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Abstract. Green roofs are increasingly popular measures to permanently reduce or delay stormwater runoff. The main objective

of the study was to examine the potential of using machine learning (ML) to simulate runoff from green roofs to estimate their

hydrological performance. Four machine learning methods, Artificial Neural Network (ANN), M5 Model tree, Long Short-

Term Memory (LSTM) and k-Nearest Neighbour (kNN) were applied to simulate stormwater runoff from sixteen extensive

green roofs located in four Norwegian cities across different climatic zones. The potential of these ML methods for estimating5

green roof retention was assessed by comparing their simulations with a proven conceptual retention model. Furthermore, the

transferability of ML models between the different green roofs in the study was tested to investigate the potential of using ML

models as a tool for planning and design purposes. The ML models yielded low volumetric errors that were comparable with

the conceptual retention models, which indicates good performance in estimating annual retention. The ML models yielded

satisfactory modelling results (NSE > 0.5) in most of the roofs, which indicates an ability to estimate green roof detention.10

The variations in ML models’ performance between the cities was larger than between the different configurations, which was

attributed to the different climatic characteristics between the four cities. Transferred ML models between cities with similar

rainfall events characteristics (Bergen-Sandnes, Trondheim-Oslo) could yield satisfactory modelling performance (NSE>0.5,

|PBIAS|<25%) in most cases. However, we recommend the use of the conceptual retention model over the transferred ML

models, to estimate the retention of new green roofs, as it gives more accurate volume estimates. Follow-up studies are needed15

to explore the potential of ML models in estimating detention from higher temporal resolution datasets.

1 Introduction

Green roofs are a type of green infrastructure (GI) that have received significant attention in recent years. In contrast to

conventional stormwater infrastructure, green roofs attempt to decrease stormwater outflows while providing other services,

such as reducing urban heat island effect, preserving the cities ecosystems and improving the urban visual amenity among20

other benefits (Berndtsson, 2010) . Roof areas represent around 40-50% of impermeable areas in dense urban catchments

(Dunnett and Kingsbury, 2004); therefore, retrofitting current roofs with substrate/growing media and vegetation offers an
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efficient and area-free GI option. Many studies have confirmed the potential of green roofs to mitigate rainfall events from field

measurements (Fassman-Beck et al., 2013; Johannessen et al., 2018; Liu and Chui, 2019; Stovin, 2010).

Quantifying the hydrological performance of a green roof is usually done by estimating retention
::::::::
retention, a permanent25

reduction of stormwater by evapotranspiration, and detention
::::::::
detention, flow peak reduction and delay. Both retention and

detention metrics are needed to justify the widespread implementation of green roofs by the stormwater community, and for

planning and design by practicing engineers. Hence, numerous studies have investigated different approaches and tools to

simulate outflows from green roofs to estimate retention and detention metrics.

For estimating green roof detention, models that simulate rainfall-runoff events in short time steps (sub-hourly) are required.30

Several models have been tested successfully in the literature, which can be categorized into physically-based and conceptual

models. Physically-based models simulate the water flow in porous media by solving physical equations numerically, such as

the Richards equations, either in 1D (Bouzouidja et al., 2018; Liu and Fassman-Beck, 2017; Peng et al., 2019), 2D (Li and

Babcock Jr, 2015; Palla et al., 2009) or 3D (Brunetti et al., 2016). Several tools exist that can be used to implement this type of

models, such as HYDRUS (Simunek et al., 2005), SWMS-2D (Simunek et al., 1994) and Comsol multiphysics (Multiphysics,35

2013; Sims et al., 2019). These models have proven to be accurate and to rely only on measurable parameters (Sims et al.,

2019) and can be powerful tools for studies that aim at in-depth understanding of the hydraulic behaviours of the different

green roof layers (Brunetti et al., 2016).

Another category of physically-based models apply simplified and analytical forms of physical equations, such as the Green-

Ampt equation for infiltration and Darcy law for saturated water flow (Krebs et al., 2016; She and Pang, 2010; Hernes et al.,40

2020). Popular modelling tools that implement these models include the EPA-SWMM (Rossman et al., 2010) and Mike-Urban

(DHI, 2017). This category of models is perhaps the most commonly applied in the literature of green roof modelling, and it has

been acknowledged by many studies to be a suitable tool for analysing the hydrological performance of green roofs (Cipolla

et al., 2016). However, due to the simplicity of these models, they often rely on calibrated rather than measured parameters.Peng

and Stovin (2017) found the simulated hydrographs of uncalibrated SWMM models to deviate significantly form the observed45

ones. Johannessen et al. (2019) attempted to transfer calibrated SWMM model parameters between similar green roofs located

in different locations. However, only parameter sets from wet locations yielded good results in drier locations but not vice versa

Conceptual models simplify the physical processes using linear or nonlinear equations to simulate green roof runoff. One

common type of these models is the reservoir routing model which was applied to estimate runoff detention from event-based

simulations in previous literature (Palla et al., 2012; Soulis et al., 2017; Vesuviano et al., 2014). These models were found to50

produce results that are comparable to physically-based models with lower level of complexity (i.e. reduced number of model

parameters) (Peng et al., 2019). Palla et al. (2012) recommended the use of a reservoir routing model instead of physically-

based models for design purposes when little information is available about the green roof properties. However, the parameters

of conceptual models are not measurable. Hence, calibration is needed to find their optimal values, unlike physically-based

models (Peng et al., 2019). A few studies have identified relations between the flow parameters of reservoir models and some55

physical properties of green roofs, such as slope and substrate depth (Vesuviano and Stovin, 2013; Yio et al., 2013). However,

these studies focused on lab-scale green roofs in which detention due to the horizontal flow is not significant (Sims et al., 2019).
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For estimating green roof retention, models with water balance equations (in hourly or daily time step) and suitable repre-

sentation of the actual evapotranspiration process (AET) were found by many studies to be sufficient (Bengtsson et al., 2005;

Jahanfar et al., 2018; Johannessen et al., 2017; Stovin et al., 2013). The most common way to model AET is by multiplying the60

potential evapotranspiration (PET), the maximum evaporation rate assuming unlimited water supply, with reduction functions

that account for soil moisture deficit and crop type. The reduction functions require careful parameterization of the maximum

storage of the roof and crop factors. The maximum storage of the roof was found by many studies to be related to the measur-

able field capacity of the substrate (Liu and Fassman-Beck, 2017; Stovin et al., 2013). Crop factors for agricultural crops are

well documented and studied (Allen et al., 1998). However, crop factor values for Sedum plants, commonly applied for green65

roofs, are less known. Previous studies reported different crop factor values for Sedum plants (Berretta et al., 2014; Rezaei

et al., 2005; Sherrard Jr and Jacobs, 2012).

