
 

1 

 

 Simulating carbon and water fluxes using a coupled process-based 1 

terrestrial biosphere model and joint assimilation of leaf area index 2 

and surface soil moisture 3 

   Sinan Li 1,2, Li Zhang 1,3,*, Jingfeng Xiao 4, Rui Ma 5, Xiangjun Tian 6, Min Yan1,3 4 

1 Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, No. 9 5 

Dengzhuang South Road, Beijing 100094, China. 6 

2 College of Resources and Environment, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China 7 

  3   Key Laboratory of Earth Observation of Hainan Province, Sanya 572029, China 8 

4 Earth Systems Research Center, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, New 9 

Hampshire 03824, USA 10 

5   School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China 11 

6 International Center for Climate and Environment Sciences (ICCES), Institute of Atmospheric Physics, Chinese Academy of Sciences, 12 

Beijing 100029, China 13 

 14 

* Correspondence: zhangli@aircas.ac.cn; Tel.: +86-10-8217-8193 15 

 16 

 17 

 18 



 

2 

 

Abstract:  19 

Reliable modeling of carbon and water fluxes is essential for understanding the terrestrial carbon 20 

and water cycles and informing policy strategies aimed at constraining carbon emissions and improving 21 

water use efficiency. We designed an assimilation framework (LPJ-Vegetation and soil moisture Joint 22 

Assimilation, or LPJ-VSJA) to improve gross primary production (GPP) and evapotranspiration (ET) 23 

estimates globally. The integrated model, LPJ-PM as the underlying model, coupled from the Lund-24 

Potsdam-Jena Dynamic Global Vegetation Model (LPJ-DGVM version 3.01) and a hydrology module 25 

(i.e., the updated Priestley–Taylor Jet Propulsion Laboratory model, PT-JPLSM). Satellite-based soil 26 

moisture products derived from the Soil Moisture and Ocean Salinity (SMOS) and Soil Moisture Active 27 

and Passive (SMAP) and leaf area index (LAI) from the global Land and Ground satellite (GLASS) 28 

product were assimilated into LPJ-PM to improve GPP and ET simulations using a Proper Orthogonal 29 

Decomposition-based ensemble four-dimensional variational assimilation method (PODEn4DVar). The 30 

joint assimilation framework LPJ-VSJA achieved the best model performance (with an R2 of 0.91and 31 

0.81 and an ubRMSD reduced by 40.3% and 29.9% for GPP and ET, respectively, compared with those 32 

of LPJ-DGVM at the monthly scale). The assimilated GPP and ET demonstrated a better performance in 33 

the arid and semi-arid regions (GPP: R2=0.73, ubRMSD=1.05 g C m-2 d-1; ET: R2=0.73, ubRMSD= 0.61 34 

mm d-1) than in the humid and sub-dry humid regions (GPP: R2=0.61, ubRMSD=1.23 g C m-2 d-1; ET: 35 

R2=0.66; ubRMSD=0.67 mm d-1). The ET simulated by LPJ-PM that assimilated SMAP or SMOS had a 36 

slight difference, and the SMAP soil moisture data performed better than that SMOS data. Our global 37 

simulation modeled by LPJ-VSJA was compared with several global GPP and ET products (e.g., GLASS 38 
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GPP, GOSIF GPP, GLDAS ET, GLEAM ET) using the triple collocation (TC) method. Our products, 39 

especially ET, exhibited advantages in the overall error distribution (estimated error (μ): 3.4 mm month-40 

1; estimated standard deviation of μ: 1.91 mm month-1). Our research showed that the assimilation of 41 

multiple datasets could reduce model uncertainties, while the model performance differed across regions 42 

and plant functional types. Our assimilation framework (LPJ-VSJA) can improve the model simulation 43 

performance of daily GPP and ET globally, especially in water-limited regions. 44 

Keywords: Data Assimilation; SMOS; SMAP; Gross primary production (GPP); evapotranspiration 45 

(ET); GLASS LAI 46 

 47 

1. Introduction 48 

Gross primary production (GPP) and evapotranspiration (ET) are essential components of the carbon 49 

and water cycles. Carbon and water fluxes are inherently coupled on multiple spatial and temporal scales 50 

(Law et al. 2002; Sun et al. 2019; Waring and Running 2010). Terrestrial biosphere models are the most 51 

sophisticated approach for providing a relatively detailed description of such interdependent relationships 52 

regarding water and carbon fluxes and understanding the response of terrestrial ecosystems to changes in 53 

atmospheric CO2 and climate (Kaminski et al. 2017). The dynamic global vegetable models (DGVMs) 54 

are process-based dynamic terrestrial biosphere models, which can simulate material exchange between 55 

vegetation and different conditions from the perspective of vegetation physiological processes, and are 56 

widely used to estimate carbon and water fluxes of terrestrial vegetation.  However, there are still large 57 
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uncertainties in carbon and water flux estimates at regional to global scales. Both diagnostic and 58 

prognostic models show substantial differences in the magnitude and spatiotemporal patterns of GPP and 59 

ET. For example, the global annual GPP estimates exhibited a large range (130–169 Pg C yr-1) among 16 60 

process-based terrestrial biosphere models (Anav et al. 2015). The global ET ranged from 70,000 to 61 

75,000 km3 yr−1, and the uncertainty of regional or global ET estimates was up to 50% of the annual mean 62 

ET value, especially in the semi-arid regions (Miralles et al. 2016). These uncertainties mainly arise from 63 

the forcing datasets, simplification of mechanisms or imperfect assumptions in processes, and uncertain 64 

parameters in the processed models and assimilation methods (Xiao et al. 2019).  65 

In the last two decades, remote sensing products have been assimilated into DGVMS to reduce the 66 

uncertainty in modeled carbon and water fluxes (MacBean et al. 2016; Scholze et al. (2017); Exbrayat 67 

et al. (2019)). Data assimilation (DA) is an effective approach to reduce uncertainties in terrestrial 68 

biosphere models by integrating satellite products with models to constrain related parameters or state 69 

variables. A DA system contains four main components: a set of observations, an observation operator, 70 

an underlying model, and an assimilation method. The assimilation method considers the errors from both 71 

models and observations, and reduces model uncertainties by minimizing a cost function. The Ensemble 72 

Kalman Filter (EnKF) has been widely applied in land surface process models for parameter optimization, 73 

which significantly improve simulations by periodically updating state variables (e.g., LAI and soil 74 

moisture) using remote sensing data without altering the model structure (Ines et al. 2013; Li et al. 2017; 75 

Ma et al. 2013). Yet, the EnKF relies on the instantaneous observations to update the state variable at the 76 

current time, and gives the predicted value at the next time based on the forward integration of the updated 77 
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state variable. The four-dimensional variational method (4DVar) assimilation method can obtain the 78 

dynamic balance of the estimation in the time window when it is applied to the long-series forecast model 79 

(Barth et al. 2014;Zhang et al. 2014). In particular, the Proper Orthogonal Decomposition (POD)-based 80 

ensemble 4DVAR assimilation method (referred to as PODEn4DVar) (Tian and Feng 2015) requires 81 

relatively less computation and can simultaneously assimilate the observations at different time intervals. 82 

Meanwhile, it maintains the structural information of the four-dimensional space. This method has a 83 

satisfactory performance in land DA for carbon and water variables (Tian et al. 2009; Tian et al. 2010) 84 

and can better estimate GPP and ET than EnKF (Ma et al. 2017).  85 

Multiple sources of remote sensing data streams have been used to constrain models for assimilation. 86 

As a critical biophysical parameter of the land, leaf area index (LAI) is closely related to many land 87 

processes, such as photosynthesis, respiration, precipitation interception, ET, and surface energy 88 

exchange (Fang et al. 2019). LAI is highly sensitive to the simulation of carbon and water fluxes (Liu et 89 

al. 2018), and accurate LAI estimates can improve the simulations of the carbon and water fluxes (Bonan 90 

et al. 2014;; Mu et al. 2007). Soil moisture is a major driving factor affecting vegetation production in 91 

arid ecosystems, especially, in semi-arid areas (Liu et al. 2020). Introducing surface soil moisture (SSM) 92 

into the model can significantly improve GPP and ET simulation, particularly in water-limited areas (He 93 

et al. 2017; Li et al. 2020).  94 

The advancement of earth observation, machine learning, inversion algorithms, and computer 95 

technology has improved the accuracy of global LAI products and boosted model-data fusion studies 96 

(Fang et al. 2019; Kganyago et al. 2020; Xiao et al. 2017). The Advanced Very High-Resolution 97 
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Radiometer (AVHRR) generates global LAI products with the longest historic record (since the early 98 

1980s). The GLASS LAI product has been verified to have a better accuracy than that of MODIS and 99 

CYCLOPES and is more temporally continuous and spatially complete (Xiao et al. 2013). Several recent 100 

studies showed that the assimilation of GLASS LAI into DGVMs enhanced the performance of the 101 

models in simulating carbon cycling (e.g., GPP, Net Ecosystem Exchange (NEE)) and hydrological (e.g., 102 

ET, SM) processes (Ling et al. 2019; Ma et al. 2017; Yan et al. 2016). 103 

Microwave remote sensors are considered effective tools for measuring SM globally (Petropoulos et 104 

al. 2015). For example, surface SM products have been derived from the Soil Moisture and Ocean Salinity 105 

(SMOS) and Soil Moisture Active and Passive (SMAP) satellites equipped with an L-band microwave 106 

instrument. The products from these satellites have been evaluated against in-situ observations and other 107 

SM products and overall have high accuracy(Burgin et al. 2017; Cui et al. 2018). Additionally, the SMAP 108 

performs better than SMOS and other SM products (e.g., Advanced Scatterometer (ASCAT), Advanced 109 

