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Abstract. Long Short-Term Memory models (LSTMs) are recurrent neural networks from the field of Deep Learning (DL)
which have shown promise for time-series modelling, especially in conditions when data are abundant. Previous studies have
demonstrated the applicability of LSTM based models for rainfall-runoff modelling, however, LSTMs have not been tested on
catchments in Great Britain (GB). Moreover, opportunities exist to use spatial and seasonal patterns in model performances
to improve our understanding of hydrological processes, and to examine the advantages and disadvantages of LSTM-based
models for hydrological simulation. By training two LSTM architectures across a large sample of 669 catchments in GB, we
demonstrate that the LSTM and the Entity Aware LSTM (EA LSTM) simulate discharge with median NSE scores of 0.88 and
0.86 respectively. We find that the LSTM based models outperform a suite of benchmark conceptual models, suggesting an
opportunity to use additional data to refine conceptual models. In summary, the LSTM based models show the largest perfor-
mance improvements in the North East of Scotland and in South East England. The South East of England remained difficult
to model however, in part due to the inability of the LSTMs configured in this study to learn groundwater processes, human
abstractions and complex percolation properties from the hydro-meteorological variables typically employed for hydrological

modelling.

Copyright statement.

1 Introduction

Rainfall-runoff models have evolved over many decades, reflecting a diversity of applications and purposes. These models
range from physically based, spatially explicit models such as SHETRAN (Birkinshaw et al., 2010), CLASSIC (Crooks et al.,
2014) and PARFLOW (Maxwell et al., 2009) to lumped conceptual models, such as TOPMODEL (Beven and Kirkby, 1979)
and VIC (Liang, 1994). Additionally, data-driven models have also been used for modelling rainfall-runoff processes (Reich-
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stein et al., 2019; Elshorbagy et al., 2010; Wilby et al., 2003; Nourani et al., 2014; Le et al., 2019; Gauch et al., 2021b). The
diversity of modelling approaches reflects the diversity of user objectives, uncertainty in terms of how to best represent the
stores and fluxes of water and energy and the trade-offs in terms of data requirements, degree of realism and computational
costs (Beven, 2011).

Data-driven models range from simple regression models to large neural networks with thousands of parameters. These
methods draw on empirical relationships between inputs and outputs to form a representation of how the hydrological system
operates more generally (Beven, 2011). Other approaches from the class of data-driven models, such as statistical modelling
and machine learning include genetic programming (Chadalawada et al., 2020; Herath et al., 2020), random forests (Booker
and Woods, 2014) and support vector regression models (Elshorbagy et al., 2010). Alternative empirical approaches also exist,
including data-based mechanistic (DBM) modelling (Young, 1998, 2003). DBM approaches suggest that rather than imposing
model structures from the outset, hydrologists should in the first instance allow the data to suggest an appropriate model
structure. Then, the modeller should see if there is a mechanistic interpretation of the learned model structure (Young and
Beven, 1994). Our modelling approach uses Deep Learning (DL) techniques, which have produced accurate predictions on
a wide variety of tasks, including rainfall-runoff modelling (Huntingford et al., 2019), and represent a fruitful area of further
exploration for hydrologists and Earth scientists (Reichstein et al., 2019). For a more complete picture on the uses of DL
techniques in hydrology, an interested reader is referred to Shen (2018); Beven (2020); Nearing et al. (2020b); Kratzert et al.
(2018).

DL methods have been used in hydrology and meteorology for decades (Daniell, 1991; Halff et al., 1993; Dawson and Wilby,
1998; Wilby et al., 2003; Peel and McMahon, 2020). However, one architecture explicitly designed for time-series simulation,
the Long Short-Term Memory network (LSTM) (Hochreiter et al., 2001; Hochreiter, 1991), has recently demonstrated credible
performance for modelling hydrological signatures across the Continental United States (CONUS) (Kratzert et al., 2018, 2019;
Duan et al., 2020; Feng et al., 2020; Gauch et al., 2021b; Fang et al., 2018, 2020). More recent work has begun not only to
explore the accuracy of forecasts, but also to use LSTMs to: (i) provide estimates of uncertainty (Klotz et al., 2020); (ii) explore
the ability of the LSTM to integrate prior physical knowledge into DL model architectures (Hoedt et al., 2021; Jiang et al.,
2020); and (iii) use LSTMs to produce predictions at multiple timescales from a single model (Gauch et al., 2021a).

By contrast with the physically-based, spatially-explicit hydrological models, lumped conceptual models have relatively few
parameters and simulate the stores and fluxes of water on a catchment scale, for example, using a single store to represent
the catchment-wide upper-soil water storage (Beven, 2011). Lumped conceptual models have lower data and computational
requirements when compared to the spatially-explicit, physically-based, models, which is one reason they are often used for
operational purposes (Clark et al., 2008). There exist many lumped conceptual models, differing in their internal structures, the
equations that govern fluxes of water and energy, and the processes that are included (Knoben et al., 2019). As an evidence-
guided discipline, performance benchmarks provide hydrologists with an objective means for selecting between different mod-
els, instead of model selection by lineage or affiliation (Addor and Melsen, 2019). Furthermore, when applied over a large
sample of catchments, differences in model performance can be instructive with regards to the hydrological conditions that

are well simulated by one model compared with others (Gupta et al., 2014). Increasingly, "we need large-scale evaluations of
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model capability to identify which processes are important and which model structure(s) are most appropriate” (Lane et al.,
2019, p4012).

This paper seeks to address three research gaps. First, there exists no large-sample performance benchmark of LSTMs in a
GB context. This is important because scientists and practitioners are interested in using LSTMs as hydrological models for
hazard impact assessment, hazard early warning and rainfall-runoff modelling (Shen, 2018). Therefore, a rigorous assessment
of LSTM performances is necessary to determine whether such a model choice is appropriate in the GB context. Furthermore,
given that the data archives are rich in GB, there exists a very good opportunity to learn more about the capabilities and
limitations of LSTM-based methods (Clark and Khatami, 2021). Second, there exists only one other comparison of the EA
LSTM performance against the LSTM (Kratzert et al., 2019). Finally, there exist no studies that explore the relationship
of performance differences (between conceptual and deep learning models) with the hydrological conditions in which those
differences occur. The aim of studying the relationship between performance differences and hydrological conditions is to
determine how best to improve our conceptual models. What information might be present in the underlying data that can help
identify processes that are currently missing from our conceptual models?

The research questions that this study seeks to address are determined by the research gaps identified above.
1. How well do LSTM-based models (including the EA LSTM) simulate discharge in Great Britain?
2. How do LSTM-based model performances compare with the conceptual models used as a benchmark?

3. Can we extract information from the spatial and temporal patterns in diagnostic measures? e.g. What is the relationship

between LSTM performance and catchment attributes?

To address these questions, we have trained an ensemble of 8 LSTMs and 8 EA LSTMs on 669 catchments in Great Britain.
We compare the results of the LSTM models with four deterministic lumped-conceptual models from a previous benchmarking
study (Lane et al., 2019). This paper provides an evaluation of LSTM model ability across a large sample of GB catchments. We
explore the association between catchment characteristics and the differences in model performances and present a data-driven
benchmark that reflects the null-hypothesis of what information is present in a large sample dataset (Nearing et al., 2020b).
Future modelling efforts may seek to assess whether hydrological theories encoded in conceptual and process-based models
may contain more information than the benchmarks provided here (Nearing et al., 2020a).

We believe that the research addresses the following needs of the hydrological community: (i) practitioners wishing to know
whether the LSTM is a justifiable model choice in the GB context, (ii) scientists and practitioners interested in understanding
under what hydrological conditions (e.g. catchment attributes) the LSTM performance differs from conceptual models, and

(iii) as a reference for future GB-wide modelling studies.
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2 Methods
2.1 Data - CAMELS GB

All data employed in this analysis originate from the CAMELS-GB data (Coxon et al., 2020a). CAMELS-GB is a recently-
released, large-sample, long-term, daily data set that offers the potential for GB-wide modelling studies. CAMELS-GB collates
hydrologically relevant data for 671 GB catchments between the years of 1970 and 2015. The data set includes daily time series
for meteorology (dynamic data - Xy ,); and discharge (target data - y¢ ). Also included are catchment attributes (static data,
A n) such as topography, climate, hydrologic signatures, soil and land cover, hydrogeology, and human influence. These
features are, in reality, not static over time. However, for the purposes of this study we treat these features as time-invariant.
Further information on the variables we used as input to our model can be found in Table 1. The reader is directed to Coxon
et al. (2020b) for details of the source of the data, how the data were processed and a discussion of data limitations.