Data-driven models, which are derived entirely from observed data, may offer alternative modelling tools that can estimate

both retention and detention of green roofs without explicitly accounting for complex hydrological processes. However, the

use of data-driven models in green roof studies has been limited to simple regression models (Carson et al., 2013) which are70

site-specific and not transferable. More advanced data-driven methods, such as Machine learning (ML), have been commonly

applied in many hydrological modelling studies in the last few decades. However, only a few studies were found to apply ML

models in green infrastructures (Tsang and Jim, 2016; Radfar and Rockaway, 2016; Li et al., 2019) and no study was found to

apply ML models in estimating the hydrological performance of extensive green roofs.

Machine learning methods have been successfully applied in hydrological modelling in recent decades. Previous studies75

reported better performances of ML models compared to conventional hydrological models in runoff prediction (Solomatine

and Dulal, 2003; Yilmaz and Muttil, 2014; Young et al., 2017), runoff simulation (Javan et al., 2015; Kratzert et al., 2018) ,

and for building relationships between water level and discharge (Bhattacharya and Solomatine, 2005). Some of the popular

Machine Learning methods applied in hydrology include Artificial Neural Networks (ANN), M5 model tree, Long Short-Term

Memory (LSTM), and k Nearest Neighbours (kNN).80

Artificial Neural Network is the most common and among the earliest ML used in hydrological modelling (Daniell, 1991).

Early examples of research into ANN includes the study conducted by Hsu et al. (1995), in which ANN outperformed the linear

ARMAX and the conceptual Sacramento SAC-SMA model in simulating runoff from a medium-sized catchment. Likewise,

Tokar and Johnson (1999) compared an ANN to a simple conceptual model and found the former to outperform the latter.

M5 model tree has been applied in different studies. Solomatine and Dulal (2003), reported a satisfactory performance of85

both M5 model tree and ANN in runoff forecasting. They, however, emphasized the advantages of M5 model tree over ANN

due to the better interpretation of M5 model outputs. Goyal et al. (2013b) applied the M5 model tree for flow forecasting in

India, among other ML methods and found it to perform satisfactorily. Away from flow simulation, Gharaei-Manesh et al.

(2016) used M5 tree and other methods to simulate the spatial distribution of snow depths in Iran, while Goyal et al. (2013a)

evaluated M5 model tree on formulating operation rules for a reservoir. Kisi (2016) used M5 model tree to model reference90

evapotranspiration.
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LSTM has been applied in different scientific fields and could provide good results (Shen, 2018). Regarding runoff mod-

elling, Kratzert et al. (2018) investigated the potential of LSTM to predict runoff from ungauged basins. They could achieve

good prediction performance that was comparable to the well-known Sacramento model. Similarly,Ayzel (2019) obtained

comparable results with LSTM to a conceptual model. Hu et al. (2018) compared between an ANN and an LSTM in runoff95

simulation and found the latter to outperform the former. Nevertheless, LSTM is computationally expensive, and the training

process takes a long time (Ayzel, 2019). k-Nearest Neighbour was applied first by Karlsson and Yakowitz (1987) in runoff

forecasting in which it outperformed unit hydrograph forecasters. Modaresi et al. (2018) found the k-Nearest Neighbour to

be comparable with ANN in monthly runoff forecasting. Furthermore, Wu et al. (2009) applied the k-Nearest Neighbour in

predicting monthly runoff, and they discussed the effect of k value on the performance of kNN.100

Few studies have modelled green infrastructure with ML techniques. For instance, Tsang and Jim (2016) applied a Fuzzy-

neural network to optimize irrigation of a green roof by estimating soil moisture deficit. The neural network could reproduce

the soil moisture well, which indicates the capability of ML models to simulate the nonlinear AET process. Li et al. (2019)

developed an artificial neural network model to predict the flow reduction from a catchment with different GI structures.

Similarly, Radfar and Rockaway (2016) applied a neural network model to predict flow reduction from a permeable pavement.105

The satisfactory performances of ML models in two studies demonstrate the potential of ML models in GI hydrological

modelling.

This study examines the ability of four machine learning methods, M5 model Tree, Artificial Neural Networks (ANN), Long

Short-Term Memory (LSTM), and k-Nearest Neighbour (kNN), to estimate green roof hydrological performance, specifically

by:110

1. Evaluating the performance of ML models in simulating the temporal dynamics of green roof subsurface runoff and

estimating the retention from long term simulations across different climatic locations.

2. Investigating the potential of using ML models as a useful tool for planning that predicts the performance of new green

roofs when observations are not available.