Microwave Scanning Radiometer 2 (AMSR2)) with an overall lower error and a higher correlation based 110 

on the verification with in-situ SM data from 231 sites (Cui et al. 2018; Kim et al. 2018). The assimilation 111 

of SMAP data can improve the simulation accuracy of carbon and water fluxes (He et al. 2017; Li et al. 112 

2020) and hydrological variables (surface soil moisture, root-zoon soil moisture, and streamflow) 113 

(Blyverket et al. 2019; Koster et al. 2018; Reichle et al. 2017). In addition, the assimilation of SMAP data 114 

performed slightly better than that of SMOS and ESA CCI data (Blyverket et al. 2019). 115 

In the nonlinear model or nonlinear observation operator, only simultaneous assimilation makes 116 

optimal use of observations (MacBean et al. 2016). Therefore, a joint assimilation of soil moisture and 117 
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LAI can make full use of the two variables. From site (Albergel et al. (2010);Rüdiger et al. (2010); Wu et 118 

al.,2018) to regional assimilation (Ines et al. (2013)), many studies have proposed that joint assimilation 119 

of vegetation parameters and soil moisture is a potential improvement in modeling the carbon-water cycle. 120 

For instance,. joint assimilation of soil moisture and leaf area index can improve the accuracy of crop 121 

yield estimation (Xie et al.,2018; Pan et al.,2019), with small region and high spatial resolution, which 122 

adopting observation data from stations or high-resolution satellites (e.g. Sentinel-1 and 2). At a large 123 

regional scale, Bonan et al. (2020) assimilated LAI and SM together into the Interactions between Soil, 124 

Biosphere and Atmosphere (ISBA) land model and improved the modeled GPP, ET, and runoff in the 125 

Mediterranean region. Rahman et al. (2022) jointly assimilates GLASS LAI and SMAP soil moisture to 126 

improve water and carbon flux simulations within the Noah-MP model over the CONUS domain. 127 

Albergel et al.(2020) jointly assimilates the ASCAT soil moisture index (SMI) and LAI GEOV1 into 128 

ISBA (Interaction between Soil Biosphere and Atmosphere) surface model through the Global Offline 129 

Land Data assimilation system LDAS-Model to monitor extreme events such as drought and Heatwave 130 

events. In conclusion, Kalman Filter and its variant methods are mostly used joint assimilation methods 131 

at regional scale, which requires many kinds of observation data and their accuracy directly affects the 132 

assimilation performance.  133 

This study stems from the researches discussed above and further explored the potential of joint 134 

assimilating satellite LAI and soil moisture products globally. Specifically, it was the first time that an 135 

updated LPJ-DGVM model was used to jointly assimilate GLASS LAI and SMAP soil moisture for 136 

simulating global water and carbon fluxes. The latest global soil moisture datasets (SMOS and SMAP) 137 
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were used, and the assimilation performance of these two observations was analyzed. Since previous work 138 

showed the importance of surface soil moisture in the semi-arid and arid areas, one of the specific 139 

objectives of our study is to compare the assimilation effect in the humid and arid areas and improve the 140 

understanding of the effect of surface soil moisture on vegetation activity in wet and dry zones. In addition, 141 

compared with the assimilation methods in previous studies (mostly using Kalman Filter variants), the 142 

POD-En4DVar method is used, which greatly improves the computational efficiency.  143 

2. LPJ-VSJA framework and assimilation strategy  144 

2.1. Coupled- model (LPJ-PM) for assimilation 145 

In this study, a coupled terrestrial biosphere model, LPJ-PM, was used to simulate daily GPP and 146 

ET by assimilating satellite-derived LAI and SM. The LPJ-PM is coupled from LPJ-DGVM and PT-147 

JPLSM. The original input data in PT-JPLSM were all inherited from LPJ-DGVM, with the exception of 148 

relative humidity (RH) and surface soil moisture (SMOS and SMAP), including the initial LAI calculated 149 

by the LPJ-DGVM or assimilated LAI obtained through the LAI assimilation scheme, canopy height, and 150 

the fraction of absorbed photosynthetic effective radiation (fAPAR). The detailed processes of the LPJ-151 

PM have been described in Li et al. (2020), and the flow chart for the coupling is shown in Figure 1. 152 

Table 1. Description of the models and outputs in this study 153 

acronyms Full name Description Output  

LPJ-DGVM Lund-Potsdam-Jena This model is used as a model GPPLPJ, ETLPJ 
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(Sitch et al. 

2003) 

Dynamic Global 

Vegetation Model 

operator to simulated initial ET 

PT-JPLSM 

(Purdy et al. 

(2018)) 

 Updated Priestley–

Taylor Jet Propulsion 

Laboratory model 

The model is used as a module of 

the LPJ-PM and establishes a 

connection between SMAP SM and 

ET 

N/A 

LPJ-PM (Li 

et al. 

(2020)) 

Lund-Potsdam-Jena and 

Updated Priestley–

Taylor Jet Propulsion 

Laboratory coupled 

model 

An integrated model coupled from 

the PT-JPLSM and LPJ-DGVM 

GPPSM, ETPM 

LPJ-VSJA 

(this study) 

Lund-Potsdam-Jena 

Vegetation-Soil 

moisture-Joint -

Assimilation system 

A process-based assimilation 

framework for assimilating LAI 

and SSM jointly into LPJ-PM  

GPPLAI, ETLAI; GPPSM, 

ETSM; GPPCO; ETCO  

 154 

2.1.1 LPJ-DGVM 155 

The LPJ-DGVM is a process-oriented dynamic model, which considers mutual interaction of carbon 156 

and water cycling and is designed to simulate vegetation distribution and carbon, soil and atmosphere 157 

fluxes (Sitch et al. 2003). For each plant functional type (PFT), the GPP is calculated by implementing 158 

coupled photosynthesis and water balance 159 
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 The canopy GPP is updated daily: 160 

                     GPP =
(JE+Jc−√(JE+Jc)2−4θJEJc)

2θ
                     （2.1） 161 

where JC is the Rubisco limiting rate of photosynthesis, JE is the light limiting rate of photosynthesis, and 162 

the empirical parameter θ represents the common limiting effect between the two terms. JE is related to 163 

APAR (absorbed photosynthetic radiation, product of FPAR and PAR), while JC is related to Vcmax 164 

(canopy maximum carboxylation capacity, μ mol CO2/m 2/s):  165 

                                                 JE = C1APAR                           （2.2） 166 

                                                 JC = C2VC max                           （2.3） 167 

where C1 and C2 are determined by a variety of photosynthetic parameters and the intercellular partial 168 

pressure of CO2, which is related to atmospheric CO2 content and further altered by leaf stomatal 169 

conductance (Sitch et al. 2003). APAR and FPAR are directly related to LAI. 170 

In the water cycle module, ET is calculated as the minimum of a plant- and soil-limited supply 171 

function (Esupply) and the atmospheric demand (Edemand) (Haxeltine and Prentice 1996; Sitch et al. 172 

2003).The soil structure is simplified to a “two-layer bucket” model (the top soil layer at a 0-50 cm depth 173 

and the bottom layer at a 50-100 cm depth) . 174 

                    ES = Ep × Wr20 × (1 − fv)                     （2.4） 175 
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In this module, it is assumed that the soil layer above 20 cm produces water through evaporation, 176 

and Wr20 is the relative water content of the soil above 20 cm, which is used as the only soil water limit 177 

for calculating vegetation transpiration and soil evaporation. In the evapotranspiration estimation, the 178 

over-simplification of soil structure and soil water limitation lead to a large error (Sitch et al. 2003), while 179 

LPJ-DGVM cannot directly assimilate surface soil water due to the limitation of soil layer stratification  180 

, and therefore, the satellite-derived surface SM cannot be assimilated into LPJ-DGVM directly. The 181 

oversimplified soil structure and single soil moisture limitation inevitably lead to sizeable uncertainty in 182 

ET simulation. Additionally, the monthly input caused a daily variation of the modeled SM, which was 183 

also not transmitted to the calculation of GPP and ET. Thus, the updated PT-JPL model (hereafter referred 184 

to as PT-JPLSM) was coupled with LPJ-DGVM and the model structure was modified so that surface SM 185 

can be directly assimilated into the coupled model at the daily time step. 186 

2.1.2 PT-JPLSM 187 

In PT-JPLSM, three ET components are modelled: soil evaporation (E), vegetation transpiration (T), 188 

and leaf evaporation (I). The PT-JPLSM introduced a constraint (0–1, CRSM) of surface SM for T and E, 189 

which was used to avoid the implicit soil water control (represented by fSM=RHVPD) in the PT-JPL model.  190 

Vegetation transpiration: 191 

TRSM
)RH)(VWC(

SM
)RH)(VWC(

RSM C)RH(C)RH(C −−−− +−= 1141141
              （2.5） 192 
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CH

CH_pwpCR

obsCR
TRSM )

ww

ww
(C

−

−
−=1

  ,                  （2.6） 193 

where wobs is the SMAP SM, wpwp is the water content at the wilting point, and wfc is the water 194 

content at field capacity, which is determined by the properties of the soil. WCR is a crucial parameter in 195 

characterizing the extent of SM restriction on ET; wpwp_CH is the canopy height (CH) and is related to the 196 

potential of roots capturing water from deeper sources to limit the transpiration rate and characterize the 197 

SM availability (Purdy et al., 2018; Evensen 2003; Serraj et al., 1999). The specific formula is given in 198 

Purdy et al. (2018). 199 

Soil evaporation: 200 

             pwpfc

pwpobs

RSM
ww

ww
C

−

−
=

                          （2.7） 201 

The proportion of available water limits the soil evapotranspiration to the maximum available water. 202 

