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This paper presents the development a new method to detect the occurrence of 

blowing snow event in alpine terrain. The authors built decision tree classification models 

(DTMs) using data from automatic stations measuring simultaneously standard 

meteorological observations and blowing snow fluxes. They proposed to develop decision 

trees purely based on standard meteorological observations. The authors found that 

maximal wind speed had the largest influence in determining the occurrence of blowing 

snow events for different conditions. They also illustrate how the selection of the stations 

in the training set influence the performances of the resulting DTMs.    

The subject of this paper is interesting for a large community studying snow in 

mountainous region for various applications: avalanche hazard forecasting, mountain 

hydrology, road maintenance, … The estimation of blowing snow occurrence is also a key 

in blowing snow models. My main comment about the study concerns the absence of 

quantification of the benefit of using DTMs compared to more traditional methods to 

predict blowing snow occurrence. Machine learning is still new in the community and it 

would be very valuable if the authors could quantify it benefit compare to more traditional 

methods. This question needs to be clarified prior to publication in HESS. It is detailed 

below as a general comment followed by more specific and technical comments. 

Response: We thank the reviewer very much for their constructive comments on our 

manuscript. Comparison of the DTM and traditional methods (using constant threshold 

wind speed and dynamic threshold wind speed) have been made to quantify their ability 

in detecting blowing snow occurrence. We hope this can release the concerns that you 

have. For detailed descriptions please refer to the response to the Comment 25.  

 

General Comment 

Different methods have proposed to obtain an estimation of the threshold wind 

speed for snow transport. When combined with information on wind speed, theses 

methods can be used to estimate the occurrence of blowing snow events. The simplest 

method consists in constant threshold value for dry and wet snow (see for example the 

average values reported on page 209, section 4 of Li and Pomeroy, 1997). In the same 

paper, Li and Pomeroy (1997) proposed a slightly more complex formulation of the 

threshold wind speed that only depends on air temperature. He and Ohara (2017) 

proposed a more advanced formulation that depends on snow particle size, deposition 

time and temperature. Despite being more complex, this formulation can still be derived 

using standard meteorological measurements (precipitation, temperature). Finally, 

formulations of the threshold wind speed that depend on the physical properties of the 

snowpack have been developed. Liston et al. (2007) used a formulation that depends on 

the surface snow density whereas Schmidt (1980), Guyomarc’h and Merindol (1998) et 

Lehning et al (2000) proposed formulation that depends on the microstructure of the 

surface snow. 

The decision trees developed in this study are a new method proposed to determine 

the occurrence of blowing snow. For the community studying snow in mountainous region, 

the authors should document the performance of this new approach compared to 

previous approaches used as benchmarks. So far, it is very difficult for the reader to 

estimate the benefit using decisions-trees compared to more standard methods. The 
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significance of the paper would be certainly improved it the authors can show that their 

DTMs can provide improved the detection of blowing snow occurrence compared to more 

standard methods. 

All the formulations of the threshold wind speed depending on physical properties of 

surface snow cannot be tested here since they require a snowpack model. However, the 

decision trees could still be compared with the performances obtained for three 

formulation the threshold wind speed of various complexity: (i) constant threshold for dry 

and wet snow, (ii) Li and Pomeroy (1997), (iii) He and Ohara (2017). These threshold wind 

speed could be computed at an hourly time step at all the ISAW stations and compared 

with mean wind speed and/or maximum wind speed to determine blowing snow 

occurrence. OA, POD, FAR and HSS could be then computed and compared with the 

results of the DTMs. Such evaluation would highlight the benefits and limitations of the 

decision trees and would guide future developments. 

Response: We appreciate the time and effort you have dedicated to providing 

insightful suggestions to strengthen our paper. We holp that our modifications and the 

responses we provide below satisfactorily address all the issues and concerns you have 

noted (The main changes in the manuscript are in blue).  

The comparisons have been added in the reversed manuscript based on your 

suggestion. However, we only compared the performance of the methods using constant 

threshold wind speed and dynamic threshold wind speed proposed by Li and Pomeroy 

(1997) with DTM. More specific interpretation is given in the response to the Comments 

25.  

