
General comments: 
 
This is an intriguing study that combines two distinct deep-learning technologies (the 
convolutional neural network, CNN, and long short-term memory neural network, LSTM) to 
create a new method for regional daily streamflow prediction that integrates complex 
spatiotemporal structures and dependencies.  The method is applied to streamflow data from 
the southern portion of Canada’s two westernmost provinces, which is a geophysically complex 
and interesting region.  Some effort is also made to address physical interpretation and 
meaningfulness of the technique.  It is a promising study with widely relevant results that has 
strong potential for publication in a top-tier hydrology journal like HESS. 
 
We thank the referee for their comment and are glad they agree the results are widely relevant 
and the study is promising. 
 
That said, the submission as it currently stands appears to have some substantial issues that 
need to be addressed before it can be considered for publication.  The overall feel of how the 
manuscript is written is one of technical naivete and oversimplification, undermining the 
credibility of the study.  For example, the text of the paper and possibly some of the analytical 
steps suggest a superficial understanding of the physical hydrology of western Canadian rivers 
and their associated datasets; and overall, the literature review around machine learning and 
its hydrologic applications is wholly inadequate and does not provide the reader with accurate 
and meaningful context to the study.  Additionally, several basic elements one normally 
expects of a machine learning paper today seem to be missing, like clear descriptions of training 
vs. testing vs. validation data subsets, or the use of informative benchmark models to evaluate 
the new model against.   
 
We have addressed these concerns in the revised manuscript. Our responses to each individual 
comment are given further below.  
 
The study is also not reproducible based on the limited information provided in the paper. 
 
We have now improved the information on the data used and added more details in the methods. 
We also added Table S1 in the Supplementary Information which contains station names, 
numbers, latitude, longitude, and RHBN status for all stations used in this study.  For easier use, 
we also include these data as ‘station_table.csv’ on Github. 
 
We note that the first submission included all code used on Github, including detailed steps how 
to download, access, and structure all data required.  The file ‘main_publish.ipynb’ goes step by 
step to reproduce the figures used in the paper.  In addition, we have now added a notebook 
‘mini.ipynb’ which does not require readers to download any data themselves.  Instead, we 
provide enough preprocessed climate/flow data to create 1 year of input/target and all trained 
bulk/fine models.  From there, users can cluster the stream gauge stations, generate model 
predictions, evaluate model performance, make sensitivity heat maps, and perturb temperature 



and measure the models’ responses; essentially, all results from the paper, but with a single year 
of data instead of the >3 decades of data used in the full ‘main_publish.ipynb’.   
 
My recommendation is to accept the paper for publication in HESS pending major revisions.  I 
hope the detailed comments provided below, as well as the references section that follows 
those detailed comments, will be helpful to the authors as they revise their manuscript. 
 
We appreciate the detailed comments to help improve the manuscript.  We have gone through 
and responded to the individual comments below. 
 
Detailed comments: 
 
* Line 30: Should also cite Hsu et al. (1995) here, as to my knowledge it was the first peer-
reviewed journal paper to present the use of machine learning for rainfall-runoff modeling.  
(Full literature citations are provided below.) 
 
We have now included this citation. 
 
* Lines 34-37: This feels like an overstatement/misstatement of both the limitations of 
conventional machine learning and the advantages of deep learning in a hydrologic prediction 
context.  For one thing, a basic result in AI, dating back to the late 1980s or so, is that non-deep 
ANNs (in particular, multilayer perceptrons having a single hidden layer) are theoretically 
capable of learning any continuous relationship.  Another issue: contrary to what is implied in 
the passage, non-deep ANNs are not the only kind of non-deep machine learning – there are 
several other major classes (random forests, support vector machines, and so forth).  There 
also continues to be intense research in non-deep ML to create new kinds of AI, including news 
kinds of neural networks, having certain useful characteristics that have been successfully 
applied to river prediction; online sequential learning is an obvious example (e.g., Lima et al., 
2015, 2016, 2017).  Indeed, new kinds of non-deep machine learning algorithms are being 
developed specifically for hydrometeorological analysis and prediction tasks (e.g., Cannon, 
2010, 2011, 2018; Fleming et al., 2015, 2019, 2021).  On the other hand, deep learning 
applications in hydrology are currently in vogue and seem to be very promising in certain 
circumstances, but the body of work on the subject – particularly around streamflow prediction 
– remains exceedingly small, and the ultimate suitability of deep learning to this task, including 
capabilities and limitations, remains unclear at this point.  A more mature way of looking at 
deep learning in hydrologic prediction is that work to date suggests it is a promising research 
direction that could potentially offer an alternative or complementary approach to non-deep 
machine learning for certain tasks. 
 
We have edited this section (and much of the introduction).  New text is in blue if paragraphs 
have text from both the first submission and the edited manuscript, while new text is in black if 
the responses are entirely new text:    
 



Line 38: “Early applications of machine learning in hydrology date back to the 1990s, with artificial 
neural network (ANN) models used for rainfall-runoff modelling (e.g. Hsu et al., 1995; Maier and 
Dandy, 1996; Zealand et al., 1999) and a range of other hydrometeorological analysis such as 
flood forecasting (Fleming et al., 2015), improving gridded snow-water equivalent data 
products (Snauffer et al., 2018), and predicting total April-August streamflow (Hsieh et al., 
2003).” 
 