This scalar was formulated to represent the relatively accurate extractable water content for the vegetation, 203 

determined by soil properties and the water available for evaporation, which is estimated via surface water 204 

constraints. 205 

The SMAP SM as surface SM data was applied to model global ET using PT-JPLSM and the results 206 

demonstrated the largest improvements for ET estimates in dry regions (Purdy et al. 2018). Due to the 207 

limitation of soil stratification in LPJ-DGVM, the model was coupled with an updated remote-sensing 208 
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ET algorithm in the PT-JPLSM that could better simulate ET in water-limited regions than in humid regions 209 

(Purdy et al. 2018). 210 

2.2. Assimilation scheme and experiment procedure 211 

To improve the prediction capability of LPJ-PM, we designed three assimilation schemes: 212 

assimilating LAI only(scheme 1, output: ETLAI, GPPLAI), assimilating SSM only (scheme 2, output: 213 

GPPSM, ETSM), and joint assimilation of LAI and SSM (scheme 3, output: ETCO, GPPCO), i.e., LPJ-214 

VSJA framework) to test the assimilation performance for simulating GPP and ET.  215 

The proposed LPJ-VSJA framework consists of four main components: the model operator (the LPJ-216 

PM), the observation operator (to establish the relation between the assimilation variable and the observed 217 

variable), the observation series (GLASS LAI and SMOS or SMAP products), and the assimilation 218 

algorithm (POD4DVar). With the surface soil moisture constraint in the PT-JPLSM, the LPJ-VSJA 219 

corrects the output fluxes (GPP and ET in this study).  220 
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 221 

     Figure 1. Flowchart of the LPJ-VSJA assimilation scheme: three assimilation schemes and the coupled 222 

model: LPJ-PM. (adapted from Li et al., 2020). The abbreviation of model and assimilation framework is 223 

explained in Table 1. 224 

 225 

The experiment consisted of six steps:  226 
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Step 1: initialize the LPJ-DGVM and output the reference state variables without assimilation over 227 

the experimental period (2010–2018), referred to as the “Control run” scenario. 228 

Step 2: implement schemes 1, 2, and 3, respectively, and the results represent the assimilation 229 

integration state (daily GPP and ET assimilation results are referred to as the “GPPLAI” and “ETLAI” in 230 

scheme 1;“GPPSM” and “ETSM” in scheme 2 and “GPPCO” and “ETCO” in scheme 3. This scenario used 231 

the same input data and model parameter scheme with the “Control run” scenario. 232 

Step 3:evaluate GPP and ET results (schemes 1, 2 and 3 ) by comparing the parameters, R2 233 

(correlation coefficient), BIAS, and ubRMSD (unbiased root mean square deviation), for conditions of 234 

without-DA (“Control run” scenario) and with-DA states, and assess the assimilation performance of 235 

separate assimilation (schemes 1 and 2) and joint assimilation (scheme 3) to determine the optimal 236 

assimilation scheme for GPP and ET, respectively. 237 

Step 4:  evaluate the in-situ assimilated GPP and ET results where the sites are located in wet or dry 238 

regions by dividing these validation sites into four parts (humid, sub-dry humid, semi-arid, and arid 239 

regions), and this step was designed to assess the superiority of the proposed assimilation scheme in 240 

water-limited areas. 241 

 Step 5: compare the ET assimilation performance by assimilating the SMOS data with that by 242 

assimilating the SMAP data. 243 

Step 6:evaluate the simulated GPP and ET maps based on the optimal assimilation scheme against 244 

existing global flux products. 245 
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2.2.1 DA scheme 1: LAI assimilation 246 

In assimilation scheme 1, the observation operator determines the relationship between LAI and 247 

foliage projective cover (FPC) in the process model (equation 2.1), and the assimilated LAI will be 248 

propagated by energy transmission and ecosystem processes (e.g. photosynthesis, transpiration of 249 

vegetative process) in the dynamic model to improve GPP and ET simulations (Bonan et al. 2014; Mu et 250 

al. 2007). FPC, the vertically projected percentage of the land covered by foliage, regulates the rate of 251 

photosynthate conversion and transpiration. In this study, the GLASS LAI with 8-day interval for the 252 

period 2010–2018 was selected as the observation dataset for assimilation, and the FPC state variable was 253 

updated daily through running the LPJ-PM (GPPLAI, ETLAI in this study) as shown below: 254 

𝐹𝑃𝐶 = 1 − 𝑒−0.5𝐿𝐴𝐼                            （2.1） 255 

We set the model and observation errors at a given time as 20% and 10% (scale factor) of the LAI 256 

value and the observed LAI value, respectively. By verifying the assimilation performance (R, RMSD, 257 

BIAS) for different scale factors(f) of model simulation and observations in the range of 0.05 to 0.40, 258 

taking a step size of 0.05 (a total of 64 combinations), the optimal scale factors (0.2 and 0.1) were 259 

determined (Bonan et al., 2020).The model and observation errors was the LAI value multiply by f. The 260 

model integration generation method described by Pipunic et al. (2008) was used to determine the 261 

minimum number of ensemble members required to achieve maximum efficiency, and the number of sets 262 

was 20.  263 

2.2.2 DA scheme 2: SSM assimilation  264 
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   In this scheme, the surface SM products (SMOS or SMAP) were assimilated to LPJ-PM to obtain 265 

more accurate ET (ETSM) estimates in water-limited areas. The observation series was the SMOS or 266 

SMAP SSM product, and the observation operator was the PT-JPLSM model. The ETPM estimated by the 267 

coupled model (LPJ-PM) introducing surface SM was directly assimilated as a diagnostic variable. The 268 

assimilated ET was applied to compute the top layer SM (50 cm) at the next time step (a nonlinear soil 269 

water availability function described by Zhao et al. (2013), providing feedback for subsequent hydrologic 270 

and carbon cycle processes. Then, the updated SM values regulated the GPP simulation (output: GPPSM). 271 

Different from other "constant" ET observations, the ETPM ("observation") at each time t were adjusted 272 

by absorbing intermediate variables updated after assimilation at time t-1. The ETPM was shown to be 273 

better than ET simulated by LPJ-DGVM but not as good as that simulated by the model with SMAP SM 274 

assimilated (Li et al. 2020). Thus, it is proven that this SM assimilation schemes could improve the 275 

accuracy of ET simulations. 276 

All assimilation simulations were conducted between January 2010 and December 2018. Between 277 

January 2010 and April 2015, SMOS data were used for assimilation; and after May 2015, both SMOS 278 

and SMAP data were used for assimilation. An assimilation scheme was conducted when RH and SMOS 279 

or SMAP SM data existed simultaneously; otherwise, the original simulation of the LPJ-DGVM was 280 

conducted directly without adjustment of assimilation.  281 

Similar to the LAI assimilation scheme, the model and observation errors were set as 15% and 5% 282 

of ETLPJ and ETPM, respectively (LPJ-PM was adopted before assimilation). The number of ensemble 283 
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members was set to 50.The ETPM must be rescaled to the ETLPJ distribution via their corresponding 284 

cumulative probabilities using the cumulative distribution function (CDF) matching to avoid introducing 285 

any bias in the LPJ-VSJA system (Li et al. 2020).  286 

2.2.3 DA scheme 3: joint assimilation of LAI and SSM 287 

In this scheme, both LAI from GLASS and SM from SMOS or SMAP were the observation datasets. 288 

The GLASS LAI was assimilated by scheme 1 to obtain the FPCDA and ETLAI, and then the FPCDA served 289 

as input to LPJ-PM to simulate optimized ETPM, and the ETLAI was further assimilated with ETPM to 290 

generate ETCO. Then, the SM (referred to as SMCO in Figure S1) updated by ETCO and the FPCDA were 291 

used as input to correct GPP (GPPCO). 292 

Here, we applied the error regulation in scheme 1 and maintained the error setting of the LAI 293 

observation and model simulation. Considering the transmission of integrated model error, we 294 

recalculated the model error of LPJ-PM after the LAI assimilation and set model and observation errors 295 

of ETLAI and ETPM to be 15 and 10%, respectively.  296 

2.3. POD-Based Ensemble 4D Variational Assimilation Method  297 

The Proper Orthogonal Decomposition (POD)-based ensemble four-dimensional variational (4DVar) 298 

assimilation method (referred to as PODEn4DVar) (Tian and Feng 2015) has the advantage of avoiding 299 

the calculation of adjoint patterns as its incremental analysis field, which can be represented linearly by 300 

the POD base (Transformed OP (Observing Perturbation) and MP (Model Perturbation)). Moreover, the 301 
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PODEn4DVar can simultaneously assimilate multiple-time observation data and provide flow-dependent 302 

(the flow-dependent is the ensembles of forecasting statistical characteristics in the t time) error estimates 303 

of the background errors. It has shown advantages in terrestrial assimilation, Tan-Tracker joint DA, and 304 

Radar assimilation (Tian et al. 2010; Tian et al. 2009; Tian et al. 2014; Zhang and Weng 2015).  305 

By minimizing the following initial incremental format of the cost function in the 4DVar algorithm, 306 

an analysis field can be obtained: 307 

𝑱(𝒙′) =
𝟏

𝟐
(𝒙′)𝑩−𝟏(𝒙′) +

𝟏

𝟐
[𝒚′(𝒙′) − 𝒚′𝒐𝒃𝒔]𝑻𝑹−𝟏[𝒚′(𝒙′) − 𝒚′𝒐𝒃𝒔] 308 

Here, the𝑥′ = 𝑥 − 𝑥𝑏 ,  𝑦′(𝑥′) = 𝑦(𝑥′ + 𝑥𝑏) − 𝑦(𝑥𝑏), 𝑦′𝑜𝑏𝑠 = 𝑦𝑜𝑏𝑠 − 𝑦(𝑥𝑏),𝑦 = 𝐻[𝑀𝑡𝑜→𝑡𝑘(𝑥)]. 309 