2 Data115

Sixteen extensive green roofs located in four Norwegian cities with different climates: Bergen (BERG), Sandnes (SAN), Oslo

(OSL) and Trondheim (TRD) were used in the study. Bergen city is located on the western coast of Norway. Bergen is the

wettest city among the four with annual precipitation of 3110 mm followed by Sandnes city, which is located on the south-west

coast, with annual precipitation of 1690 mm. Oslo is the driest city with only 970 mm of annual precipitation while Trondheim

is the northmost city with annual precipitation of 1070 mm. According to the Köppen–Geiger Climate Classification (Kottek120

et al., 2006) , both Bergen and Sandnes are classified as temperate oceanic climate (Cfb), while Oslo has the warm-summer

humid continental climate (Dfb) and Trondheim has a subpolar oceanic climate (Dfc). The locations of the four cities are

shown in figure 1. Table 1 shows the geometries and configurations of roofs. Roof geometries (areas and slopes) vary between
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Figure 1. Locations of the four Norwegian cities with green roof field data

the cities, while the different configurations represent the variety of options in the Norwegian green roof market. Some green

roofs in the study have the same configuration, for instance, BERG1, SAN1 OSL3 and TRD1. Continuous times series data125

were collected from TRD, BERG and SAN roofs between 2015 to 2017, while the green roofs at OSL have a seven-year record

of data from 2011 to 2017. Data includes precipitation, runoff, relative humidity and wind speed at a 1 min resolution. In Oslo,
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the wind speed was not measured at the roofs but collected from a nearby station. For details about roof setup, data collection

and processing, please refer to Johannessen et al. (2018).

Table 1. Roof Geometries and Configurations

Roof Geometry Configuration

Width Length Slope Vegetation

mat

thickness1

Extra Substrate type and

thickness

Drain mat type and thickness Total roof

thickness

(m) (m) (%) (mm) (mm)

BERG1 1.6 4.9 16 30 - Textile retention fabric (10mm) 40

BERG2 1.6 4.9 16 30 - Substrate mat2 (50mm) 80

BERG3 1.6 4.9 16 30 Separate Substrate3

(50mm)

Drainage layer5(EPS) (75mm) + Textile

retention fabric (5mm)

160

BERG4 1.6 4.9 16 30 - Textile retention fabric (3mm) 33

BERG2
:::::
BERG5 1.6 4.9 16 30 Pumice (50mm) Textile retention fabric (3mm) 83

OSL1 2 4 5.5 30 - Drainage layer (HDPE)6(25mm) 55

OSL2 2 4 5.5 30 Separate Substrate3

(50mm)

Drainage layer (HDPE)6(40mm) +

Textile retention fabric (5mm)

125

OSL3 2 4 5.5 30 - Textile retention fabric (10mm) 40

SAN1 1.6 5.3 27 30 - Textile retention fabric (10mm) 40

SAN2 1.6 5.3 27 30 Separate Substrate3

(50mm)

Drainage layer (EPS)5(75mm) + Textile

retention fabric (5mm)

160

SAN3 1.6 5.3 27 30 - Textile retention fabric (3mm) 33

SAN4 1.6 5.3 27 30 - Substrate mat2 (50mm) 80

TRD1 2 7.5 16 30 - Textile retention fabric (10mm) 40

TRD2 2 7.5 16 30 - Substrate mat2 (50mm) 80

TRD3 2 7.5 16 30 Separate Substrate3

(50mm)

Drainage layer (HDPE)6(25mm) +

Textile retention fabric (5mm)

110

TRD4 2 7.5 16 30 Separate Substrate3

(50mm)

Drainage layer (PE)4(30mm) 110

1 Pre-grown reinforced vegetation mats (sedum)
2 Substrate mat: a mineral wool plate
3 Separate Substrate: a mixture of Leca and bricks
4 Drainage layer (PE): plastic drainage layers of polyethylene
5 Drainage layer (EPS): plastic drainage layers of expanded polystyrene
6 Drainage layer (HDPE): plastic drainage layers of high-density polyethylene

130
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3 Methods and tools

3.1 Machine learning models

3.1.1 M5 model Tree

In this approach, the training data are divided into many subsets. For each subset, a piece-wise linear regression equation is

built between the output and the input variables (Solomatine and Dulal, 2003). The algorithm used by the model tree is called135

M5, which was developed in 1992 (Quinlan et al., 1992). It divides the data into subsets based on rules that reduce the intra-

variation (variance) within each subset (variables within each subset are as similar as possible). The M5 model tree has an

upside-down tree structure. Input variables enter the tree from the top (the tree root) to arrive at the models located at the tree

leaves. For a detailed explanation of the M5 model tree, see Solomatine and Dulal (2003).

In this study, Cubist library in R (Kuhn et al., 2012) was used to build M5 models. The performance of Cubist-M5 models140

can be improved by tuning two hyperparameters, namely committees and neighbours. The former is the number of trees in a

boost-like ensembles scheme where iterative M5 models trees are built in sequence. The first M5 tree is built following the M5

algorithm, while the subsequent trees are created from the residuals of the single tree. The final model prediction is the average

from all M5 trees in the ensemble. The final prediction of a single tree can be improved by a post-model nearest-neighbour

adjustment (Quinlan, 1993). The predicted value of the tree is smoothed following a weighting schemes from several nodes145

within the single tree. The number of nodes used in the smoothing is called neighbours.

3.1.2 Artificial Neural Network (ANN)

The ANN applied in this study is the standard feed-forward neural network. It comprises an input layer, a hidden layer(s) and

an output layer. The building block of the network is called a neuron, and each neuron is fully connected with all other neurons

in the backward and forward layers. Hidden layers are where relations between input variables are revealed. Each neuron in150

the ANN applies simple mathematical operations for the variable vectors, as represented in equation 1:

O = f(X1×W1 +X2×W2 +B) (1)

O is the output from a neuron, W1 and W2 are the weights of the variables X1 and X2, respectively, and B is the neuron’s

bias. f(.) is the neuron’s activation function that adds non-linearity to the neuron’s output. During the training process, the

weights and biases are updated for the whole network to obtain the best fit between simulated and observed outputs. A standard155

algorithm used for the training is backpropagation, which uses the approach of the steepest gradient descent (Rumelhart et al.,

1986). Training of the neural network is done by dividing the training data set into several batches. The weights and biases

are updated for each batch until all training data have been visited, and then the same cycle is repeated. This cycle is called

an epoch, and the learning performance improves with the increasing number of epochs. However, there is a risk of overfitting

for models with high numbers of epochs. To avoid that, a separate data set (validation data set) is often used to optimize the160
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Figure 2. : Structure of the Long Short-Term Memory (LSTM) cell, modified from Kratzert et al. (2018)

number of epochs by determining the objective function for the validation data while training the model. Overfitting starts

when the error increases in the validation data set while decreasing in the training data.

