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Abstract. The widespread negative correlation between the atmospheric vapor pressure deficit and soil moisture lends strong 

support to the complementary relationship (CR) of evapotranspiration. While it has showed outstanding performance in 

predicting actual evapotranspiration (ETa) over land surfaces, the calibration-free CR formulation has not been tested in the 

Australian continent dominantly under (semi-)arid climates. In this work, we comparatively evaluated its predictive 

performance with seven physical, machine-learning, and land surface models for the continent at a 0.5°×0.5° grid resolution. 15 

Results showed that the calibration-free CR that forces a single parameter to everywhere produced considerable biases when 

comparing to water-balance ETa (ETwb). The CR method was unlikely to outperform the other physical, machine-learning, and 

land surface models, overrating ETa in (semi-)humid coastal areas for 2002-2012 while underestimating in arid inland 

locations. By calibrating the parameter against water-balance ETa independent of the simulation period, the CR method became 

able to outperform the other models in reproducing the spatial variation of the mean annual ETwb and the interannual variation 20 

of the continental means of ETwb. However, interannual the grid-scale variability and trends were captured unacceptably even 

after the calibration. The calibrated parameters for the CR method were significantly correlated with the mean net radiation, 

temperature, and wind speed, implying that (multi-)decadal climatic variability could diversify the optimal parameters for the 

CR method. The other physical, machine-learning, and land surface models provided a consistent indication with the prior 

global-scale assessments. We also argued that at least some surface information is necessary for the CR method to describe 25 

long-term hydrologic cycles at the grid scale. 

1 Introduction 

Terrestrial evapotranspiration (ETa) links water, energy, and carbon exchanges between lands and the atmosphere. 

On the global scale, more than 60% of land precipitation (P) returns to the atmosphere through plants’ vascular systems and 

soil pores, consuming over 70% of surface net radiation for the phase change of water (Trenberth et al., 2009; 2007). Due to 30 
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the warming atmosphere, the upward latent heat flux has received growing attention, because it can control surface water 

availability, plants productivity, and ecosystem sustainability (Pareek et al., 2020; Kyatengerwa et al., 2020; Jasechko, 2018; 

Swann et al., 2016). Interacting with the atmosphere, changes in ETa could substantially increase heatwave risks (Miralles et 

al., 2014a; Mueller and Seneviratne, 2012) and alter precipitation patterns (Koster et al., 2004). 

However, expensive costs and operational difficulties make ETa observation networks (e.g., the FLUXNET; 35 

Baldocchi et al., 2001) subject to limited spatial extent, short data lengths, and questionable data quality. Hence, modeling 

approaches are inevitable for a regional- or a global-scale ETa analysis, and usually based on physical theories (e.g., Zhang et 

al., 2016), machine-learning techniques (e.g., Jung et al., 2011), and conceptual land surface schemes (e.g., Haverd et al., 2018) 

that inherently have numerous error sources. For instance, Jung et al. (2019) produced the global mean ETa from 557 to 668 

mm a-1 for 2001-2005 with physical and machine learning models. The previous global mean ETa estimates have varied even 40 

in a larger range of 417-650 mm a-1 for a part or the whole period of 1982-2011 (Pan et al., 2020). The large discrepancies in 

the global means imply that modeling prescriptions for ETa have diverse uncertainty sources, such as forcing errors, ill-posed 

parameterizations, structural deficiencies, and insufficient training, and thus necessitate  intercomparison studies to assess the 

associated limitations and uncertainties (e.g., Pan et al., 2020). 

When it depends on a physical equation, such as the Penman-Monteith (Monteith, 1965) or the Priestley-Taylor 45 

(Priestley and Taylor, 1972) equations, an ETa model assumes typically that ETa under water deficiency is proportional to the 

atmospheric evaporative demand (ETp). In the Global Land Evaporation Amsterdam Model (GLEAM; Martens et al., 2017), 

for example, the Priestley-Taylor equation is multiplied by a stress module to predict ETa under water limited conditions. 

Similar approaches are easily found with physical and land surface models that adjust the surface roughness length of the 

Penman-Monteith equation to represent water stress (e.g., Zhang et al., 2016; Pan et al., 2015). Note that adjusting the surface 50 

roughness length is mathematically equivalent to multiplying a coefficient to ETp (Seneviratne et al., 2010). Though it has 

reliably predicted ETa at multiple scales (e.g., Martens et al., 2017; Fisher et al., 2008), the proportionality assumption 

unavoidably requires soil moisture information to quantify the degree of water stress, giving rise to practical difficulties such 

as data unavailability, computational inefficiency, and delayed data dissemination. Importantly, the assumption of the positive 

relation between ETa and ETp could be rejected by observational evidence that supports negative correlations between the two 55 

(e.g., Brutsaert, 2006; Ramírez et al., 2005; Hobbins et al., 2004). Han et al. (2014) emphasized that the correlation between 

ETa and ETp depends mainly on water availability rather than being always positive. 

The drawbacks of the proportionality assumption can be remedied at least in part by employing the complementary 

relationship (CR) of evapotranspiration. Bouchet (1963) found that the pan evaporation rate over a small wet patch surrounded 

by water-limited areas is higher than when the same surroundings are entirely wet. Since the small wet patch hardly influences 60 

the overlying atmosphere, ETp over the wet surface is raised by blending with the drier and hotter surroundings. This “oasis 

effect”, by contrast, is negligible in the case that the surrounding areas are entirely wet and large enough to transform the 

overpassing atmosphere. In other words, even under the same surface radiation and wind speed conditions, ETp responds to 

changes in regional water availability. Hence, one can predict water-limited ETa by gauging how much ETp is raised from the 
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hypothetical evaporation rate that should occur under the full wetness (referred to as the wet-environment ET; ETw). Since a 65 

higher adjustment in ETp indicate a lower water availability and thus ETa, the CR supports inverse correlations between ETa 

and ETp (i.e., complementarity). In practice, the complementarity allows users to predict ETa with no surface information, 

because ETp and ETw are all obtainable from meteorological data.  