𝑥′(𝑥′1, 𝑥′2, . . . . . , 𝑥′𝑁)  is the model perturbation (MP) matrix and 𝑦′(𝑦′1, 𝑦′2, . . . . . , 𝑦′𝑁) is the 310 

observation perturbation (OP) matrix with N samples. Following Rüdiger et al. (2010), the LAI 311 

perturbation was set to a fraction (0.001) of the LAI itself. The perturbation of ETPM and ETLPJ conforms 312 

to a Gaussian distribution with a mean of 0 and a specified covariance (10 and 5% of the ETPM and ETLPJ 313 

at time t). The subscript b represents the background field, the superscript T represents a transpose, H is 314 

the observation operator of scheme 1 as described in section 2.2.1, and scheme 2 is the PT-JPLSM 315 

(described in 2.1.2). M is the forecast model (LPJ-PM in this study), B is the background error covariance, 316 

R is the observation error covariance, and obs denotes observation. 317 

Assuming the approximately linear relationship between OP(y’) and MP(x’), POD decomposition 318 

and transformation were successively conducted for OP and MP. The transformed OP samples (𝛷𝑦 =319 
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𝑦′1, 𝑦′2, . . . . . , 𝑦′𝑛 ) are orthogonal and independent, and the transformed MP samples ( 𝛷𝑥 =320 

𝑥′1, 𝑥′2, . . . . , 𝑥′𝑛) are orthogonal to the corresponding OP samples, where n is the number of POD modes.  321 

The manifestation of the background error covariance is the same as the Ensemble Kalman filter 322 

(EnKF, Evensen (2004)), and the incremental analysis 𝑥′𝑎 was expressed by the 𝛷𝑥,𝑛, and �̃�𝑦(�̃�𝑦 =323 

[(𝑛 − 1)𝐼𝑛×𝑛 + 𝛷𝑦,𝑛
𝑇 𝑅−1𝛷𝑦,𝑛]

−1
𝛷𝑦,𝑛

𝑇 𝑅−1). Finally, the optimal analysis 𝑥𝑎 is calculated as 𝑥𝑎 = 𝑥𝑏 +324 

𝛷𝑥,𝑛�̃�𝑦𝑦′𝑜𝑏𝑠. The detailed derivation process of the algorithm is described by a previous study (Tian et 325 

al. 2011). 326 

In the ensemble-based method (Evensen et al.,2004), the number of ensemble members is usually 327 

fewer than that of the observation data and the degrees of freedom of the model variables, and spurious 328 

long-range correlations occur between observation locations and model variables. A practical method, the 329 

localization technique, is applied to address this issue (Mitchell et al. 2002). The final incremental analysis 330 

is rewritten as: 331 

𝑥′𝑎 = 𝛷𝑥,𝑛�̃�𝑦𝑦′𝑜𝑏𝑠𝐶0(
𝑑ℎ

𝑑ℎ,0
) ⋅ 𝐶0(

𝑑𝑣

𝑑𝑣,0
) 332 

where 𝑑ℎ and 𝑑𝑣 are the horizontal and vertical distances between the spatial positions of state and 333 

observed variables, respectively; and 𝑑ℎ,0and 𝑑𝑣,0 are the horizontal and vertical covariance localization 334 

Schur radii, respectively. The filtering function 
0C is expressed as: 335 
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𝐶0(𝑟) = {

−
1

4
𝑟5 +

1

2
𝑟4 +

5

8
𝑟3 −

5

3
𝑟2 + 1,                                  0 ≤ 𝑟 ≤ 1,

1

12
𝑟5 −

1

2
𝑟4 +

5

8
𝑟3 +

5

3
𝑟2 − 5𝑟 + 4 −

2

3
𝑟−1,           1 ≤ 𝑟 ≤ 2,

0,                                                                                                2 < 𝑟

, 336 

where r is the radius of the filter. 337 

    The assimilation algorithm is mainly divided into two steps: (1) prediction: run LPJ-PM in the 338 

current assimilation window and generate simulation results and background field vectors; (2) update: the 339 

algorithm is used to calculate the optimal assimilation increment 𝑥′𝑎 and analysis solution 𝑥𝑎, and the 340 

simulation results and the initial conditions of the model in the current window are updated using the 341 

analysis solution. The updated initial conditions were applied for model LPJ-PM prediction, and the above 342 

process was repeated. 343 

2.4. Validation method for assimilation performance  344 

The R2 (correlation coefficient),  Bias, and ubRMSD (unbiased root mean square deviation) 345 

between simulation and tower-based observations were applied for evaluation. In addition, a Taylor chart 346 

was also used to demonstrate the performance of two ET estimations with different SM observations in 347 

terms of R, ubRMSD, and Normalized Standard Deviation (NSD) on 2D plots, to display how closely the 348 

datasets matched observations in one diagram (Taylor 2001). In the Taylor diagram, SD represents the 349 

radial distance from the origin point and the correlation with the site observations as an angle in the polar 350 

plot. The ubRMSD is the distance between the observation and the model and is represented in the figure 351 

as a green semi-circular arc with point A as the center of the circle. The closer the model point to the 352 
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reference point (Point A), the better the performance. This diagram is convenient and visual in evaluating 353 

multiple aspects of various models. 354 

The error variance of GPP and ET products was estimated using the triple collocation (TC) approach 355 

(Stoffelen 1998) to validate the global simulation in this study. The method has been extensively applied 356 

in the study of hydrology and oceanography (Caires and Sterl 2003; Khan et al. 2018; O’Carroll et al. 357 

2008; Stoffelen 1998), particularly in SM studies (Chan et al. 2016; Kim et al. 2018). The TC provides a 358 

reliable platform for comparison of spatial assimilation results and in-situ measurements. In this 359 

experiment, no calculation was performed on the non-vegetated areas where the correlation was lower 360 

than 0.2 to have independent datasets and avoid correlated errors (crucial assumptions in TC) (Yilmaz 361 

and Crow 2014).  362 

In this study, the five products were divided into three product categories, including satellite product 363 

(MODIS, GOSIF GPP), reanalysis product (GLASS, GLDAS) and data assimilation product (GLEAM 364 

ET, LPJ-VSJA) (Li et al.,2018). One product in each category was selected to form a group to calculate 365 

their error. The LPJ-VSJA product was set as the reference data.  366 

For GPP products, GOSIF, GLASS, and LPJ-VSJA were treated as a group, and MODIS, GLASS 367 

and LPJ-VSJA were treated as another group to calculate the errors; the final errors were determined by 368 

the average of these two.  369 

3. Similarly, to calculate the errors for ET, GLEAM, GLASS, and MODIS were chosen as a 370 

group; LPJ-VSJA, GLDAS, and MODIS were treated as a group; LPJ-VSJA, GLASS and 371 
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MODIS were considered as a group. In order to reduce the influence of orthogonality 372 

hypothesis of error, the first and third groups are for indirect and effective comparison 373 

between LPJ-VSJA product and GLEAM product. Experiment sites and data 374 

3.1. Description of flux tower sites 375 

  We screened over 300 EC flux sites across the globe from the FLUXNET2015 376 

(https://fluxnet.fluxdata.org/data/fluxnet2015-dataset/), AmeriFlux (http://public.ornl.gov/ameriflux), 377 

and the HeiHe river basin (Liu et al. (2018), http://www.heihedata.org)) for the evaluation of assimilation 378 

performance over the period from January 2010 to December 2018. The in-situ half-hourly LE and GPP 379 

data from the sites were aggregated into daily data. The daily gap-filled data were excluded if the 380 

percentage of gap-filled half-hourly values was more than 20%. Then we corrected the data of energy 381 

non-closure by using the Bowen ratio closure method (Twine et al. 2000) to improve the energy closure 382 

rate (Huang et al. 2015; Yang et al. 2020). The data were selected to cover the 2010–2018 period with at 383 

least one year of reliable data, and the result from the error of assimilation is relative to the LE value and 384 

seasonal variation (Purdy et al. 2018; Zou et al. 2017). It is essential to have available data every month 385 

during a one-year period, and only days with less than 25% missing data were processed per month (Feng 386 

et al. 2015). In addition, for flux tower data, the data were also excluded for the analysis if the 387 

SMAP/SMOS SM data were not of good quality. 388 

Finally, we identified a total of 105 sites across the globe encompassing five major biomes: grassland 389 

(18 for GPP and 19 for ET), savanna (11), shrubland (4), forest (49 and 53), and cropland (13 and 14). In 390 
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the comparative analysis of the performance for simulating ET by assimilating SMOS and SMAP SM 391 

data separately, we selected 46 AmeriFlux sites (Figure S3) with at least one year of reliable data from 392 

2015 to 2018 based on the simultaneous availability of SMAP and SMOS data, including grassland (19), 393 

savanna (11), shrubland (5), forest (23), and cropland (7). Figure S2 and S3 illustrate the location and 394 

distribution of the 105 and 46 EC flux tower sites, respectively. A more detailed description is 395 

summarized in the Supporting Information Table S1. 396 

3.2. Remote sensing datasets: LAI and SM 397 

The GLASS LAI product with an 8-day time step and 5 km resolution was derived from MODIS 398 

and CYCLOPES surface reflectance and ground observations using general regression neural networks 399 

(GRNNs)  (Liang et al. 2013; Xiao et al. 2016). The verification of the product using the mean values 400 

of high-resolution LAI maps showed that the GLASS LAI values were closer to these high-resolution 401 

