
Response to Referee 1 
 
General comments: 
 
The idea of this study is to develop a regional streamflow model using a convolutional long 
short-term memory artificial neural network, which is the merger of two distinct deep 
learning (DL) techniques. This and several other innovations presented in the paper are quite 
impressive, and the overall performance of the model seems good. The revised paper is also 
in much better shape than the original submission, with considerably more detail given, much 
better figures, and some significant new analysis to shore up some weak points in the original 
study, such as including a linear benchmark model for comparison and additional sensitivity 
analyses demonstrating physically reasonable responses to perturbations in temperature 
fields, which (to some degree) ties into broader goals like explainable machine learning. 
 
We thank the referee for their detailed review and are pleased they find the revised manuscript 
to be a substantial improvement. 
 
Unfortunately, the quality of the writing and explanations remains somewhat inadequate. 
The general impression one receives when reading this manuscript (which may or may not be 
true, but it is the impression one gets from the writing) is that the authors have some 
background with areas of geophysical science adjacent to watershed hydrology, but not 
watershed hydrology itself, and certainly not any aspect of operational hydrology or 
streamflow modeling. Similarly, treatments of machine learning in the manuscript seem to 
suggest familiarity with a very narrow range of sophisticated techniques but not a great 
awareness of the overall field of machine learning and, in particular, prior work on its 
application to streamflow modeling. Sadly, this may only serve to reinforce negative 
impressions among the water resource community as a whole about the general usefulness 
and credibility of machine learning – impressions that have been crippling in some important 
ways to the advancement of the field of hydrology. 
 
We have addressed the detailed comments below to improve the quality of writing and 
explanations.  Additionally, we have had Dr. William Hsieh review the manuscript with the goal 
of identifying shortcomings related to the quality of writing and explanations, and have 
implemented his suggestions for improvement. 
 
Additionally, the primary technical innovation presented here – taking the long short-term 
memory (LSTM) neural network from time series analysis, which has recently seen several 
high-profile research applications to streamflow modeling, and adding in a convolutional 
neural network (CNN) from image analysis – involves an incremental advance over the 
existing LSTM approach, yet the existing LSTM approach is never implemented here. As a 
result, the paper cannot provide information on how much of an advantage, if any, the 
addition of a CNN architecture provides. Perhaps this is not strictly needed for publication, 
but it is an obvious limitation of the study that may compromise the adoption of this novel 
streamflow modeling technique by others. 



 
 
Overall, this manuscript contains many clever and potentially powerful ideas but seems to be 
poorly executed, and it feels like an appropriate recommendation is for publication pending 
major revisions. 
 
We are glad the referee agrees that this study is built around many clever and potentially 
powerful ideas.  We address all comments below, with new text in the manuscript identified in 
bold blue text. 
 
Detailed comments: 
 
Line 10, delete “the region of” 
 
Deleted. 
 
Lines 31-32, not clear what the authors mean by a spatially distributed DL model. Use of the 
concepts of lumped, semi-distributed, and fully distributed hydrologic models has been 
pretty much exclusive to process-based models and it’s not clear how it can be extended to 
ML-based hydrologic models. Reading the rest of the paper, I can make an educated guess as 
to what the authors trying to get at here, but the reader should not have to do this and it’s 
still not clear that the terms really apply as such to machine learning models in hydrology. Are 
they referring to multiple forecast points (corresponding to gages)? If so, that’s captured in 
the concept of a regional hydrology model, which is not necessarily the same thing as a fully 
distributed hydrology model (as many fully distributed models make predictions at only a 
single location for example). Are they referring to fully spatially distributed (e.g. gridded) 
inputs? If so, that was successfully tackled decades ago in ML-based streamflow modeling by 
Hsieh et al. (2003). Moreover, the regional DL models with many input data and output 
prediction locations introduced by Kratzert et al. (2018, 2019a, 2019b) feel like they may be 
just as spatially distributed as the DL model introduced in this submission. The authors need 
to be much clearer and more specific on what they mean here and consider whether the 
confusion created by this mixing-and-matching of terminology is really beneficial to their 
ultimate purpose and the clarity and credibility of this submission. I suspect this is another 
case (the problem was widespread in the original submission) of slightly misusing standard 
hydrologic nomenclature. That said, see comment below re: line 137, where the manuscript 
handles all this much better. 
 