Line 45: “In addition to ANNs, which have received particular attention in hydrology (Maier et al., 
2010; Maier and Dandy, 2000), numerous types of non-deep machine learning applications have 
also been developed for hydrometeorological analyses, and in particular, many have been 
developed for applications in Western Canada.  For example: Bayesian neural networks, support 
vector regression, and Gaussian processes have been used for streamflow prediction at a single 
basin (Rasouli et al., 2012); quantile regression neural networks have been used for precipitation 
downscaling in British Columbia (Cannon, 2011) and estimation of rainfall intensity-duration-
frequency curves across Canada (Cannon, 2018); online sequential extreme learning machines 
have been used for streamflow prediction in two basins (Lima et al., 2016, 2017); and random 
forest models have been used to identify temperature controls on maximum snow-water 
equivalence in Western North America (Shrestha et al., 2021).  While ANNs and other non-deep 
machine learning architectures have a long history and continue to find useful applications in 
hydrology, DL has more recently become a promising area of investigation due to several key 
characteristics (Shen, 2018): DL models can automatically extract abstract features from large, 
raw datasets (Bengio et al., 2013), in contrast to labour-intensive manual feature extraction often 
required for non-deep models; and the existence of DL model architectures which are explicitly 
designed to learn complex spatial and/or temporal information, in particular convolutional 
neural networks (LeCun et al., 1990) and long short-term memory neural networks (Hochreiter 
and Schmidhuber, 1997).” 
 
Line 156: “Deep learning in hydrology has shown promise for streamflow prediction tasks, but 
knowledge gaps exist surrounding the development of architectures which explicitly incorporate 
both space and time, the interpretation of model learning, and the limitations of such modelling 
approaches.” 
 
* Lines 49-50: The use of point observations (of weather, presumably) does not necessarily 
imply that a model is spatially lumped.  It is very common in process-based hydrologic 
modeling, including semi-distributed and fully distributed models, to spatially interpolate 
measurements from point data sources.  In fact, some process-based models even integrate 
that spatial interpolation step into the software platform, along with adjustments for adiabatic 
lapse rates, etc., etc.    
 
The term “point observations” has been removed; while we meant that the LSTM approach had 
been used as a lumped hydrological model with point-observations as input, we agree with the 
referee that this was not necessarily clear. 
 



* Lines 67-70: Explainability is an issue for all machine learning models, not just deep learning 
models; it feels like this passage is conflating ML generally with DL specifically.  For a recent 
example of a new non-deep ML technique specifically introduced to improve interpretability 
of a practical hydrologic prediction model, see Fleming et al. (2021), which also provides a much 
better explanation of exactly why geophysical explainability is a key requirement for practical 
applications of machine learning in hydrologic prediction. 
 
We add the following: 
 
Line 106: “Fleming et al. (2021) discuss the importance of model interpretability in the context of 
operational hydrological forecasting where model predictions may be used for potentially high-
stakes decision making.  The end user may need to communicate why models make a certain 
prediction in order to answer clients’ questions or to satisfy legal requirements.  We may begin 
to build trust in a model’s ability to forecast in the near-term by evaluating model performance 
on a testing dataset that is separate in time from the training and validation datasets.  This 
approach, however, does not offer much insight into the physical relationships that the models 
are relying on for decision making.  Additionally, without an understanding of what models have 
learned, it is challenging to trust a DL model for predictions in periods or places where 
observational datasets do not exist (e.g. for reconstructing missing historical streamflow, for 
predicting streamflow at ungauged basins, or for long-term forecasting of streamflow under 
climate change scenarios).  By interpreting what a DL model has learned, we can better 
understand where and when a DL model can be trusted and the tasks for which it can be applied.” 
 
* Lines 78-79: the authors are not using the terms white-box and (in particular) black-box in 
the way they are usually used.  Most working in hydrology, in particular, would regard any 
physically explainable ML as being white-box in some sense.  The term “black-box” is normally 
reserved for machine learning algorithms that do not offer any physical interpretability, which 
is to say, most of them. 
 
These lines have been rephrased: 
 
Line 129: “In contrast to the above approaches which interpret the model through explicit use of 
the model parameters, alternative methods exist which do not use internal network states for 
interpretation.” 
 
* Lines 85-86: would be useful to note the similarities and differences between recurrent and 
LSTM neural networks here for a general readership.  The text seems to be haphazardly 
switching between the two, which are related but not identical; LSTM is essentially a specific 
and advanced form of recurrent ANN.  This applies to the title of the paper too; why "recurrent" 
instead of "long short-term memory"? 
 
The original intent behind using “convolutional-recurrent” phrasing rather than “convolutional 
long short-term memory” phrasing was to keep the wording more succinct, which came at the 
cost of precision (since LSTM is a type of recurrent network).  Upon reflection we have decided 



to change this to “convolutional long short-term memory” to be more precise, both in the title 
and throughout the text.  We also include: 
 
Line 60: “Long short-term memory (LSTM) neural networks are designed to learn sequential 
relationships on a range of scales (Hochreiter and Schmidhuber, 1997).  LSTMs are a type of 
recurrent neural network (RNN).  Traditional RNNs include a feedback loop between the network 
output and input in order to learn temporal dependency within the data (Rumelhart et al., 1985); 
however, they struggle to learn long-term dependencies greater than around 10 time steps 
(Bengio et al., 1994).  LSTMs overcome this limitation through the inclusion of an internal 
memory state or cell state which can store information, and learning is achieved by including 
internal gates through which information can flow and interact with the cell state.” 
 
* Lines 104-105 are a bit off as well.  There seems to be an implication here that more complex 
models are better models, and that in contrast this study is aiming for parsimonious models.  
That’s an odd way of looking at the desirability of different modeling approaches and 
structures.  Most modelers view a parsimonious model as being fundamentally better, holding 
all else equal, i.e., so-called Accom’s razor. 
 