LAI maps (RMSD= 0.78 and R2= 0.81). Therefore, the GLASS LAI product has satisfactory performance 402 

and can be assimilated into terrestrial biosphere models. 403 

The SMAP mission (Entekhabi et al. 2010) and SMOS mission (Jacquette et al. 2010), the two 404 

dedicated soil moisture satellites currently in orbit equipped with L-band microwave instruments, provide 405 

surface SM retrievals. We chose the SMOS-L2 product and the SMAP-L3-Enhanced product, which both 406 

provide global coverage every three days for soil depth of 5 cm. Only good-quality SMAP and SMOS 407 

data were used. The grid cells with water areas larger than 10% and those with less than 50% good-quality 408 

data in one year were masked out, which alleviates the undesirable model simulations caused by the 409 
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decrease in SMAP retrieval accuracy (Chan et al. 2016; O'Neill et al. 2010). We only adopted the data 410 

with an uncertainty below 0.1 m3 m-3, in the actual range (0.00–0.6 m3 m-3), and the temperature of the 411 

LSM observation layer (the second layer) was higher than 2 °C (Blyverket et al. 2019). 412 

Both the GLASS LAI, SMOS and SMAP observations was resampled to 9 km for site simulation 413 

and 0.25° for spatial simulation. 414 

3.3. Model-forcing and validation datasets  415 

In this study, the meteorological, soil property, and CO2 concentration datasets were used to drive 416 

the LPJ-PM. For site simulation, in order to maintain consistency with the SMAP Enhanced 3 Level 417 

product (Entekhabi et al. 2010), model-forcing data were resampled to a 9 km spatial resolution based on 418 

EASE-2 projection grid. In the global spatial simulation, the model-forcing datasets were interpolated to 419 

0.25° based on the bilinear method to ensure the consistency of spatial representation. Table 2 provides 420 

the spatial and temporal characteristics of the model-forcing datasets in the LPJ-PM (submodule: LPJ-421 

DGVM and PT-JPLSM). 422 

 423 

Table 2. List of the selected forcing and remote-sensing datasets used in this study 424 

Datasets Variable Period 

Spatial 

resolution 

References 

CRU TS v4.1a Cloud cover, 1901- 0.5°× 0.5° New et al. 
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temperature, 

precipitation, wet 

day 

1930 (2000), 

https://crudat

a.uea.ac.uk/c

ru/data/hrg/ 

Ice-core 

measurements and 

atmospheric 

observations at the 

Mauna Loa 

Observatory a 

Atmospheric CO2 

concentrations 

1901-

2018 

NA 

(Etheridge et 

al. (1996); 

Keeling et al. 

(1995)) , 

https://scrippsc

o2.ucsd.edu/da

ta/atmospheric

_co2/ 

MERRA-2 a 

Precipitation, surface 

temperature, cloud 

fraction, relative 

humidity 

2010-

2018 

0.5°× 0.625° 

Rienecker et 

al. (2011) 

（https://www.

esrl.noaa.gov/p

sd/） 

HWSD (v121)b Soil texture data NA 1 km×1 km 

Wieder et al. 

(2014) 

（http://daac.or

nl.gov） 
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SPL3SMP_Eb Surface soil moisture 

2015.4–

present 

9 km×9 km 

Entekhabi et 

al. (2010), 

(https://smap.

jpl.nasa.gov/) 

GLASS LAI a,b Leaf area index 

2010-

2018 

5 km×5 km 

Xiao et al. 

(2016), 

(http://www.

glass.umd.ed

u/Download.

html) 

SMOS_L3 CATDSb Surface soil moisture 

2010-

present 

25km×25 km 

Jacquette et al. 

(2010),( https:

//earth.esa.int

/eogateway/

missions/smo

s) 

a: forcing dataset for LPJ-DGVM  425 

b: external input dataset for PT-JPLSM  426 

 427 
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We used four global ET products and three global GPP products (Li et al. 2018; Li and Xiao 2019; 428 

Wang et al. 2017) that was resample to 0.25°to evaluate the performance of the model with the joint 429 

assimilation scheme. Table 3 shows the details of these GPP and ET products. 430 

Table 3. Global GPP and ET products for comparison in this study 431 

Product Dataset 

Temporal 

resolution 

Spatial 

resolution 

Retrieval algorithm References 

MOD17A2 GPP and ET 

8-day 

average 

1 km × 1 km 

GPP: Based on the light 

use efficiency (LUE) 

model 

ET: Improved Penman 

formula 

Running et 

al. (2004) 

GLASS GPP and ET 

8-day 

average 

5 km × 5 km 

GPP: EC-LUE model 

ET: Combining five 

Bayesian averages based 

on process models (BMA) 

Yuan et al. 

(2010) 

GOSIF 

GPP 

GPP 

8-day 

average 

0.05° × 0.05° 
Estimated from solar-

induced chlorophyll 

Li and Xiao 

(2019) 
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fluorescence with GPP-

SIF relationships  

GLDAS ET ET daily 0.25°× 0.25° 

Processed model 

assimilation 

Fang et al. 

(2009) 

GLEAM 

v3a ET 

ET daily 0.25°× 0.25° 

Processed model 

assimilation 

Martens et 

al. (2017) 

 432 

4. Results  433 

4.1. Performance of LPJ-PM for simulating GPP and ET with the assimilation of LAI and soil moisture 434 

4.1.1 Accuracy assessment of GPP for separate and joint assimilation      435 

In general, the R2 between GPPLPJ and GPPOBS was above 0.4 at most of the sites (62 sites) and 436 

were relatively weak for some sites. The LAI assimilation improved the simulations at most sites (R2 437 

value increased at 82 sites), particularly for sites in the U.S. and Europe (Figure 2). The R2 438 

improvement from the LAI assimilation (scheme 1) was superior to that from the SM assimilation 439 

(Figure 2-R2 (b) and (c)). The performance of the joint assimilation (scheme 3) was similar to that of 440 

scheme 1. . Sites (Figure 2-BIAS (a)) showed positive bias (GPPOBS-GPPLPJ) were mainly distributed in 441 

the humid and dry-sub humid forest, grassland, and arid cropland regions, showing an underestimation 442 

for GPPOBS. The assimilation improved the accuracy for overestimated sites, but there was no 443 
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significant improvement for underestimated sites. The ubRMSD implied that the SM assimilation alone 444 

had a better performance than the LAI assimilation alone, especially for sites in arid areas. The analysis 445 

of the above three statistical measures (R2, BIAS, and ubRMSD) indicated that the accuracy of joint 446 

assimilation was much better than that of separate assimilation.  447 

At the seasonal scale, all three assimilation schemes corrected the model trajectory and 448 

significantly improved the growing season simulations, especially for peak values (IT-Tor, US-NR1, 449 

US-NE1)(Figure 3). In addition, the linear fitting of GPPCO and GPPOBS on a monthly scale was closer 450 

to 1:1 (y= 0.92 + 21.66 p < 0.001) than that of GPPLAI (y= 0.89 + 28.3, p < 0.001) and GPPSM (y= 0.86 451 

+ 41.70, p < 0.001) (Figure S5). The results in Table S2 support the above analysis, and the joint 452 

assimilation showed advantages in overall accuracy in both arid and humid areas.  453 

 454 
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 456 

Figure 3. Seasonal cycles of tower GPP and simulated gross primary productivity (GPP) from Lund-457 

Potsdam-Jena (LPJ), GLASS LAI assimilation (scheme 1), SMOS assimilation (scheme 2) and joint 458 
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assimilation (scheme 3) for six sites representing six PFTs. 459 

The residual analysis indicated that the three assimilation schemes for GPP (Figure S7 (left)) were 460 

different. For the assimilation results, most of the errors were distributed around –70 ~ 60 g C m- 2 month- 461 

1. The high GPPOBS values were considerably underestimated. The maximum negative error reached 100 462 

g C m- 2 month- 1. The error distribution of GPPSM was more dispersed than that of GPPLAI and GPPCO. 463 

Among the residuals of these three schemes, GPPSM significantly overestimated the GPPOBS, mainly 464 

distributed in the 0–200 g C m- 2 month- 1 range. GPPLAI showed significant improvement in the 465 

overestimation of GPPOBS compared with GPPCO. In general, the GPPCO with the most concentrated error 466 

distribution had significant improvement. 467 

 468 

Figure 4. Scatterplots of daily GPPLPJ (left) and GPPCO (right) versus tower GPP for different PFTs. 469 

After determining the optimal assimilation scheme (scheme 3), we evaluated the GPPLPJ and GPPCO 470 
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at the site level (Fig.4). The results showed that GPPCO performed better (R2= 0.83, ubRMSD= 1.15 g C 471 

m-2 d-1) than GPPLPJ (R
2= 0.69, ubRMSD= 1.91 g C m-2 d-1). The noticeable underestimation in all PFTs 472 

and overestimation at most forest sites for GPPLPJ were corrected by joint assimilation (GPPCO). Our joint 473 

assimilation methods had better performance in forests, shrublands, and grasslands than in croplands and 474 

savannas. Except for the cropland, the linear fitting results of other types were all below the 1:1 line, 475 

showing the overall underestimation. Superior performance in both original simulation and assimilation 476 

occurred at shrubland (R2= 0.93, ubRMSD= 0.89 g C m- 2 d- 1) and grassland (R2= 0.97, ubRMSD= 0.83 477 

g C m- 2 d- 1) sites. However, the standard deviation of GPPCO and GPPOBS at savanna sites was relatively 478 

large, and the assimilated GPP at several savanna sites was significantly underestimated. 479 

4.1.2 Accuracy assessment of ET for separate and joint assimilation     480 

In general, the coefficient of determination (R2) between ETLPJ and ETOBS was generally over 0.4 481 

(the simulations were superior to GPPLPJ) (Figure 5). ETLAI showed slightly higher R2, while some sites 482 

showed reduced values (41 sites). The ETSM and ETCO were significantly improved compared with the 483 

ETLAI. The R2 increased considerably in Australia but declined at some sites in the United States after 484 

assimilation. For ubRMSD, ETCO performed better than ETSM and ETLAI. The SM assimilation 485 

improved more in humid regions, while the ubRMSD of ETSM was slightly higher in South America. In 486 

the original LPJ-DGVM simulation, the sites with a negative bias were mostly located in the humid and 487 

dry-sub humid regions, while most of the sites in arid and semi-arid regions had underestimation (Fig. 488 