We have edited this section as follows: 
 
Line 30: “These recent DL-based studies have emphasized the development of lumped 
hydrological models with inputs that are aggregated to the basin-level.  However, fewer DL-
based studies have explored the use of spatially discretized forcing and geophysical data 
(Gauch and Lin, 2020).  In contrast, traditional process-based approaches have made 



substantial progress towards distributed hydrological models which are driven by spatially 
discretized inputs (Freeze and Harlan, 1969; Marsh et al., 2020; Pomeroy et al., 2007).” 
 
Furthermore, throughout the manuscript we reserve “distributed” to describe distributed 
process-based models, and refer to DL-based models forced by spatially discretized inputs as a 
“DL analogue of a distributed hydrological model” or a “DL model that is driven by spatially 
discretized forcing data”. 
 
Line 41: replace “total April-August streamflow” with “seasonal water supply”, which was the 
point of the exercise and is a major, mainstream task in water resource forecasting and 
management. 
 
Changed to “seasonal water supply”. 
 
Lines 45-48: this basic description of ML in hydrology is clunky and imprecise. It could be 
easily read to imply the authors think that a Bayesian neural network is not an ANN, or that 
they think ANNs aren’t non-deep (in truth, traditional feedforward-error backpropagation 
ANNs of the sort being referred to here may by deep or non-deep depending on how many 
hidden layers they have), etc. Mistakes like this up-front in the introductory section may 
immediately draw the paper’s basic credibility into immediate question, no matter how 
innovative and correct the actual technical work subsequently presented in the paper may 
be. 
 
We have rephrased this passage to more precisely introduce machine learning applications in 
Western Canada: 
 
Previously: “In addition to ANNs, which have received particular attention in hydrology (Maier 
et al., 2010; Maier and Dandy, 2000), numerous types of non-deep machine learning 
applications have also been developed for hydrometeorological analyses, and in particular, 
many have been developed for applications in Western Canada. 
 
Updated, Line 46: “In particular, numerous types of machine learning applications have been 
developed for hydrometeorological analyses and applications in Western Canada.” 
 
Line 53: here the authors are implying that ANNs are non-deep, whereas that may or may not 
be the case (see preceding comment). This error is just sloppy writing and is totally avoidable. 
Again, the overall impression one gets from these passages is that the authors are not very 
familiar or comfortable with the field of ML in general, which is not a helpful image to 
present to the reader. 
 
We edit this sentence to remove this implication: 
 
Previously: “While ANNs and other non-deep machine learning architectures have a long 
history and continue to find useful applications in hydrology…” 



 
Updated, Line 53: “While such machine learning architectures have a long history and continue 
to find useful applications in hydrology…” 
 
Lines 56-57, comment about advantages of deep learning relative to "labour-intensive 
manual feature extraction often required for non-deep models" - essentially true but also 
substantially exaggerated, which again undermines the credibility of the manuscript. 
Automated predictor selection and feature creation techniques have been used in statistical 
modeling for decades and have appeared in non-deep machine learning too. A recent 
example is Fleming et al. (2021b). 
 
The clause “in contrast to labour-intensive manual feature extraction often required for non-
deep models” is removed. 
 
Lines 70-75: good description, but might want to consider mentioning here that Kratzert et al. 
(2019a) additionally used spatially heterogeneous physical basin characteristics as predictors 
in regional LSTM models. I believe this may be mentioned later in the manuscript but ought 
to be briefly pointed out here. 
 
We have edited the passage as follows: 
 
Line 70: “LSTM models trained on many basins have been shown to outperform standard 
hydrological models for prediction at ungauged basins, and the inclusion of physical basin 
characteristics as predictors further improved the LSTM model performance, demonstrating 
the potential for LSTM models to be used as regional hydrological models (Kratzert et al., 
2019a).  However, while addressing the need to learn complex sequential information, the 
LSTM approach does not explicitly learn from spatially discretized information, and as such has 
been primarily used for lumped hydrological modelling.” 
 