3.1.3 Long Short-Term Memory (LSTM)

In hydrology, sequential runoff data are often autocorrelated, especially data with a short time step. Autocorrelation is triggered

by system memory in hydrology, usually due to the storage effects. A Recurrent Neural Network (RNN) is a special type of165

neural networks that can tackle sequential data modelling because it includes output from the previous time step as input to the

following time step. Nevertheless, it doesn’t account for the long-term dependency in the system. Hochreiter and Schmidhuber

(1997) discussed the issue of RNN with long term dependency and proposed a unique RNN model called Long Short-Term

Memory (LSTM). In this model, a value representing the system memory (S) is calculated and updated each time step to

account for the long-term dependency of the system. LSTM cell comprises of three gates (Figure 2): forget gate (f), input gate170

(i) and output gate (o). The three gates control cell output and update its state for each time step by applying weights (W ) and

biases (B). The first step is to control which information to be forgotten from the previous time step (ft), which is done by the

forget gate using equation 2. Secondly, the updated value for the cell state (∆St) is determined from equation 3. Subsequently,

the input gate output (it) is derived from equation 4, which controls how much information will be used from ∆St to update

the cell state St. In the following step, the cell state St is determined by applying equation 5. Finally, the output from the output175

gate (Ot) is calculated from equation 6 which used to determine the cell output (Qt) by using equation 7. In this study, Keras

library (Chollet et al., 2015) was used to build ANN and LSTM models.

ft = ff (Wf ×Xt +Uf ×Qt−1 +Bf ) (2)

∆St = f∆St(W∆St ×Xt +U∆St ×Qt−1 +B∆St) (3)180
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it = fi(Wi×Xt +Ui×Qt−1 +Bi) (4)

St = ft ·St−1 + it ·∆St (5)

185

ot = fo(Wo×Xt +Uo×Qt−1 +Bo) (6)

Qt = tanhSt · ot (7)

3.1.4 k Nearest Neighbours (kNN)

k Nearest Neighbours is a nonparametric method that estimates the output of each time step based on its similarity to the190

historical time steps. Basically, the algorithm determines similarity distances (such as euclidian distances) between each of the

input variables of the new time step to the variables from the training data set. Then it calculates the mean outputs of the k most

similar time steps.In this study,
::
the

::::::::
euclidean

:::::::
distance

::::
was

::::
used

::
as

::
a

:::::::
measure

::
of

::::::::
similarity

::::
and

:::
the FNN library in R was used

to build kNN models (Beygelzimer et al., 2015).

3.2 ML Modelling steps195

A general equation was developed relating runoff to climatic variables as follow (equation 8):

Rt = f(Pt,Pt−1,Pt−2, . . . ,Pt−lag,Tat,Tat−1,Tat−2, . . . ,Tat−lag,Wt,Wt−1,Wt−2, . . . ,Wt−lag,Rht,Rht−1,Rht−2, . . . ,Rht−lag)

(8)

R is green roof runoff, P is precipitation, Ta is air temperature, W is wind speed, and Rh is relative humidity. This is a

simplification as the physical properties of the green roof also affect its runoff. However, using data from the same green roofs

in this study, Johannessen et al. (2018) found only a small variation in the hydrological performances between the different200

roof configurations and found the climatic variables to have high impacts on their performance. In the ML models in this study,

climatic variables were lagged to represent the initial saturation of the green roofs at each time t. The values of lag were

optimized for each green roof and for each ML model during the process of hyperparameters optimization.

Data were aggregated into one-hour resolution, and snow accumulation periods were excluded (1 Oct. – 31 Mar.). The

data of each green roof were divided into three sets: training, validation and testing. The training datasets were used to train205

the parameters of the ML models. Validation datasets were used for hyperparameters optimization while the testing datasets
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Table 2. Periods selected for model training, validation and testing

City Data
Period

Amount of precipitation (mm)
From [dd.mm.yyyy] To [dd.mm.yyyy]

Bergen

Training 01.04.2017 30.09.2017 1299.69

Validation 01.04.2016 30.09.2016 1376.99

Testing 01.04.2015 30.09.2015 936.32

Oslo

Training 01.04.2016 30.09.2016 429.82

Validation 01.04.2017 30.09.2017 667.49

Testing 01.04.2015 30.09.2015 551.61

Sandnes

Training 01.04.2016 30.09.2016 727.50

Validation 01.04.2015 04.06.2015 299.98

Testing 01.04.2017 30.09.2017 880.92

Trondheim

Training 01.04.2017 30.09.2017 493.77

Validation 01.04.2016 30.09.2016 379.99

Testing 01.04.2015 30.09.2015 546.62

were used for the independent evaluations of the ML models and for the comparisons with the conceptual models. The periods

between 01.04.2015 to 30.09.2015 were used as testing datasets. At Sandnes, only data of two months in 2015 are available due

to issues in the measurements. Hence, the periods of 01.04.2017 to 30.09.2017 were used as testing periods at Sandnes. Initially,

the selection of the training periods was based on the amount of precipitation presented in table 2; the wettest year between210

2016 to 2017 were initially selected as training periods. The rationale for the selection was that the wettest year covers a

broader span of precipitation events which improves the generalization performance of the models. After the hyperparameters

optimization, we further analyzed the change of ML performance when using the validations datasets for model training.

