Figure 11. Column A: Spatial distribution of annual LPJ-VSJA GPP and other independent satellite-based 631 

datasets (a: MODIS GPP; b: GLASS GPP; c: GOSIF GPP; e: LPJ-DGVM). Column B: Spatial 632 

distribution of the difference between annual LPJ-VSJA GPP and other independent satellite-based 633 

datasets. Column C: Scatter plots between these products. Black lines show the 1:1-line, red lines show the 634 

regression fit.  635 

 636 
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 637 
Figure 12. Column A: Spatial distribution of annual LPJ-VSJA ET and other independent satellite-638 
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based datasets (a: MODIS GPP; b: GLDAS ET; c: GLEAM ET; d: GLASS ET; e: LPJ-DGVM ET). 639 

Column B: Spatial distribution of the difference between annual LPJ-VSJA ET and other independent 640 

satellite-based datasets. Column C: Scatter plots between these products are provided on the right of the 641 

difference maps. Black lines show the 1:1-line, red lines show the regression fit.  642 

 643 

Figure 13 (a)–(e) represent the spatial error standard deviation (σ) distribution of MODIS, GLASS, 644 

GOSIF, and LPJ-VSJA GPP, respectively. The graphs on the right side depict the corresponding 645 

histograms. The σ of the MODIS GPP was evenly distributed between 30 and 60 g C m-2 month-1, while 646 

the average σ of other products was concentrated in 0–20 g C m-2 month-1 (90%). The high errors of all 647 

products were concentrated in the high temperature and humid areas of southern North America, eastern 648 

South America, humid and dry sub-humid areas of South Asia, and the savannas of Africa and Australia. 649 

The error histogram of GOSIF GPP and LPJ-DGVM GPP were in line with the normal distribution, with 650 

an average value of 8.3 g C m-2 month-1 and 22.4 g C m-2 month-1. The GLASS GPP product had the 651 

lowest mean value (3.6 g C m-2 month-1), followed by LPJ-VSJA (4.7 g C m-2 month-1), but the error 652 

variance of the LPJ-VSJA product was the lowest, indicating a stability of the regional error (Table S4). 653 

Compared to the LPJ-DGVM, the joint assimilation results showed improvement in all regions (the 654 

average error reduced by 17.7 g C m-2 month-1), especially in the humid regions of South Asia, Australia, 655 

and the United States. Our LPJ-VSJA GPP was generally proven to have high accuracy and stability for 656 

spatial analysis and could provide a reference for other model products. 657 
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Figures 14 (a)–(f) show the σ of MODIS, GLDAS, GLEAM, GLASS, and LPJ-VSJA ET (the units 660 

are mm/month), and the right graphs are the corresponding histograms. The σ values of GLDAS and LPJ-661 

VSJA represented a normal distribution trend. Except for MODIS, GLASS, and LPJ-DGVM (0–60 mm 662 

month-1), the σ of other products was generally between 0-20 mm month-1. The simulation error was 663 

relatively smaller in the Northern Hemisphere than in the Southern Hemisphere, especially for GLASS 664 

ET and GLDAS ET. Significant improvements in joint assimilation were observed in the northern 665 

hemisphere (especially in the semi-arid areas of the western United States and savanna and cropland areas 666 

of central India) and African savanna areas, and the average error was reduced by 15.1 mm month-1. In 667 

general, the error mean and variance of LPJ-VSJA and GLEAM products were relatively low (Table S4), 668 

and there was no apparent extremely high value region in the error distribution. Among the five products, 669 

LPJ-VSJA had the lowest error mean and variance and the highest accuracy.670 
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5. Discussion  671 

5.1 Advantage of joint assimilation for GPP and ET 672 

The benefit of employing multiple data flows in an assimilation system is the complementarity of 673 

the data, which enables constraints on different components of the underlying process-based terrestrial 674 

biosphere model. Due to the interaction and feedback between the internal components of the model, the 675 

assimilation of multiple observations has a synergistic effect, and the integrated constraints are greater 676 

than the individual constraint (Kato et al. (2013)). The advantage of our joint assimilation is that it can 677 

improve the simulation accuracy of both GPP and ET, especially ET, in arid and semi-arid regions. 678 

In the GPP assimilation experiment, the performance of the LAI assimilation was better than that of 679 

the SSM assimilation possibly for two reasons: (1) the LPJ-VSJA is more controlled by LAI data because 680 

the ratio of assimilated LAI (daily input) to SSM observations (3-day interval input) is approximately 3:1, 681 

which makes the likelihood function biased to LAI data; (2) the SM directly influences the simulation of 682 