After Brutsaert and Parlange (1998) who used the CR to interpret the globally declining pan evaporation rates, various 

CR methods have been formulated, e.g., Anayah and Kaluarachchi (2014), Crago and Qualls (2013), Huntington et al. (2011), 70 

Kahler and Brutsaert (2006), Crago and Crowley (2005), Hobins et al. (2004) among others. While those CR methods have 

been deemed mere heuristic methods with limited reliability (Shuttleworth et al., 2009), the non-dimensional derivation of 

Brutsaert (2015) and the following modifications (Szilagyi et al., 2017; Crago et al., 2016) have suggested the generality and 

definitiveness of the CR principle. The non-dimensional CR formulations have shown outstanding performance in predicting 

water-limited ETa at local, regional, and global scales (e.g., Brutsaert et al., 2020; Crago and Qualls, 2018; Brutsaert et al., 75 

2017), and applications are extended to drought assessments (Kyatengerwa et al., 2020; Kim et al., 2019b) and even used for 

predicting the crop coefficient under the proportionality assumption (Kim et al., 2019a). 

Though the non-dimensional CR formulations are still under improvement based on the thermodynamic foundations 

(Szilagyi, 2021; Qualls and Crago, 2020), they mostly require any ETa observations to identify required parameters. Szilagyi 

et al. (2017) is the only calibration-free CR method that analytically determines the parameter for ETw with no requirement of 80 

ETa data. By transferring the parameter analytically obtained in highly humid locations to the entire region of interest, the 

calibration-free CR formulation showed superior performance in predicting ETa to typical land surface and machine-learning 

models in the conterminous United States and China where climates are very diverse (Ma et al., 2019; Ma and Szilagyi, 2019). 

However, the same approach has not been examined in a continent where only small parts are under humid climates, and thus 

it is questionable whether the parameter transferring from humid locations is valid. 85 

In this work, therefore, we applied the calibration-free CR formulation for the Australian continent where land 

surfaces are mostly under (semi-)arid climates, and its predictive performance was compared with a bunch of physical, 

machine-learning, and land surface models. Here, we addressed that the use of a single parameter for the entire continent could 

lead the CR method to low performance in preserving spatial coherence, interannual variability, and decadal trends of water-

balance ETa. We also provided some perspectives for improving the non-dimensional CR formulations. 90 

2 Methodology and data  

2.1 The generalized complementary relationship approach 

The CR principle explains the feedback response of ETp to regional water deficiency using the three evaporation 

rates, namely, ETa, ETp, and ETw. Again, ETa is the actual water flux from a homogeneous land surface to the atmosphere, and 

ETp is the atmospheric capacity to receive water vapor that responds actively to water availability on the surface. ETw is the 95 

hypothetical ETa rate that would take place under the same atmospheric conditions but ample water. ETp under regional water 
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deficiency would be far higher than the hypothetical ETw, because high atmospheric vapor pressure deficits (VPD) co-exist 

with low soil moisture across the globe (Zhou et al., 2019). 

In the CR formulation by Szilagyi et al. (2017), the two dimensionless variables, x ≡ ETw/ETp and y ≡ ETa/ETp, are 

defined, and they are linked with four boundary conditions. If water is ample on the surface, ETa reaches ETw that should be 100 

equal to ETp owing to no water deficiency; thus, the first boundary condition is (i) y = 1 for x = 1. When the surface is entirely 

desiccated, ETa must be nil (i.e., y = 0), and by energy balance, the surface radiation should be fully transformed to the sensible 

heat flux that fully amplifies VPD. In other words, under the given radiation and wind speed, ETp is maximized when ETa = 

0, providing another zero-order boundary condition: (ii) y = 0 for x = xmin ≡ ETw/Epmax, where Epmax is the maximized ETp. 

When x = 1 (i.e., with ample water), ETa would change as much as changes in ETw, yielding a first-order boundary condition: 105 

(iii) dy/dx = 1 for x = 1. On the other boundary (i.e., x = 0), ETa should be constant irrespective of any changes in ETw; thus, 

another zero-order boundary condition is (iv) dy/dx = 0 for x = 0. The simplest polynomial equation satisfying the four 

boundary conditions is: 

y = 2X2 − X3,            (1a) 

with X defined as: 110 

X ≡
x−xmin

1−xmin
=

Epmax−ETp

Epmax−ETw

ETw

ETp
.          (1b) 

Since ETp, ETw, and Epmax could be all obtainable from a set of net radiation, air temperature and humidity, and wind 

speed data, Eqs. (1a) and (1b) allow users to estimate ETa with no direct soil moisture information (e.g., remote-sensing soil 

moisture products). Szilagyi et al. (2017) used the Penman (1948) equation for ETp: 

ETp =
∆avg

∆avg+𝛾

Rn

λv
+

𝛾

∆avg+𝛾
fuVPD,          (2) 115 

where, Δavg is the slope of the saturation vapor pressure curve (kPa °C-1) at the mean air temperature Tavg (°C), γ is the 

psychometric constant (kPa °C-1), Rn is the surface net radiation less the soil heat flux (MJ m-2 d-1), λv is the latent heat of 

vaporization (MJ kg-1) (here we quantified it by λv=2.501–0.00236Tavg), fu = 2.6(1+0.54u2) is the Rome wind function, where 

u2 is the 2-m wind speed (m s-1), and VPD is es(Tavg) minus ea, where es(Tavg) is the saturation vapor pressure at Tavg and ea is 

the actual vapor pressure, respectively. 120 

 As it is parameterized under wet surface conditions, ETw could be quantified by the Priestly and Taylor (1972) 

equation: 

ETw = αe
∆ws

∆ws+𝛾

Rn

λv
,           (3) 

where, αe is a coefficient typically ranging between 1.10 and 1.32 (Szilagyi et al., 2017), and Δws is the slope of the vapor 

pressure curve (kPa °C-1) at the wet surface temperature Tws for which Szilagyi (2014) used the two methods based on the 125 

Bowen ratio and the derivation of Monteith (1980). We used the latter: 

Tws = Twb +
γRnVPD

(∆wb+γ)(c1Rn+c2fuVPD)
,         (4a) 

https://doi.org/10.5194/hess-2021-126
Preprint. Discussion started: 16 March 2021
c© Author(s) 2021. CC BY 4.0 License.