Some of the validation datasets slightly improved the ML performance and hence were selected as training datasets. The final

selection of the training, validation and testing periods is presented in table 2 .215

3.2.1 ML hyperparameter tuning

ML models were tuned to achieve good modelling performance and to avoid overfitting. Hyperparameter tuning is the process

of finding the optimal ML hyperparameters for the problem (e.g. number of hidden layers in ANN, number of LSTM units, k

value in kNN, etc.). Bayesian optimization (BO) was selected for hyperparameters tuning (Snoek et al., 2012). This algorithm

is suitable for functions in which evaluating one set of parameters is expensive and time-consuming. It was applied by Worland220

et al. (2018) to optimize hyperparameters for several machine learning models to predict low flows for ungauged basins. In
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Bayesian optimization, the objective function (i.e. the relation between ML hyperparameters and the performance of the ML

model in the validation data set) is approximated by a probabilistic model (e.g. Gaussian process) that is used to select the most

promising hyperparameter to evaluate in the true objective function. The algorithm works as follow:

1. Select initial points of hyperparameters randomly and evaluate them in the true objective function.225

2. Build a probabilistic model of the objective function (surrogate function) based on the initial points. Gaussian process

was selected as the surrogate function of the objective function (Snoek et al., 2012; Worland et al., 2018).

3. Choose which hyperparameter to evaluate next in the true objective function based on the surrogate function by opti-

mizing an acquisition function. The expected improvement (EI) was used as an acquisition function in this study (Snoek

et al., 2012; Worland et al., 2018).230

4. Use the new evaluated point to update the surrogate function.

5. Repeat steps 2-4 for N iterations

Prior to optimization, ML hyperparameters that require tuning and their upper and lower limits were selected (Table 3),

following similar studies (Kratzert et al., 2019; Shortridge et al., 2016). For ANN and LSTM, dropout layers were implemented

as a measure to reduce overfitting (Kratzert et al., 2018)
:::::::::::::::::::
(Srivastava et al., 2014). At the dropout layer, a specific portion of the235

optimized weights and biases are set to zero randomly at each training epoch. This technique is used to prevent the network

to learn specific pattern of the input noises and to focus on learning the general patterns of the data. For LSTM, only one

hidden layer was selected for this study following the recommendation of the study of Ayzel (2019) in which, a grid search

was performed for LSTM hyperparameters which compared thousands of LSTM structures. One hidden layer was found to

perform reasonably well with lower computational cost compared with multiple hidden layers.240

In the first step of the BO, random samples of hyperparemetrs (five in this study) were drawn from the selected ranges

presented in table 3. These initial points were used to build a Gaussian process model. The Gaussian process model represents

the objective function by constructing posteriors distribution of functions with high uncertainty bound far from the sampled

points and low uncertainty bounds near the sampled points. In the next step, a continuous function (EI) is calculated for each

point x along the Gaussian process model by determining two components. First, how much improvement is expected at x245

by comparing the mean of the Gaussian process model at the point x with the current best estimate from the sampled points.

Second, how much is the uncertainty of the Gaussian process model at the point x, based on the uncertainly bounds. The point

x that maximizes the value of EI is selected to be evaluated in the true objective function and the result is used to update the

Gaussian process model for the next iteration. At the first iterations, the values of EI function are higher for regions with high

uncertainty, so the algorithm fever points in new regions (exploration). After many iterations and new samples, the uncertainty250

bounds of the Gaussian process model decreases and the algorithm fevers areas with better solutions (exploitation). After N

iterations (100 in this study), the algorithm returns the hyperparemeters that generate the best solution. In this study, the R

library "ParBayesianOptimization" (Wilson, 2021) was used for the BO.

max
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Table 3. Selected ML hyperparameters for tuning

Models Hyperparameters Lower Limit Upper Limit

ANN Number of hidden layers 1 4

Number of Neurons 1 100

Dropout rate 0 0.499

lag 1 72

LSTM Number of hidden layers 1 1

Number of LSTM units 1 100

Dropout rate 0 0.499

lag 1 72

M5 Neighbors 20 20

Committees 20 20

lag 1 72

kNN k 1 100

lag 1 72

3.3 The conceptual retention model255

The sixteen roofs were modelled using a conceptual retention model (RM), which was developed and validated by Stovin et al.

(2013). The RM model is intended to provide a robust tool that estimates green roof retention using simple water balance

equations (equations 9,10 and 11).

Rt = max(0,Pt− (Smax−St)−AETt) (9)

St =min(St−1 +Pt−AETt,0)) (10)260

AETt = PETt×
St−1

Smax
(11)

Rt is the runoff from a green roof at time t, Pt is the precipitation at time t, Smax is the maximum storage available in a green

roof and St is the water stored in a green roof at time t. In our study region, Johannessen et al. (2018) found the Oudin’s model

for ET to be the most accurate for their water balance model and Almorox et al. (2015) recommended the use of Oudin for
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cold climates. Hence, the potential evapotranspiration was computed using Oudin’s model as follows (equations 12):265

PET(
mm
day

) =

0, if Tamean ≤ 5

Ra
λρ × 0.01× (Tamean + 5), if Tamean > 5

(12)

Tamean is the daily mean temperature, Ra is extra-terrestrial radiation derived from Julian day and latitude (MJ.m−2),
1
λρ ≈ 0.408,λ is the latent heat of water (MJ.kg−1), ρ is the volumetric mass of water (kg.m−3).

The parameter Smax represents the maximum retention capacity of the green roof or the difference between the field capacity

and the permanent wilting point of the green roof substrate (Stovin et al., 2013). There exist standard laboratory tests to270

physically measure the substrate field capacity (Breuning and Yanders, 2008) and the permanent wilting point (Fassman and

Simcock, 2012). In this study, however, Smax values were estimated by assuming the field capacities of the roof layers from

reported literature values as follow: vegetation mats were assumed to have 20% of the total substrate depth as a field capacity

(Johannessen et al., 2018) , brick-based substrates were assumed to have 25 % of the total substrate depth as a field capacity

(Stovin et al., 2013) while the drainage mats were assumed to have no permanent storage. The retention models with estimated275

Smax is refereed to as uncalibrated retention models (RMuncalib).