We did not mean to imply or convey that more complex models are necessarily better models; 
rather, we were considering that it may be possible to achieve better model performance in this 
instance through increased complexity (e.g. more layers / convolutional filters / LSTM units / etc).  
Here we simply meant that our goal is not to necessarily achieve better performance by 
optimizing all hyperparameters and architecture (e.g. we use our few-layer model which works 
well rather than aiming for a deeper model with more parameters which may work a bit better). 
This is now a point that we make later, and as such, we remove the sentence that was originally 
at lines 104-105.  The point we now make later is: 
 
Line 459: “It is possible that a better performing architecture or training scheme could be 
constructed by optimizing hyperparameters with an out-of-sample subset; however, we show 
our model setup and design is sufficient for achieving the goals of this study.” 
 
* In addition to the various other papers referenced in this review that should be cited in the 
paper but were not, the authors may also wish to read and cite the review articles by Reichstein 
et al. (2019) and McGovern et al. (2019).  Citing prior applications of machine learning to 
hydrologic and related modeling in the study area would also be appropriate.  Some examples 
that come to mind include Rasouli et al. (2012), Lima et al. (2015, 2016, 2017), Snauffer et al. 
(2018), Fleming et al. (2015), Hsieh et al. (2003), and Shrestha et al (2021). 
 
We thank the referee for the suggested references. We now note (text in blue indicates new text 
in an old sentence; all other points are entirely new text): 
 
Line 24: “The use of deep learning (DL) has gained traction in geophysical disciplines as an active 
field of exploration in efforts to maximize the use of growing in situ and remote sensing datasets 
(Bergen et al., 2019; Reichstein et al., 2019; Shen, 2018).” 



 
Line 98: “Notably, the CNN-LSTM architecture has been identified as being an architecture of 
potential or emergent interest for geoscientific applications involving spatiotemporal 
phenomena (Reichstein et al., 2019).” 
 
Line 89: “In the geosciences, CNNs have gained popularity more recently with applications 
including long-term El-Nino forecasting (Ham et al., 2019), precipitation downscaling (Vandal et 
al., 2017), hail prediction (Gagne et al., 2019), and urban water flow forecasting (Assem et al., 
2017).” 
 
Line 122: “Here we introduce select concepts and methods which can be used to interpret DL 
models; further details for machine learning and deep learning interpretation in a geoscientific 
context can be found in McGovern et al. (2019).” 
 
As previously noted in response to an earlier comment: 
 
Line 38: “Early applications of machine learning in hydrology date back to the 1990s, with artificial 
neural network (ANN) models used for rainfall-runoff modelling (e.g. Hsu et al., 1995; Maier and 
Dandy, 1996; Zealand et al., 1999) and a range of other hydrometeorological analysis such as 
flood forecasting (Fleming et al., 2015), improving gridded snow-water equivalent data 
products (Snauffer et al., 2018), and predicting total April-August streamflow (Hsieh et al., 
2003).” 
 
Line 45: “In addition to ANNs, which have received particular attention in hydrology (Maier et al., 
2010; Maier and Dandy, 2000), numerous types of non-deep machine learning applications have 
also been developed for hydrometeorological analyses, and in particular, many have been 
developed for applications in Western Canada.  For example: Bayesian neural networks, support 
vector regression, and Gaussian processes have been used for streamflow prediction at a single 
basin (Rasouli et al., 2012); quantile regression neural networks have been used for precipitation 
downscaling in British Columbia (Cannon, 2011) and estimation of rainfall intensity-duration-
frequency curves across Canada (Cannon, 2018); online sequential extreme learning machines 
have been used for streamflow prediction in two basins (Lima et al., 2016, 2017); and random 
forest models have been used to identify temperature controls on maximum snow-water 
equivalence in Western North America (Shrestha et al., 2021).  While ANNs and other non-deep 
machine learning architectures have a long history and continue to find useful applications in 
hydrology, DL has more recently become a promising area of investigation due to several key 
characteristics (Shen, 2018): DL models can automatically extract abstract features from large, 
raw datasets (Bengio et al., 2013), in contrast to labour-intensive manual feature extraction often 
required for non-deep models; and the existence of DL model architectures which are explicitly 
designed to learn complex spatial and/or temporal information, in particular convolutional 
neural networks (LeCun et al., 1990) and long short-term memory neural networks (Hochreiter 
and Schmidhuber, 1997).” 
 



* Figure 1 would be much better, especially for an international readership that is unlikely to 
be strongly familiar with the study area, if it was a multi-panel figure that additionally 
illustrated topography, mean annual temperature, mean annual precipitation, and perhaps 
mean April 1 snow water equivalent. 
 
We have updated this figure and its caption to include panels of elevation, mean annual 
temperature, and mean annual precipitation: 

 
* Lines 137-139: perhaps this passage merely is poorly written, but as it stands, the text implies 
a disturbing lack of understanding of the streamflow data being modeled.  Naturalized flow 
data are flow data that have been adjusted for upstream water management activities – 
diversions, withdrawals, reservoir operations, etc.  Data for stations upstream of dams are not 
necessarily naturalized, contrary to what is implied in this passage of the paper, and certainly 
in datasets like the HYDAT database used here, that step has not been undertaken and in many 
cases is unnecessary.  Similarly, dams are not the only disturbance that result in non-natural 
streamflow data that would in principle require naturalization prior to use in a hydrologic 
modeling study of the sort done here; another obvious example is land use change.   
 
The word “naturalized” was an unfortunate typo, and it should have been “natural” flow 
(“natural” in the sense that the HYDAT system classifies stream gauges as either “natural” or 
“regulated”).  We clarify this in the text: 
 
Line 206: “HYDAT classifies stream gauge stations as either “regulated” (downstream of 
regulating structures such as a dam) or “natural” (upstream of regulating features).  We use 
stations which are classified as natural and which are currently active.” 
 