The data set contains novel inputs compared with previous CAMELS (US, Chile, Brazil) data sets (Addor et al., 2017;
Alvarez-Garreton et al., 2018; Chagas et al., 2020), such as human attributes, calculated potential evapotranspiration (pet)
and uncertainty estimates. We do not use all of these features here. The static attributes we use to train the LSTM models
are listed in Table 1. These static attributes were chosen to reproduce the experimental framework of Kratzert et al. (2019),
however, the differences reflect the fact that the CAMELS-US and CAMELS-GB have slightly different attributes. These
include both catchment properties and climate properties, describing the conditions relevant for rainfall-runoff modelling in

different catchments.
2.2 An Overview of the LSTM and EALSTM

In this paper, we test two neural network architectures used in other hydrological studies (Shen et al., 2018; Kratzert et al.,
2019). The first is the LSTM, which has been used in a variety of time-series modelling applications. The second model is the
EA LSTM, which conditions the discharge response to meteorological forcings on time-invariant properties of river catchments,
such as soil and topographic attributes, treating these time-invariant properties separately. For a summary of notation used
throughout the paper please refer to Table 2:

What follows is a brief introduction to the LSTM model architectures. For a more complete description of these models
please refer to Appendix A and Kratzert et al. (2018, 2019).

The LSTM has a strong inductive bias towards retaining information over long sequences (Hochreiter, 1991; Bengio et al.,
1994). This means that the LSTM architecture is designed to retain information that is important over both long and short term
time horizons. LSTMs do this by maintaining two state vectors, a cell memory vector that captures slowly evolving processes
(C¢) and a more quickly evolving state vector, colloquially named the "hidden" vector (hy). Information flow is controlled
by a series of *gates’ which are neural network layers that determine what information is removed from f; (forget gate), what
information is stored in it (input gate) and what information is passed to the oy (output gate) respectively.

The Entity Aware Long Short-Term Memory (EA LSTM) modifies the forget gate, so that the output of the forget gate

is a function of only the static catchment attributes (A,,) rather than both the catchment attributes and the dynamic data
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Table 1. Catchment attributes from the CAMELS-GB data set (Coxon et al., 2020b) used to train the LSTM based models, the static features

included in A.

Static Variables Static Variable Description Median Range

area catchment area (km?) 152 [2,9931]
elev_mean mean elevation (m a.s.l) 163 [25, 682]
dpsbar slope of the catchment mean drainage path (mkm ™) 79 [12, 488]
sand_perc percent sand (%) 43 [19, 82 ]
silt_perc percent silt (%) 30 [9, 43]
clay_perc percent clay (%) 24 [7,51]
porosity_hypres soil porosity calculated using the hypres pedotransfer function (-) 47 [34, 81]
conductivity_hypres  hydraulic conductivity calculated using the hypres pedotransfer function (cmh™!) 1 [0.5, 3]
soil_depth_pelletier  depth to bedrock (m) 1 [0.5, 42]
frac_snow fraction of precipitation falling as snow (for days colder than 0°C) 0.02 [0.00, 0.17]
dwood_perc percent of catchment that is deciduous woodland (%) 6 [0, 37]
ewood_perc percent of catchment that is evergreen woodland (%) 2 [0, 93]
crop_perc percent of catchment that is cropland (%) 13 [0.00, 91]
urban_perc percent of catchment that is urban area (%) [0.00, 81]
reservoir_cap catchment reservoir capacity (ML) 0 [0, 8 x 107
p_mean mean daily precipitation (mm day ') 2.57 [1.54,9.61]
pet_mean mean daily PET (mm day™1) 1.38 [1.03, 1.51]
p_seasonality seasonality and timing of precipitation (estimated using sine curves) -0.14 [-0.42, 0.14]
high_prec_freq frequency of high-precipitation days (> 5x mean daily precipitation) 15.69 [7.58, 20.73]
low_prec_freq frequency of dry days (< 1 mmday ") 214.23 [1.63,259.23]
high_prec_dur average duration of high-precipitation events (> 5x mean daily precipitation) 1.14 [1.05, 1.25]
low_prec_dur average duration of dry periods (number of consecutive days < 1 mmday ') 3.70 [2.64,4.67 ]

([X¢,n;An)). The EA LSTM was developed specifically for rainfall-runoff modelling (Kratzert et al., 2019). For the sake of

clarity, it is important to note that both models receive the same information. The LSTM still receives the static catchment

attributes. However, rather than affecting only the input gate, the static data can influence all gates, since they are appended to a

vector of dynamic inputs ([X¢ n, An]) and so the same information is given to the LSTM at each timestep. The static attributes

are used by the LSTM in the same way as the dynamic data. This offers extra flexibility for the LSTM compared with the EA

LSTM, since the LSTM is able to modify the input gate based on information from time-varying data, whereas the EA LSTM

is not. We are using the static nature of the data as a constraint on the EA LSTM to reflect the nature of the input data (separated

into static and dynamic inputs).



Table 2. Table describing the notation used throughout the paper.

Symbol  Description Notes

Yt,n Our target variable, specific discharge at time ¢, catchment n mmday !

Yt.n Simulated specific discharge at time ¢, catchment 7, predicted by the model My~ mmday ~*

n Gauge ID -

Pt,n Precipitation mmday !

pet; ,, Potential evapotranspiration mmday !

T¢n Temperature °C

A, Catchment attributes (static data)

Xin Hydro-meteorological data (dynamic data) [Pt.nspety ,,ben]
hs Hidden size hs =64

Wiayer  The matrix of learnable weights -

biayer The vector of learnable biases -

] Learned model parameters, representing all Waye; and biayer -

Mg The model (LSTM or EA LSTM) with parameters @ -

C: The cell state of the LSTM models. Rbs

C. The candidate cell state values CieR |-1<z<1}
ht The hidden state of the LSTM models. Rbs

fe The forget gate of the LSTM models {fteR|0<z <1}
ig The input gate of the LSTM models {iteR|0<z <1}
ot The output gate of the LSTM models {ot eR|0<z <1}
l The Loss Function used to train the model (Nash Sutcliffe Efficiency) -

125 2.3 Model Training

We used the "neuralhydrology" codebase, written in Python 3.6 (Van Rossum et al., 2007), to train and evaluate the models,
found here: github.com/neuralhydrology/neuralhydrology/. The configuration files used to run the models can be found using
the links at the end of this article. The predictions and error metrics for the fitted models can be found online at Zenodo
(zenodo.org/record/4555820, last accessed: 19 July 2021).

130 The goal of rainfall-runoff modelling is to predict time-varying specific discharge, yn = (Y1,n,--,¥T.n) € R (mm day™)
for time t = {1,...,7'} at measuring gauge n of NN, given hydro-meteorological forcing data, X,, = (X1 n,..., X n), and
catchment attributes (A, - Table 1) within the catchment area upstream of the gauge. In the present case for GB, N = 669.
Although the underlying CAMELS-GB data has 671 station gauges, we trained on data from only 669 stations because two
basins have missing data in the static attributes; stations 18011 and 26006 have missing mean elevation (elev_mean) and mean

135 drainage path slope (dpsbar).
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Our task is to train a regional hydrological model, i.e. one model for all catchments in the dataset. This means that we
learn a single set of parameters, 6, of a model, My, that minimizes the loss function, £(§¢ n,yn), for all flow gauges, and thus

accurately simulates discharge (J ) for all of the basins in our subset of CAMELS-GB:

Ven = Mo ([An, X¢—kt1ns--->X¢,n];0) (1

We train our model using the Nash Sutcliffe Efficiency (NSE) loss as our objective function (), as described in Kratzert et al.
(2019). Other objective functions could be used, however, we use the same objective function as the conceptual models we
compare against, in order to control the possible sources of performance differences. The NSE describes the squared error loss
normalized by the total variance of the observations. In order to account for the fact that some basins will have lower variance
than others, we follow Kratzert et al. (2019) to normalize by basin-specific variance. This prevents the loss from being overly
weighted towards high-variance catchments.