5-BIAS(a), Table S3). The assimilation improved ET at some of the overestimated sites, but the 489 
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underestimation over these sites showed little improvement.  490 
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At the seasonal scale, the model simulations were able to capture the temporal trend of ETOBS, and 492 

joint assimilation significantly improved the simulation in the growing season (US-NR1, US-NE1); 493 

overall underestimation was observed for ETOBS, especially in winter (Figure 6). Overall, the linear fitting 494 

of monthly ETCO and ETOBS was closer to 1:1 than that of ETLAI and ETSM (Figure S6). The simulation 495 

accuracy of joint assimilation was better than that of separate assimilation, and the performance of the 496 

SM assimilation was better than that of the LAI assimilation.  497 

The ET residual analysis (Figure S7 (right)) indicated that the three assimilation scheme errors 498 

showed underestimation for ETOBS. In general, the error distribution of separate assimilations was more 499 

dispersed than that of the joint assimilation. Similar to the assimilation performance of GPP, ETCO and 500 

ETSM significantly improved the overestimation of ETOBS, but did not significantly improve the 501 

underestimation. For the ETCO, most of the errors were distributed around -30–18 mm month-1. The region 502 

with high ETOBS was considerably underestimated, and the maximum negative error reached –57 mm 503 

month-1.  504 

We also evaluated the ET assimilation results at the PFT scale (Figure 7). The results showed that 505 

our assimilated ET performed better at the site level (R2= 0.77, ubRMSD= 0.65 mm d- 1) than that of 506 

ETLPJ (R
2= 0.67, ubRMSD=0.95 mm d- 1). Joint assimilation significantly reduced the errors of those 507 

shrubland sites with overestimation for ETOBS, and the site distribution was closer to the 1:1 line. Our 508 

assimilation methods had better performance in forest, savanna, and grassland ecosystems than in 509 

cropland and shrubland (Table S3). The linear fitting results of grassland and shrubland were all above 510 

the 1:1 line, showing overall overestimation. Although the original simulation and assimilation 511 

performance were superior at savanna sites (R2= 0.95, ubRMSD= 0.78 mm d- 1), the standard deviations 512 
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of ETCO and ETOBS at savanna sites were relatively large, which was similar to the GPP results at savanna 513 

sites. 514 
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 515 
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Figure 6. Seasonal cycles of tower-based and simulated ET from Lund-Potsdam-Jena (LPJ), GLASS LAI 516 

assimilation (scheme 1), SMOS assimilation (scheme 2) and joint assimilation (scheme 3) for the six sites 517 

representing six PFTs during the study period. 518 

 519 

Figure 7. Scatter plots of daily ETCO versus tower ET under different PFTs. 520 

4.2. Comparison of assimilation performance in semi-arid and arid regions with that in humid and dry-521 

sub humid regions 522 
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 523 

Figure 8. Scatter plots of daily tower GPP and ET versus GPPCO and ETCO under arid and humid sites: (a) 524 

and (c) are the fitting results of GPP and ET in arid and semi-arid regions, respectively; (b) and (d) are the 525 

fitting results of GPP and ET in humid and dry sub-humid zone, respectively. 526 

    During the period 2010–2014, monthly GPPCO and ETCO performed differently in humid and sub-527 

dry humid regions and semi-arid and arid regions (Figure 8, Table S2,3). Overall, the GPP and ET 528 

simulations had good consistency with the tower data in the two regions. For GPPCO, there was no 529 

significant difference in the correlation and fitting coefficients between the two regions. As for ETCO, 530 

the fitting results and R2 values in the semi-arid and arid regions performed better than those in the 531 
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humid and sub-dry humid regions, which also suggested the importance of surface SM for ET 532 

estimation in water-limited areas. 533 

 On the daily scale, the original GPP simulations (GPPLPJ) performed better in the semi-arid and 534 

arid regions than in the humid and sub-dry humid regions with higher R2 and lower ubRMSD (Table S2).  535 

the R2 and bias implied that the LAI assimilation alone had a better performance than the SM assimilation 536 

alone. However, for sites in arid and semi-arid areas, the RMSD and ubRMSD showed that the GPPSM 537 

improved better than GPPLAI, which both demonstrated SM data are essential in water-limited regions. 538 

For GPPCO, the shrubland in the semi-arid and arid regions had the lowest R2 values and the second lowest 539 

ubRMSD. The forest in the semi-arid and arid regions had the largest improvement after assimilation. In 540 

the humid and sub-dry humid regions, the GPPCO of the savanna and cropland showed the largest 541 

improvement (R2 increased by 64.7% and 71.1%, respectively; ubRMSD decreased by 47.0% and 31.8%, 542 

respectively). The grassland in the semi-arid and arid regions had the highest R2, and the savanna by 543 

combining all indicators had the best assimilation results compared to other types in both regions. 544 

Similar to ETCO, the ETLPJ in the semi-arid and arid regions was better than that in humid and sub-545 

dry humid regions in terms of four evaluation indicators (ubRMSD decreased by 34.4% in semi-arid and 546 

arid regions and the ubRMSD decreased by 30.9% in humid and sub-dry humid regions compared with 547 

ETLPJ). The R2 and ubRMSD implied that the SM assimilation alone had a better performance than the 548 

LAI assimilation alone, especially for sites in arid areas. and the bias showed that the ETLAI improved 549 

better than ETSM for sites in humid and sub-dry humid areas. The performance of the original simulation 550 

and assimilation of grassland sites in the semi-arid and arid regions was the best among all five PFTs. 551 
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 552 

 553 

Figure 9. Boxplots of R2, ubRMSD and BIAS for GPPSM (left) and ETPM (right). A represents the sites in arid 554 

and semi-arid areas, and B represents the sites in humid and dry sub-humid areas. 555 

To investigate the reasons for better assimilation performance in water-limited regions, we evaluated 556 

the GPP and ET simulated by the LPJ-PM according to R2, ubRMSD, and BIAS (Figure 7). Compared 557 

with the semi-arid and arid regions, the humid and sub-dry humid region had smaller R2 mean, larger 558 

BIAS , and no significant difference in mean ubRMSD for GPPSM. In general, the evaluation results of 559 

joint assimilation for ETPM were generally consistent with those for GPPSM and GPPSM. ETPM showed 560 

underestimation, which was consistent with the underestimation in SM assimilation. These results 561 

indicated that, both GPP and ET modeled by LPJ-PM with joint assimilation were less stable and had a 562 

lower performance in the humid and sub-dry regions than in the semi-arid and arid regions. 563 

4.3. Comparison of assimilation performance in assimilating SMOS and SMAP soil moisture data  564 
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 565 

Figure 10. Taylor diagram (left) comparing ET simulations with observations at all 46 AmeriFlux sites 566 

at the daily time step between April 2015 and December 2018. Blue dots represent results based on 567 

assimilation with SMAP SM only and red dots represent results based on assimilation with SMOS SM only. 568 

Reference points A and B-F correspond to the vegetation functional types (PFTs). The grid diagram (right) 569 

compares the evaluation indices of ET simulations with those of the observed values at all 46 AmeriFlux sites 570 

with different wet and dry zones at the daily time step; the yellow cells indicate that ETSMAP performs better 571 

in the metric, and green cells indicate that ETSMOS performs better in the metric. The Taylor chart was used 572 

to compare the assimilation performance of ETSMAP and ETSMOS at 46 AmeriFux sites (Figure 10-left). 573 

The results showed that ETSMAP performed better than ETSMOS for all PFTs. Both ETSMAP and ETSMOS 574 

performed well for grassland (closer to point A), and there was little difference between R2 and 575 



 

45 

 

standardized RMSD. The NSD of ETSMAP in grassland was 0.88, which was closer to 1 than that of ETSMOS. 576 

The assimilation of ET in the forest had a lower R and higher standardized RMSD (0.7-0.8) than those of 577 

other PFTs, and the NSD of cropland and shrubland was lower than that of other PFTs (0.6-0.8), indicating 578 

that the assimilation for cropland and shrubland could not reproduce the variations in ET effectively. 579 

However, ETSMAP showed significant improvement in R compared with ETSMOS for shrubland and 580 

cropland. The assimilation performance of ETSMAP and ETSMOS for savanna showed the greatest difference. 581 

In general, the ETSMAP and ETSMOS were slightly different, and the ETSMAP was more improved than 582 

ETSMOS. 583 

Figure 10 (right) shows the assimilation accuracy of ETSMOS and ETSMAP in different humid and arid 584 

regions. The ETSMAP had significant advantages for the four indicators. The R of ETSMAP was higher than 585 

that of ETSMOS in all the areas. However, ETSMOS in some evaluation indicators showed a better 586 

performance than ETSMAP (BIAS in the humid region; ubRMSD in the sub-dry humid region). This may 587 

be due to the overall more humid nature of SMOS SM than the SMAP SM. Moreover, the sensitivity of 588 

deep soil moisture contributed more to the ET in humid areas than in the water-limited areas. 589 

4.4. Global simulations of GPP and ET with joint assimilation of LAI and soil moisture data 590 

To assess the spatial scalability of the LPJ-VSJA assimilation scheme, we simulated the global daily 591 

GPP and ET for 2010–2018 with a spatial resolution of 0.25°. The original results simulated by the LPJ-592 

DGVM and LPJ-VSJA were referred to as LPJ-DGVM GPP(ET) and LPJ-VSJA GPP(ET), respectively. 593 