Why not use the Reference Hydrometric Basin Network (RHBN) stations or something similar?  
There is no mention here at all of the RHBN station network, which has been very widely used 
for decades for hydrological analysis and modeling studies in Canada. 
 
We now include the following on the RHBN: 
 
Line 224: “The Reference Hydrometric Basin Network (RHBN) is a subset of the national stream 
gauge network which have long records and minimal human impacts that have been identified 
for use in climate change studies.  Of the 226 stations used in our study, 213 are within the RHBN.  
The remaining 13 stations have long observational records and are not modified by regulating 
structures but may have more than minimal human impacts through other disturbances to the 
natural system such as land use changes.  We provide station names, station numbers, and if they 
are a part of the RHBN network (Table S1).” 
 
 Also, I think quite a few hydrologists would raise their eyebrows at the specific data selection 
and processing procedures described in the first paragraph of section 3.1. 
 
Unfortunately, this comment does not provide us with any information as to how we could 
improve our data selection and processing procedures.  We will here comment on the steps we 
took. 
 
One challenge is that we need temporally complete datasets, as the number of output neurons 
is constant through training.  We recognize that the threshold of 40% missing data may lead to 
challenges, if the data is missing during periods of dynamic streamflow (in other words, the model 
would be missing how to learn when streamflow should substantially change due to 
meteorological forcing); however, this is not the case.  A vast majority of data is missing between 
November and February, when temperatures are coldest and streamflow is more inhibited as 
compared to spring.  These data are typically missing at stations which record data seasonally, 
rather than continuously, and the 40% threshold allows us to “forgive” seasonal stations which 
do not record in winter months.  The following figure demonstrates how the most missing data 
occurs in the low-flow period. 
 



 

 
* The second paragraph of section 3.1 is also muddled.  All that’s needed here is a concise 
statement that hydrometric network density is much higher in southern than northern Canada, 
and so, for the purposes of this study, the authors focused on the former. 
 
We edit this point: 
 
Line 220: “We further restrict the study region to stations south of 56° N because stream gauge 
density is greater below this latitude.” 
 
* While the approach described on lines 159-170 is interesting and perhaps sufficient for the 
purposes of this study, overall it appears to be a naïve representation of spatiotemporal 
pattern formation in streamflow regimes in this study area.  At an absolute minimum, some 
acknowledgement of prior work, and some caveats about the simple method and assumptions 
used here for regime classification, are needed.  See in particular Halverson and Fleming (2015) 
and references cited therein.  A particularly notable omission is that glacier-fed rivers are not 
identified as a distinct regime, whereas glacial cover is well-known to be a major control of 
streamflow dynamics in several areas within this region; see Moore et al. (2009), Fleming et al. 
(2016), Jost et al. (2012), and Bidlack et al. (2021). 
 
We recognize that we take a relatively simple approach in clustering stations into subdomains 
based only on seasonal hydrograph, latitude, and longitude.  However, we use this clustering step 
not with the sole goal of finding stations which have the most similar physical and hydrological 
conditions (e.g. glacier cover, aspect, land use); rather, a key product of clustering is to find 
subsets of stations for which the model’s learning can be more easily interpreted.  It is desirable 
to identify clusters which are in large part determined by geographic location because one goal 
is to visualize where in space the model is learning to focus when predicting streamflow for each 



cluster.  When stations are nearby each other in space and the model is most sensitive in that 
small region, then we can better understand that the model is looking in the right place.  When 
stations are spread over a larger area and clusters overlap more in space (e.g. if the importance 
of latitude and longitude are “watered down” by using other predictors in the clustering 
algorithm), the model may be sensitive over a large overlapping area for multiple clusters, and it 
becomes harder to interpret.  Is the model focused on the watershed regions?  Or is it just using 
the entire domain? 
 
As noted to reviewer 1 who also had a similar comment on clustering: Consider two stations 
which are nearby one another, but have different characteristics such as drainage area, elevation, 
slope, aspect, and glaciation.  In order to predict streamflow at each station, it should still be 
most important that the model focuses on areas near and within the two watersheds, 
respectively.  For each station, the mapping through to streamflow from this ‘most relevant 
information’, then, may be different, but the sensitive areas should be similar.  So, while 
clustering in the space of hydrologic variables other than geographic location may lead to small 
improvements in performance as measured by NSE by allowing the fine-tuned model to ‘focus 
in’ on more common details, it may make it more difficult to understand what the model is 
learning to do. 
 
While we choose to not change our clustering method, we have added more context about the 
region’s hydrology: 
 
Line 230: “Streamflow throughout the study region varies strongly in space and time and reflects 
the varied topographic and climatic conditions in British Columbia and Alberta.  Here we provide 
a brief, high-level overview of streamflow characteristics, and while it is not a complete summary 
of the full range of hydrologic conditions throughout the study region, we aim to highlight that 
streamflow through the region is heterogeneous in space and time.  Streamflow at low-elevation 
coastal stations is primarily driven by rainfall, with monthly discharge maximized in November or 
December.  In contrast, streamflow at stations that are at higher elevation, further north, or 
further inland transition to a snowmelt-dominated regime, with monthly discharge maximised in 
spring or early summer.  Numerous glaciers exist in high elevation alpine areas throughout both 
the Coast Mountains along the west coast of British Columbia and the Rocky Mountains along 
the border between British Columbia and Alberta, and glacier runoff contributes to streamflow 
through late summer once the seasonal snowpack has melted (Eaton and Moore, 2010).  East of 
the Rocky Mountains, the Prairie region in eastern Alberta is uniquely characterized by relatively 
flat topography with small surface depressions (LaBaugh et al., 1998).  Water can pond and be 
stored in these depressions, leading to intermittent connectivity throughout many basins and 
drainage areas which may vary in time (e.g. Shook and Pomeroy, 2011).” 
 