To allow for fair comparison with the ML models, retention models with calibrated Smax values were used (RMcalib). For

each roof, we ran the conceptual model by varying the value of Smax between 10% to 50% of the substrate total depth. Values

of Smax that minimize the Volumetric error of the RM model were selected. The training periods in table 2 were selected for

calibration.280

3.4 ML Model evaluation

Methods were evaluated based on the performance on the testing datasets. With respect to retention estimation, flow accu-

mulation curves were plotted for the simulated runoff from ML models against the observed runoff and compared with the

results from the conceptual retention model. In addition, the percentage bias (PBIAS) values (equation 13) were calculated for

each simulation for comparison. To evaluate the performance of ML models in estimating the temporal variation in runoff, the285

simulated runoff from ML models were plotted against the observed values and the NSE (equation 14) values were determined.

Values of NSE > 0.5 were considered satisfactory (Moriasi et al., 2007; Rosa et al., 2015). To evaluate the potential of using ML

as a useful tool for planning and design purposes, ML models were transferred between the roofs unchanged. The transferred

models simulated the testing periods of each roof, and NSE was used to evaluate the transferability performance. Moreover, a

volumetric factor (vol) based on the PBIAS was determined by using equation 15 to assess transferability in terms of volume290

estimation. A vol value of 1 indicates a perfect runoff volume estimation and hence a perfect retention estimation, while A

vol value of zero indicates 100% error in volume estimation. Additionally, we compared the performance of transferred ML

models with the uncalibrated retention models.

PBIAS = 100×
∑
Qobs−

∑
Qsim∑

Qobs
(13)
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NSE = 1−
∑

(Qobs−Qsim)2∑
(Qobs−Qobs)2

(14)

vol = 1− |PBIAS|
100

(15)

4 Results and Discussion

4.1 Hyperparameter optimization (model tuning)

For LSTM and ANN models, the number of epochs was selected prior to the BO process by running an initial ANN model300

with 1000 epochs. After 30 epochs, the performance in the validation data didn’t improve further and started to decrease after

100 epochs while improving in the training data set, which indicates overfitting. Therefore, 30 epochs were selected as an

optimal value. Then, the BO algorithm was applied with 100 iterations for each ML model and for each roof. The selected

hyperparameters of each iteration were stored. Figure 3 presents the empirical probability density distributions of the selected

ANN hyperparemeters by the BO and their associated performances in the validation datasets. The results can interpreted as305

that hyperparmeters with high density values are located in regions that maximized the modelling performance in the validation

datasets. The hyperparemeters that generated the best results at the validation datasets were selected for each roof and each

ML model, as presented in table 4.

Based on figure 3, ANN with one hidden layer was found to be sufficient for most of the roofs in the study. Hence, deep

ANN architectures , i.e. ANN models with many hidden layers, might not be required for this task. This has an important310

implication as deep ANN models are computationally expensive and prone to overfitting. Likewise, Ayzel (2019), found that

deep LSTM models are not required for predicting runoff at hourly time steps, while Zhang et al. (2018) found a single-layer

LSTM to perform better than LSTM model with two layers for predicting daily water level depths in agricultural land.

Another interesting finding is the lag values which are varied between the cities. It can be noted that, the lag values were

smaller in Beren and Sandnes compared to Trondheim and Oslo. To interpret this finding, rainfall events, with 6-hour intra-315

event periods, were extracted from the three datasets at the four cities and compared, as shown in Figure 4. Bergen roofs

received events with higher amount and duration compared to Oslo and Trondheim roofs, whereas the antecedent dry weather

periods (ADWP) at Oslo and Trondheim are longer than BERG. Hence, due to the longer ADWP, a longer memory of the

system is required to account for the wider range of possible initial saturation, compared to Bergen roofs.

4.2 Model evaluations320

4.2.1 Retention estimation

Machine learning models were built for all roofs based on the optimized hyperparemeters, selected by the BO algorithm.

Figure 5 illustrates the simulated and observed runoff cumulative curves together with the cumulative precipitation for each
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Figure 3. Empirical density distributions of the selected ANN hyperparemeters by the Bayesian optimization algorithm and their associated

performances in the validation datasets

roof, and table 5 shows the values of PBIAS and NSE of the models at the testing datasets. The results presented in figure 5

and table 5 confirm that the ML models and the conceptual models can reproduce the observed runoff volume in most of the325

green roofs. By comparing the median values of the PBIAS on the testing periods, LSTM yielded only -0.15% with a standard

deviation of 8.61%. Following LSTM, median values of -0.55%, -1.50% and 4.05% were obtained by the RMcalib, ANN and

RMuncalib models, respectively. The M5 models yielded simulation with a median PBIAS of -9.4% while the kNN yielded

the highest volumetric errors with a median PBIAS of -24.25% with a standard deviation of 9.78%. It can be noted that the

conceptual retention models and ML models, except kNN, could produce results that are classified as acceptable modelling330

results regarding volumetric error (|PBIAS|<25%), as per Moriasi et al. (2007).
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Table 4. Results of ML Hyperparameters tuning

GR
ANN LSTM M5 kNN

Neurons Layers Dropout rate Lag Units Dropout rate Lag Neighbors committees Lag k Lag

BERG1 100 1 0.00 5 100 0.19 5 6 18 14 6 4

BERG2 89 1 0.25 9 88 0.36 7 9 40 13 8 2

BERG3 43 2 0.00 6 85 0.50 45 6 12 19 8 3

BERG4 100 1 0.00 5 72 0.00 4 5 88 48 8 3

BERG5 70 2 0.07 7 73 0.34 47 6 100 43 7 6

OSL1 53 2 0.17 31 73 0.38 18 3 60 44 11 5

OSL2 41 2 0.26 34 100 0.22 13 9 18 48 10 4

OSL3 38 2 0.12 38 83 0.50 18 3 12 43 11 4

SAN1 100 1 0.16 10 100 0.00 36 9 54 36 11 7

SAN2 39 2 0.12 8 70 0.29 2 5 45 48 8 4

SAN3 70 2 0.10 9 100 0.21 10 1 100 29 10 7

SAN4 70 2 0.10 9 100 0.21 10 1 100 27 35 4

TRD1 97 2 0.27 61 55 0.07 48 1 26 27 7 16

TRD2 99 1 0.33 50 35 0.50 48 6 100 45 5 16

TRD3 91 1 0.29 53 31 0.00 46 9 100 46 28 5

TRD4 70 4 0.27 13 100 0.24 48 6 20 32 47 4

4.2.2 Temporal variations in runoff

Table 5 presents the NSE values for training and validation periods for the ML models. Most ML models yielded satisfactory

results in the testing periods (NSE > 0.5). M5 models produced results with highest NSE values, with a median value of