ET, and the corresponding time function (computes the top layer SM (50 cm)) used here by Zhao et al. 683 

(2013)will result in the error of the updated top SM and propagating the error to the GPPSM. In addition, 684 

the 8-day interval LAI has the capability to capture the temporal variability of phenology.  685 

Current studies on terrestrial water and carbon flux assimilation mostly focus on the assimilation 686 

between a single model framework and observation results, lacking the fusion and comparison between 687 

multiple models. The processed models used in DA are simplifications and approximations of reality, and 688 

different models focus on different ecological processes. In this study, the updated ET module was 689 
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integrated to compensate for the simplification of soil stratification and the lack of SM information in the 690 

hydrological module of the LPJ-DGVM. Therefore, the integration of multiple types of models and multi-691 

source observation data (remotely sensed data, ecological inventory data (National Ecological 692 

Observatory Network, NEON (Keller et al. 2008)), and other measurements (Desai et al. 2011; Hayes et 693 

al. 2012) is expected to more objectively and effectively simulate the real state of ecosystems.  694 

5.2 Comparison of joint assimilation (LPJ-VSJA) and other models for GPP and ET across regions and 695 

vegetation types 696 

Global GPP and ET for different products were calculated by multiplying the global mean GPP 697 

density flux with the global vegetation area (122.4 million km2) originated from the MODIS land cover 698 

product (Friedl et al. 2010). The mean global GPP of the LPJ-VSJA (130.2 Pg C yr-1) was 699 

approximately 12% lower than that of PML-V2 (145.8 Pg C yr-1) and 18% higher than that of GLASS 700 

and MODIS, respectively (Table S6). The GPP values of LPJ-VSJA and GOSIF were the most similar. 701 

The GOSIF GPP was developed from gridded SIF using simple linear relationships between SIF and 702 

GPP. Our global LPJ-VSJA GPP estimates were within the currently most plausible 110–150 Pg C/yr 703 

range. 704 

As for ET, our results were similar to those of GLEAM ET and lower than those of PML-V2, 705 

GLDAS-2, and GLASS ET (~72000 km2 yr-1). Joint assimilation improved the overestimation of LPJ-706 

DGVM ET. At the daily scale, the estimation accuracy of PML-V2 and GLDAS-2 products, calibrated 707 

with flux tower data, was better than that of our estimates, which suggests an underestimation of LPJ-708 
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VSJA ET in wet regions. It is likely because the SSM of SMAP or SMOS was underestimated in the wet 709 

region or the influence of deep SM was under-represented. According to Seneviratne et al. (2010), 710 

satellite-based ET estimation approaches often overestimate ET in areas of arid and semi-arid climatic 711 

regimes in the magnitude of 0.50 to 3.00 mm d–1. The poor performance of these models can largely be 712 

attributed to the lack of constraints of SSM or RZSM and more accurate vegetation parameters (Gokmen 713 

et al. 2012; Pardo et al. 2014). For instance, the monthly estimated ET modeled by the Penman-Monteith-714 

Leuning (PML) model agreed with flux tower data well (R2 = 0.77; BIAS = − 9.7%, approximately 0.2 715 

mm d-1). Our annual ET simulations were lower than other products and slightly underestimated tower 716 

ET with a BIAS of 0.19 mm d-1 (ETOBS- ETjoint).  717 

In general, GPP and ET had better assimilation performance in arid and semi-arid regions than in 718 

humid and sub-dry humid regions likely because of the following reasons. First, the incorporation of SSM 719 

is more important for vegetation growth in water-limited areas. The module PT-JPLSM has been proven 720 

to have better performance in semi-arid and arid regions (Purdy et al. 2018). Our integrated model LPJ-721 

PM also performed better in semi-arid and arid regions by assimilating SMAP soil moisture (Li et al. 722 

2020). Second, the input performance, including SMOS and SMAP SSM products, is better in arid and 723 

temperate regions than in cold and humid regions (Zhang et al. 2019). Third, the vegetation types in humid 724 

regions are more complex and relatively less accurately simulated by the LPJ-DGVM within a single grid 725 

cell. For comparison, Zhang et al. (2020) used a data-driven upscaling approach to estimate GPP and ET 726 

in global semi-arid regions. This data-driven approach (R2 = 0.79, RMSD = 1.13 g C m−2 d−1) had slightly 727 

higher performance in estimating GPP than our LPJ-VSJA (R2 =0.73 and RMSD= 1.14 g C m−2 d−1) and  728 
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the data-driven method (R2 = 0.72 and RMSD = 0.72mm d−1) had identical performance for estimating 729 