To comment on prior work that used clustering in the region: 
 
Line 251: “Previous studies have used a range of techniques to cluster or summarize the diversity 
of spatiotemporal streamflow characteristics in the study region (e.g. Halverson and Fleming 
(2015) use complex networks to represent similarity between streamflow timeseries in the 



Coastal Mountains, while Anderson and Radić (2020) use principal component analysis and Self-
Organizing Maps to characterize summer streamflow through Alberta).  In this study we use a 
relatively simple clustering approach, only considering seasonal streamflow, station latitude, and 
station longitude.” 
 
To comment on why we use this simpler clustering approach: 
 
Line 274: “Our clustering approach does not explicitly consider input features such as land use, 
glacier coverage, drainage area, or elevation, but rather implicitly considers the expressions of 
these features in the seasonal hydrograph.  The goal of this type of clustering is to define subsets 
of stream gauge stations that are nearby in space and share similar hydrographs.  We prioritize 
proximity in space over an explicit representation of other important features (e.g. drainage area, 
elevation, glacier coverage) because a key goal of the study is to interpret where in space the DL 
models have learned to focus when predicting streamflow.  As discussed in Sect. 4.3.1 and Sect. 
4.5.1, having clusters of stream gauge stations which are nearby in space allows us to visualize if 
the trained models are learning to focus on the subregion of the input domain which overlaps 
with the watersheds where streamflow is being predicted.” 
 
* Section 3.1: I think reproducibility requires that the hydrometric station list used here be 
shown to readers.  A table in an appendix or supplementary materials would be fine. 
 
A table of station names, numbers, latitude, longitude, and if they are part of the RHBN network 
has been included in supplementary information (Table S1) and as ‘station_table.csv’ on Github. 
 
* Section 3.5: provide information about the latency of the ERA5 reanalysis product – is it 
available in near-real time?  Some reanalysis products are, and some aren’t.  It’s a crucial 
question if one were interested in operationalizing a hydrologic prediction system like this for 
actual use in flood forecasting or another similar practical hydrologic prediction application.  If 
ERA5 products are not available in near-real time, then briefly but clearly state that limitation 
and its implications for wider use of the modeling framework introduced here. 
 
We include the following: 
 
Line 317: “ERA5 data are available as a preliminary product 5 days behind real time, and as a final 
product 2 – 3 months behind real time (Hersbach et al., 2020).  This latency has implications for 
model applications, as it may not be possible to use ERA5 data for real-time forecasting with the 
model in this study.” 
 
* “data” = plural 
 
Having double checked all uses of “data”, we found two which were incorrectly singular and these 
have been corrected.   
 



* Somewhere in Section 3 or 4 there needs to be an explicit and clear description of what the 
training vs. testing vs. validation datasets are.  There is a very brief mention of training vs 
validation but it is inadequate.  The reader is not provided with information about how the 
training vs validation split is made, nor whether another subset is reserved for out-of-sample 
hyperparameter selection.  These are standard practices in machine learning, and information 
about them is needed for transparency, reproducibility, and credibility of the study.  
 
We edit and include the following text: 
 
In original manuscript: Since 365 days of previous temperature and precipitation are used to 
predict streamflow, and since the ERA5 data begin on December 1, 1979, the first day of 
streamflow predicted is January 1, 1980.  For all models, we use 1980 – 2000 for training, 2001 – 
2010 for validation, and 2011 – 2015 for testing.   
 
Added in updated manuscript, Line 416: “In other words, the training period is defined by daily 
streamflow from January 1, 1980 to December 31, 2000, with forcing data ranging from January 
1, 1979 to December 30, 2000.  The validation period uses streamflow data from January 1, 2001 
to December 31, 2010, with forcing data ranging from January 1, 2000 to December 30, 2010.  
The testing period uses streamflow data from January 1, 2010 to December 31, 2015, with forcing 
data ranging from January 1, 2009 to December 30, 2015.  We choose to separate the 
training/validation/testing datasets into non-overlapping time periods of streamflow so that 
model performance can be evaluated on out-of-sample streamflow examples.  We choose to use 
a full decade for validation because we want to encourage the model to perform well across a 
range of conditions and not for one particular year or climate state, since oscillations in the 
climate system such as the El-Nino Southern Oscillation, the Pacific Decadal Oscillation, and the 
Pacific-North American atmospheric teleconnection influence streamflow through modifications 
to temperature, precipitation, and snow accumulation through the study region (e.g. Fleming 
and Whitfield, 2010; Hsieh et al., 2003; Hsieh and Tang, 2001; Whitfield et al., 2010).  We also 
choose to use multiple years for testing so as to not bias our conclusions towards the conditions 
of a single year.  Furthermore, we partition the training, validation, and testing data by year 
rather than by percentage of observations (i.e. the testing subset is chosen as 5 years, not 10% 
of observations) so that we do not bias our results by including or excluding parts of the year 
when the model performs better or worse than average. Overall, the training-validation-testing 
data split is approximately 59% - 27% - 14% of the total streamflow dataset.  The input data are 
normalized so that each variable (maximum temperature, minimum temperature, precipitation) 
has a mean of zero and unity variance over the training period.  The target data from each of the 
226 stations are normalized so that each station’s streamflow has a mean of zero and unity 
variance over the training period.” 
 
Line 459: “It is possible that a better performing architecture or training scheme could be 
constructed by optimizing hyperparameters with an out-of-sample subset; however, we show 
our model setup and design is sufficient for achieving the goals of this study.” 
 