Line 80: beach state classification in coastal geomorphology is another example; see Ellenson 
et al. (2020). 
 
Line 81: “… and beach state classification (Ellenson et al., 2020).” 
 
The introductory section’s discussion of explainability in machine learning is inadequate and 
under-referenced, especially from the viewpoint of socially relevant hydrologic model 
applications, i.e., things such as actual flood and water supply forecasting at government 
agencies and the like. At a minimum, on line 100, after the sentence ending with “making”, 
add the following: “Practical methods are beginning to appear that allow users to easily 
identify and geophysically interpret, in detail, spatiotemporal patterns or input-output 
relationships identified by, respectively, new unsupervised learning (e.g., Fleming et al., 
2021a) and supervised learning (e.g., Fleming et al., 2021b) algorithms designed for applied 
operational hydrological modelling environments where interpretability is key. However, 
there is still much work to be done on developing new and better ways to further the goal of 



explainable machine learning for hydrology, in both deep and non-deep contexts and both 
operations and research settings.” Both of these cited manuscripts describe new but non-
deep ML methods that are far more focused on, and successful at, providing extensive and 
complete geophysical interpretations than the method introduced in this submission or other 
deep learning work in hydrology so far. 
 
The suggested text has been added. 
 
Line 107: add “or practical” after “research” and before “questions” 
 
The suggested text has been added. 
 
Line 137: yes, nicely done! Compared to lines 31-32 (see comment above), this is a much 
better description of what’s being meant by a “distributed” model in the context of DL in this 
paper, though it’s still not clear that using the term to described the CNN-LSTM application is 
particularly helpful. 
 
We thank the referee for the positive feedback.  We are more careful through the text to refer 
to the CNN-LSTM model not as being distributed, but rather as being a DL model that uses 
spatially discretized forcing data as input. 
 
Point 2 on line 140, the authors should modify the text slightly to be explicit that they’re 
referring to the spatially distributed input data 
 
This point has been edited as:  
 
Line 145: “2) investigate if the model has learned to focus on the areas of the spatially 
distributed input data that are within or near the watersheds where streamflow is being 
predicted” 
 
Line 153: this region is never referred to by anyone strong familiar with it as “the south-
central domain of western Canada” and this description doesn’t even make geographic sense 
(what’s “central” about it?). Ironically, statements like this are likely to undermine the 
credibility of the work specifically with hydrologists working in the paper’s study area. Maybe 
try just calling it what it is: “southwestern Canada” and/or “the southern portions of the 
western Canadian provinces of British Columbia and Alberta”. 
 
Line 161: Rephrased as “southwestern Canada”. 
 
Line 187, after “acceptable” insert “for the purposes of this study” 
 
Line 193: We have added “for the purposes of this study”. 
 



Lines 205 and 207, “maximized” is not quite the right word here; the term suggests 
optimization 
 
Line 213: We have changed “maximized” to “highest”, consistent with Eaton and Moore (2010). 
 
Line 210, is “uniquely” the right word here? As described here, this is not unique to this 
region, as similar processes happen in other parts of the Canadian Prairies and presumably 
elsewhere as well. It’s the only part of the study region with that characteristic, though, 
which maybe is what the authors are trying to say? 
 
The word “uniquely” has been removed. 
 
Line 224: the standard statistical nomenclature is “unit variance” not “unity variance” 
 
This change has been made throughout the text. 
 
Line 331: insert “(from which CNN technologies primarily originated)” after “image 
processing” 
 
This text has been added. 
 
Line 331: I’m not confident hydroclimatologists would view this type of work as “hydro-
climatic modelling” 
 
We have edited this sentence:  
 
Line 346: “To ensure consistency between terminology in both image processing (from which 
CNN technologies primarily originated) and this study…” 
 
Line 332: after “the three weather predictors”, should “at all grid cells” be added to further 
clarify? I think that’s what’s meant here, but it needs to be entirely clear given the analogies 
being drawn here between video processing and spatiotemporal climate fields 
  
Line 349: We have added “at all grid cells” for clarity. 
 