For this study we trained the models on the days from 1 January 1988 to 31 December 1997 and tested on a hold-out sample
using the days from 1 January 1998 to 31 December 2008 (4018 days of test data). We withheld the years 1975 to 1980 from the
training process to check the performance of the model during training (our validation set). This means that we have separate
time periods for calibration (1988—1997; train period), and evaluation (1998-2008; hold-out test period). These train and test
periods were chosen to facilitate the comparison with the study whose published results for four lumped hydrological models
we use as a benchmark (Lane et al., 2019). For further analysis of the train and test periods please see Appendix B.

Our input data were taken from CAMELS-GB, described above (Coxon et al., 2020b). We used precipitation, potential
evapotranspiration and temperature as dynamic inputs (Xt n = [pt,7,,,pett7n,Tt7n]). We selected 21 individual features de-
scribing each catchment’s topographic, soil, land-cover, and climatic properties as static inputs (A, ). These attributes were
chosen to reflect hydrological information that the model can use to distinguish between catchment rainfall-runoff behaviours
(Kratzert et al., 2019). These catchment attributes are described in Table 1. For both LSTM models we pass the final hid-
den output through a fully connected (linear) layer. This final layer maps our hidden state vector to a scalar prediction
(¥t,n € R) for discharge at that gauge on that day. We give the models one year of daily dynamic data (365 input timesteps,
X =[Xt—365n,---,X¢,n]) to predict the final timestep of specific discharge (§¢ n)-

All national results shown below are calculated for the 518 gauges that are found in both the CAMELS GB data and the
benchmark data. We then evaluate model performance on all of these basins for our test (evaluation) period (1998-2008).
For each model (LSTM, EA LSTM) we also calculate the average of an ensemble of eight individually-trained models with
different random seeds. This strategy accounts for the random initialisation of the network and the stochastic nature of the
optimisation algorithm. We used a hidden size (hs) of 64 and a final fully connected layer with a dropout rate of 0.4, which
aims to avoid overfitting. Dropout works by randomly forcing certain weights in the network to zero ("dropping them out"),
forcing the remaining weights to model the discharge without that extra information. This has been found to prevent weights
"fixing’ the erroneous outputs of other weights, preventing co-adaptation of weights and, ultimately, encouraging the model to

use a simpler and more robust representation of rainfall-runoff processes (Srivastava et al., 2014). The hidden size determines
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the total number of parameters in the model. For the LSTM there are 23,361 trainable parameters, whereas the EA LSTM
has 14,593 trainable parameters. These are trained on data from 669 catchments over 4018 timesteps (2,688,042 samples).
Note that this is for a regional model and is independent of the number of catchments. Given that we train the LSTM on 669
catchments, we can interpret the LSTM as equivalent to using 35 parameters per catchment, with a median catchment area of
152 km?. The EA LSTM has on the order of 22 parameters per catchment. We chose the hyper-parameters (dropout rate, hidden
size - hs) based on analysis of the NSE performances, finding that the improvement of further model complexity (increased
hidden size) was negligible after a hidden size of 64. The hidden size was also consistent with the choices made in previous
studies (Kratzert et al., 2019). We used the Adam optimisation algorithm (Kingma and Ba, 2014) and stopped training after
30 epochs, after which there was no further improvement to the model. An epoch reflects a single pass of the training dataset
through the model, such that every sample in the training dataset has been used to update the model weights. This reflects the
fact that during the training of DL models, the data are often split into batches to allow large datasets to be read into memory.
The LSTM ensemble took 10 hours to train. The EA LSTM ensemble took 96 hours to train. All models were trained on a
machine with 188GB of RAM and a single NVIDIA V100 GPU.

2.4 Model Performance Comparisons

The LSTMs learn to represent hydrological processes directly from data. When the LSTMs perform well on hold-out test
samples, a necessary (but not sufficient) conclusion is that the data contains useful information about the hydrological processes
that translate inputs (precipitation) into outputs (discharge). The differences in model performance between the LSTMs and
the benchmark hydrological models can be used to determine hydrological processes that are described by the input data, but

not captured or under-represented by the benchmark hydrological models.
2.4.1 Benchmark Models

In order to provide a reference for model performance statistics, we compare the performance of the LSTM based models
against four lumped conceptual models from the FUSE framework (Clark et al., 2008). To be unbiased on the model calibration,
we used simulated discharge time series from Lane et al. (2019) who calibrated and evaluated these four conceptual models
on 1000 catchments across Great Britain. The four conceptual models used are: TOPMODEL (Beven and Kirkby, 1979),
Variable Infiltration Capacity (VIC) (Liang, 1994), Precipitation-Runoff Modelling System (PRMS) (Leavesley et al., 1983)
and SACRAMENTO (Burnash et al., 1973). These conceptual models are often used in operational settings, due to the relative
ease of use and lower data requirements when compared with physically-based models. These conceptual models all explicitly
maintain mass balance, and so assume no losses or gains of water other than flow from the catchment outlet or evaporation.
These conceptual models are all lumped models run at a daily time step. Each model is explicitly forced to close the water
balance, limited by an upper limit of potential evapotranspiration for water losses. Every one of the conceptual models has a
gamma distribution routing function. Furthermore, the four conceptual models do not include a snow routine nor a vegetation

module (Clark et al., 2008). Sacramento has 5 stores and 12 parameters per catchment; VIC and TOPMODEL have 2 stores,
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both have 10 parameters; PRMS has 3 stores and 11 parameters. A more complete description of these benchmark models and
the processes that they include can be found in Table 3 of Lane et al. (2019) and in Section 4 of (Clark et al., 2008).

The benchmark study provides an assessment of conceptual model simulation performances across a large sample of GB
catchments, and also quantifies uncertainty in hydrological simulations due to parameter uncertainty and model structural
uncertainty (Lane et al., 2019). Parameter values for each conceptual model were selected from 10,000 simulations of multi-
dimensional parameter space. The best-estimate model parameter values were selected from these 10,000 samples using the
Nash-Sutcliffe Efficiency score. These best-fit parameters are used as a benchmark against which to compare the LSTM perfor-
mance. To place the intercomparison in context, we critically reflect on the consistencies and differences between the different
model configurations here.

First, the selection of model parameters differs between the LSTM and the conceptual models. The experimental design
of the benchmarking study produced 10,000 samples of parameter values and Lane et al. (2019) provide the simulations
given the best fitting parameters for future studies to employ as a benchmark. The LSTM parameters are optimised using
stochastic gradient descent, choosing the best fitting set of parameters using the NSE score. While the method of choosing
parameters differs, the objective function that determines the "best-fit" parameter values are the same for both the LSTMs
and the conceptual models. Second, the calibration and evaluation data are the same. The calibration and evaluation of these
models was performed using the same data from CAMELS-GB, i.e. the National River Flow Archive data (Centre for Ecology
and Hydrology, 2016) for specific discharge (y;), the Centre for Ecology and Hydrology Gridded Estimates of Areal Rainfall,
CEH-GEAR, for precipitation (Tanguy, 2014) and the Climate Hydrology and Ecology research Support System Potential
Evapotranspiration (CHESS-PE) data set for PET (Robinson et al., 2017). The benchmark experiment selected the best-fitting
parameter values using data from the period 19882008, and then evaluated their performance on data from 1993-2008 (Lane
etal., 2019). Instead, we calibrate the LSTMs on data from 1988—1998 and then evaluate the LSTM performances for our hold-
out evaluation period of 1998-2008. We recalculate the performance statistics of the benchmark conceptual models for this
evaluation period, 1998-2008, using the published simulated time-series. Therefore, the LSTM is evaluated on out-of-sample
(in time) data, whereas, the conceptual model parameters were calibrated on data included in the evaluation period (in-sample
evaluation). Finally, it is worth noting that Lane et al. (2019) focused not only on model performances but also on parameter
uncertainty. Uncertainty is an essential component of any modelling study, and our approach of training an ensemble of 8
models is one proposed method for dealing with uncertainty in LSTMs. For an analysis of model uncertainty with this method
see Appendix D. For a more complete treatment and discussion of the different approaches for dealing with uncertainty using
LSTMs see Klotz et al. (2020).