5 

 

c1 =
∆avg(∆wb+γ)−∆wb(∆avg+γ)

∆avg+γ
,         (4b) 

c2 =
λvγ(∆wb+γ)

∆avg+γ
,           (4c) 

where, Twb is the wet-bulb temperature that can be estimated by the Bowen ratio for an adiabatic change: 130 

γ
Twb−Tavg

es(Twb)−ea
= −1.          (5) 

Epmax is calculated with the same Penman equation but with different temperature and humidity conditions. The air overpassing 

a desiccated surface is likely devoid of humidity; thus, ea would become negligible: 

Epmax =
∆dry

∆dry+γ

Rn

λv
+

γ

∆dry+γ
fues(Tdry),         (6)  

where, Δdry is the slope of the vapor pressure curve (kPa °C-1) at the dry air temperature Tdry (°C). Tdry is the hypothetical air 135 

temperature that would adiabatically reach when the latent heat flux is nil: 

Tdry = Twb +
es(Twb)

γ
= Tavg +

es(Tavg)

γ
.        (7) 

The coefficient αe in Eq. (3) is the only parameter for the CR method. Szilagyi et al. (2017) proposed to use the mean 

value of αe values analytically obtained at humid locations for a region of interest, and we achieved α=1.09 by the same 

approach (the details are given in the Appendix). Although it is smaller than the typical Priestley-Taylor coefficient (1.26), the 140 

obtained αe was still higher than the physical lower limit (i.e., unity). It should be noted that the αe incorporated in the CR 

method is a model parameter analogous to the Priestley-Taylor coefficient rather than having the same physical meaning (Ma 

et al., 2019; Brutsaert et al., 2017). In prior continental-scale studies, the optimal αe values for continental-scale applications 

were often lower than the typical Priestley-Taylor coefficient (1.26) (e.g., Ma et al, 2020; Kim et al., 2019b; Ma et al., 2019; 

Ma and Szilagyi, 2019). 145 

2.2 Data used for ETa estimation and performance evaluation 

2.2.1 Atmospheric forcing and evaluation datasets 

The study area was the Australian continent lying within [10°- 45° S, 113°- 155° E], and the atmospheric forcing data 

for the CR method were collected from the ERA Interim reanalysis archive (Dee et al., 2011) of the European Centre for 

Medium-Range Weather Forecasts (https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim; last access 150 

on mmm-dd/2020). The monthly averages of surface net solar radiation and net thermal radiation, 2-m air temperature, 2-m 

dew-point temperature, and 10-m U and V wind speed components were downloaded at the 0.5°×0.5° grid resolution for 1979-

2018. Rn was estimated simply by summing the two net radiation data  (i.e., the soil heat flux was assumed to be negligible). 

Tavg and VPD were directly quantified by the air temperature and the dew-point temperature datasets, while the 10-m U and V 

components were converted to u2 values using the logarithmic wind speed profile. 155 

https://doi.org/10.5194/hess-2021-126
Preprint. Discussion started: 16 March 2021
c© Author(s) 2021. CC BY 4.0 License.



6 

 

The CR ETa estimates from Eq. (1a) were evaluated with the water-balance ETa (ETwb) estimates at the same 0.5° 

grid resolution. To achieve the grid-scale ETwb, some syntheses (e.g., spatial and temporal gap filling and/or conceptual 

modelling) are inevitable due to the non-uniformity and unavailability of in-situ precipitation, streamflow, and terrestrial water 

storage (TWS) observations. We collected the global precipitation (P) product v.2018 of the Global Precipitation Climate 

Centre (GPCC) together with the grid runoff (Q) products by Ghiggi et al. (2019) and Hobeichi et al. (2019) and the TWS 160 

anomalies reconstructed by Humphrey and Gudmundsson (2019). The GPCC monthly P data are readily available for 1891-

present from https://psl.noaa.gov/data/gridded/data.gpcc.html (last access on Jun-01/2020). The monthly GRUN was produced 

by Ghiggi et al. (2019) at the 0.5° resolution for 1902-2014 using in-situ streamflow observations and a machine learning 

algorithm, and cross-validated by independent discharge data in major river basins across the world 

(https://doi.org/10.6084/m9.figshare.9228176; lass access on May-20/2020). The Linear Optimal Runoff Aggregate (LORA) 165 

of Hobeichi et al. (2016) merged the syntheses of eleven land surface models using an optimal weighting approach for 1980-

2012 (https://geonetwork.nci.org.au/geonetwork/srv/eng/catalog.search#/metadata/f9617_9854_8096_5291m; last access on 

Dec-23/2020). Hobeichi et al. (2016) validated the LORA Q data with published discharge observations at many river basins. 

Since we believed that Q values from multiple sources are more reliable than a single model synthesis, the Q value at each 

grid was determined by simple averages of the GRUN and the LORA data. The TWS data, namely the GRACE-REC, extend 170 

the Gravity Recovery and Climate Experiments (GRACE) land water-equivalent-thickness data given for 2003-2015 to the 

year of 1901 using a statistical methods (https://doi.org/10.6084/m9.figshare.7670849; last access on Jan-4/2021). We 

calculated annual TWS changes (δS) at each grid by differencing the December TWS estimates of two consecutive years. 