We compared the annual spatial GPP and ET values and the error standard deviation of the LPJ-VSJA 594 

with several existing flux products. 595 
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Figures 11 and 12 depict the spatial distribution of the annual mean and the differences between our 596 

simulation results and the global independent satellite-based products. The developed LPJ-VSJA GPP 597 

was the closest to GOSIF GPP (Li and Xiao 2019) in most regions with the lowest spatial mean deviation 598 

(LPJ-VSJA-GOSIF) (27.9 g C m-2 yr-1), followed by GLASS GPP (51.2 g C m-2 yr-1) (Yuan et al. 2010), 599 

LPJ-DGVM ( -73.4 g C m-2 yr-1), and MODIS GPP (93.1 g C m-2 yr-1). LPJ-VSJA had higher GPP values 600 

than GOSIF GPP in tropical regions, such as Amazonia, Central Africa, and Southeast Asia. In general, 601 

the annual mean and differences between MODIS, GOSIF GPP, LPJ-DGVM, and our LPJ-VSJA were 602 

in broad agreement (with higher R2 ranging from 0.74 to 0.95). 603 

LPJ-VSJA ET was the closest to GLEAM ET on the spatial average with the least spatial average 604 

deviation (-13.9 mm yr-1) and highest R2 (0.88), followed by GLASS ET (-23.1 mm yr-1and 0.82), GLDAS 605 

ET (-34.7 mm yr-1 and 0.73), LPJ-DGVM (-48.7 and 0.66 mm yr-1), and MODIS ET (-122.1and 0.54 mm 606 

yr-1). 607 
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 608 

Figure 11. Column A: Spatial distribution of annual LPJ-VSJA GPP and other independent satellite-based 609 

datasets (a: MODIS GPP; b: GLASS GPP; c: GOSIF GPP; e: LPJ-DGVM). Column B: Spatial 610 

distribution of the difference between annual LPJ-VSJA GPP and other independent satellite-based 611 
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datasets. Column C: Scatter plots between these products. Black lines show the 1:1-line, red lines show the 612 

regression fit.  613 
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Figure 12. Column A: Spatial distribution of annual LPJ-VSJA ET and other independent satellite-615 

based datasets (a: MODIS GPP; b: GLDAS ET; c: GLEAM ET; d: GLASS ET; e: LPJ-DGVM ET). 616 

Column B: Spatial distribution of the difference between annual LPJ-VSJA ET and other independent 617 

satellite-based datasets. Column C: Scatter plots between these products are provided on the right of the 618 

difference maps. Black lines show the 1:1-line, red lines show the regression fit.  619 

 620 

Figure 13 (a)–(e) represent the spatial error standard deviation (σ) distribution of MODIS, GLASS, 621 

GOSIF, and LPJ-VSJA GPP, respectively. The graphs on the right side depict the corresponding 622 

histograms. The σ of the MODIS GPP was evenly distributed between 30 and 60 g C m-2 month-1, while 623 

the average σ of other products was concentrated in 0–20 g C m-2 month-1 (90%). The high errors of all 624 

products were concentrated in the high temperature and humid areas of southern North America, eastern 625 

South America, humid and dry sub-humid areas of South Asia, and the savannas of Africa and Australia. 626 

The error histogram of GOSIF GPP and LPJ-DGVM GPP were in line with the normal distribution, with 627 

an average value of 8.3 g C m-2 month-1 and 22.4 g C m-2 month-1. The GLASS GPP product had the 628 

lowest mean value (3.6 g C m-2 month-1), followed by LPJ-VSJA (4.7 g C m-2 month-1), but the error 629 

variance of the LPJ-VSJA product was the lowest, indicating a stability of the regional error (Table S4). 630 

Compared to the LPJ-DGVM, the joint assimilation results showed improvement in all regions (the 631 

average error reduced by 17.7 g C m-2 month-1), especially in the humid regions of South Asia, Australia, 632 

and the United States. Our LPJ-VSJA GPP was generally proven to have high accuracy and stability for 633 

spatial analysis and could provide a reference for other model products. 634 
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Figures 14 (a)–(f) show the σ of MODIS, GLDAS, GLEAM, GLASS, and LPJ-VSJA ET (the units 637 

are mm/month), and the right graphs are the corresponding histograms. The σ values of GLDAS and LPJ-638 

VSJA represented a normal distribution trend. Except for MODIS, GLASS, and LPJ-DGVM (0–60 mm 639 

month-1), the σ of other products was generally between 0-20 mm month-1. The simulation error was 640 

relatively smaller in the Northern Hemisphere than in the Southern Hemisphere, especially for GLASS 641 

ET and GLDAS ET. Significant improvements in joint assimilation were observed in the northern 642 

hemisphere (especially in the semi-arid areas of the western United States and savanna and cropland areas 643 

of central India) and African savanna areas, and the average error was reduced by 15.1 mm month-1. In 644 

general, the error mean and variance of LPJ-VSJA and GLEAM products were relatively low (Table S4), 645 

and there was no apparent extremely high value region in the error distribution. Among the five products, 646 

LPJ-VSJA had the lowest error mean and variance and the highest accuracy.647 
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5. Discussion  648 

5.1 Advantage of joint assimilation for GPP and ET 649 

The benefit of employing multiple data flows in an assimilation system is the complementarity of 650 

the data, which enables constraints on different components of the underlying process-based terrestrial 651 

biosphere model. Due to the interaction and feedback between the internal components of the model, the 652 

assimilation of multiple observations has a synergistic effect, and the integrated constraints are greater 653 

than the individual constraint (Kato et al. (2013)). The advantage of our joint assimilation is that it can 654 

improve the simulation accuracy of both GPP and ET, especially ET, in arid and semi-arid regions. 655 

In the GPP assimilation experiment, the performance of the LAI assimilation was better than that of 656 

the SSM assimilation possibly for two reasons: (1) the LPJ-VSJA is more controlled by LAI data because 657 

the ratio of assimilated LAI (daily input) to SSM observations (3-day interval input) is approximately 3:1, 658 

which makes the likelihood function biased to LAI data; (2) the SM directly influences the simulation of 659 

ET, and the corresponding time function (computes the top layer SM (50 cm)) used here by Zhao et al. 660 

(2013)will result in the error of the updated top SM and propagating the error to the GPPSM. In addition, 661 

the 8-day interval LAI has the capability to capture the temporal variability of phenology.  662 

Current studies on terrestrial water and carbon flux assimilation mostly focus on the assimilation 663 

between a single model framework and observation results, lacking the fusion and comparison between 664 

multiple models. The processed models used in DA are simplifications and approximations of reality, and 665 

different models focus on different ecological processes. In this study, the updated ET module was 666 
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integrated to compensate for the simplification of soil stratification and the lack of SM information in the 667 

hydrological module of the LPJ-DGVM. Therefore, the integration of multiple types of models and multi-668 

source observation data (remotely sensed data, ecological inventory data (National Ecological 669 

Observatory Network, NEON (Keller et al. 2008)), and other measurements (Desai et al. 2011; Hayes et 670 

al. 2012) is expected to more objectively and effectively simulate the real state of ecosystems.  671 

5.2 Comparison of joint assimilation (LPJ-VSJA) and other models for GPP and ET across regions and 672 

vegetation types 673 

Global GPP and ET for different products were calculated by multiplying the global mean GPP 674 

density flux with the global vegetation area (122.4 million km2) originated from the MODIS land cover 675 

product (Friedl et al. 2010). The mean global GPP of the LPJ-VSJA (130.2 Pg C yr-1) was 676 

approximately 12% lower than that of PML-V2 (145.8 Pg C yr-1) and 18% higher than that of GLASS 677 

and MODIS, respectively (Table S6). The GPP values of LPJ-VSJA and GOSIF were the most similar. 678 

The GOSIF GPP was developed from gridded SIF using simple linear relationships between SIF and 679 

GPP. Our global LPJ-VSJA GPP estimates were within the currently most plausible 110–150 Pg C/yr 680 

range. 681 

As for ET, our results were similar to those of GLEAM ET and lower than those of PML-V2, 682 

GLDAS-2, and GLASS ET (~72000 mm yr-1). Joint assimilation improved the overestimation of LPJ-683 

DGVM ET. At the daily scale, the estimation accuracy of PML-V2 and GLDAS-2 products, calibrated 684 

with flux tower data, was better than that of our estimates, which suggests an underestimation of LPJ-685 
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VSJA ET in wet regions. It is likely because the SM of SMAP or SMOS was underestimated in the wet 686 

region or the influence of deep SM was under-represented. According to Seneviratne et al. (2010), 687 

satellite-based ET estimation approaches often overestimate ET in areas of arid and semi-arid climatic 688 

regimes in the magnitude of 0.50 to 3.00 mm d–1. The poor performance of these models can largely be 689 

attributed to the lack of constraints of SM and more accurate vegetation parameters (Gokmen et al. 2012; 690 

Pardo et al. 2014). For instance, the monthly estimated ET modeled by the Penman-Monteith-Leuning 691 

(PML) model agreed with flux tower data well (R2 = 0.77; bias = − 9.7%, approximately 0.2 mm d-1). 692 

Our annual ET simulations were lower than other products and slightly underestimated tower ET with a 693 

bias of 0.19 mm d-1 (ETOBS-ETCO).  694 

In general, GPP and ET had better assimilation performance in arid and semi-arid regions than in 695 

humid and semi-humid regions likely because of the following reasons. First, the incorporation of surface 696 

SM is more important for vegetation growth in water-limited areas. The module PT-JPLSM has been 697 

proven to have better performance in semi-arid and arid regions (Purdy et al. 2018). Our integrated model 698 

LPJ-PM also performed better in semi-arid and arid regions by assimilating SMAP soil moisture (Li et al. 699 