Lines 370-375: this is mostly sound logic, except perhaps for the PDO, which is generally 
thought to typically remain in one state for a couple decades or so between regime shifts 
 
The reference to the PDO has been removed. 
 
Section 4.3.1: this is the first place in the manuscript that ensemble modeling is introduced, 
and strangely, no effort is made to explain here or anywhere else in the paper how that 
ensemble is formed. Between this treatment (or lack thereof) in the manuscript on the one 
hand and their rebuttal letter on the other hand, it’s not clear the authors are aware that 



there is more than one way to create an ensemble of ML models, and they do need to 
provide a brief explanation of how they did it (one sentence will suffice). 
 
We clarify how we generate this ensemble: 
 
Line 416: “1. Bulk training: a CNN-LSTM model is initialized with random weights and is then 
trained on all 226 stream gauge stations in the region.” 
 
Removed: “In total, we train an ensemble of 10 bulk models and further fine-tune each one, 
yielding an ensemble of 10 bulk models and an ensemble of 10 fine-tuned models per cluster.” 
 
Line 427: Replaced with: “We initialize 10 bulk models with 10 different sets of random 
weights.  Each bulk model is trained and then fine-tuned on each cluster of stream gauge 
stations, creating 10 fine-tuned CNN-LSTM models per each of the six clusters of stream 
gauge stations.  We use this ensemble of 10 bulk models and 10 fine-tuned models (per 
cluster) for our analysis.” 
 
Line 460: “Gaussian distribution” not just “gaussian” which is informal slang 
 
This edit has been made where needed. 
 
Lines 505-507: temperature degree-day models go a lot further back than this; provide more 
several more references, including references specific to the use of this type of snow sub-
models within standard watershed hydrology models 
 
We have updated this section as follows: 
 
Line 529: “While the assumption is a simplification of processes dictated by the surface energy 
balance, the use of positive temperatures as successful indicators for the warming and melting 
of snow is a common assumption of positive-degree-day models in simulating snow and glacier 
melt and was first used by Finsterwalder and Schunk (1887).  Such positive-degree-day 
models have since been widely applied for modelling snow and glacier melt across multiple 
spatial scales (e.g. Hoinkesand and Steinacker, 1975; Braithwaite, 1995; Hock, 2003; Radic et 
al., 2014), and have been used in watershed hydrology models such as the UBC watershed 
model (Quick and Pipes, 1977) and the HBV-model (Bergström, 1976).” 
 
Figure 6: it is interesting that the overall test-phase NSE reported here for the Englishman 
River is substantially lower than that for the ensemble non-deep ANN for this same river 
described by Fleming et al. (2015). This may suggest that the advantage of simultaneous 
regional modeling across a large domain by the CNN-LSTM network introduced in this paper 
is accompanied by the disadvantage of weaker performance on a single given river of 
particular interest, which is often what water resource professionals are primarily concerned 
with – a particular river with socially destructive flooding events, for example, or a tributary 
to a reservoir that requires inflow predictions. This result might be traceable, at least in part, 



to the benefits of making specific choices, on the basis of general expertise in physical 
hydrology and familiarity with the particular watershed in question, that can be easily made 
when modeling a single watershed but are more cumbersome in a regional model. For 
example, the Englishman River-specific ensemble non-deep ANNs of Fleming et al. (2015) 
included snow pillow and antecedent streamflow inputs as inputs. That does not imply that 
the submitted study has done anything wrong – on the contrary, the result likely reflects an 
expected trade-off between scale and detail in a modeling system. The paper should explicitly 
acknowledge this point using the Englishman River, and the comparison to previous AI work 
in that basin, as what appears to be a clear example. For these reasons, the Fleming et al. 
(2015) study should also obviously be added to Table 2, giving an additional point of 
comparison for the Englishman River, which is already included in that table but only for a 
very old study presenting a lower-performing process-based hydrologic model. 
 