Then, the annual ETwb in each year was calculated by the water balance equation, i.e., ETwb
̅̅ ̅̅ ̅̅ ̅ = P̅ – Q̅ – δS, where ETwb

̅̅ ̅̅ ̅̅ ̅, P̅, and 

Q̅ are the annual averages of ETwb, P, and Q, respectively. 175 

Figure 1 displays the distribution of the wetness index (the long-term-average ratio of P to ETp) for 2002-2012 

calculated with the GPCC P and the ETp from the ERA-Interim forcing. Typically, the wetness index categorizes hyper-arid, 

arid, semi-arid, semi-humid, and humid climates with the thresholds of 0.05, 0.2, 0.5, and 0.65, respectively (Barrow, 1992). 

The range of the wetness index was 0.07-5.65 in Australia, indicating that 81% of the land surfaces was under (semi-)arid 

climates though there are no hyper-arid areas. Humid climates are found in northern, southwestern, and southeastern coastal 180 

regions, where major cities and agricultural areas have developed. 
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Figure 1: Distribution of the wetness index for 2002-2012 in Australia. 

2.2.2 ETa products for comparative evaluation 

The performance of the CR method was compared with products from two remote-sensing-based physical models, a 185 

machine-learning model, and four land surface schemes. The physical models include the Global Land Evaporation 

Amsterdam Model (GLEAM) v3.2 (Martens et al., 2017; https://www.gleam.eu; last access on Jun-03/2020) and the Priestley-

Taylor Jet Propulsion Laboratory Model (PT-JPL) (Fisher et al., 2008; http://josh.yosh.org/datamodels.htm; last access on 

Dec-03/2020). The GLEAM uses a vertically-stacked bucket model in combination with the Priestley-Taylor equation 

constrained by microwave-derived soil moisture, surface temperature, and vegetation optical depth. It synthesizes canopy 190 

transpiration, bare-soil evaporation, and interception losses under water- and energy-limited conditions separately. On the 

other hand, the PT-JPL employs the same Priestley-Taylor equation multiplied with the relative surface wetness from remote-

sensing vegetation indices. The GLEAM and the PT-JPL ETa products were shown to have high coherence with eddy-

covariance latent heat flux observations (Martens et al., 2017; Fisher et al., 2008). 

In addition, the FluxCom was selected as the machine-learning ETa product (Jung et al., 2019; 195 

http://www.fluxcom.org/; last access Mar-18/2019). This dataset was produced by upscaling the point flux-tower observations 

with 11 machine learning algorithms with remote-sensing vegetation indices. Jung et al. (2019) checked the cross-consistency 
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of the FluxCom data via comparison against the model-tree ensemble (Jung et al., 2011), the GLEAM v3.1, and the LandFlux-

Eval datasets (Mueller et al. 2013). The FluxCom provides several variations; among them, we chose the dataset forced by the 

CRUNCEPv8 with the length from 1950 to 2016. 200 

The land surface models include the Australian Water Resources Assessment Landscape Model v.5 (AWRA-L; Frost 

et al., 2016), the Noah Land Surface Model v.3.3 (Noah3.3; Ek et al., 2003), the Catchment Land Surface Model v. Fortuna 

2.5 (CLSMF2.5; Koster et al., 2000), and the ERA-Interim land surface scheme (ERA-Interim; Balsamo, 2008). The AWRA-

L is a one-dimensional grid water balance model developed for monitoring water stresses in Australian soil, underground, and 

land surfaces (http://www.bom.gov.au/water/landscape; last access on Dec-30/2020). The AWRA-L ETa is the sum of 205 

interception, soil evaporation, groundwater evaporation, and transpiration from the root zone and deep groundwater generated 

by a conceptual tank model combining the Penman-Monteith equation. The Noah3.3 and the CLSMF2.5 ETa products were 

generated via the Land Information System (LIS; Kumar et al., 2006) of the National Aeronautics and Space Administration 

(NASA), which supports application of multiple community land surface models. The Noah3.3 is the operational land surface 

scheme of the National Center for Atmospheric Research (NCAR) discretizing the surfaces with the finite difference method 210 

and solving the governing equations associated with the soil-vegetation-snowpack continuum. On the other hand, the 

CLSMF2.5 was developed by the NASA Global Modeling and Assimilation Office, subdividing the irregular shapes of 

catchments into saturated, sub-saturated, and wilting fractions, and simulating simulates water fluxes in each fraction of 

catchments that evolves over time. For our comparative evaluation, both the Noah 3.3 and CLSMF2.5 models were forced by 

the National Centers for Environmental Prediction Global Data Assimilation System (NCEP GDAS) forcing dataset 215 

(https://portal.nccs.nasa.gov). The simulation time step and spin-up period were 15 min and 76 years (four times 19 years 

(2000–2018), respectively. The Hydrologogicval Modeling and Analysis Platform (Getirana et al. 2012) routing scheme was 

applied for routed streamflow estimates. Lastly, the ERA-Interim uses the improved land surface scheme formulated by 

Viterbo and Beljaars (1995) to simulate the evolution of heat and water storages in soil and snow layers. It classifies a land 

surface using satellite data and ancillary information. The downward water fluxes in a land pixel are generated by the governing 220 

equations, and the latent heat flux to the lowest atmospheric level is computed with the Obukhov length.  