  

Specific comments 

1. Abstract L 21-22: it would be interesting to clarify in the abstract that snow depth and 

measurements are used as well to determine the occurrence of blowing snow. Indeed, 

without snow on the ground, blowing snow cannot occur. 

Response: We agree with you and have incorporated this suggestion throughout our 

manuscript.  

The DTMs were constructed based on routine meteorological observations (mean 

wind speed, maximum wind speed, air temperature and relative humidity) and snow 

depth measurements (including in-situ snow depth observations and satellite-

derived products). 

 

2. Abstract L 25: the authors should explain which atmospheric variables have a 

divergent distribution. 

Response: Yes, the following change has been made. Thanks a lot. 

However, the spatiotemporal transferability of the DTM might be limited if the 

divergent distribution of wind speed exists between stations. 

 

3. P2 L 48-49: I recommend the authors to also include the original references for the 

different sensors measuring blowing snow fluxes: 

SPC: Sato, T., Kimura, T., Ishimaru, T., & Maruyama, T. (1993). Field test of a new 

snow-particle counter (SPC) system. Annals of Glaciology, 18, 149-154. 
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FlowCapt: Chritin, V., Bolognesi, R., & Gubler, H. (1999). FlowCapt: a new acoustic 

sensor to measure snowdrift and wind velocity for avalanche forecasting. Cold 

Regions Science and Technology, 30(1-3), 125-133. 

Response: We have included these references you recommended.  

For example, the mechanical traps used by Budd et al. (1966), the optical sensors 

deployed in the Antarctic and Alps (Nishimura and Nemoto, 2005; Vionnet et al., 

2013), and the acoustic sensors (i.e., FlowCapt and SPC) used to provide reliable 

measurements of blowing snow mass flux (Chritin et al., 1999; Sato et al., 1993; 

Trouvilliez et al., 2015). 

 

4. P2 L 53-57: The large increase in surface snow cohesion in presence of liquid water 

(resulting from rainfall or melting) is not the only factor affecting the evolution of 

threshold wind speed contrary to what is suggested here by the authors. I 

recommend to explicitly mention the impact of sintering od dry snow (Schmidt, 1980, 

He and Ohara, 2017). In addition, mechanical fragmentation of snow grains during 

blowing snow events (Comola et al., 2017) can favor snow sintering and affect the 

evolution of the threshold velocity (Vionnet et al., 2013). 

Response: Thank you very much for pointing this problem out. In order to maintain 

the highest possible standard of rigorous precision in the description, we have made 

the following modification based on your suggestion.  

Previous studies have demonstrated that cohesive resistance increases dramatically 

when snow becomes wet, as the melt water increases the associated cohesion 

between the particles (e.g., Li and Pomeroy, 1997; Schmidt, 1980), and sintering of 

snow particles have a significant bearing on the cohesive force development as well 

(He and Ohara, 2017; Schmidt, 1980).  

 

5. P 2L 57-58: the dependence of the threshold wind speed on air temperature and 

humidity is only indirect and is due to the influence of air temperature and humidity 

on the cohesion of surface snow. It would be interesting to explicitly mention it in the 

introduction so that it is clear for the reader.   

Response: Yes, we agree with you and the following change has been made to clearly 

show the relationships between air temperature, humidity and the threshold wind 

speed.  

As summarized by Schmidt (1980), the threshold wind speed highly depends on the 

cohesion between snow particles and was greatly influenced by temperature, 

humidity and deposition time. 

 

6. P 2 L 60: Liston et al (2007) are only reporting values from previous studies for the 

threshold wind speed for fresh snow. I recommend the authors to refer to papers 

that measured the threshold wind speed for snow transport in the field: Li and 

Pomeroy (1997), Guyomarc’h and Merindol (1998), Doorschot et al (2004), Clifton et 

al. (2006). 

Response: We have incorporated your recommendation by revising the following 

content. 