This is a good point raised by the referee, and we now explicitly discuss this comparison 
between the results for the Englishman River as in Fleming et al. (2015) and in our study: 
 
Line 806: “Prior studies have modelled daily streamflow at the Englishman River near 
Parksville (08HB002), one of the locations in our study; for example, Fleming et al. (2015) use 
an ensemble of ANNs to forecast streamflow and achieve NSE values in the range of 0.7 – 0.8, 
while Lima et al. (2016) use nonlinear extreme learning machines and achieve NSE > 0.8.  
These examples outperform the NSE value of 0.59 achieved by our CNN-LSTM.  Their success 
could be in part due to the inclusion of more locally-specific input data (e.g. Fleming et al. 
(2015) include snow pillow and antecedent streamflow data, while Lima et al. (2016) include 
predictors such as sea level pressure, wind speed, and humidity, among others), a decision 
which can be more easily implemented for modelling at a single stream gauge station as 
compared to a regional scale model.  These examples highlight what may be a trade-off 
between scale and detail in the modelling approach, where the advantage of simultaneous 
streamflow modelling at multiple stream gauge stations across a region as done by the CNN-
LSTM network may be met by the disadvantage of weaker performance on one particular 
river of interest.”   
 
It is not obvious to us that Fleming et al. (2015), which uses an ANN, should be included in Table 
2, which compares only with process-based models.  As such we reserve this discussion for the 
main text.   
 
Drop the term “heat map” from the manuscript. It’s a standard term in graphics production, 
but in the context of a manuscript dealing with various geophysical quantities including 
temperature, it’s unnecessarily ambiguous. 
 
We have removed the term “heat map” and refer to this quantity throughout the manuscript as 
a “sensitivity map” or “S(x,y)” as defined in Equation 12. 
 
Lines 624-626: can the authors offer a specific hypothesis or two why the eastern and 
northeastern clusters show such a strong sensitivity to coastal conditions? Could it perhaps 



reflect some meteorological setup, e.g., jet stream position, storm tracks, etc.? It’s a very 
prominent feature of the results. 
 
We add: 
 
Line 654: “Another possible explanation is that there could be temporal patterns of 
sensitivity.  For example, the eastern and north-eastern regions may be sensitive to coastal 
conditions when storms travel from west to east.  Alternatively, the sensitivity maps may be 
most sensitive to coastal conditions during winter, when the model could be tracking above-
freezing temperatures.  Future work should investigate these links further to evaluate their 
meaning and implications for CNN-LSTM performance.” 
 
We agree that this is a prominent feature of the results and it is the subject of our future work. 
 
A major point of the article is that the resulting CNN-LSTM neural network provides results 
that are physically explainable in the sense that perturbations to driving fields yield the 
streamflow responses one would expect on the basis of physical hydrologic knowledge. 
That’s great, but it should be made very clear that this is not necessarily a unique attribute of 
deep learning – that has not been at all demonstrated here, and much the same might be 
expected from non-deep machine learning or even statistical models in the same application, 
provided they are built correctly. 
 
We agree with the referee on this point and we do not claim that the physically explainable 
perturbation responses are necessarily unique to deep learning models.  We add: 
 
Line 152: “We explore several ways that perturbations to the input temperature and 
precipitation fields result in streamflow responses that are expected on the basis of physical 
hydrologic knowledge.  While this is not necessarily a unique property of DL and may be 
found when using non-deep machine learning or other empirical models applied to the same 
task, our findings are encouraging given the recent use of DL for streamflow prediction tasks.” 
 
Line 777: this is a grossly inadequate explanation 
 
We have provided the following clarification: 
 
Line 820: “The CNN-LSTM is designed to receive an input structured as a weather video, while 
in comparison, ANNs are designed to receive an input structured as a single vector.  The input 
neurons in the ANN correspond to each variable at each grid point and each day in a single 
weather video, meaning that there are 420,480 input neurons.  For example, the input to 
predict flow on September 30, 2011 is daily maximum temperature, minimum temperature, 
and precipitation from September 30, 2010 through September 29, 2011, at each grid point in 
the study region.  For the CNN-LSTM, these data are structured as a weather video with shape 
𝟑𝟔𝟓 × 𝟏𝟐 × 𝟑𝟐 × 𝟑 (e.g. day × latitude × longitude × variable), but for the ANN, these data 
are structured as a vector with length 420,480.” 