* A modern paper on machine learning applications to hydrologic prediction requires, in 
general, a performance comparison against some relevant benchmark model.  Linear 
regression using precisely the same input dataset as the deep learning method introduced here 
is an obvious starting point and can provide a meaningful assessment of how much 
nonlinearity, interactions, etc contribute to the (presumably better) performance of the new 
technique.  A conventional ANN and an LSTM would also be useful, if more ambitious, points 
of comparison.   
 
We agree with the reviewer and have now included a comparison of our CNN-LSTM model with 
an ensemble of linear models. The revisions read as following: 
 
Line 862: “We compare our fine-tuned CNN-LSTM models against linear models to evaluate the 
extent to which the nonlinearities introduced by the CNN-LSTM approach improve streamflow 
predictions.  We create an ensemble of 10 linear models for each cluster of stream gauge 
stations.  Each linear model is a fully-connected ANN with an input layer, an output layer, and 
linear activation functions.  We use the same training, validation, and testing data as in the CNN-
LSTM approach.  However, instead of structuring the input data as a video, each input 
observation is flattened and all values are input into the ANN.  The target output is the next day 
of streamflow at all stations in the cluster.  Therefore, for each model for cluster 𝑖, there are 
420,480 input neurons (since each original observation is structured as a 365 × 12 × 32 × 3 
video) and 𝑁 output neurons (where 𝑁 is the number of stations in cluster 𝑖).  This approach was 
chosen in order to keep as much similarity as possible between the CNN-LSTM and linear model 
setup.  The two approaches use the same input data, the same target data, and the same number 
of ensemble members, while the key difference is the nonlinearity and architecture of the CNN-
LSTM model.  We find that the CNN-LSTM model outperforms this simple linear benchmark, 
achieving a greater NSE at 222 out of 226 stations.  The linear model has a minimum NSE of -
13.33, a median NSE of 0.35, and a maximum NSE of 0.76, while the CNN-LSTM model has a 
minimum NSE of -0.7, a median NSE of 0.68, and a maximum NSE of 0.96.”  
 
The only significant attempt the paper makes at this is Table 2, which scours the peer-reviewed 
journal literature for examples of hydrologic models that have been developed previously for 
a few of the locations considered in this study.  That comparison is interesting and probably 
worth including in the paper, but it also has limited meaningfulness as different date ranges 
etc were used in the studies.  Moreover, Table 2 relies on a small handful of academic studies 
and misses a lot of existing models within the study area operated by pragmatic water-
management organizations like a large government-owned hydroelectric utility (BC Hydro), a 
provincial ministry (BC River Forecast Center), regional water management authorities (e.g., 
the MIKE-SHE model operated in the Okanagan Basin), and so forth.  Moreover, given that even 
the simplest machine learning architecture outperforms process-based models in most cases, 
the somewhat mixed results in Table 2 are a little surprising.   
 
We recognize that this comparison may have limited meaningfulness as different date ranges 
were used in the study, which is why we emphasized in the text that it is not a direct comparison.  



However, it is still valuable to at the very least comment on the performance of existing models 
in the peer-reviewed literature.  
 
In Section 5 there is also a very brief verbal comparison against the LSTM-based work of 
Kratzert et al. (2018) but that study used a completely different set of basins and data, so again, 
the comparison is extremely approximate.   
 
Yes, we are aware that Kratzert et al. (2018) use a different set of basins and data, which we note 
in the text.  This does not mean that there is nothing to learn from prior regional-DL models.  The 
purpose of this discussion in Section 5 is to say that the LSTM approach was improved by including 
temporally static catchment characteristics in the input, and noting that there would be ways to 
extend the CNN-LSTM approach to do this as well, outlining a potential avenue for future work. 
 
I get that the purpose of this study is more around demonstrating a new technology, and 
perhaps delving a little into the question of explainability, but I suspect most readers would 
like to see more meaningful inter-model performance comparisons here. 
 
We agree that inter-model comparison is important here, and we thank the referee for the idea 
to include a comparison to the linear benchmark (outlined above). 
 
* Estimating predictive uncertainty is a key element of a hydrologic prediction system.  Figure 
6 and its caption suggests that predictive uncertainty is quantitatively estimated here but is 
vague about the method.  It appears that an ensemble of 10 different models is formed, and 
twice the standard deviation of the predictions from those 10 models on a given day is used as 
the de facto prediction bound for that day.  This is a reasonable first-cut approach, I think.  
However, the method needs to be described in the methods section, and some capabilities and 
limitations need to be mentioned; I suspect that because weather uncertainty is not factored 
in (as far as I can tell from the manuscript as submitted) the ensemble spread will be 
substantially under-dispersive. 
 
These uncertainty bounds reflect the range of streamflow predictions due to the randomness in 
the initialization of weights of the network and through training, and do not reflect uncertainty 
in meteorological drivers.  This point has been made clearer by including the following: 
 
Line 475: “We compute NSE using the mean predictions across the ensemble members, and we 
quantify an uncertainty in the streamflow prediction as being twice the standard deviation across 
ensemble members.  This uncertainty is due to randomness from the initialized parameters and 
through training.  It is a measure of how different streamflow predictions may be even when 
using the same architecture and data, and it is not a measure of uncertainty in meteorological 
forcing.  When and where this uncertainty is small (large) indicates that the models in the 
ensemble predict similar (different) streamflow values for that day.  We evaluate performance 
from an ensemble mean rather than a single model’s prediction, and so this uncertainty gives an 
indication of the magnitude of scatter around the ensemble mean.” 
 