As with any benchmarking study, there are important caveats to the intercomparison of model results. Ultimately, the pur-
pose of the comparison is: (i) to provide a reference for the diagnostic measures of LSTM performance, (ii) to identify the
hydrological conditions where simulations differ, and (iii) use these insights to diagnose missing representations in the concep-
tual models. We agree with Lane et al. (2019) that "benchmark [studies] provides a useful baseline for assessing more complex
modelling strategies" (p.4029), and we follow them in publishing the simulations and results of the LSTM models for future

studies to use for comparison.
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2.4.2 Evaluation Metrics

Each model produces a daily simulated discharge value at each station. Three example hydrographs are shown in Appendix
C. The evaluation metrics described below evaluate the overall performance of each model to reproduce a specific aspect of
the observed hydrograph. For the LSTM-based models the evaluation metrics are calculated given the average discharge of
the ensemble. Since no single evaluation metric can fully capture the performance of streamflow simulations across all flow-
regimes (Gupta et al., 1998), we use a number of metrics to address the performance of models across the flow regime, outlined
below.

We evaluate the goodness-of-fit of the LSTM based models and the conceptual models using six evaluation metrics. The
Nash-Sutcliffe Efficiency (NSE) (Nash and Sutcliffe, 1970) score has been used in numerous studies and there is extensive
literature discussing its strengths and weaknesses (Gupta et al., 2009). The NSE can be decomposed into three components,
a correlation term, a bias term (BiasError) and a variability (SDError) term (Gupta et al., 2009). The bias term measures the
error in predicting the mean flow. The variability term measures the error in predicting the standard deviation of discharge. We
report results for the NSE and each of its three components.

To understand how well the LSTMs represent low, mean and high flows, we also consider the biases for different components
of the flow duration curve. The low flow bias (%BiasFLV) is the diagnostic signature measure for long term base flow (Yilmaz
et al., 2008), and low flows are defined as those which are exceeded 70% of the time. For the middle of the flow duration curve
we use the bias of the mid section of the flow duration curve, between the 20th and 70th percentiles (%BiasFMS). Finally, we

also look at the bias of the high flows, considering the top 2% of flows (%BiasFHV).

3 Results
3.1 National Scale Model Performance

The LSTM and EA LSTM models produce accurate simulations across Great Britain when evaluated using a variety of metrics,
with differing levels of performance improvement over the benchmark conceptual models (See Table 3).

Comparing the median NSE for all catchments, the LSTM ensemble (0.88) outperforms all other models, including the
EA-LSTM ensemble (0.86). The slightly lower median NSE for the EA-LSTM models is consistent with results from previous
studies (Kratzert et al., 2019). The CDFs (cumulative distribution functions) of the NSE (Fig. 1a) show the entire distribution
of LSTM scores is shifted towards better performances. The LSTM NSE scores are significantly different from all comparison
models at a = 0.001 (Paired Wilcoxon signed-rank-test). We see the same pattern for the EA-LSTM models. The performance
improvement at the tails is particularly pronounced. Neither the LSTM nor the EA-LSTM model have any station gauges with
an NSE of less than zero.

As discussed in the methods, we can decompose the NSE into three components, bias (BiasError), correlation and error in
predicting the variability of flows (SDError). The pattern of correlation scores closely follows the pattern of NSE, with the

entire distribution of catchment correlation scores shifted towards improved performance. The CDFs in Fig. 1c show that the

10



270

275

280

285

Table 3. Summary of all goodness-of-fit metrics used to benchmark performance against the conceptual models for the validation period
1998-2008 on the 518 stations found in both CAMELS-GB data (Coxon et al., 2020a) and the FUSE conceptual models (Lane et al.,
2019). We have shown the median catchment score for the metric given the mean simulated discharge of our ensemble. Values that are not

significantly different from the best model are highlighted in bold (« = 0.001).

NSE BiasError SDError Correlation %BiasFMS  %BiasFLV ~ %BiasFHV

TOPMODEL 0.76 -0.04 -0.10 0.88 5.70 42.22 -13.04
ARNOVIC 0.78 0.06 -0.10 0.90 2.25 -60.34 -14.66
PRMS 0.77 0.03 -0.03 0.89 35.24 -315.25 -15.11
SACRAMENTO  0.80 -0.01 -0.07 0.90 2791 -195.92 -16.19
EALSTM 0.86 -0.02 -0.10 0.94 -6.29 23.61 -10.81
LSTM 0.88 -0.02 -0.09 0.94 -3.67 26.34 -9.09

LSTM catchment bias scores are closer to zero than the benchmark models, which reflects the fact that the conceptual models
are explicitly mass-conserving, whereas the LSTM models are not. The median variability error is negative (Fig. 1d), showing
that the LSTMs tend towards underpredicting the variability of flows.

The LSTM shows a large performance improvement for low-flow bias score (%BiasFLV - Fig. 1e). The LSTM has lower
median bias in the slope of the midsection of the flow duration curve (%BiasFMS) than all models except ARNOVIC. When we
consider the CDFs, both LSTMs have shorter tails than the conceptual models, showing that a greater proportion of catchments
have biases closer to zero. The high-flow biases (%BiasFHV) are relatively similar for all models, as shown by Fig. 1g).

The biases at different flow exceedances suggest that the conceptual models produce good simulations for the high flows,
but are less able to simulate low flows. The LSTM shows a smaller performance decline at the low flows than the benchmark
models and a competitive performance at high flows, suggesting that the LSTMs are robust to extreme conditions. We also note
that the negative bias, for the midsection and the upper-section of the flow duration curve, demonstrates that the LSTM model

is conservative in its flow predictions, particularly in comparison to the other models.
3.2 Spatial Patterns of Performance

The LSTM demonstrates competitive simulation of discharge across Great Britain (see the spatial patterns of various perfor-
mance metrics in Appendix Fig. E1). The EA LSTM has very similar spatial patterns to the LSTM, but shows a consistently
worse performance than the LSTM across GB.

The benchmark conceptual models struggled when simulating discharge in catchments on the permeable bedrock in the
South East of England and the mountainous catchments in the North East of Scotland (Lane et al., 2019). Performance metrics
in the South East were lower due to poor simulation of variance and correlation, and in North-Eastern Scotland due to poor

simulation of the mean flow conditions (Lane et al., 2019). We suggest that these differences in performance are due to the
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Figure 1. Cumulative Distribution Functions (CDFs) of station goodness-of-fit metrics scores for each model. EALSTM (orange) and the
LSTM (blue), and the conceptual models: TOPMODEL (green), VIC (red), PRMS (purple), Sacramento (brown) (Lane et al., 2019). Panels
indicate distribution of station: a) NSE scores b) correlation scores c) bias error scores d) variability error scores e) low-flow bias scores f)

mid-range of flow bias scores g) high-flow bias scores

low rainfall and chalk aquifer in the South East of England, and to the lack of snow modules incorporated into the conceptual

models for North East Scotland.
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Interestingly, the LSTM simulates discharge less well in the South East of England relative to LSTM performance elsewhere
in GB, particularly in the summer months (Fig. 2). Performances for all seasons are worse in the South East of England. This
pattern is stronger in the summer months (JJA). The East-West gradient in model performances can be seen for all models,
particularly in JJA. However, the range of errors is smaller for the LSTM based models when compared with the conceptual
models.

The LSTM shows an underestimate of the variability and a cluster of high bias scores in the South East (Appendix Fig. E1).
The LSTM both overestimated and underestimated mean flows in catchments in the South East region, explaining the relative
under-performance in the composite metric (NSE) for the LSTM relative to the rest of GB.