 
Line 800: “seasonal-scale input time series” – really? Decades-long time series with a daily 
sampling interval were used in this study, were they not? So, what are the authors trying to 
express here? 
 
We have clarified this section to reflect that a single year of temperature and precipitation is 
used to predict the next day of streamflow, from which there could be insufficient information 
to know the state of depressional storage (wetting or drying) and thus the correct streamflow 
response: 
 
Line 845: “Storage in ponds can vary on both seasonal and decadal timescales (Hayashi et al., 
2016; Shaw et al., 2012), but only a single year of daily temperature and precipitation is used 
to predict the next day of streamflow.  It could be that the CNN-LSTM model cannot 
accurately predict the streamflow response in eastern basins because one year of 
temperature and precipitation is insufficient information to know the state of depressional 
storage (e.g. seasonal and decadal fluctuations in wetting or drying).” 
 
Lines 813-816: this supposition is inconsistent with the basics of physical hydrology. 
Interactions between streamflow and geology (aquifers, soil moisture storage, etc) directly 
and nonlinearly affect the temporal dynamics of streamflow responses to forcing 
meteorology. The passage is also inconsistent with the work of Kratzert et al. (2019a), who 
demonstrated that including static catchment characteristics as predictors in a LSTM 
streamflow model substantially improves performance, and Kratzert et al. (2019b), who 
demonstrated that a new variant they developed of the LSTM can extract features 
corresponding to static basin characteristics that capture geological and other watershed 
properties. 
 
This passage has been removed. 
 
Line 880, “a single year of temperature and precipitation alone” – elsewhere the manuscript 
states that the data were over 1980-2015 (or 1979-2015, the paper is inconsistent on that 
point, e.g., between the abstract and conclusions). Even after subsetting the data into 
training and testing datasets, that still leaves several years, so where does the “single year” 
comment come from? 
 
The “single year” referred to the input time series for the model (e.g. one year of daily 
temperature and precipitation is input to the model to predict one day of streamflow).  In this 
case, we have removed “a single year” to comment only on processes which cannot be learned 
from temperature and precipitation: 
 
Line 915: “The poor performance in the Prairie region may be due to the importance of 
processes which are underrepresented or not represented in the training data, such as 
processes occurring over longer than annual timescales, or at smaller spatial scales, or which 
are not able to be described from temperature and precipitation alone.” 



 
Temperature and precipitation data begin in 1979 while streamflow data begin in 1980 (since 
the prior year of temperature and precipitation is used to predict the next day of streamflow).  
We have ensured consistency on this point in the text (e.g. we refer to streamflow predictions 
between 1980 – 2015, and only refer to temperature and precipitation data in 1979).  We also 
note specifically: 
 
Line 383: “Since 365 days of previous temperature and precipitation are used to predict 
streamflow, and since the ERA5 data begin on December 1, 1979, the first day of streamflow 
predicted is January 1, 1980.” 
 
We have edited the conclusion so that it only refers to the date range for which streamflow 
predictions are made (1980 – 2015), so that it is consistent with the abstract: 
 
Prior: “We focused on using a relatively simple deep learning model, with the input data 
represented by temperature and precipitation reanalysis for the period 1979 – 2015 given on 
relatively coarse spatial resolution (0.75° x 0.75°).” 
 
Now, on line 904: “We focused on using a relatively simple deep learning model, with the input 
data represented by temperature and precipitation reanalysis given on relatively coarse spatial 
resolution (0.75° x 0.75°).  The deep learning model is used to predict daily streamflow 
between 1980 – 2015 at 226 stream gauge stations.” 
 
I believe the terms “validation” and “testing” are used inconsistently across the manuscript.  
 