 4 / 14 

 

Threshold wind speed was found to be 9.9 m/s for wet snow and 7.7 m/s for dry snow, 

and a formula expresses the threshold wind speed as a function of air temperature 

has been proposed based on field observations from the Canadian Prairies (Li and 

Pomeroy, 1997a). 

 

7. P 3 L 90-91: I think the author should add snow depth in the list of variables because 

they are still using this measurement to determine if there is snow on the ground or 

not. If snow depth is not used at all, I would find very distributing to have an algorithm 

that predict blowing snow occurrence without even checking if there is presence of 

snow on the ground. 

Response: Indeed, snow depth measurement is used to determine the presence of 

snow on the ground. Based on your comment, snow depth has been added to the list 

of variables used in this study. 

In this study, we use a machine learning based decision tree model (DTM) to detect 

the presence of blowing snow by exploiting routine meteorological observations 

(such as wind speed, wind direction, air temperature, precipitation and relative 

humidity) and snow depth measurements from 10 ISAW stations (http://isaw.ch/). 

 

8. P 4 L 97: does the reported height (3.5 m) correspond to the height of the wind sensor 

about snow-free ground? If it is the case, are the authors using the snow depth 

measurement to adjust the wind speed at a constant height during the course of the 

winter? This may have a slight influence if enough snow is accumulated below the 

wind sensor. See for example Vionnet et al. (2013). 

Response: Yes, we had noted the influence of accumulated snow on the wind speed. 

However, observed snow depth fluctuated wildly in most stations, and there was a 

large difference in the measured snow depth from two nearby mounted snow depth 

sensors. Therefore, the snow depth measurements were only used to determine the 

presence of snow on the ground, rather than adjusting the wind speed to a different 

but constant height. A rise in the uncertainty of the adjusted wind speed seems 

inevitable once the influence of accumulated snow was not taken into account, but 

we think this compromise is acceptable because the large difference of the two snow 

depth measurements may introduce larger uncertainty in the wind speed adjustment. 

We hope that our response would address your concerns.       

 

9. P 5 L 107-115: It would be interesting to describe in this paragraph how the authors 

used the signal of the snow depth (SD) sensor to identify the periods when the surface 

was covered by snow. Did they use SD> 0 and another threshold value? 

Response: The observed snow depth from the nearby mounted snow depth sensors 

were used together with the CryoLand fractional snow cover product over Alps (with 

daily temporal frequency and 250 m spatial resolution) and the MODIS snow cover 

product (MOD10A1 and MYD10A1, with daily temporal frequency and 500 m spatial 

resolution) to determine the presence of snow on the ground. As the MODIS 

instrument provides high spatial resolution views of each point on the earth four 

times per day, we think the MODIS can provide more accurate snow cover 

http://isaw.ch/
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information than the CyroLand product at an hourly time scale. Therefore, once 

whether the surface was covered by snow or not cannot directly be determined by 

snow depth measurements (signals of the two snow depth sensors were lost or large 

difference exist in the two snow depth measurements), the presence of snow on the 

ground is determined based on the most adjacent MODIS observation. If the most 

adjacent MODIS product shows that the station is covered by cloud or the data quality 

is bad, the second most adjacent MODIS observation is used. If all these two adjacent 

MODIS observations are unavailable, the CyroLand product is used.  

Meanwhile, a schematic flowchart was added to clarify the procedures to identify the 

presence of snow, and the following content was included in the revised manuscript.  

The presence of snow on the ground was determined based on the snow depth 

measurements from two snow depth sensors, the MODIS daily snow cover product 

(MOD10A1 and MYD10A1, Hall and Riggs, 2021a, b) and the CryoLand fractional snow 

cover product over Alps (http://cryoland.enveo.at). For detailed procedures please 

refer to the schematic flowchart in Fig 1a. 

 

 

10. P 5 L 109: which threshold check was applied to relative humidity? 

Response: More precisely, we applied main change range check to the relative 

humidity to processing the raw observations (50% change of relative humidity within 

an hour was used as the threshold). Modification has been made to make the 

sentence more efficient and accurate. 

First, using a threshold value of 50% change within an hour, the main change range 

check was applied to the relative humidity to detect its abnormal change. In addition, 

a threshold check was performed for the hourly measured air temperature, wind 

speed, maximum wind speed.    