ET with our LPJ-VSJA( R2 =0.73 and RMSD= 0.72 mm d−1).  730 

Our assimilation performance varied with PFT. The GPP and ET assimilation results of savanna sites 731 

performed well in both dry and wet regions, and those of shrubland sites showed the most remarkable 732 

improvement for simulations of LPJ-DGVM. The original simulation and assimilation performance of 733 

grassland sites in the semi-arid and arid regions were the best for all five PFTs. Consistent with our 734 

research, previous studies also showed better GPP or ET simulations for grassland, savannas, and 735 

shrublands biomes. For instance, Feng et al. (2015) validated five satellite-based ET algorithms for semi-736 

arid ecosystems and concluded that all the models produced acceptable and relatively better results for 737 

most grassland, savanna, and shrubland sites. Yang et al. (2017) demonstrated that he GLEAM ET had a 738 

superior performance for the grassland sites. The GOSIF GPP demonstrated better simulation for 739 

grassland and woody savannas sites at 8-day time steps with higher R2 (0.77 and 0.83, respectively) and 740 

lower RMSD (1.48 g C m-2 d-1 and 1.1 g C m-2 d-1) (Li and Xiao 2019). In contrast, our LPJ-VSJA GPP 741 

showed an R2 of 0.87 for grassland and 0.75 for savannas and an RMSD of 1.11 g C m-2 d-1 and 1.1 g C 742 

m-2 d-1, respectively, in semi-arid and arid regions.  743 

5.3 Uncertainty analysis of joint assimilation  744 

Our validation results at both site and regional scales indicated that uncertainty existed in LPJ-VSJA 745 

daily GPP and ET estimates. The errors from the tower EC observations, model-driven data, model 746 

structure, error of satellite-based observations (e.g., LAI and SSM), and the spatial scale mismatch 747 
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between the ground observed footprint size and satellite-derived footprint size were the vital factors 748 

affecting assimilation performance.  749 

First, recent studies have revealed errors in the GLASS LAI and SMOS or SMAP SSM compared 750 

with ground measurements. By computing the RMSD and R2 of each product, the GLASS LAI accuracy 751 

was clearly superior to that of MODIS and Four-Scale Geometric Optical Model based LAI (FSGOM) in 752 

forests and GLASS and FSGOM led to in much higher annual GPP and ET estimates compared to 753 

MCD15(Liu et al. 2018). The vegetation type (or land cover) misclassification caused 15–50% differences 754 

in LAI retrieval (Fang and Liang 2005; Gonsamo and Chen 2011). Yan et al. (2016) calculated a RMSD 755 

of 0.18 for the GLASS LAI over a range of HeiHe river basin sites and used the error to improve the 756 

simulation of LAI and fluxes by assimilating GLASS LAI data. Previous studies reported an improvement 757 

in the performance of the SMOS and SMAP products (Lievens et al. 2015; Miernecki et al. 2014), which 758 

both provide an accuracy of 0.04 m3 m-3 (Zhang et al. 2019). However, the actual observation error of 759 

these two products typically depends on the spatial location and time of the year (RMSD varying between 760 

0.035 and 0.056 m3 m-3 for several retrieval configurations) (Brocca et al. 2012). According to Purdy et 761 

al. (2018), the ET simulated by PT-JPLSM using the 9 km SM_L3_P_E data showed an inferior agreement 762 

(R2= 0.47) but a relatively low RMSD (0.77 mm d−1), due to the SMAP errors in the grid cell with soil 763 

heterogeneity and the climatological differences between model SM forecasts and SMAP SSM (Reichle 764 

and Koster 2004). We rescaled the ETPM to the probability distribution of the ETLPJ through a cumulative 765 

distribution function (CDF) to correct the potential seasonal biases of ETPM before assimilation.  766 
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Second, there is large uncertainty in the influence of RZSM as the source of water available to plants 767 

(Albergel et al. 2008; Bonan et al. 2020). Our GPP results of irrigated sites were largely influenced by 768 

US-Ne1, an irrigate site. This site maintained high annual GPP in 2012 despite the drought (Figure S4). 769 

However, the SMOS SSM in 2012 had a lower SSM annual mean than the site observations likely because 770 

the detected soil layer (0-50 cm) of the site observation is deeper than that of the satellite retrieval and the 771 

cumulative deep soil moisture due to the regular irrigation was higher than the SSM that could easily be 772 

vaporized during the drought period (Figure S4). Therefore, the influence of deep SM of some cropland 773 

sites during the drought years induced large simulation errors and unsatisfactory assimilation performance. 774 