For comparation between the nine ETa products, the different spatial resolutions were bilinearly unified to the 

standard 0.5° grid of the ERA-Interim forcing data. We compared all the ETa products to the grid-scale ETwb, and evaluated 

the reproducibility in spatial variation of long-term mean ETa and the continental means together with the grid-scale interannual 

variability and linear trends. 225 

3 Results  

3.1 Evaluation of spatial variations and continental means 

Figure 2a illustrates the distribution of long-term ETwb means for 2002-2012. The spatial variation of the mean ETwb 

was consistent with the analysis of Zhang et al. (2010) for which a typical Budyko function was adopted to produce the mean 
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ETa at 0.05° resolution across Australia for 2000-2005. Despite the different data length and the spatial resolution, Zhang et 230 

al. (2010) suggested that that the mean ETa in Australia is the lowest in the east-central part receiving very small precipitation. 

The region with AI < 0.10 in Figure 1 corresponds approximately to where the mean ETa is very low in Zhang et al. (2010) 

and Figure 2a. In the arid Australian continent, the precipitation pattern mostly determines the spatial variation of mean ETa, 

because about 90% of precipitation returns to the atmosphere (Glenn et al., 2011). Figure 2a, too, depicts that the means of 

ETwb were small in the arid east-central part, increasing towards northern and eastern coasts where precipitation is abundant 235 

due to monsoonal and easterly winds. The continental mean ETwb for 2002-2012 was 431 mm a-1 approximately close to the 

value (439 mm a-1) given by the global assessment of Zhang et al. (2016). The consistency to prior studies led us believe that 

the annual ETwb product from the reanalysis precipitation and the reconstructed runoff and TWS data could become an 

acceptable evaluation reference.  

As expected, the mean ETwb tended to increase with AI. In arid regions (AI < 0.2), the mean ETwb was 260 ± 71.9 240 

mm a-1 (mean ± standard deviation), while semi-arid regions (0.2 ≤ AI < 0.5) had a range of 489 ± 152 mm a-1. Under semi-

humid (0.5 ≤ AI < 0.65) and humid (AI ≥ 0.65) climates, it was within 761 ± 168 mm a-1 and 797 ± 273 mm a-1, respectively. 

Compared to ETwb, the CR ETa had positive biases. The mean ETa from the CR method for 2002-2012 ranged in 221 ± 105 

mm a-1, 564 ± 231 mm a-1, 976 ± 235 mm a-1, and 1,057 ± 297 mm a-1 from arid to humid regions, respectively (Figure 2b). 

Though the pattern correlation between the mean ETwb and CR ETa was fairly high (Pearson r was 0.87), the CR method 245 

overestimated ETa in coastal areas, while underrating it in the central-western part under arid climates.  

The two physical models, on the other hand, were biased negatively. The GLEAM produced smaller ETa in the wet 

northern coastal, and the (semi-)arid central and southwestern parts than ETwb, while the PT-JPL seemed to generally 

underestimated it across the continent (Figure 3c and d). On the contrary, the FLUXCOM product was positively biased in 

(semi-)arid inland areas with suppressed spatial variation (Figure 3e). The land surface scheme of AWRA-L generated the 250 

unexpected dry hotspots in the mid-western part, which was not found from the water balance (Figure 3f). The two LIS land 

surface models, the Noah3.3 and the CLSMF2.5, relatively well captured the spatial variation of mean ETwb, although there 

were some underestimations by the Noah3.3 in the northern part (Figure 3g and h). The ERA-Interim ETa was of largely biased 

in coastal areas (Figure 3i).  

The continental means ETa for 2002-2012 from the eight models provide a consistent indication (Figure 3a). The CR 255 

method generated a positive bias of +58.2 mm a-1 (+14%) relative to the water-balance ETwb. Among the eight models, the 

CLSMF2.5 produced the minimum bias (+0.5%), whereas the largest bias (+24%) was from the ERA-Interim ETa. In the 

Taylor (2001) diagram that measures the standard deviation, and the root mean square error (RMSE) and the pattern correlation 

to ETwb together, the CR method appeared to be in the 6th rank. The CLSMF2.5 ETa was the closest to ETwb, and followed in 

order by the PT-JPL, the AWRA-L, the FluxCom, the Noah3.3, the CR method, the GLEAM, and the ERA-Interim.  260 

The continental annual means of CR ETa were considerably higher than those from ETwb owing to the positive biases 

in coastal areas, and their interannual variability was smaller than that of ETwb (Figure 4). The GLEAM well captured the 

interannual variation of the continental mean ETwb through 1981-2012 with slight underestimation; however, the PT-JPL ETa 
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were of considerable negative biases. As did the kindred machine learning model of Jung et al. (2011), the FluxCom suppressed 

the temporal variation of the annual means. Though the AWRA-L, the Noah3.3, and the CLSMF2.5 appeared to have small 265 

biases to the annual means of ETwb, the temporal correlations of the two LIS land surface models to ETwb were lower than the 

other models (0.7 and 0.75 for the Noah3.3 and the CLSMF2.5 vs. 0.86-0.98 for the other models). As expected, the ERA-

Interim land surface scheme produced even higher continental means than the CR method. 

Overall, though the calibration-free CR have showed outstanding performance with the simple mathematical formulations, 

e.g., in the conterminous United States (Ma and Szilagyi, 2019; Kim et al., 2019b) and in China (Ma et al., 2019), it was 270 

unlikely to outperform the other models in the arid Australian continent. The CR ETa estimates were considerably biased in 

wet coastal areas, their spatial coherence with ETwb was weaker than the other ETa products, and their variation of continental 

means was suppressed. 
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Figure 2: Distributions of the mean annual ETa for 2002-2012 produced by the (a) water balance, (b) CR method, (c) GLEAM, (d) 275 
PT-JPL, (e) FluxCom, (f) AWRA-L, (g) Noah3.3, (h) CLSMF2.5, and (i) ERA-Interim. 
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Figure 3: (a) Comparison of the continental means of the ETa estimates for 2002-2012, and (b) the Taylor diagram comparing the 

standard deviation, the root mean square error, and the pattern correlation between the modeled mean annual ETa and ETwb. The 280 
whiskers indicate the two standard deviations of the continental means. 