 

11. P 5 L 114-115: the author should explain in this section how they define a blowing 

snow occurrence. So far it is done in the discussion (L 456-457). All blowing snow 

fluxes strictly positive are considered so far. Trouvilliez et al. (2015) used a threshold 

of 1 g/m2/s to remove non-significant blowing snow occurrence when processing 

FlowCapt measurements. Can the authors comment on the sensitivity of their results 

to the value of this threshold? Such data processing could potentially improve the 

ability of the decision trees to detect the main blowing snow events. 
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Response: Thanks for your suggestion, the following content has been added to 

define a blowing snow occurrence.  

In this study, periods of blowing snow occurrence were identified when positive 

blowing snow flux was observed. This is different from the work of Trouvilliez et al. 

(2015) who used a threshold of 1g m-2 s-1 to remove non-significant blowing snow 

occurrences and the work of Vionnet et al. (2013) who only analyzed events of 

duration longer than 4 hours. 

Based on the preliminary results of our current work, the observed frequency of 

blowing snow occurrence is sensitive to the threshold. The higher the threshold is, 

the relatively lower the frequency of blowing snow occurrence. Although the use of 

a lowered threshold does not affect the derived frequency significantly, the 

frequency highly depends on the relatively small magnitude blowing snow flux. If we 

apply a relatively high threshold to select significant blowing snow occurrence for 

analyzing, the samples with the occurrence of blowing snow events will undoubtedly 

decrease, resulting in a more serious data-imbalance issue and may have a profound 

impact on the accuracy and efficiency of the decision tree model. As far as we’re 

concerned, it’s hard to say that apply a threshold value could improve the ability of 

the decision tree model in detecting blowing snow occurrence, because although the 

significant blowing snow event may easier be accurately captured by the decision tree 

model, the seriously imbalanced training dataset cannot provide enough useful 

information to the model to learn to make a correct classification.  

 

12. P5 L 121-123: Compaction due to overburden is not affecting the properties of 

surface snow so that it is not impacting directly the evolution of the threshold wind 

speed. The term “viscous” is not really appropriate here and I recommend the author 

to remove from the text: “and are generally drier and less viscous than the deposited 

snow”. 

Response: Yes, we agree with you after carefully think about this description, and 

based on your suggestion, this content has been removed from the revised 

manuscript. Thanks. 

 

13. P 5 L 125: was it challenging for the authors to identify blowing snow events with 

concurrent snowfall? Indeed, the precipitation gauges installed at the ISAW stations 

must certainly suffer from large wind-undercatch during strong wind events which 

may potentially lead to no solid precipitation accumulating in the gauge. 

Response: Yes, indeed. Because of the impact of strong wind speed on the solid 

precipitation observation, blowing snow events with concurrent snowfall may be 

misclassified as NoSF_SC_DRY, and might potentially limit the decision tree model’s 

ability in accurately detecting blowing snow occurrence in NoSF_SC_DRY condition. 

However, for the moment, blowing snow events with concurrent snowfall can only 

be effectively identified based on the precipitation observations.     
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14. P 5 L 130: Can the author explain how they identify the atmospheric conditions for 

melting snow? Did the authors only consider one hour of positive air temperature to 

identify melting snow? 

Response: In this work, dry snow is defined as snow that has not received 

temperatures of 0 °C or above, such data processing is referred to the practice of Li 

and Pomeroy (1997). To clarify this issue, the definition of dry snow has been changed 

with the following text.  

while dry snow defines as snow that has not received temperatures of 0 °C or above, 

or liquid precipitation (Li and Pomeroy, 1997a). 

 

15. P 5 L 130-132: the authors identified 3 types of atmospheric conditions when 

developing their algorithm. For a better understanding of the importance of these 

conditions, it would be really interesting if the authors could produce a graph or table 

that shows the frequency of occurrence of the 3 types at each station and at all 

stations combined. This graph or table could also show the frequency of blowing 

snow occurrence for each of the 3 types of atmospheric conditions at each station 

and at all stations combined. Such graph would highlight that blowing snow events 

are rare events (as mentioned by the authors at L 335-336). This is important to 

understand the evaluation metrics derived from the contingency tables. 