Spatial patterns in the biases for different sections of the flow duration curve show that only the LSTMs demonstrate a
consistent underprediction of the midsection slope of the flow duration curve (%BiasFMS). A steep slope in the midsection of
the flow duration curve reflects a watershed having a “flashy” response (Yilmaz et al., 2008), potentially due to low soil moisture
capacity. Therefore, an underprediction of the midsection reflects an underestimation of the “flashiness” of the catchment.
The LSTM %BiasFMS is largest for the South East of England. The LSTM shows improved performance compared to the

benchmark models across GB, including these under performing regions, the South East of England, and North East Scotland.
3.3 In what hydrological conditions do model performances differ?

Large sample studies allow us to detect catchment attributes that our models are (not) able to represent. In order to determine
what the LSTM is capable of representing well we perform two analyses. Firstly, directly calculating the difference in NSE
scores. Secondly, we correlate catchment attributes with model diagnostic scores.

The A,,eqnNSE is the mean difference between a reference model (LSTM) and the comparison model. The A, cgian NSE
is the median difference. The mean differences between the LSTM station NSE and the other models is smallest for the EA-
LSTM (A0 NSE = 0.02). This is unsurprising given the very similar architectures of the two models. The differences for
the conceptual models range from TOPMODEL (A,,,¢.nNSE = 0.15); ARNOVIC (A,,cenNSE = 0.17); SACRAMENTO
(ApeanNSE = 0.20), and PRMS (A,,anNSE = 0.43). While the mean performances show large differences, due to the
presence of poorly performing stations, the median differences are smaller SACRAMENTO (A,,¢4:anNSE = 0.07); ARNOVIC
(AmedianNSE = 0.09); PRMS (A,cdianNSE = 0.10) and TOPMODEL (A ,,cdianNSE = 0.10). Both summaries (median,
mean) demonstrate that the LSTM offers a single model architecture that offers more accurate simulations than traditional
hydrological models in a variety of hydrological conditions.

Spatially, the benchmark conceptual models struggled to produce good simulations in two geographical regions. These were
in the South East of England and North East of Scotland. The performance improvement (ANSE) of the LSTM over the
conceptual model was indeed largest in the South East of England and North East Scotland (see Fig. 3).

North East Scotland is one of the most mountainous regions of GB. The Cairngorm National Park and the North Pennines
are the only areas of GB where snow processes are consistently important, owing to catchments having a higher elevation.
There are 36 catchments in the CAMELS GB dataset with fraction of snow cover greater than 5%, and three are in the

North Pennines, the other 33 are in the Cairngorm National Park. The results in Fig. 3 show that the LSTM exhibits a large
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Figure 3. The performance improvement of the LSTM relative to the four conceptual models, SACRAMENTO, ARNOVIC, TOPMODEL
and PRMS. The difference in NSE is calculated by subtracting the conceptual model NSE from the LSTM NSE (ANSE = NSELsTm —
NSEconceptual)- Each point represents a station and the colour reflects the performance improvement (measured by NSE) of the LSTM

compared with the conceptual models. Positive values reflect stations where the LSTM outperforms the conceptual models.

performance improvement in these catchments, since ANSE is high. This is most likely due to the cell state being able to
represent longer-term stores and fluxes of water, therefore capturing the melting snow processes. The conceptual models lack
a snow module, and are therefore unable to capture snow melt or frozen ground processes, which are especially important in
winter (DJF) and spring (MAM) (Lane et al., 2019). By contrast, what the LSTM performance shows is that data-driven models
are able to flexibly incorporate snow processes in the catchments where they are required (NE Scotland) even when trained to
produce one set of weights. This flexibility is an important asset of data-driven approaches, since these hydrological processes
do not need to be specified prior to model training, but can be learned from the available data.

The South East is a relatively dry area, with large chalk aquifers contributing to a high baseflow index and large urban and
agricultural areas, contributing to a large anthropogenic signal in the hydrographs. Although the improvement in simulation
accuracy compared to the conceptual models is large in the South East, the pattern of raw LSTM NSE shows that the LSTM
still underperforms in the South East relative to elsewhere in GB. The seasonal patterns showed that the LSTMs performed
worse in summer months, which is the drier period of the year. Consistent with this spatial pattern, the ratio of mean potential
evapotranspiration to mean precipitation attribute (labelled "aridity" in the CAMELS GB dataset (Coxon et al., 2020b)) is
negatively correlated with model performance for all models (Fig. 4), although the magnitude of this association is smaller for
the LSTM based models than the conceptual models.

We observe consistently poorer performance across all models, including the LSTMs, in drier hydrological conditions. This

can be seen by the negative correlations between catchment P/PET (aridity) and model NSE scores (Figure 4).
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Figure 4. Static features (rows) and their Spearman’s Rank Correlation Coefficient with model (columns) NSE scores. The positive correla-
tions are in blue, the negative correlations are in red. Pale bars show very low correlations. (*) indicates that the correlation is significant at
the a=0.001 level. The first 6 features can be classified as landcover features. The next 4 features are climatic indices. The next 6 features
are hydrologic attributes and the final 4 are topographic features. DPSBar refers to the mean drainage path slope, and reflects the average

steepness of a catchment.

The LSTM-based models show no significant correlation between baseflow index and model performances, in contrast with
the other models. ARNOVIC also shows no significant correlation. ARNOVICs improved performance can be attributed to
the non-linear relationship in the upper-storage, which means that the model will only produce very fast responses when that

storage is very close to full (Lane et al., 2019).
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3.3.1 The impact of water balance closure on simulation accuracy

One of the key hydrological conditions that hydrological models struggle with is the lack of closure of the catchment water
balance. The conceptual models we test here explicitly maintain mass balance. They define the topographic surface water
catchment as the surface over which water is conserved, i.e. the surface water catchment is not expected to leak, nor should
any water enter the catchment other than through measured precipitation. This will not then capture water losses or gains from
undercatch, drifting snow, advection of fog, groundwater, or anthropogenic transfers into or out of the topographic catchment.
Consequently, we would not expect the conceptual models to take account of catchments where the water balance (defined
in the data) does not close. The LSTM, in contrast, is free to adjust to account for patterns in these anomalies. It is not yet
possible to diagnose the origin of any such anomalies using the LSTM alone: they may arise from inter-catchment transfers
(either through anthropogenic or groundwater processes), or data errors, among other reasons that the water balance might
not be closed based on observations at the catchment scale. In spite of this, we expect that the LSTM will show improved
performance in these catchments where there is no closure of the catchment water balance in the underlying dataset. Since we
are calculating performance on out-of-sample timesteps, if the LSTM performance is improved, we can infer that the LSTM
based model has learned to correct these inconsistencies in a way which is consistent between training and evaluation data, and
is therefore adjusting the catchment water balance to better simulate the hydrograph.

We plot catchments on two dimensions (Fig. 5), their wetness index (P/PE) and the runoff coefficient (Q/P), to identify
catchments where water is not conserved. Points above the horizontal line reflect catchments where the observed discharge is
greater than the precipitation input to the catchment. This area of the graph represents catchments where the data has too little
water to generate the observed runoff. Points below the curved line are where runoff deficits exceed total PET in a catchment.
This area of the graph represents catchments where PET is not large enough to describe the water remaining after runoff is
accounted for, i.e. the data has “excess” water (Fig. 5).

We tested whether the LSTM was better able to simulate discharge in catchments with “excess” water (i.e. the points below
the curved lines in Fig. 5, which are then represented by the orange kernel density estimate in Fig. 6). As hypothesised, we
find that the LSTM is more robust to these conditions and produces NSE scores that are comparable to the stations where the
conceptual models perform best.

Interestingly, despite the performance improvement over the benchmark conceptual models the LSTMs continue to produce
a performance decline in catchments with an imbalanced water balance (Fig. 6). This suggests that the LSTM models still
struggle with water-limited and energy limited (low runoff coefficient and low wetness index) catchments. This could be
because human management decisions that lead to abstractions are unpredictable without further dynamic inputs, such as
timings of abstractions and effluent returns. Or else, that the underlying data does not contain sufficient geological information
to describe the complex percolation and surface or subsurface connectivity pathways that cause a surface water catchment to
leak.
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Figure 5. Scatter plot for the relationship between the wetness index, runoff coefficient and the model NSE score. Each point is a catchment,
coloured by the NSE score ranging from 0.8 (lighter) to 1.0 (darker). Points above the horizontal line reflect catchments where the observed
discharge is greater than the precipitation input to the catchment. Points below the curved line are where runoff deficits exceed total PET in

a catchment, therefore, there is “excess water” in the data, since PET cannot explain the leftover water after accounting for runoff.