 

 

Figure 4: Interannual variations of the continental annual means for 1980-2019 estimated by the nine methods. Note that the AWRA-

L, the Noah3.3, and the CLSMF2.5 data are given from 2000, while the PT-JPL data were produced for 2002-2016. 285 

3.2 Evaluation of interannual variability and temporal trends at the grid scale 

Figure 5 displays spatial patterns of the standard deviations of annual ETa for 2002-2012 from the water balance and 

the eight models. The ETwb was highly variable particularly in the northern and the eastern parts relative to other regions. The 

high ETa variability in the northern and the eastern parts of Australia was illustrated by Pan et al. (2020) for which state-of-

the-art physical, machine-learning, and land surface models were compared together. The interannual variability of CR ETa 290 

product, however, had much weaker than ETwb particularly in the northern and the eastern coastlines. It was smaller than that 
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generated by the physical (GLEAM and JPL) and the land surface models (AWRL-A, Noah3.3, CLSMF2.5, and ERA-Interim). 

While the vast majority of models in Pan et al. (2020) suggested the largest interannual ETa in regions with annual precipitation 

between 700 and 1,000mm a-1, the calibration-free CR method was unable to pronounce such variations in (semi-)humid 

locations. 295 

In the global-scale evaluation of Pan et al. (2020), land surface models pronounced higher ETa variability relative to 

physical and machine-learning models. Figure 5 provide a consistent indication that the annual ETa averages from AWRA-L, 

Noah3.3, CLSMF2.5, and ERA-Interim had interannual variability much higher than those from the PT-JPL and the machine-

learning FluxCom. Although physically-based, the GLEAM showed the similar ETa variations to the land surface models. The 

machine-learning FluxCom pronounced the suppressed interannual variability across the continent, as did in Pan et al. (2020) 300 

and Ma et al. (2020). 

The maps in Figure 6 are distributions of the median trends in annual ETa time series over 2002-2012. Given the 

transition from the weak El-Nino in 2002 to the strong La-Nina in 2010-2012 (Miralles et al., 2014b), steep upward trends (> 

40 mm a-2) in ETwb were found around the northeastern and the eastern parts of Australia. Relative to ETwb, the CR ETa 

estimates gradually increased in the same region, and in the coastal areas, they rather declined unexpectedly. On the contrary, 305 

despites discrepancies, the ETa products from the GLEAM, the AWRA-L, the Noah3.3, and CLSMF2.5 well reflected the 

variations expected from changes in sea surface temperatures. The PT-JPL and the ERA-Interim provided smaller areas with 

the strong ETa trends. Although significant, the rising trends of the FluxCom were the smallest among the eight models with 

the unexpected declining trends in the eastern coast. 
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 310 

Figure 5: As in Figure 2, but for interannual variability for 2002-2012. 
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000

 
Figure 6: Distributions of the median trends in annual ETa time series for 2002-2012 given by the nine methods. The dots indicate 315 
the statistical significance at 5% level. 
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4 Discussion and perspectives 

4.1 Performance of the CR method in Australia 

In the continental-scale applications by Ma and Szilagyi (2019), Kim et al. (2019b), and Ma et al. (2019), the 320 

calibration-free CR formulation of Szilagyi et al. (2017) was superior to widely-used physical, machine learning, and land 

surface models. With the slight difference in calculation of Tws, here we applied the same approach for the continent smaller 

than the conterminous United States. Unexpectedly, the CR method performed worse than the chosen physical and land surface 

models, possibly because Australian land surfaces are mostly under (semi-)arid climates. In Szilagyi et al. (2017), the long-

term sum of CR ETa was often larger than that of precipitation in some locations in the western United States. Though the 325 

extensive irrigation for agriculture partly explains the unrealistically high ETa in such an area (e.g., Szilagyi and Jozsa, 2018), 

questions still remain on the relatively poor performance of the CR method in (semi-)arid environments. 

We here argue that the inferior performance of the CR method could be led by the parameter αe=1.09 fixed across the 

large continent where climatic gradients are steep between dry inland and wet coastal areas. In Brutsaert et al. (2020), the 

Priestley-Taylor coefficient within a CR formulation is tightly related with climatological aridity. In other words, applying the 330 

constant αe in every location could nullify the influence of climatological variation on the lower bound of ETp. We hence 

checked the spatial variation of αe optimal for the CR method by calibrating it against the long-term mean ETwb for 1991-2001 

at each grid. Figure 7 displays the optimal αe that minimizes the biases between the mean ETwb and CR ETa, indicating that it 

tends to increase from coastal areas to western inland locations. In the western part, the calibrated αe was often greater than 

the typical range of the Priestley-Taylor coefficient (1.1-1.32). The distribution of the optimal αe was likely to reduce the 335 

positive biases in coastal locations and the underestimation in the western part produced by application of the constant αe=1.09. 

When regenerating ETa for 2002-2012 with the distributed αe, the CR method became the best among the eight models in 

reproducing the temporal and spatial variations of mean ETwb and in the Taylor diagram (Figure 8). Note that the optimal αe 

was found with the ETwb set separated from the new simulation.  

The αe distribution in Figure 7 provides a counteractive indication to Brutsaert et al. (2020) in which the parameter 340 

αe within the CR of Brutsaert (2015) was calibrated against the eddy-covariance observations across the globe. The relationship 

between climatological aridity and αe developed by Brutsaert et al. (2020) implicates the tendency of αe exponentially 

decreasing with aridity. In contrast, Figure 7 indicates that wet regions have αe values lower than in (semi-)arid inland locations. 