Response: We have incorporated this suggestion by adding the following graph into 

the revised manuscript. 

 
Figure 2. The frequencies of occurrence of the 3 types of blowing snow at each 

station and at all stations combined. SF denotes snowfall condition and 

NoSF_SC_DRY denotes surface covered by dry snow without concurrent snowfall 

condition, and NoSF_SC_WET denotes surface covered by wet snow without 

concurrent snowfall condition. 

 

16. P 8 L 197: Can the authors explain the definition of the mean and standard deviation 

in the context of the evaluation of the DTM? At the moment, it is not clear for a reader 

that is not familiar with DTM. 
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Response: In this study, to reduce the classification uncertainty attributable to 

training data selection, twenty repetitions of a random sub-sampling validation 

method were applied in the construction of each decision tree model. It is necessary 

to assess the robustness of the decision tree model. Therefore, the variation range 

and standard deviation of model accuracy were calculated to show the difference 

between the 20 testing probabilities, and the maximum and minimum overall 

accuracy were also provided to show the model’s ability in detecting blowing snow 

occurrence under 3 types of atmospheric conditions. 

The following modifications have been made: 

The variation range and its standard deviation of overall accuracy changed slightly 

with decreasing sample size: the accuracy range ranged from 1.06×10-3 to 7.19×10-3 

and the standard deviation increased from 2.23×10-4 to 15.26×10-4 as sample size 

decreased. 

 

17. P 8 L 200: It the selected value of 0.8 is a classic ratio used when training and 

evaluating DTM? A comparison with a few references from the literature would be 

certainly appropriate here. 

Response: Actually, the split ratio for the training and validation dataset varies 

considerably in different studies, but its effect on the performance of the decision 

tree model is not significant. The best practice is to keep the test data set small as 

compared to the train data set depending on the size of the data set. But the test 

should not be so small that it is not representative of the samples. 0.5-0.9 was 

generally used and the 0.7 and 0.8 split ratios performed better as demonstrated by 

Rácz et al (2021). The training set proportion of 0.8 was used in this study for the 

consideration of the reliability of the accuracy assessment decreased with decreasing 

validation sample size. 

Rácz A, Bajusz D, Héberger K. Effect of Dataset Size and Train/Test Split Ratios in 

QSAR/QSPR Multiclass Classification[J]. Molecules, 2021, 26(4): 1111. 

 

18. P 10 L 230-245: the tests using only single attribute such as air temperature or relative 

humidity do not make a lot of sense from a physical point of view. Based on the 

existing and extensive literature on blowing snow, it is well established that wind 

speed is the primary driver and a necessary condition of blowing snow occurrence. It 

would be interesting for the reader to present step-by-step and logical construction 

and tests of the DTMs: (i) tests of the mean wind speed (ii) tests of the benefit of 

using maximum wind speed since gust affects wind-induced snow transport (Naaim 

Bouvet et al., 2011), (iii) tests of using additional variables such as air temperature 

and relative humidity to account for their indirect effect on surface snow cohesion. 

Such reduced and logical set of tests would also make Figure 1 easier to read.   

Response: After careful consideration of this comment posted, we have subdivided 

the section 3.2 into two parts: 3.2.1 Air temperature and relative humidity and 3.2.2 

Mean and maximum wind speed, to present the sensitivity of DTM to the feature 

variables step-by-step. And we think this adjustment can illustrate the logical set of 
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tests of the DTM as well. The majority of the content in this section has been adjusted 

or modified.  

3.2.1 Air temperature and relative humidity 

Of all the attribute combinations evaluated, models trained merely with either 

T or RH presented the lowest accuracy (Figure 3a-c), indicating that the use of T or 

RH alone cannot fully capture the variance in the validation samples. However, 

significant improvements were achieved when either WS or WSMAX were 

accompanied by T or RH, even though the single factors performed poorly when used 

alone. Taking Fcmb station in snowfall conditions as an example, model accuracy 

increased from 0.54 when the model trained merely with T to 0.8 or 0.82 when WS 

or WSMAX was added, respectively. These results suggest that neither T nor RH is the 

guarantee of model accuracy, although the model with more predictor variables used 

generally achieved relatively high accuracy.  

