
Response to the comments of Reviewer #1:  

 

This paper applies the autocorrelation process and a harvested population model as well as 

network analysis for the early warning signals of transition in the hydrological system at the 

global and CONUS city scale. 

Overall, the paper is well-written and certainly contains many novel ideas potentially helpful for 

the boarder community. 

 

We thank the reviewer for the constructive feedback and help in improving the quality of this 

manuscript. Below are detailed responses to the comments. All changes and clarifications were 

included in the revised manuscript.  

 

I see the paper will be strengthened by:  

 

1. Line 50: important role  

We have the typo corrected. 

 

2. Line 219 – 222: discussion about the relative magnitudes of AR1 and s.d. I agree that visually 

figures 1b and d are quite distinct, but the authors may want to provide more information about 

whether any objective measures of high and low exist or any reference state exists in AR1 and 

s.d. in gauging the state of the system regarding how far away from the tipping point. 

The quantification of threshold values of AR1 and s.d. to determine how far the system is from 

the tipping point varies from case to case. The particular case presented in Fig. 1 only shows the 

increasing trend of AR1 and s.d., when the system is approaching the tipping point. The 

asymptotes of both measures, to the best of our knowledge, have not been worked out; it will be 

interesting, though challenging, to quantify the values of AR1 and s.d. at the tipping point by 

casting this practical problem in the analytical framework of Scheffer et al. (2009), e.g. Eqs. (2) 

& (3). 

 

3. In addition, it appears unclear to the reviewer whether Figure 1 is an example toy problem to 

illustrate the concepts or related to the main finding. 

It is true that the benchmark problem show in Figure 1 is not directly related to the subsequent 

applications to precipitation and PET in the study. Nevertheless, we think it is a good example 

for illustrating the concept of critical transition, especially the increasing trends of AR1 and s.d. 

Figure 1 is based on a classic harvest model in which the stability of population can be controlled 

by the parameter harvesting rate E. The increasing AR1 and s.d. in population time series due to 

increasing E as shown in Figure 1 signify that the population is approaching the tipping point, 

and these characteristics can serve as early-warning signals. Similar characteristics will be used 

in the following sections to determine how the hydrological systems evolve approaching critical 

transitions. We clarified this in the context.  

 

4. 2.3: the beginning few sentences seem to be repetitive of part of the introduction – therefore, 

may be better to combine with the introduction or shorten it. 

Thanks for the comment. We removed first two sentences in this section to make the presentation 

more concise. 

 



5. Line 253-254: single-plural mismatch 

Corrected in the revision.  

 

6. “The year of critical transition was determined based on the abrupt change of slopes in each 

cumulative time series. We then divided each original precipitation (or PET) time series into two 

(quasi)stationary parts using this critical transition year” – maybe good to provide in the 

appendix, since this is quite important. Also, may want to give more explanation for what you 

mean by the two parts being quasi-stationary. 

Thanks for the comment. Below we demonstrate in Fig. R1, using the example of Miami, how 

the year of transition (1998) was determined. We bisected the cumulative precipitation data 

(scatters) and fitted each segment using linear regression (thus each being quasi-stationary with 

a constant slope). The year of transition is determined as the intersection of two trend lines (solid 

red: prior to transition, and dash red: after transition) with different slopes. In addition, Fig. R1b 

shows the annual (not cumulative) precipitation, where the two different means (prior to and 

after the transition year) are subtracted. The precipitation anomalies are then used for subsequent 

statistical analysis to determine the two statistical metrices (AR1 and s.d.). We clarified the 

meaning of quasi-stationary in the revision.  

 
Figure R1. The statistics of precipitation in Miami (1948-2019): (a) the solid and dashed red line 

denotes the fitted lines before and after the critical transition year (solid black dot) (b) the two 

different solid red line are the mean values for each parts spilt by the critical transition year.  

 

7. Was the critical transition year 1994 identified a priori from the method described in point 6? 

Yes, the critical transition year(s) were all determined prior to statistical and network analysis, as 

illustrated in the response above.  

 

8. Line 326 – 332: how is the claim supported? Maybe an additional figure or if not important 

may choose not to mention. The reviewer is confused. 

This was only to show that our result is consistent to prior findings. We removed this part for 

better clarity.  

 

9. For city-scale analysis, is each transition year for each city identified using the same method 

as that for global scale? 



Yes, the same method (as illustrated in Fig. R1) was applied when identifying the transition year 

for each city.  

 

10. Why is CONUS PET not analyzed? Is it due to a lack of data? 

Right. The dataset we used for CONUS precipitation analysis does not contain PET data.  