The central-eastern part receiving little precipitation has larger αe values than the western part. The contradictory result from 

our work could be explained by the CR formulation from Brutsaert (2015). In the original CR derivation by Brutsaert (2015), 345 

ETw was forced to become nil for ETa = 0, posing an ill-defined assumption that Rn is always zero even when a desiccated 

surface is warm (Crago and Qualls, 2018; Szilagyi et al., 2017, Crago et al., 2016), and making the calibrated αe oversensitively 

decline with aridity. Since Szilagyi et al. (2017) mended this problem by introducing the upper bound of ETp (i.e., Epmax), the 

calibrated αe in Figure 7a would not hold the same sensitivity to aridity changes. 
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Figure 7: Distributions of (a) the calibrated αe against the mean ETwb and (b) the mean Rn for 1991-2001. 

Instead, one could analytically relate the parameter αe with climatic variables by equating the Penman and the 

Priestley-Taylor equations, because ETp and ETw must be equal under ample water conditions, yielding:  

αe = 1 +
𝛾

∆ws

fuVPDws

Rn/λv
,           (8)  

where, VPDws is the VPD of the atmosphere overpassing the hypothetical wet surface. Although VPDws would be small owing 355 

to the interacting wet surface (Brutsaert and Stricker, 1979), Eq. (8) implies that the climatic variables, Rn, Δws, and u2, could 

amplify the effects of VPDws on αe. We conducted simple correlation analyses between the calibrated αe values and the 

corresponding averages of Rn, Tavg (i.e., the control of Δws), and u2. The Pearson r values of the αe to the three variables were -

0.56, 0.44, and 0.29, respectively (significant at 1% levels). The simple regression analyses, in addition, showed that the Rn, 

Tavg, and u2 explain 32%, 19%, and 9% of the variation of the calibrated αe values, respectively (significant at 1% levels). In 360 

other words, variation of Rn plays a substantial role in determining the optimal αe for the CR method, and it was found that 

locations with high αe tend to have low Rn (Figure 7b). 

Nevertheless, the calibrated CR provided little improvements in reproducing the interannual variability and trends of 

ETwb. Despite the slightly increased interannual variability in central-northern areas, the new maps of interannual variability 

and trends (Figure 9) were still similar to the outcomes from the fixed αe=1.09. This might be attributable in part to vegetation 365 

dynamics neglected in the CR method. The Penman and Priestley-Taylor equations assume stationary land-surface parameters, 

and are unable to capture the plants’ behaviors to atmospheric conditions that play a considerable role in the precipitation 

partitioning (Jasechko, 2018). Modelling studies showed that the absence of surface responses to CO2 fertilization has led 

offline hydrologic models to runoff projections contradictory to simulations of earth system models (e.g., Milly and Dunne, 

2016; Swann et al., 2016; Roderick et al., 2015). Yang et al. (2019) mended this problem by incorporating a simple surface 370 

roughness formulation to the elevated CO2 into the Penman-Monteith equation. Even though the CR method with the Penman 
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equation has worked well in Australia for the past decades (e.g., Crago and Quall, 2018), the prior studies suggest that surface 

responses to atmospheric changes could considerably affect temporal changes in ETp, ETw and thus ETa. This necessitates 

further refinements for the CR method to synthesize the surface behaviors explicitly under non-water-limiting conditions. It is 

worth noting that Australian carbon sink has enhanced during the 21st century even at increasing wildfire risks owing to the 375 

plants’ water-use efficiency and productivity increased by CO2 fertilization (Kelly and Harrison, 2014). 

In short, to capture the spatial variation of mean ETa in Australia, the CR method needs to consider the influence of 

climatic variables on the parameter αe. To regenerate the interannual variability and trends, the equations in the CR formulation 

are seemingly required incorporating dynamic surface parameters. In this case, the operational advantage of the CR method 

(i.e. no need of surface data) could disappear in return. 380 

 

 Figure 8: (a) interannual variation of the continental mean annual ETa, (b) the distribution of mean annual ETa for 2002-2012 and 

(c) the Taylor diagram comparing the eight ETa products against ETwb when the CR method is calibrated. 
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Figure 9: The distributions of (a) interannual variability for 2002-2012 and (b) trends of annual ETa from the CR method with 385 
calibrated αe. The dots indicate the statistical significance at 5% level. 

4.2 Intercomparison between ETa products 

Since precipitation is the primary control of ETa in the dry continent, biases and errors in the GRUN and LORA 

runoff dataset are unlikely to induce large biases in the grid-scale water balance. As mentioned earlier, the ratio of ETa to 

precipitation is approximately 90% in Australia, suggesting that caveats in the GPCC precipitation are major error sources to 390 

ETwb. Typically, errors in a grid precipitation product are introduced by: (i) the systematic measuring errors from evaporation 

out of rain gauges and aerodynamic effects, and (ii) the sampling errors from low gauging density. The GPCC precipitation 

takes an advanced correction and anomaly interpolation methods for reducing the systematic and the sampling errors via a 

very rigorous quality control framework (Schneider et al., 2014). The precipitation product has well closed the global water 

budget, becoming a reliable evaluation reference for other grid precipitation products (e.g., Sun et al., 2017). The quality of 395 

the GPCC data, hence, was unlikely a major concern. 

 Compared to ETwb, however, the other ETa models are subject to diverse limitations. The remote-sensing physical 

models do not account for soil moisture dynamics playing a pivotal role in canopy conductance and bare soil evaporation in 

(semi-)arid regions (Pan et al., 2020). While the GLEAM takes soil moisture into account in the ETa synthesis, whereas the 

PT-JPL does not consider the soil moisture dynamics and underrates ETa in shrubs and deserts in the southern hemisphere 400 

(Miralles et al., 2016). Given that bare soil evaporation introduces the largest error to ETa estimates (Talsma et al., 2018), the 

PT-JPL needs any corrections for operational ETa monitoring in Australia. 