3.2.2 Mean and maximum wind speed  

Models trained with a combination that included WAMAX outperformed the 

other models, revealing that WSMAX rather than WS contributed the most to the 

model accuracy, highlighting the importance of WSMAX in constructing a reliable 

DTM. The result is reasonable, as the fastest wind speed acts as the primary driving 

force that allows wind shear stress to overcome snow cohesion, bonding and 

frictional resistance (He and Ohara, 2017). Wind transport of snow can be initiated 

once the fastest wind speed exceeds the threshold wind speed, and the blowing snow 

process can then be sustained by relatively low wind speeds. In other words, the 

fastest wind speed and the mean wind speed control the occurrence and persistence 

of blowing snow events, respectively. Generally, model accuracy improved as more 

predictor variables were used. However, strongly correlated feature variables might 

slightly affect the model accuracy; this was evident when WS was added to WSMAX 

in snowfall conditions. Overall, this comparison indicates the superiority of DTM as a 

means of blowing snow identification, which is achieved by making full use of all 

available feature variables.  

 

19. P 10 L 236-239: it would be interesting to add a few references from the literature to 

support this description.   

Response: Reference has been added.  

 

20. P 14 Figure 5: The ‘MR’ metric is not described in this paper. (see also Fig. 8, and the 

rest of the text). 

Response: Thank you for pointing out this mistake. The formula for calculating the 

‘MR’ metric has been added. 

 

21. P 17 L 364: Is it only WSMAX which is considered here or the distributions of other 

features were also considered? 

Response: Large difference exists in both the distribution of WS and WSMAX, but 

only WSMAX is considered here because the snow movement is controlled by the 

WSMAX.  
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22. P 20 L 401: it would be interesting if the authors could discuss in this section how 

these decision trees could be used in blowing snow models. Indeed, as explained at L 

265-266, the authors used different decisions trees as a function of the atmospheric 

conditions. The authors should explain how such concept could be applied in a 

numerical model.   

Response: This is a very enlightening suggestion. We have incorporated your 

comments by adding a new section (4.5 Possible future directions) to suggest future 

directions for further improvements. The new additions are as follows. 

4.5 Possible future directions 

Machine learning techniques can be a suitable way to reduce the process complexity 

and computational cost of traditional physically based blowing snow models. The 

complex interactive processes of ambient atmospheric conditions make a proper 

representation of blowing snow processes in the conventional blowing snow model 

challenging. A major difference between the process-based algorithms and machine 

learning based models is that the model structure for the former is based on 

underlying physical principles, whereas machine learning based model is completely 

data-driven. Although machine learning models have outperformed simple statistical 

models and have been widely used in Earth Sciences, they tend to violate physical 

laws constraints leading to unrealistic predictions (Zhao et al., 2019). Physically-based 

models, although more complicated, tend to have superior interpretability (Pan et al., 

2020). Complementing a physically-based model and machine learning based model 

is a feasible way for further development. Integrating these two types of models with 

divergent model structures and introducing physical constraints on machine learning 

based models are two popular strategies (Pal and Sharma, 2021). One common way 

to integrate the constructed DTMs with blowing snow model in detecting blowing 

snow occurrence is to ensure the application of DTM only when the climatology 

shares similar distribution property to the training data. In this case, a huge amount 

of training data with different distribution properties is an essential prerequisite to 

the performance of DTMs applied over a large area; otherwise, in case of rare events, 

the detection of blowing snow occurrence relies on the physically-based blowing 

snow model. On the other hand, using blowing snow model outputs to pose physical 

constraints on the DTMs makes the hybrid model capable of learning the nonlinear 

relations from the training data while obeying the physical laws. 

 

23. P 21 L 432: In alpine snowpack, snow metamorphism is mainly driven by 

temperature-gradient (Armstrong and Brun, 2008). This sentence should be 

reformulated. 