0.80. Both ANN and LSTM produced result with a median NSE values of 0.67. Figure 6 shows the observed and simulated335

hydrographs for BERG2 roof, which confirms the ability of the ML models to reproduce the observed runoff. In contrast, the

conceptual models produced satisfactory results in only five roofs. We found the green roofs in our study to detain small and

medium sized events for up to two hours. The conceptual model failed to simulate these dynamics due to lack of routing.

The performance of ML models varied between the different cities more than between the different configurations. Johan-

nessen et al. (2018), using the same data in this study, observed similar hydrological performance for the different configuration340

within the same city. It should be noted that, however, the geometries of the roofs are identical at each city (Table 1). The per-

formance of the ML methods can be explained based on this comparison between the cities’ rainfall characteristics (Figure 4).

For instance, the NSE values of the ML models are higher in Bergen roofs in comparisons to the other roofsin the study
::::
Oslo

::::
roofs. As mentioned earlier, Oslo roofs have a wider range of possible initial saturations. Therefore, one year of training data
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Figure 4. Comparison between the rainfall events at the four Norwegian cities

might not be enough to cover this wide range of runoff possibilities. On the other hand, Bergen roofs received more frequent345

and intense precipitation events resulting in a small range of possibilities of initial saturation that could be covered using one

year only. The kNN method produced lower NSE values compared to the other ML models. This was attributed to the relatively

small training data used in this study as kNN estimates the performance depending on the similarity to the previous time steps.

LSTM maintains a state value between consecutive time steps which makes it more suitable for modelling green roofs where

initial saturation plays an important role in green roof runoff generation process. A comparison was made between ANN and350

LSTM at TRD1 (Figure 7) to demonstrate the potential of LSTM. ANN was found to produce runoff when no precipitation

occurred, unlike LSTM. Moreover, LSTM could simulate the flow peaks more accurately than ANN. Likewise, Kratzert et al.

(2018) found LSTM simulations to be smoother than a normal recurrent neural network and to be better in accounting for the

storage capacity (including snow accumulation) of a natural catchment

4.2.3 Effect of training data and ensemble modelling355

The performance of ML models when using different data for model training was evaluated. For each roof, two ML models

were built; one by using the training datasets in table 2 for model training and one by using the validation datasets in table 2 for

model training. Sandnes roofs were excluded from this analysis due the missing data in one 2015, as discussed earlier. Figure

8 demonstrates the performance of LSTM models at BERG2, OSL1 and TRD1 roofs when using different data for model

training. The performances of the two LSTM models (LSTM1 and LSTM2) were quite similar, as presented in figure 8. One360

idea that could improve the estimates of the ML models is to combine the simulations from several ML models that are build
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Table 5. Overall modelling performance
:::::
(testing

::::
data)

GR
ANN LSTM kNN M5 RMcalib RMuncalib

NSE PBIAS NSE PBIAS NSE PBIAS NSE PBIAS NSE PBIAS NSE PBIAS

BERG1 0.72 9.80 0.75 9.00 0.76 -5.40 0.84 7.40 0.20 8.10 0.14 12.5

BERG2 0.83 -0.20 0.82 -4.20 0.77 -6.70 0.91 -8.80 0.35 -11.00 0.33 -9

BERG3 0.76 -9.70 0.78 -8.30 0.74 -11.00 0.84 -10.50 0.61 -9.00 0.61 -9.7

BERG4 0.81 -7.60 0.81 -10.90 0.82 -18.40 0.89 -13.30 0.61 -8.90 0.63 -15.4

BERG5 0.66 3.30 0.64 1.80 0.66 -10.80 0.72 -5.90 -0.01 0.80 -0.19 17.5

OSL1 0.58 -5.40 0.61 -3.90 0.51 -24.70 0.61 -10.00 0.53 6.60 0.53 6.6

OSL2 0.54 -17.60 0.60 -3.70 0.49 -26.90 0.55 -14.00 0.76 -7.20 0.8 -13

OSL3 0.58 5.60 0.60 2.70 0.53 -21.60 0.65 -3.60 0.44 10.50 0.51 3.5

SAN1 0.83 9.50 0.70 -3.10 0.75 -32.60 0.90 -6.50 -0.10 -1.50 -0.3 4.6

SAN2 0.73 -3.00 0.67 -3.00 0.67 -27.70 0.80 -15.00 0.39 -9.40 0.41 -10.6

SAN3 0.47 -1.50 0.46 1.60 0.49 -29.40 0.65 -6.40 -0.34 0.80 -0.5 7.1

SAN4 0.47 -1.50 0.46 1.60 0.46 -28.10 0.64 -6.50 -0.34 0.80 -0.5 7.1

TRD1 0.73 -12.70 0.75 5.80 0.58 -36.40 0.81 -13.70 -0.51 10.50 -1.71 38

TRD2 0.75 -0.90 0.74 -1.90 0.59 -30.80 0.79 -11.80 -0.32 -5.40 -0.76 6.6

TRD3 0.69 5.20 0.66 10.70 0.55 -11.40 0.80 -7.80 -0.10 0.40 -0.08 -1.4

TRD4 0.64 -16.40 0.69 25.20 0.52 -23.80 0.83 -11.00 0.38 -5.10 0.38 2.5

Median 0.71 -1.50 0.68 -0.15 0.58 -24.25 0.80 -9.40 0.28 -0.55 0.24 4.05

Mean 0.67 -2.69 0.67 1.21 0.62 -21.61 0.76 -8.59 0.16 -1.03 0.28 3.78

sd 0.12 8.47 0.11 8.61 0.12 9.78 0.11 5.43 0.41 7.25 0.66 13.40

from different datasets (ensemble modelling). As shown in figure 8, the average simulations of two LSTM models improved

the estimates of LSTM
:::::
yielded

::::::
better

:::::::::
simulation

:
for the testing dataset (lower PBIAS and slightly higher NSE values) .