Ultimately, the performance decline is less pronounced for the LSTM. The LSTM continues to produce simulations with

NSE scores greater than 0.6. This suggests there remains information in the data that the LSTM is capable of using to maintain

This study benchmarks the performance of the LSTM using four commonly-used conceptual models as a reference. The

LSTM produced accurate simulations for a large number of catchments across Great Britain. The performance of the LSTM
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demonstrates that there is adequate information in the observational data to accurately simulate discharge behaviours across
the various hydrological conditions found in Great Britain. The simulated time series and catchment error metrics can be found
at: zenodo.org/record/4555820.

In the discussion that follows we return to our three research questions: (i) How well do LSTM-based models simulate
discharge in Great Britain? (ii) How do LSTM-based model performances compare with the conceptual models used as a

benchmark? (iii) Can we extract information from the spatial and temporal patterns in diagnostic measures?
4.1 Inter-Model Performances

The LSTM based models produce accurate simulations of discharge across GB, a temperate region. Two findings from this re-
search confirm and extend the conclusions of previous work. First, the LSTM consistently outperforms the EA-LSTM (Kratzert
et al., 2019). Secondly, both LSTM-based models demonstrate improved simulation accuracy for discharge modelling com-

pared with the conceptual models we use as benchmarks.
4.1.1 How well do LSTM-based models simulate discharge in Great Britain?

The EA LSTM is constrained to treat information that does not vary over time (catchment attributes) separately from infor-
mation that varies over time (hydro-meteorological forcings). However, the constraint penalizes performance, which was also

found by Kratzert et al. (2019). The EA LSTM, in contrast, is forced to keep the input gate static through time. The input gate
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receives only information about catchment attributes. This means that no time-varying information is passed through the EA
LSTM input gate. In contrast, the LSTM gates receive information from both time-varying meteorological inputs and static
catchment attributes. The under performance of the EA LSTM relative to the LSTM suggests that this regularisation hurts
performance in out-of-sample conditions.

It is worth noting that the LSTM and EA-LSTM also differ in terms of practical computational requirements. The LSTM
trains much faster than the EA-LSTM. The LSTM will train 30 epochs in 1 hour, compared with 30 epochs in 10 hours for the
EA-LSTM. This is due to the LSTM being an in-built Pytorch (v.1.7.1) function that makes use of CUDA optimised code (for
running the models on a GPU). In contrast, the EA-LSTM relies on custom code without the CUDA enabled optimisations.

4.1.2 How does the LSTM performance compare with the conceptual models used as benchmark?

We have demonstrated that the LSTM is an effective model architecture for extracting information from hydro-meteorological
data, providing a data-driven benchmark showing what is achievable given the information contained in available observation
data from CAMELS-GB (Nearing et al., 2020a). The LSTMs demonstrate better performance on out-of-sample times than
in-sample performance from the benchmark conceptual models.

There are obvious challenges with direct comparison of LSTM performance against the benchmark developed by Lane
et al. (2019). The first is that the LSTM is not constrained to maintain water mass balance, whereas the conceptual models
discussed here are. Another challenge is that the method of optimisation used for choosing parameters in the LSTM (stochastic
gradient descent) is different to the random-sampling and NSE selection criteria used to select the "best" model parameters
for the conceptual models. The sampling process used by Lane et al. (2019) is explicitly for estimating uncertainty as well as
providing a reference of conceptual model performances. Another difference is that the LSTM diagnostic scores are calculated
on out-of-sample predictions, compared with the in-sample predictions for the benchmark conceptual models.

Finally, the LSTM-based models are trained on all basins, with a single set of weights for the whole of GB. Therefore, these
LSTM models are regional models that are able to reproduce behaviours across Great Britain. In contrast, most hydrological
models perform best when calibrated on individual basins (Beven, 2006a). By contrast, LSTM-based models are most accurate
when trained with as much data from as many catchments as possible (Gauch et al., 2021b). It is important to interpret the
number of parameters for each model type in light of this fact.

The catchments where the comparative performance difference is small, i.e. where the conceptual models perform almost
as well as the LSTM, reflect areas where the conceptual models capture the majority of the information from the data, and the
conceptual model well represents the hydrological process. This is the case in West Scotland, North West England & North
Wales and North East England (see Appendix Fig. E2). The benchmark results are valuable in providing a reference point for
us to assess the value of LSTM-based approaches. We welcome future studies using the LSTM simulations provided here and

further explore performance differences and the limitations of DL methods across GB.
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4.1.3 Can we extract information from the spatial and temporal patterns in diagnostic measures?

The LSTM shows the largest performance improvement over the conceptual models in the North West of Scotland and the
South East of England. The performance differences in North West Scotland are very likely a result of the ability of the
LSTM to learn a representation of snow processes from the input data, whereas, the conceptual models were simulating these
catchments without a snow module.

Despite the performance improvement over conceptual models in the South East of England, the LSTM still struggles in
the South East relative to elsewhere in GB. The South East is a relatively dry region compared to elsewhere in GB. It contains
the highest proportion of catchments that fall below the dashed line in Fig. 5, and therefore stations where the surface water
catchment is "leaky". Furthermore, there are underlying chalk aquifers which provide water storage and lateral transfers. We
outline three hypotheses for why the LSTM performance may be lower in the South East compared with elsewhere in GB.

The first hypothesis is linked to the training of the LSTM based models. The LSTM shows a performance decline in drier
conditions (Fig. 4, see "aridity"). This confirms the findings of other DL studies in the US, where the LSTM also struggled
to reproduce hydrographs in drier conditions (Kratzert et al., 2019, 2018). Basins that have long periods of low flow contain
little information, since changing meteorological inputs co-occurs with very little change in the target discharge. Therefore,
the physical process relating meteorological inputs to river discharge can only be inferred from those catchments with varying
discharge. There is some evidence for this hypothesis. NSE scores show positive correlations with increased discharge (at mean
flow, Q5 and Q95), as well as increased NSE as rainfall increases (p_mean) (Fig. 4).

A related, but separate, hypothesis is that the use of NSE as an objective function fails to adequately weight performance in
these low flow regimes (the NSE was the objective function across both the conceptual models and the DL models).

A final hypothesis is that groundwater dynamics and human abstractions, which influence catchments in the South East,
are not well captured by the variables in CAMELS-GB. Hydrological processes are not simulated as effectively in "leaky"
catchments compared to those catchments where the water balance can be closed with hydrometric data (Section 3.3.1), even
using a very flexible and effective data-driven model that is not constrained to balance water (the LSTM). This suggests that
the underlying data does not contain sufficient information to model the full range of processes that influence the hydrograph in
these catchments, including groundwater and abstractions. The catchment averaged information on soil texture (sand-silt-clay)
provides a coarse proxy for catchment porosity. Furthermore, further data, such as groundwater time-series, might be necessary
to obtain more accurate discharge predictions. We suggest that different input data sets should be tested to try and improve
LSTM performances enabling the LSTM to more properly account for the complex percolation and infiltration dynamics in
these catchments.

In terms of the seasonal patterns in LSTM performances and the worse performances in summer, the above hypotheses
also apply, since the summer is the driest season in GB. Despite this, the LSTM-based models have been able to use the
information in the available data to better model summer (JJA) discharge than the benchmark models. As in the data-based
mechanistic modelling framework (Young, 2003) the next stage for hydrologists is to search for a mechanistic interpretation

of the learned model structure, also see Nearing et al. (2020a). One possible mechanistic interpretation that warrants further
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exploration is the idea that the LSTM is capable of learning seasonally varying catchment “connectivity” (Bracken and Croke,
2007). In winter, when soils are saturated, there are a greater number of pathways for water to enter river channels, and
connectivity is high. In summer, however, there is greater resistance to water flow, since water can be absorbed and stored in
drier soils, as found in Swiss catchments by van Meerveld et al. (2019), and connectivity is lower. Connectivity information
could be represented by the hidden state (hy), or cell state vectors (Cy). The proposed impact of catchment connectivity on
the performance improvement of the LSTM based models is ultimately speculative, and future work will explore whether the
LSTM has learned to represent the concept of connectivity and seasonally variable flow pathways.