Response: This sentence has been replaced by the following content. 

Relative humidity, the ratio of vapor pressure and saturation vapor pressure, it 

therefore has important implications for snow aging processes (i.e., metamorphism, 

despite Armstrong and Brun (2008) reported that snow metamorphism in the alpine 

snowpack is mainly driven by temperature-gradient). 
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24. L 21 L 438: In Vionnet et al. (2018), the wind direction is used to identify the windward 

side among the virtual slopes surrounding the stations. On the windward slope, 

blowing snow occurrence is then computed by combining information on wind speed 

and information on simulated surface snow following the method proposed by 

Guyomarc'h and Merindol (1998). The wind direction is not used directly as an input 

variable of the algorithm used to detect blowing snow occurrence. I recommend the 

authors to modify the text. 

Response: The following text has been added to clarify that the wind direction is not 

used in constructing the decision tree model.  

However, for the consideration of the highly site-specific wind speed and large 

variations of prevailing wind speed across stations, the impact of wind direction is not 

considered in this study in constructing the DTMs. 

 

25. P 22 L 469-480: in this section of the discussion, the authors compare the 

performance of their decision trees with the performances of a modelling chain for 

avalanche hazard forecasting that simulates blowing snow occurrence (Vionnet et al., 

2018). This modelling chain has been evaluated at the same stations as those used to 

develop the decision trees. The authors should compare the performance of their 

decision trees with the simulation R3 used in Vionnet et al. (2018) that used the 

observed wind speed at the stations to drive the modelling chain. Instead, simulations 

R1 and R2 from Vionnet et al. (2018) and mentioned by the authors used the wind 

speed from the SAFRAN analysis that adds uncertainty in the simulated blowing snow 

occurrence. The fact that the DTMs used in this study achieved similar results to 

experiment R1 in Vionnet et al. (2018) cannot be used to support the claim made by 

the authors at L 480-482. As explained in my general comment, the best method to 

support such claim would be to carry out a systematic benchmark versus standard 

methods available in the literature. 

Response: It must be admitted that this comment is pretty valuable and we struggled 

to address the concern you're mentioned in reviewing the original version of this 

manuscript submitted to the “Water Resources Research”, but failed. The following 

modifications have been made after we reexamined this suggestion. However, we 

only compared the performance of the methods using constant threshold wind speed 

and dynamic threshold wind speed proposed by Li and Pomeroy (1997) with DTM, 

because the deposition time since last snowfall is a vital parameter in the formula 

proposed by He and Ohara (2017). Unfortunately, determining its value is impractical 

because lots of records were discarded after the strict data selection criteria we 

applied. Besides, direct snow depth observations were considered unreliable because 

there was large difference in the measured snow depth from two nearby mounted 

snow depth sensors. But, very comprehensive comparison of the DTM and traditional 

methods with varying degrees of complexity is highly needed, and this is the ongoing 

work being carried out. Meanwhile, the content at L 480-482 has been adjusted.  

In summary, a simple DTM constructed from conventional meteorological 

observations is therefore shown to be capable of detecting blowing snow events with 

a skill superior to the commonly used empirical parameterizations. However, there is 
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still considerable room for improvement when compared with numerical models 

containing detailed representations of physical processes, but handling the data 

imbalance issue appropriately, and minimizing the potential uncertainty resulting 

from blowing soil particles, are a top priority. 

It was extremely difficult to distinguish unreliable records in the quality-controlled 

data, and it is inevitable that the use of these records in the construction of the DTMs 

negatively affects the model’s skill in detecting blowing snow events. Despite these 

shortcomings, the calculated accuracies for both the SIDTM and the SSDTMS were 

superior to (and in most cases much better than) the empirical parameterization 

schemes using (i) constant threshold wind speed (7.7 m/s for dry snow transport and 