2020). Second, the input performance, including SMOS and SMAP SM products, is better in arid and 700 

temperate regions than in cold and humid regions (Zhang et al. 2019). Third, the vegetation types in humid 701 

regions are more complex and relatively less accurately simulated by the LPJ-DGVM within a single grid 702 

cell. For comparison, Zhang et al. (2020) used a data-driven upscaling approach to estimate GPP and ET 703 

in global semi-arid regions. This data-driven approach (R2 = 0.79, RMSD = 1.13 g C m−2 d−1) had slightly 704 

higher performance in estimating GPP than our LPJ-VSJA (R2 =0.73 and RMSD= 1.14 g C m−2 d−1) and  705 



 

57 

 

the data-driven method (R2 = 0.72 and RMSD = 0.72mm d−1) had identical performance for estimating 706 

ET with our LPJ-VSJA( R2 =0.73 and RMSD= 0.72 mm d−1).  707 

Our assimilation performance varied with PFT. The GPP and ET assimilation results of savanna sites 708 

performed well in both dry and wet regions, and those of shrubland sites showed the most remarkable 709 

improvement for simulations of LPJ-DGVM. The original simulation and assimilation performance of 710 

grassland sites in the semi-arid and arid regions were the best for all five PFTs. Consistent with our 711 

research, previous studies also showed better GPP or ET simulations for grassland, savannas, and 712 

shrublands biomes. For instance, Feng et al. (2015) validated five satellite-based ET algorithms for semi-713 

arid ecosystems and concluded that all the models produced acceptable and relatively better results for 714 

most grassland, savanna, and shrubland sites. Yang et al. (2017) demonstrated that he GLEAM ET had a 715 

superior performance for the grassland sites. The GOSIF GPP demonstrated better simulation for 716 

grassland and woody savannas sites at 8-day time steps with higher R2 (0.77 and 0.83, respectively) and 717 

lower RMSD (1.48 g C m-2 d-1 and 1.1 g C m-2 d-1) (Li and Xiao 2019). In contrast, our LPJ-VSJA GPP 718 

showed an R2 of 0.87 for grassland and 0.75 for savannas and an RMSD of 1.11 g C m-2 d-1 and 1.1 g C 719 

m-2 d-1, respectively, in semi-arid and arid regions.  720 

5.3 Uncertainty analysis of joint assimilation  721 

Our validation results at both site and regional scales indicated that uncertainty existed in LPJ-VSJA 722 

daily GPP and ET estimates. The errors from the tower EC observations, model-driven data, model 723 

structure, error of satellite-based observations (e.g., LAI and SM), and the spatial scale mismatch between 724 
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the ground observed footprint size and satellite-derived footprint size were the vital factors affecting 725 

assimilation performance.  726 

First, recent studies have revealed errors in the GLASS LAI and SMOS or SMAP SM compared 727 

with ground measurements. By computing the RMSD and R2 of each product, the GLASS LAI accuracy 728 

was clearly superior to that of MODIS and Four-Scale Geometric Optical Model based LAI (FSGOM) in 729 

forests and GLASS and FSGOM led to in much higher annual GPP and ET estimates compared to 730 

MCD15(Liu et al. 2018). The vegetation type (or land cover) misclassification caused 15–50% differences 731 

in LAI retrieval (Fang and Liang 2005; Gonsamo and Chen 2011). Yan et al. (2016) calculated a RMSD 732 

of 0.18 for the GLASS LAI over a range of HeiHe drainage basin sites and used the error to improve the 733 

simulation of LAI and fluxes by assimilating GLASS LAI data. Previous studies reported an improvement 734 

in the performance of the SMOS and SMAP products (Lievens et al. 2015; Miernecki et al. 2014), which 735 

both provide an accuracy of 0.04 m3 m-3 (Zhang et al. 2019). However, the actual observation error of 736 

these two products typically depends on the spatial location and time of the year (RMSD varying between 737 

0.035 and 0.056 m3 m-3 for several retrieval configurations) (Brocca et al. 2012). According to Purdy et 738 

al. (2018), the ET simulated by PT-JPLSM using the 9 km SM_L3_P_E data showed an inferior agreement 739 

(R2= 0.47) but a relatively low RMSD (0.77 mm d−1), due to the SMAP errors in the grid cell with soil 740 

heterogeneity and the climatological differences between model SM forecasts and SMAP SM (Reichle 741 

and Koster 2004). We rescaled the ETPM to the probability distribution of the ETLPJ through a cumulative 742 

distribution function (CDF) to correct the potential seasonal biases of ETPM before assimilation.  743 
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Second, there is large uncertainty in the influence of root zone SM as the source of water available 744 

to plants (Albergel et al. 2008; Bonan et al. 2020). Our GPP results of cropland sites were largely 745 

influenced by US-Ne1, an irrigate site. This site maintained high annual GPP in 2012 despite the drought 746 

(Figure S4). However, the SMOS SM in 2012 had a lower surface SM annual mean than the site 747 

observations likely because the detected soil layer (0-50 cm) of the site observation is deeper than that of 748 

the satellite retrieval and the cumulative deep soil moisture due to the regular irrigation was higher than 749 

the surface SM that could easily be vaporized during the drought period (Figure S4). Therefore, the 750 

influence of deep SM of some cropland sites during the drought years induced large simulation errors and 751 

unsatisfactory assimilation performance. Moreover, some deep-rooted forests maintain a high LAI during 752 

drought by absorbing deep SM (>2 m) and groundwater (Zhang et al. 2016). Thus, joint assimilation of 753 

the LAI and SM may eliminate a portion of the underestimation of GPP of such vegetation in drought 754 

periods. Therefore, further research is needed on how to optimally utilize satellite SM data for improving 755 

GPP and ET simulations. 756 

Third, the problem of mixed pixels and mismatches in the observation footprints may also have an 757 

influence on the accuracy of estimated GPP and ET. The 5 km spatial resolution of the GLASS LAI ,9 758 

km of SMAP, and 25 km of SMOS products cannot capture the sub-grid-scale condition, especially in 759 

grid cells for complex land surfaces or strong soil heterogeneity. To ensure the consistency of the grid-760 

cell representativeness for the LAI and SM, the interpolation result in errors that propagate through the 761 

modeling and assimilation, causing the accumulation of output errors (Nijssen and Lettenmaier 2004). 762 

Moreover, the shrubland in the LPJ-DGVM was most likely simulated as C4 grassland in the 763 
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hydrothermal condition of semi-arid and arid regions. In contrast, the shrubland tended to be hybrid 764 

vegetation types (grassland mixed with other types of forest vegetation) in the hydrothermal condition of 765 

humid and sub-dry humid regions, and the simulated canopy height is closer to the real condition of 766 

shrubland. This might also be the reason for the superior performance of ETLPJ and assimilation results 767 

of shrubland sites in humid and sub-dry humid regions. 768 

When assimilating multiple data streams, all data streams could be in the same optimization 769 

(simultaneous assimilation) or use a sequential (step-by-step) approach. Mathematically, simultaneous 770 

optimization is optimal because strong parametric connections are maintained between different 771 

processes. However, complications may arise due to computational constraints related to the inversion of 772 

large matrices or the requirement of numerous simulations, particularly for global datasets (e.g. Peylin et 773 

al.,2016), and due to the “weight” of different data streams in the optimization (e.g. Wutzler and 774 

Carvalhais, 2014). This is particularly true when considering a regional-to-global-scale, multiple site 775 

optimization of a complex model that contains many parameters, and which typically takes on the order 776 

of minutes to an hour to run a one-year simulation. In practice, it is very difficult to define a probability 777 

distribution that properly characterizes the model structural uncertainty and observation errors accounting 778 

for biases and non-Gaussian distributions. Nevertheless, a step-wise assimilation may be useful in dealing 779 

with possible inconsistencies on a temporary basis, since parameter error covariance matrix must be 780 

propagated at each step. It’s worth noting that the deviation between the model and observational data 781 

should be solved in the process of step-wise assimilation, such as the joint assimilation in this study, the 782 

satellite observations and model simulation were fitting through the CDF method so that the first step 783 
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assimilation will strongly constrain the uncertainty of parameters related to phenology and carbon flux 784 

and propagate to the second step . Alternative solutions were found for water -related parameters through 785 

soil moisture, providing a better fit for all data streams.  The sequence of assimilation is essential in the 786 

step-wise assimilation, and if the first observation contains a strong bias, then the associated error 787 

correlation will also propagate through the first assimilation. If the autocorrelation in the observation error, 788 

or the correlation between the data stream errors is not considered, it is likely that the posterior simulation 789 

has been overturned. That is, we overestimate the reduction in parametric uncertainty. If two observational 790 

data are less uncertainty (i.e., high precision of observation data), and the model of deviation is smaller 791 

(depend on the spatial scale and inversion method). Moreover, the correlation of these observations is 792 

stronger, and contain enough spatio-temporal information to limit all the parameters optimization 793 

accurately, the step-wise assimilation performance is basically the same as that of simultaneous 794 

assimilation. 795 

6. Conclusions  796 

We developed an assimilation system LPJ-VSJA that integrates GLASS LAI, SMOS SM, and 797 

SMAP SM data to improve GPP and ET estimates globally. The system was designed to assimilate two 798 

SM products (SMOS and SMAP) into the integrated model - LPJ-PM for both dry and humid regions 799 

through separate and joint assimilation. The results show that the joint constraints provided by vegetation 800 

and soil variable strategies improve model simulations. Both the original and joint assimilation results for 801 

GPP and ET in semi-arid and arid regions performed better than those in humid and dry-sub humid regions, 802 
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and the LPJ-PM that emphasized the SM information is more suitable for the water-limited regions. For 803 

ET assimilation, the different SM products influence assimilation performance, and SMAP SM possesses 804 

a slight advantage in most vegetation types and in both dry and humid regions. Our global LPJ-VSJA 805 

GPP and ET products have relatively higher accuracy than other products, especially in water-limited 806 

regions with lower ET values. 807 
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