* The bar for explainability does not seem to be set very high here.  The sensitivity analyses 
included in the paper are very useful, but they really amount to more of a plausibility test than 
an interpretability test.  In particular, the paper demonstrates, though observing the CNN-
LSTM responses to perturbations in the meteorological driving data, that its streamflow 
predictions (a) are most sensitive to weather in and near the basin as opposed to further away, 
and (b) are sensitive to temperature regimes, in particular, demonstrate hydrograph timing 
shifts corresponding to changes in snow accumulation and melt driven by temperature 
perturbations.   
 
Yes, the paper demonstrates the points (a) and (b), but it also goes further than that.  We also 
demonstrate that the process of fine-tuning strongly influences the model’s decision making by 
allowing it to (c) focus on smaller areas of the input (smaller A through fine-tuning), and (d) 
become more sensitive to perturbation near/within the watersheds being predicted and less so 
to areas further away (larger D through fine-tuning).  “Interpretability” is more than revealing 
physical explanations of the input-output relationships, but is also building an understanding of 
the role of training steps.  One question a person could ask themselves when training an ML 
model is: “When am I finished training?”.  One might compare NSE between a bulk and fine-
tuned model and find them to be very close (as they are in this study, and others e.g. Kratzert et 
al. 2018).  Only through (c) and (d) might we interpret how and if fine-tuning is improving model 
performance – perhaps not by making streamflow predictions which are more similar to 
observed values, but by better focusing in on the watershed areas. 
 
Those results suggest the CNN-LSTM model is capturing key geophysical processes more-or-
less correctly, but it does not clearly reveal physical explanations of the input-output 
relationships – only that the behaviors are consistent with some basic physical expectations.  I 
think the paper is publishable without diving further into explainability, but the authors ought 
to phrase their outcomes a little more precisely around the question of interpretability and 
may wish to consider some additional sleuthing to demonstrate that the CNN-LSTM reveals 
physical processes.  There is some precedent for this in machine learing-based streamflow 
modeling, and looking closely at those precedents may be useful to the authors; examples 
include Fleming (2007), Kratzert et al. (2018), and Fleming et al. (2021).  Looking even more 
broadly across the literature than this would likely lead to even more suggestions of how to 
examine the geophysical relationships the model is capturing. 
 
While it is not uncommon to center “interpretability” around the question of “which pixels are 
most important / relevant / sensitive for the model’s decision making?” in the geophysical deep 
learning literature (e.g. Toms et al. (2020)), we have now added an additional analysis.  We 
demonstrate that in glacier-fed rivers, August temperature perturbations are positively related 
to August mean streamflow (e.g. hotter temperatures lead to more flow), while this is not the 
case for non-glacier-fed rivers.  Additionally, the strength of this relationship is positively (and 
non-linearly) related to the watershed glacier cover (greater percentage glaciation leads to flow 
being more sensitive to August temperature perturbations).  This evidence supports the 
hypothesis that the model is learning physical processes (e.g. glacier-runoff contributions to 
streamflow, where melt is positively related to temperature) and is elaborated in the text: 



  
Line 18: “We also demonstrate that modelled August streamflow in partially glacierized basins is 
sensitive to perturbations in August temperature, and that this sensitivity increases with glacier 
cover.” 
 
In Methods section:  
 
Line 589: “Glacier runoff is a key contributor to streamflow in many watersheds in the study 
region, and compared to non-glacier-fed rivers, glacier-fed rivers have enhanced streamflow in 
late summer due to glacier runoff contributions after much of the seasonal snowpack has melted 
(e.g. Comeau et al., 2009; Jost et al., 2012; Moore et al., 2009; Naz et al., 2014).  Additionally, 
glacier runoff counteracts variability in precipitation as enhanced (suppressed) glacier melt 
compensates for less (more) precipitation during hot and dry (cold and wet) years, leading to 
reduced interannual variability of total summer streamflow (Fountain and Tangborn, 1985; Meier 
and Tangborn, 1961).  These effects lead to spatiotemporal patterns of summer streamflow in 
glacier-fed rivers which are markedly different than those in non-glacier-fed rivers (e.g. Anderson 
and Radić, 2020).  Therefore, the model should learn a unique mapping of late summer climatic 
drivers to streamflow for glacier-fed rivers as compared to non-glacier-fed rivers, and the 
difference in these mappings can be exploited to interpret model learning.  In particular, since 
temperature is a strong control of melt, we assume that mean August streamflow (𝑄!"#) is 
positively related to mean August temperature (𝑇!"#) in basins with partial glacier coverage.  
Again, while this is a simplification of the actual glacier melt processes, it is a key assumption in 
widely used temperature index melt models and is supported by empirical evidence in the study 
region (Moore et al., 2009; Stahl and Moore, 2006).  We introduce the following hypothesis: if 
the model is learning to represent physical processes which drive streamflow in August, then 
modelled 𝑄!"# in glacier-fed rivers should increase with increasing 𝑇!"#, while modelled 𝑄!"# in 
non-glacier-fed rivers should not increase with increasing 𝑇!"#.  To test this hypothesis, we 
introduce a spatially uniform temperature perturbation to only days in August, Δ𝑇!"#, and add it 
to the maximum and minimum temperature channels.  We then compute 𝑄!"# for each station.  
We perturb August temperatures from −5∘C ≤ Δ𝑇!"# ≤ 5∘𝐶 with an increment of 1∘C and use 

linear regression to estimate the sensitivity 
%&!"#
%'!"#

 for each station as: 

𝑄!"# =
𝜕𝑄!"#
𝜕𝑇!"#

𝑇!"# + 𝑐 (17) 

where 
%&!"#
%'!"#

 is calculated as the slope of the linear regression and 𝑐 is a constant coefficient 

(intercept).  We compute basin glacier cover, 𝐺, for each stream gauge station as: 

𝐺 =
𝐴#()*+,-.
𝐴/).+0

(18) 

where 𝐴#()*+,-. is the total area of glaciers within the watershed boundaries and 𝐴/).+0 is the 
basin drainage area as reported in HYDAT (Environment and Climate Change Canada, 2018).  To 
calculate 𝐴#()*+,-., we determine which glacier outlines fall within the watershed boundaries and 
then sum their areas, where glacier locations and areas are taken from the Randolph Glacier 
Inventory Version 6 (RGI Consortium, 2017).” 