 

11.Figure 4a, is it possible to indicate region number 1-9 corresponding to the adjacency matrix 

in a? This will facilitate the readers to connect the meaning of b to the spatial pattern of the 

network in a. 

Thanks for the advice. We replaced the original Fig. 4 with Fig. R2 shown below, where cities 

(nodes) are colored based on their corresponding climate region.   

 
Figure R2. The precipitation network of CONUS cities: (a) the geographic map of connectivity 

and (b) the adjacency matrix, with Aij = 1 in black (connected), Aij = 0 in white, and red lines 

marking the division of nine geographic regions as shown in (a).  

 

12. The trend of AR1 within the moving window prior to transition year: in figures showing this 

metric, the non-monotonic trend can make it less useful as an indicator. 

In analyses of the behavior of real dynamic system, both AR1 and s.d. often exhibit non-

monotonic trend, deviating from the theoretically increasing trends. This phenomenon has been 

consistently found in prior studies (e.g. Scheffer et al., 2009; C. Wang et al., 2020), and must 

involve the complex interactions of multiple determinants of the system (e.g. North Atlantic 

Oscillation, ENSO, and other low frequency variabilities for annal precipitation in CONUS). 

Because of this, caveats need to be taken using a singular indicator. It is also the very motivation 

behind this study that we look for more usable indicators (from statistical to network structure) 

so the critical transition can be more firmly determined by cross examine multiple indicators. 

 

13.Another question the reviewer is wondering about: I understand the paper’s network analysis 

focuses on the network topology structure prior to transition, but will the network structure end 

up being different after the transition? i.e. will the enhanced network connectivity stay or 



gradually ‘relax’ towards some ‘climatological equilibrium state’? 

Thanks for the very insightful comment. We illustrate the trend of changes before and after the 

transition for CONUS precipitation, using s.d. and clustering coefficient (as they appear more 

reliable than other measures). The results are shown below in Fig. R3. Apparently, both trends 

relaxed after the transition. Yet, there are time lags (potential hysteresis) for different indicators 

(e.g. the clustering coefficient plateaued slightly after the transition year and gradually relaxed). 

This is somehow expected as the network parameters represented the “concatenated” system 

behavior, and should experience some lag in response and relaxation to the critical transition.  

 
Figure R3. Two different metrices of CONUS precipitation: (a) the conventional s.d., and (b) the 

network clustering coefficient.  

 

14. The phrase potentially catastrophic transition may be less emphasized: the mean 

precipitation anomalies (for CONUS cities) are analyzed. If another variable like the maximum 

precipitation or number of days exceeding historical summer mean (just arbitrary examples of 

more catastrophic flavor), the reviewers will be more convinced. 

We agree that the phrase “catastrophic” is too strong for transitions in precipitation. We 

rephrased using “critical transition” throughout the manuscript.  

In this study, we are focused on long-term (climatological) transition in precipitation (and PET), 

so annual means are good for this purpose. For maximum precipitation (or PET, or drought), it 

will be more natural to shift the focus to extreme events at meteorological scales. Theoretically, 

the concept of critical transition and the methodology developed in this study should be 

applicable. But practical difficulties will arise, such as the length of dataset (number of days for 

extreme precipitation) might be inadequate to discern the dynamic evolution of the network 

structure. Nevertheless, we have this in mind for our future research endeavor.  

 

15. The reviewer thinks that making more efforts to connect the global scale to the city scale will 

make the paper more coherent. For example, results in Fig. 3 are partially tied to global 

climates. Figure 5 and Figure 2 also seem to have some connections. In the introduction, the 

motivation for city-scale analysis may allude to some of these findings. E.g. city-scale responses 

are embedded in global hydrologic cycle changes but form systemic coherent structures/patterns 

– highly appealing to system-based network analysis. 



We thank the reviewer for this constructive comment. Yes, from the results of the study, we 

speculate that there is a positive correlation between the dynamics of precipitation in individual 

cities and regional/global trends, especially as we focus on the precipitation climatology. On the 

other hand, as we switch the spatial scale from local city to regional, the active determinants for 

precipitation are expected to change as well. For example, anthropogenic emissions of heat and 

aerosols are expected to have strong influence on local precipitation, whereas their impact on 

global scale might be diluted or replace by larger scale (and low-frequency) oscillations (e.g. 

ENSO). Future research along the line suggested by the reviewer will be promising, albeit we are 

refrained to make too strong assertion or speculation in the current study given the limited scope 

and results available at this stage.  

 

 

 
 

 

 