Moreover, some deep-rooted forests maintain a high LAI during drought by absorbing deep SM (>2 m) 775 

and groundwater (Zhang et al. 2016). Thus, joint assimilation of the LAI and SSM may eliminate a portion 776 

of the underestimation of GPP of such vegetation in drought periods. Therefore, further research is needed 777 

on how to optimally utilize satellite SM data for improving GPP and ET simulations. 778 

Third, the problem of mixed pixels and mismatches in the observation footprints may also have an 779 

influence on the accuracy of estimated GPP and ET. The 5 km spatial resolution of the GLASS LAI ,9 780 

km of SMAP, and 25 km of SMOS products cannot capture the sub-grid-scale condition, especially in 781 

grid cells for complex land surfaces or strong soil heterogeneity. To ensure the consistency of the grid-782 

cell representativeness for the LAI and SSM, the interpolation result in errors that propagate through the 783 

modeling and assimilation, causing the accumulation of output errors (Nijssen and Lettenmaier 2004). 784 

Moreover, the shrubland in the LPJ-DGVM was most likely simulated as C4 grassland in the 785 

hydrothermal condition of semi-arid and arid regions. In contrast, the shrubland tended to be hybrid 786 
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vegetation types (grassland mixed with other types of forest vegetation) in the hydrothermal condition of 787 

humid and sub-dry humid regions, and the simulated canopy height is closer to the real condition of 788 

shrubland. This might also be the reason for the superior performance of ETLPJ and assimilation results 789 

of shrubland sites in humid and sub-dry humid regions. 790 

When assimilating multiple data streams, all data streams could be in the same optimization 791 

(simultaneous assimilation) or use a sequential (step-by-step) approach. Mathematically, simultaneous 792 

optimization is optimal because strong parametric connections are maintained between different 793 

processes. However, complications may arise due to computational constraints related to the inversion of 794 

large matrices or the requirement of numerous simulations, particularly for global datasets (e.g. Peylin et 795 

al.,2016), and due to the “weight” of different data streams in the optimization (e.g. Wutzler and 796 

Carvalhais, 2014). This is particularly true when considering a regional-to-global-scale, multiple site 797 

optimization of a complex model that contains many parameters, and which typically takes on the order 798 

of minutes to an hour to run a one-year simulation. In practice, it is very difficult to define a probability 799 

distribution that properly characterizes the model structural uncertainty and observation errors accounting 800 

for biases and non-Gaussian distributions. Nevertheless, a step-wise assimilation may be useful in dealing 801 

with possible inconsistencies on a temporary basis, since parameter error covariance matrix must be 802 

propagated at each step. It’s worth noting that the deviation between the model and observational data 803 

should be solved in the process of step-wise assimilation, such as the joint assimilation in this study, the 804 

satellite observations and model simulation were fitting through the CDF method so that the first step 805 

assimilation will strongly constrain the uncertainty of parameters related to phenology and carbon flux 806 
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and propagate to the second step . Alternative solutions were found for water -related parameters through 807 

soil moisture, providing a better fit for all data streams.  The sequence of assimilation is essential in the 808 

step-wise assimilation, and if the first observation contains a strong BIAS, then the associated error 809 

correlation will also propagate through the first assimilation. If the autocorrelation in the observation error, 810 

or the correlation between the data stream errors is not considered, it is likely that the posterior simulation 811 

has been overturned. That is, we overestimate the reduction in parametric uncertainty. If two observational 812 

data are less uncertainty (i.e., high precision of observation data), and the model of deviation is smaller 813 

(depend on the spatial scale and inversion method). Moreover, the correlation of these observations is 814 

stronger, and contain enough spatio-temporal information to limit all the parameters optimization 815 

accurately, the step-wise assimilation performance is basically the same as that of simultaneous 816 

assimilation. 817 

6. Conclusions  818 

We developed an assimilation system LPJ-VSJA that integrates GLASS LAI, SMOS SSM, and 819 

SMAP SSM data to improve GPP and ET estimates globally. The system was designed to assimilate two 820 

SSM products (SMOS and SMAP) into the integrated model - LPJ-PM for both dry and humid regions 821 

through separate and joint assimilation. The results show that the joint constraints provided by vegetation 822 

and soil variable strategies improve model simulations. Both the original and joint assimilation results for 823 

GPP and ET in semi-arid and arid regions performed better than those in humid and sub-dry humid regions, 824 

and the LPJ-PM that emphasized the SSM information is more suitable for the water-limited regions. For 825 



 

62 

 

ET assimilation, the different SSM products influence assimilation performance, and SMAP SSM 826 

possesses a slight advantage in most vegetation types and in both dry and humid regions. Our global LPJ-827 

VSJA GPP and ET products have relatively higher accuracy than other products, especially in water-828 

limited regions with lower ET values. 829 
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