::
in

:::::::::
comparison

:::
to

:::
the

:::::::
estimate

::
of

::::
each

:::
of

:::
the

:::
two

::::::
LSTM

:::::::
models

:
.
::::::::
However,

::::
this

::
is

::::
only

:::
true

:::::
when

:::
the

::::
two

::::::
LSTM

::::::
models

:::::
have

::::::
positive

::::
and

:::::::
negative

::::::
biases.

:::::::::::
Nevertheless,

:::
we

:::::
found

:::
few

:::::
green

:::::
roofs

:::::
where

:::
the

:::
two

::::::
LSTM

::::::
models

:::::
from

:::
the

:::
two

:::::
years

:::::::
resulted365

::
in

:::::
biases

::
of

:::
the

:::::
same

:::::::
direction

:::
(at

:::::::
BERG3

:::
and

:::::
OSL3

::::::
roofs).

:

4.2.4 Transferability

Models were transferred between the roofs unchanged to simulate the testing periods. Figure 9 presents the transferability

performance measured by NSE. Some models could yield satisfactory results in different locations (NSE > 0.5). For instance,

M5 models that were trained using data from Bergen roofs could yield satisfactory performance in almost all cities. Figure 10370

presents an example of transferred M5 models between BERG2, OSL3,SAN1 and TRD1 roofs. It can be noted that models that
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Figure 5. Cumulative precipitation, observed and simulated runoff of the green roofs

are trained in wetter cities, such as Bergen, overestimated the flows at cities with lower precipitation, such as Trondheim. Figure

11 presents the transferability performance with respect to retention estimation measured by vol. Transferred ML model could

simulate result with acceptable accuracy (vol>0.75) (Moriasi et al., 2007) between Trondheim and Oslo cities and between

Sandnes and Bergen cities with some exceptions. This can be somewhat attributed to the similarity in climatic conditions375

between the cities (Figure 4). However, the uncalibrated conceptual models in this study could produce better volume estimates

than the transferred ML models in most cases. This implies that using the conceptual model with literature estimates of the

Smax parameter is preferable over the transferred ML to estimate the annual retention for new roofs.

4.3 Machine learning potentials for green roof hydrological modelling

The present paper has demonstrated that well-trained ML models can be applied to estimate retention process (rainfall losses)380

in a range of different green roof systems. The predictions are comparable in accuracy to a conceptual water balance model

based on losses due to evapotranspiration. Additionally, well-trained ML models showed more accurate predictions of runoff

hydrographs than the conceptual water balance model which is encouraging for detention modelling. Moreover, aggregating

the simulations of many ML models (ensamble modelling) appears to improve the prediction and can be investigated in fu-
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Figure 6. Performance of ML models on the validation
:::::
testing period (BERG 1

:
2). The hydrographs were plotted for around three months

period (2000 hours), while the Q-Q plots were plotted for the entire testing period

Figure 7. Comparison between LSTM and ANN at TRD1 roof
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Figure 8. The performance of LSTM models in the testing datasets at BERG2,OSL1 AND TRD1 roofs when using different data for model

training. LSTM1 is trained using the testing period presented in table 2, While LSTM2 is trained using the validation period presented in

table 2. Qsim-avg is the average of Qsim-LSTM1 and Qsim-LSTM2

ture studies. Detention modelling is required to estimate the lag and attenuation of runoff associated with any rainfall that is385

not retained. In practice, many modelling frameworks rely on calibrated reservoir routing models to estimate the cumulative

detention effects of multiple interacting component layers, and few (if any) convincing validation cases for a complete deten-

tion modelling framework have been presented. It would therefore be very valuable to explore whether the ML models, when

trained on higher temporal resolution datasets, have the capability to capture these complex detention effects better than the

alternative black-box approaches.390

5 Conclusions

Four machine learning models, commonly used in runoff modelling studies, were applied to simulate runoff from sixteen

green roofs located in four Norwegian cities with different climatic conditions. We further investigated the potential of using

ML models to estimate performance of new roofs where runoff data are not available for model training. This was done by

means of transferring ML models between the roofs in the study. Our results confirms the ability of well-trained ML models395

to estimate green roof retention and the temporal runoff dynamics.The estimates of the annual retention were comparable to

a proven conceptual model. Despite the 1-hr time step, the ML models provided accurate simulations of runoff dynamics i.e

discharge hydrographs (NSE values higher than 0.5 in most cases) which is encouraging for detention modelling. The LSTM

demonstrated better modelling performance by maintaining a state value between consecutive time step, which makes it more
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Figure 9. Transferability between the different roofs (NSE). Models in the y-axis are used to simulate the measured green roofs in the x-axis

appropriate for simulating runoff of green roofs. In future studies, shorter time-steps will be applied to estimate detention400

metrics.

Some transferred ML models could give acceptable model performance (NSE > 0.5, |PBIAS|<25%) in different locations.

However, we recommend using the conceptual model with literature values of the Smax parameter to estimate the annual

retention of new roofs over the transferred model as it give accurate volume estimations.
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Figure 10. The performance of the transferred ML models at BERG2, OSL3,SAN1 and TRD1. The hydrographs were plotted for selected

periodsof 13 days (300 hours), while the cumulative plots were plotted for the entire testing period
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