9.9 m/s for wet snow transport, abbreviating as Constant_dry and Constant_wet, 

respectively. Li and Pomeroy, 1997a), and (ii) the dynamic threshold adapts to the 

evolution of air temperature (abbreviating as Ut(10), Ut(10)_wet and Ut(10)_dry 

shares the same expression but used to detect wet snow and dry snow transport, 

respectively. Li and Pomeroy, 1997a). As shown in Figure 12, the dynamic threshold 

wind speed outperforms overwhelmingly the constant threshold wind speed in 

detecting blowing snow occurrence, while the former’s performance evaluation 

metrics (except for the FAR) characterizing the ability and efficiency in blowing snow 

detection are inferior to the DTMs obviously (corresponding metrics are shown in 

Figure 4, 5, 8 and 9, respectively), particularly the POD and HSS. A larger FAR achieved 

by DTMs indicates a high probability of false blowing snow detection by the data-

driven model. When compared to the results from the S2M-Sytron (Vionnet et al., 

2018), an avalanche hazard forecast model driven by high spatial and temporal 

resolution meteorological forcing data with downscaled by SAFRAN (Durand et al., 

2009), the values for POD and HSS in this study were similar to, or better than, the 

skill reported for numerical simulations using S2M-Sytron forced with downscaled 

SAFRAN input. However, due to the limited capacity of DTMs to detect real blowing 

snow occurrences, particularly under snow cover conditions, large differences exist 

when compared to R2 (an S2M-Sytron simulation using an updated parameterization 

for falling snow properties) and R3 (uses the observed 10-m wind speed and direction 

based on R2). The wide gap between the data-driven model and physical constraints 

model highlights the need to conduct further experimental investigations and 

analyses to illustrate the limitations of the DTM in detecting blowing snow occurrence. 

This could shed more light on future developments.      
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Figure 12. The POD (a), FAR (b), OA (c) and HSS (d) of indirect methods using 

constant threshold wind speed (7.7 m/s for dry snow transport and 9.9 m/s for wet 

snow transport, abbreviating as Constant_dry and Constant_wet, respectively) and 

dynamic threshold adapts to the evolution of air temperature (abbreviating as 

Ut(10), Ut(10)_wet and Ut(10)_dry shares the same expression but used to detect 

wet snow and dry snow transport, respectively). Constant_overall and 

Ut(10)_overall is the synthetical metric of wet snow and dry snow conditions. 

 

26. P 23 L 520: can the authors comment about the availability of the code of the decision 

trees proposed in this study? 

Response: The availability of the code has been included.  

Code availability. The code to construct a decision tree model in detecting the 

occurrence of blowing snow is available from GitHub (https://github.com/zpxie-

cas/DTM). 

 

Technical comments 

Text 

27. P2 L 64: the paper by Lehning et al (2000) coud also be mentioned in this list of 

references: 

Lehning, M., Doorschot, J., & Bartelt, P. (2000). A snowdrift index based on 

SNOWPACK model calculations. Annals of Glaciology, 31, 382-386. 

Response: This reference has been added to the list. 

 

28. P 3 L 80:  Gilbert et al by should be replaced by Guyomarc’h et al. 

Response: Replaced.  
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29. P3L 91: wind direction can be removed from this list since it is not used by the authors. 

Response: Yes, wind direction has been removed. 

 

30. P3L 91: the acronym “ISAW” should be defined here. 

Response: The ISAW is a product division of the IAV technology company, its full 

name is not available and the acronym “ISAW” is widely used in many references, for 

example, He and Ohara (2017), Vionnet et al (2013, 2018). 

 

31. P 5 L 129: “wet precipitation” could be replaced by “liquid precipitation”. 

Response: Yes, this phrase has been replaced thoroughly in this manuscript.  

 

32. P 6 L 146: is the word “package” missing after “scikit-lean”? 

Response: The word has been added after “scikit-lean”, thanks for pointing this out. 

 

33. P 21 L 428: “microphysical” should be replaced by “microstructural”. 

Response: The word has been replaced based on your suggestion.  

 

Figure 

34. Figure 1: This figure is really interesting. Can the author make the different subfigures 

slightly bigger? 

Response: This figure has been adjusted. 

 

35. The upper graphs on figures 2, 3, 6, 7 are hard to read. 

Response: These figures have been adjusted 