In contrast with the benchmark conceptual models, the LSTM-based model NSE scores have no negative correlation with
crop cover percentage (Fig. 4). It is possible that the LSTM has effectively used the cropland cover variable to improve its
internal representation of hydrology in those catchments with a strong agricultural signal. In order to test this hypothesis, one
could perform an ablation study, removing input features and determining the impact on model performances. Alternatively,
sensitivity analysis could be used to determine the relative contribution of the input features to the discharge prediction, thus
revealing what input features are important for the model simulations. We intend to pursue this idea in upcoming papers.

Ultimately, compared with the benchmark models, the LSTM shows robustness to catchment conditions associated with poor
conceptual model performance. Dry catchments, catchments with a strong agricultural signal, and summer discharges are all
strongly correlated with worse conceptual model performances. In contrast, the LSTM has good performance on out-of-sample
times in these same conditions. There is therefore information that the LSTM has learned to generalise from the CAMELS-GB
dataset that the conceptual models are not utilising. The experiments we present here demonstrate conditions in which we can
(and cannot) improve our traditional hydrological models given the availability of high quality, large sample datasets (Nearing

et al., 2020c; Beven, 2006b).

5 Conclusions

In this study we have benchmarked the performance of two LSTM based models trained on 669 catchments across Great
Britain. We have demonstrated that LSTM-based models trained on a large sample of catchment-averaged hydro-meteorological
time-series produce accurate simulations across GB. There is clearly information available in CAMELS-GB for modelling di-
verse hydrological conditions, and the LSTM performances should be interpreted as a competitive reference for what simulation
performance is possible on out-of-sample (in time) conditions. We trained an ensemble of LSTM-based models to account for
random initialisation during the training process of these deep learning models, which also provides an estimate of predic-
tion uncertainty (Appendix D). The ensemble mean simulation produces a median NSE score of 0.88 (LSTM) and 0.86 (EA
LSTM), with no catchments scoring NSE below 0. These results are consistent with the findings from Kratzert et al. (2018) in
a different geographical context.

We have explored the spatial and temporal patterns in LSTM and EA LSTM performances, using the large-sample of
catchments to better understand the conditions in which the LSTM-based models perform well, compared to themselves (LSTM

in catchment A vs. LSTM in catchment B) and compared with traditional conceptual models. The results show that LSTM-
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based model performances are more robust to hydro-climatic conditions in the South East of England, in more arid catchments
and in catchments where the water balance does not close. This suggests that there is more information in large-sample datasets
such as CAMELS-GB than is captured by hydrological theory as encoded in the benchmark conceptual models. Further work
remains to determine what information has been learned by these LSTM-based models, to use that information to improve
500 hydrological theories, and feed them back, if possible, into further developments in conceptual and physically based models.

Relative to the LSTM-based model performances elsewhere in GB, the LSTM-based models continue to underperform in
South East England relative to elsewhere in GB. Considering the catchment conditions that are associated with this pattern it
is clear that all models struggle with drier conditions and catchments where the water balance does not close. It also seems
possible that the training process fails to capture hydrological behaviours in drier catchments. There are a number of possible

505 reasons. Firstly, changing meteorological conditions in dry catchments lead to little or no change in discharge (as would be the
case in ephemeral streams). Alternatively, the LSTM architecture may not be capable of simulating both dry catchments and
those with a higher runoff-ratio using just a single set of weights. Finally, the data may not contain sufficient information to
capture the percolation and connectivity dynamics that drive hydrological behaviour in catchments with significant groundwater
processes. Further studies will examine the internal representation of hydrological processes in these catchments to better

510 understand what the LSTM has (not) learned about connectivity and groundwater processes.

This paper benchmarks LSTM performance across Great Britain using a new large-sample dataset, CAMELS-GB (Coxon
et al., 2020b), providing a reference for future hydrological modelling efforts. Furthermore, this manuscript outlines the hy-
drological conditions in which the LSTM-based models perform well and those conditions which are more difficult to model.
We encourage future benchmarking studies to include LSTMs as a competitive model choice for simulating rainfall-runoff

515 processes.

Code and data availability. CAMELS-GB data is available at: https://catalogue.ceh.ac.uk/documents/8344e4f3-d2ea-44f5-8afa-86d2987543a9.
The FUSE benchmark model simulations are available at: https://data.bris.ac.uk/data/dataset/3ma509dlakcf720aw8x82ag4tm. The neuralhy-
drology package is available on github here: https://github.com/neuralhydrology/neuralhydrology. The model simulations are freely available

here: zenodo.org/record/4555820. The predictions and error metrics for the fitted models can be found online here: zenodo.org/record/4555820

520 Appendix A: LSTM and EA LSTM Model Description

The LSTM captures information that is important over both long and short term time horizons, overcoming a key difficulty with
traditional RNNs, which are unable to retain information over longer sequences (Hochreiter, 1991; Bengio et al., 1994). LSTMs
do this by maintaining two state vectors, a cell memory vector that captures slowly evolving processes (Cy, Eq. A5) and a more
quickly evolving state vector, colloquially named the "hidden" vector (hg, Eq. A6). The C vector, accounts for longer-term
525 dependencies, and a series of ‘gates’ control the information passing into and out of the memory vector. The hy vector evolves

more quickly depending on input information and the output of the memory vector (see Fig. Al). The gates include: the forget
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530

535

540

545

550

555

gate (fi), which controls the elements of the cell memory vector that are forgotten (i.e. how long water persists in the system,
Eq. Al); the input gate (i;), which controls what information from the new input data at that timestep will be incorporated into
the cell memory vector (i.e. what information is stored for future timesteps, Eq. A2); and finally the output gate (o), which
determines what information from the cell memory will be used to update the hidden state (i.e. what information will impact
discharge at the current timestep, Eq. A3). These gates are neural network layers, made up of weights (Wiayer), biases (biayer)
and activation functions. The activation functions allow the LSTM to model nonlinear processes. During training, we seek the
values for these weights and biases that best describe observed discharge. The information that passes through the input gate
to the cell state (Cy - see Eq. AS) is itself processed through a neural network layer, producing a series of candidate values
that may be used to update the cell state (Eq. A4). Finally, information from the cell state is passed through the output gate
(o) to produce the hidden output (hy) at that time-step (Eq. A6). Note that for the LSTM we have explicitly defined the inputs
as the concatenation of the dynamic meteorological data and the static catchment attributes, [Xt,n7 A,]. That is, both LSTM
models receive the same information. We refer the reader to Kratzert et al. (2018) and Kratzert et al. (2019) for comprehensive

descriptions of the LSTM and EA LSTM, and their hydrological interpretation.

fo =0 (Wi [Xen, An,hy1] + br) (A1)
ic = 0 (Wi [Xen, An, hy_1]+ b)) (A2)
0t =0 (Wo [Xem, An, i 1]+ bo) (A3)
C = tanh (W¢ [X¢n, An, by 1]+ bc) (A4)
Ci=f+xCy_1+ixC, (A5)
h; = o xtanh(Cy) (A6)

The EA LSTM was developed specifically for rainfall-runoff modelling (Kratzert et al., 2019). The key difference between
the EA LSTM and the LSTM is that the input gate () is no longer conditional upon the dynamic (time-varying) data. Instead,
the static (time-invariant) catchment attributes (A ) exclusively influence the input gate (Eq. A2 is replaced with Eq. A8), and

all other gates are solely influenced by the dynamic input data (Eq. A7, A9, A10).

fo = o (Wi [Xy, he 1]+ br) (A7)
i=0(W;A+b) (A8)
0t =0 (Wo [ Xy, hy_1] +bo) (A9)
Ct = tanh (W¢ [ Xy, hy_1] 4 bc) (A10)

The EA LSTM is described as “entity-aware” because it explicitly learns how to use A,, to distinguish between similar
dynamic inputs (X¢ ) for different catchments ("entities”). For the EA LSTM, < is determined solely by the catchment at-

tributes (Eq. A8). Therefore, each catchment has one unique hs dimensional vector which controls what information should
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Figure Al. Wiring diagram for the LSTM and EA LSTM recurrent cells, adapted from Olah (2016). These cells are repeated for each input
timestep in our sequence length. The key difference between the EA LSTM and the LSTM is the separation of the static data, A), from the
dynamic data X¢ n. In the EA LSTM, the static data is the sole input to the input gate, producing an embedding, i¢. In both LSTM models
there is a cell state Cg, that passes from cell to cell, capable of modelling longer-term dependencies. Note that the neural network layers
correspond with the weights (W), biases (b) and activation functions (o, tanh). These operations correspond to the yellow layers in the

diagram.

persist in future timesteps. In contrast, the LSTM learns to modify the input gate iy based upon the meteorological forcing data
(X¢,n) and the catchment attributes (Ay). The output of the input gate (i¢ or %) is a vector of values between 0 and 1, which
is learned from data. This vector, also known as an "embedding", translates our catchment attributes into a high-dimensional
space that represents catchments in a manner optimised to differentiate between catchment rainfall-runoff behaviours. Kratzert
et al. (2019) demonstrated how this embedding represents what the model has learned about our catchments.