 On the other hand, the machine-learning FluxCom, which showed the worst performance in this work, has important 

caveats. Even though it acceptably simulates long-term averages of the surface energy fluxes, the FluxCom carbon fluxes are 
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likely to have too small interannual variations in the energy fluxes (Jung et al., 2019). Recently, Ma et al. (2020) also 405 

emphasized the deficiency of the FluxCom in reproducing long-term ETa trends in the United States. Given that predictive 

performance of a machine-learning algorithm depends critically on training datasets (Yao et al., 2017), the machine learning 

ETa product needs to be further trained by any datasets describing the interannual behaviors. 

Pan et al. (2020) showed that interannual variability of ETa products by 14 land surface models was dominantly 

controlled by precipitation in most of regions in the Southern Hemisphere. However, they also highlighted the dynamic root 410 

parameterization of the ORCHIDEE-MICT model (Guimberteau et al., 2018), which is distinguishable from the other models, 

suggesting that ETa changes in Australia could be less sensitive to precipitation changes than indicated by commonly-adopted 

land surface models. Hence, larger interannual variability than in ETwb could be an indication that land surface parameterization 

might be oversensitive to precipitation changes (e.g., the simulations in the eastern part by the AWRA-L and the CLSMF2.5). 

Though it outperformed other models in streamflow generation (Frost et al., 2015), the AWRA-L needs corrections for the 415 

unexpected dry hotspots in inland areas. The two LIS land surface models, in addition, provided a consistent indication with 

the prior application for the Upper Blue Nile River (Jung et al., 2017). The CLSMF2.5 tends to provide higher ETa and lower 

streamflow than the Noah3.3, and it better represented the water budget in the sub-humid river basin. The overestimation in 

the ERA-Interim product was also found by Miralles et al. (2016) and Mueller et al. (2013). Sun et al. (2017) pointed out that 

the ERA-Interim often prescribed annual precipitation exceeding the GPCC P data. 420 

5 Conclusions 

In this work, we evaluated applicability of the calibration-free CR formulation in Australian land surfaces mostly 

under (semi-)arid climates. The terrestrial evapotranspiration (ETa) produced by the CR method was compared with a bunch 

of ETa products from physical, machine-learning, and land surface models, and their spatial and temporal variations and 

decadal trends were evaluated against the estimates from water balance. While it could generate the ETa product strongly 425 

correlated with the water-balance estimates, the CR method seemed to introduce considerable biases when comparing to the 

other models. In Australia mostly under (semi-)arid climates, the approach proposed by Szilagyi et al. (2017) was unlikely to 

outperform typically-adopted physical, machine-learning, and land surface models, and thus necessitates better 

parameterization for improvement. We draw the following conclusions worth emphasizing: 

(1) The optimal coefficient (αe) for the wet-environment evapotranspiration is unlikely constant. The αe=1.09 430 

obtained from the calibration-free approach introduced positive biases in (semi-)humid coastal areas while 

underestimating in arid locations. When calibrating αe each grid with the independent set of water-balance 

estimates, αe seems to respond to climatic variations. 

(2) Even with the calibrated αe, the CR method insufficiently captured the interannual variability and the decadal 

trends of the water-balance estimates at the grid scale. Since the latent heat flux is not only controlled by water 435 

stress but atmospheric conditions (e.g. CO2 concentration), any formulation that captures land surface behaviors 
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under non-water-liming conditions would be necessary in quantification of the wet-environment and potential 

evapotranspiration. 

(3) The evaluations of the physical, the machine-learning, and the land surface models provided a consistent 

implication with the prior global-scale studies. A remote-sensing physical model can better represent the surface 440 

energy balance by explicit consideration of soil moisture dynamics. The machine-learning depending largely on 

training datasets can suppress interannual variability and lead to overestimation in arid locations. ETa products 

from land surface models could be more sensitive to precipitation variability than physical and machine-learning 

models. 
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Appendix: Calibration-free determination of αe for the Australian continent. 670 

In Szilagyi et al. (2017) and Ma et al. (2019), αe values for ETw were determined by inserting the Priestley-Taylor equation 

into the Bowen ratio for a wet environment as: 

Rn−ETw

ETw
=

1−αe
∆w

∆w+𝛾

αe
∆w

∆w+𝛾

= 𝛾
Tws−Tw

es(Tws)−ea
,          (A1) 

where, Δw is the slope of the saturation vapor pressure curve at the wet-environment air temperature (Tw) and the other variables 

have the same definitions in section 2.1. By rearranging Eq. (A1), αe could be analytically obtained: 675 

αe =
[∆w+𝛾][es(Tws)−ea]

∆w{𝛾[Tws−Tw]+[es(Tws)−ea]}
.          (A2) 

Szilagyi et al. (2017) identified local wet cells within a large region using sufficiently fine relative humidity (RH) and Tws data 

from Eq. (4a). The αe values for wet cells are calculated with Eq. (A2) by inserting the measured air temperature into Tw, and 

are expected to fall within the theoretical limits of [1, (Δw+γ)/Δw] (Priestley and Taylor, 1972).  

In this work, the wet cells within the Australian continent were identified as locations satisfying the two conditions of Tws > 680 

Tavg+3°C and RH > 90%. While Szilagyi et al. (2017) used Tws > Tavg+2°C, we considered the fact that Tws estimates from 

Monteith (1981) is approximately 1°C higher than those estimated by the implicit Bowen ratio (Szilagyi, 2014). The results 

showed that very few cells (less than 1% of the Australian continent) satisfied the given criteria and their αe values from Eq. 

(A2) were within a very narrow range of 1.09 ± 0.01 (mean ± standard deviation). This calibration-free approach assumes that 

the mean of the αe values is applicable for the entire region, thus assuming that a suitable αe is spatially and temporally constant. 685 

More details are found in the Appendix B in Ma and Szilagyi (2019). 
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