We have reviewed the use of “validation” and “testing” and have not found their use to be 
inconsistent.  One potential source of confusion may be that the process-based models (e.g. in 
Table 2) report their performance on their “validation period”, while we report our CNN-LSTM 
performance on our “testing period”.  We have further clarified this difference: 
 
Line 797: “We note a difference in terminology between the process-based model results and 
our CNN-LSTM results.  Both evaluate models on ‘unseen data’ that were not used to 
determine the model parameters; however, the process-based models refer to this dataset as 
‘validation data’ while we refer to this dataset as ‘testing data’.” 
 
Moreover, for the benefit of readers less familiar with machine learning, the manuscript 
should clearly explain the difference between training, validation, and testing datasets in the 
context of the CNN-LSTM network used here. 
 
We also clarify the difference between the training, validation, and testing datasets in the 
context of the CNN-LSTM model: 
 
Line 378: “We divide our data into three subsets referred to as training, validation, and 
testing datasets, as is common practice in DL model development (e.g. Goodfellow et al., 



2016).  The training data are used to iteratively update the model parameters such that the 
error between the model’s predictions and known observations is reduced across the training 
set; the validation data are used to determine when to stop updating the model parameters 
to prevent the model from overfitting to the training data; and the testing data are used to 
evaluate the final model’s performance.” 
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Response to Referee 2 
 
I thank the authors for carefully considering my comments and providing detailed and 
appropriate responses. The revised manuscript is a major improvement in terms of 
presentation, and highlighting key findings and novelty. I have a few minor points that the 
authors need to clarify. 
 
We are glad that the referee considers the revised manuscript to be a major improvement.  We 
thank the referee for their points, which we address below (new text in blue and bold).  
 
I am not convinced with the argument that ERA5 data has global coverage and appropriate 
for this study because the DL methods could be transferred to other regions. Just because 
ERA5 driven DL model performed well in this region does not mean that it is appropriate for 
other regions. The methods seem to be transferable irrespective of the input data, and ‘best’ 
available input data should be used in each study region. This needs to be clarified. 
 
We have updated the following text: 
 
Line 271: “ERA5 reanalysis is globally available from 1979 through the present (once complete it 
will be available from 1950 onwards) and has been shown to compare well against other 
reanalysis products (Hersbach et al., 2020).  ERA5 reanalysis was preceded by the ERA-Interim 
reanalysis, which has been evaluated for use across British Columbia.  It was found that daily 
minimum and daily maximum temperatures are well represented across British Columbia 
(Odon et al., 2018).  Additionally, daily precipitation was found to be well represented, with 
the caveat that extreme precipitation is less successfully represented (Odon et al., 2019).  
ERA5 reanalysis better represents precipitation as compared to ERA-Interim reanalysis at the 
global scale (Hersbach et al., 2020).  Importantly, precipitation from ERA5 has been found to 
typically outperform ERA-Interim reanalysis in the northern Great Plains region, which 
experiences a similar climate to the Prairie region in our study area (Xu et al., 2019).  For these 
reasons we consider the ERA5 reanalysis to be suitable for our study.”  
 
I am doubtful that the "day when the 30-day running mean of modelled streamflow rises to 
be halfway between the winter minimum flow (Qmin) and spring maximum flow (Qmax)" is a 
robust estimation of freshet timing. This is similar to "centre of volume" not being a robust 
measure of snowmelt timing (Whitfield 2013). Given that this is not a main focus of this 
paper, I suggested qualifying it as an ‘indicator of freshet timing’, with a caveat that this may 
not reflect actual freshet timing. 
 
We qualify this as an “indicator of freshet timing” as suggested: 
 
Line 552: “For each cluster and temperature perturbation, we define an indicator of freshet 
timing (𝑡!"#$%#&) as the day when the 30-day running mean of modelled streamflow rises to be 
halfway between the winter minimum flow (𝑄'()) and spring maximum flow (𝑄'*+)” 
 



Throughout the text we now refer to 𝑡!"#$%#& as an “indicator of freshet timing” or “freshet 
timing indicator” rather than “freshet timing”. 
 
Whitfield, P. H., 2013: Is ‘Centre of Volume’ a robust indicator of changes in snowmelt 
timing? Hydrol. Process., 27, 2691–2698, https://doi.org/10.1002/hyp.9817. 
 