For the sake of clarity, it is important to note that both models receive the same information. The LSTM still receives the
static catchment attributes. However, rather than affecting only the input gate, the static data can influence all gates, since they
are appended to a vector of dynamic inputs ([X¢ n,Ay]) and so the same information is given to the LSTM at each timestep.
The static attributes are used by the LSTM in the same way as the dynamic data. This offers extra flexibility for the LSTM
compared with the EA LSTM, since the LSTM is able to modify the input gate based on information from time-varying data,
whereas the EA LSTM is not. We are using the static nature of the data as a constraint on the EA LSTM to reflect the nature of
the input data (separated into static and dynamic inputs - see Fig. Al).

Both models have a final layer, a fully connected linear layer, which transforms the hy vector into a single discharge predic-

tion, ¥ n.

25



575

580

Appendix B: Comparison of the Train and Test Periods

The calibration (train) period and the evaluation (test) period are similar in terms of their predictability, although the evaluation
period was slightly less predictable, as can be seen in the shifting of the two baseline model distributions towards lower NSE
values (see Fig. B1). We used two baseline models to test how “predictable” the catchment hydrographs are in these two time
periods. Climatology makes a prediction based on the mean discharge for that day of the year. Persistence is equivalent to
predicting yesterday’s value today, predicting the future will be the same as the past. Fig. B1 shows that the processes are
largely stationary, and the period we use for calibration is similar to the period we use for evaluation. Indeed, the period
we use for calibration is slightly easier to predict than the test period, since the benchmark models perform better, i.e. the
distribution of catchment NSE scores is shifted towards higher NSE scores during the train period. Furthermore, the conditions
for precipitation, PET, temperature and specific discharge are very similar between the train and test period. The temperatures
have warmed slightly and there are slightly more days with zero precipitation, however, it is unlikely that such small changes

have impacted the ability of the DL model to generalize. Discharge has risen slightly in the period of interest, across Great

Britain.
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Figure B1. Kernel Density Estimates (KDE) of NSE scores for two baseline models (above), Climatology (a) (calculated as the mean
discharge for that day-of-year for each site) and Persistence (b) (calculated as the discharge shifted one day into the future, so yesterdays
discharge is a prediction of today). Below, Kernel Density Estimates are provided for hydro-meteorological variables, precipitation (c),
potential evaporation (pet) (d), temperature (e) and specific discharge (f) in the training period (1980-1997, dotted line) and the test period
(1998-2008, dashed line). Climatology represents the mean conditions for that day of the year. Persistence reflects predicting yesterday’s

values today, i.e. predicting no change from yesterday. These give an overview of how “predictable” a time period is, since if these baseline

temperature [deg C]

discharge_spec [mm day-1]

models perform well, it will be easier to score at least as well as the baseline.
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Appendix C: Model Hydrographs

585 We illustrate the model predictions by showing the hydrographs for three stations from the Thames, the Severn and the Tay, as

the largest rivers having at least part of their catchment in England, Wales and Scotland respectively.
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Figure C1. Hydrographs for the Thames at Kingston (Station 39001), the Tay at Ballathie (Station 15006) and the Severn at Bewdley
(Station 54001), for the hydrological year from October 2006 — September 2007. The model performances displayed in the header reflect the
performance of each model on the entire test period (1998-2008), not just the displayed period. The observed discharge, from (Coxon et al.,
2020a), is shown as a dotted black line. The bars reflect catchment averaged precipitation with the axis shown on the right side. The LSTM
and EA LSTM simulations are shown in blue and orange respectively. Conceptual model simulations for Sacramento (brown), VIC (red),

PRMS (purple) and TOPMODEL (green) are taken from published timeseries from Lane et al. (2019).
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Appendix D: Model Uncertainty

Uncertainty is present in all rainfall-runoff models. Model uncertainty has three main sources: (i) uncertainties in the observed
data used to calibrate (train) hydrological models (McMillan et al., 2010); (ii) uncertainties in model structure (Fenicia et al.,
2014; Krueger et al., 2010); and (iii) uncertainties in model parameters (Beven and Freer, 2001; Gupta et al., 2009; Arsenault
et al., 2014). Parameter uncertainty can be evaluated by using an uncertainty evaluation framework (Beven and Binley, 2014),
often involving a sampling strategy. Model structural uncertainty is often estimated within multi-model frameworks, such as
the Modular Modelling System (Leavesley et al., 1996) or the Framework for Understanding Structural Errors (FUSE) (Clark
et al., 2008). Uncertainties in observations can be estimated and accounted for by using multiple forcing products (Kratzert
et al., 2021) or by resampling the input data. This study addresses predictive uncertainty in the LSTM-based models by using
an ensemble of 8 LSTM models trained with different random seeds, representing different starting conditions for the training
process.

The results in the main text, unless otherwise specified, show diagnostic scores given the ensemble mean discharge. Here,
we discuss the ensemble range and the uncertainty that this represents. The ensemble is produced by different random seeds,
and therefore different starting parameters used during the training process. The mean catchment ensemble variability is 0.16
mm? day~!. The median is 0.12 mm?® day~!. However, model uncertainties and their relationship with catchment attributes
are in accordance with our hydrological intuition. For example, we see increasing uncertainty at increased streamflow (Fig.
D1). Furthermore, by normalising for mean catchment discharge we can calculate ensemble standard deviation as a ratio of
total discharge. This coefficient of variability is greatest in the South East of England (Fig. D2). A more principled treatment of
uncertainty, which benchmarks various methods for using DL models to directly simulate a distribution can be found in Klotz

et al. (2020).

Low Flows [Q < 0.1]
25 | Med Flows [0.3 < Q <= 0.7]
High Flows [Q > 0.9]

P . . . . .
0.0 0.5 1.0 1.5 2.0 2.5 3.0

Mean Ensemble Variability (Standard Deviation)

Figure D1. Histogram of raw station averaged variability (standard deviation) across ensemble members. The blue histogram reflects the
variability in simulations where observed discharge is lower than the 10th percentile (y_trues,»Q%"). The green histogram shows variability
for only those times where observed discharge is greater than the 90th percentile (y_trues,»Q%°). The orange histogram shows variability

for all times when the observed discharge is between the 30th and 70th percentile (Q%3y_true: ,Q%7.)
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Figure D2. Spatial Patterns of normalised catchment averaged variability (standard deviation) of ensemble predictions. Brighter colours

reflect greater variability across members of the ensemble of LSTMs.
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Figure E1. Spatial Patterns of different performance metrics. Each point is a single station-gauge, and the point is coloured according
to the performance metric. For performance metrics with a diverging score (above and below an optimum, e.g. Bias Error) more intense

colours represent worse performance. Red represents an under-prediction, blue an over-prediction. For scores which are increasing (e.g.

NSE, Correlation), darker colours reflect improved performance.
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Figure E2. Median NSE scores for eight Great Britain river basin regions. The regions are based on the UKCPQ9 river basins (mur) aggre-

gated from 21 river basin districts to eight regions. The leftmost column is the median score for all GB catchments, which is the same as in

Table 3. It is included here for reference.
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