 
In Results section: 
 
Line 806: “When August temperatures are perturbed with Δ𝑇!"# > 0, modelled mean August 
streamflow in partially glacierized watersheds increases, while when August temperatures are 
perturbed with Δ𝑇!"# < 0, modelled mean August streamflow in partially glacierized watersheds 

decreases.  This is indicated by 
%&!"#
%'!"#

	> 0 for stations where watershed glacier cover is non-zero 

(Figure 11).  In contrast, perturbations of mean August temperature (positive or negative) do not 
(or negligibly) influence modelled 𝑄!"# for stations where watersheds have no glacier coverage, 

which is indicated by 
%&!"#
%'!"#

 being narrowly distributed around zero for these stations (Figure 11).  

Additionally, we investigate how 
%&!"#
%'!"#

 varies for three ranges of watershed glacier cover, 𝐺 , 

here defined as light glacier cover (0% < 𝐺 ≤ 1%), moderate glacier cover (1% < 𝐺 ≤ 10%), 
and substantial glacier cover (10% < 𝐺 ≤ 100%).  We find that the median 

%&!"#
%'!"#

 increases as 

𝐺 increases from light, to moderate, to substantial glacier cover (Figure 11b), indicating that 
mean August streamflow is more sensitive to August temperature perturbations at higher glacier 
coverage. 
” 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11: Modelled sensitivity of mean August streamflow to mean August temperature.  a) 
%&!"#
%'!"#

 increases non-linearly with watershed glacier cover, 𝐺, indicating that greater watershed 

glacier coverage is related to more positive 
%&!"#
%'!"#

.  b) Probability distributions of 
%&!"#
%'!"#

 for 

different ranges of watershed glacier coverage, indicating that 
%&!"#
%'!"#

 for glacier-fed rivers is both 

greater than non-glacier-fed rivers, and greater at increasing glacier coverage.  All probability 
distributions are normalized to have unity area.” 
 
 
In Discussion section: 



 
Line 919: “When August temperatures are made warmer (cooler), modelled streamflow in 
partially glacierized watersheds increases (decreases) and the sensitivity of modelled August 
streamflow to these temperature perturbations is greater in more glacierized watersheds as 
compared to less glacierized watersheds (Figure 11).  The positive relationship between 𝑄!"# 
and 𝑇!"# in glacierized watersheds indicates that the model has learned that glacierized 
watersheds have an input to streamflow which is positively related to temperature in August, 
while non-glacierized watersheds do not.  We interpret this result as the model learning to 
represent glacier runoff as a temperature-dependent source.  Interestingly, the relationship 
between 

%&!"#
%'!"#

 and watershed glacier cover as derived from the sensitivity test of the CNN-LSTM 

model (Figure 11a), is similar in form to an empirically derived relationship between  
%&!"#
%'!"#

 and 

watershed glacier cover in British Columbia (Figure 5 in Moore et al. (2009), from analysis in Stahl 
and Moore (2006)).  Both analyses identify a positive non-linear relationship between 

%&!"#
%'!"#

 and 

𝐺 when 𝐺 > 0, while 
%&!"#
%'!"#

 is distributed around zero when 𝐺 = 0.  Note however that the raw 

values of 
%&!"#
%'!"#

 differ between our approach and that in Figure 5 of Moore et al. (2009) due to 

differing normalization schemes.  While it is interesting that the model has learned the unique 
characteristics of temperature-driven August flow of glacierized watersheds, it also highlights a 
challenge when applying the CNN-LSTM model in its current realization for applications such as 
long-term forecasting under climate change.  Under warmer future climate forcing, the model 
would associate higher temperatures with greater flow.  However, projections of future glacier 
volume indicate that 70-90% of glacier ice volume will be lost by 2100 in Western Canada (Clarke 
et al., 2015; Marshall et al., 2011), and so it is expected that the learned temperature-flow 
relationship from the past will no longer hold under such conditions.” 
 
Line 994: “To investigate the learning of unique processes in partially glacierized basins, we 
focused on the sensitivity of August flow to August temperature.  By increasing August 
temperature input to drive the model, the model responded by increasing August flow in partially 
glacierized basins while not increasing August flow in non-glacierized basins.  The sensitivity of 
flow to temperature was found to be greater in more glacierized basins as compared to less 
glacierized basins.” 
 
* Lines 629, “it is notable that the CNN-LSTM model achieves good streamflow simulation with 
only temperature and precipitation forcing data” – well, in practice the most widely applied 
hydrologic models tend to use only these two types of forcing because that’s all that is usually 
available, so I guess this point might be worth mentioning here but it’s not particularly 
“notable” to most streamflow modelers. 
  
We rephrase this line: 
 



Line 938: “It is notable that the CNN-LSTM model achieves good streamflow simulation with only 
coarse resolution climate forcing data and localized streamflow data, with no knowledge of 
features such as basin characteristics, topography, or land use, and no explicit climate 
downscaling steps.” 
 
* Lines 635-638: is it possible that, through its empirical and complex meteorological input-
hydrologic output mappings – effectively, a transfer function linking the meteorological data 
to the point streamflow observations – the CNN-LSTM effectively downscaled the reanalysis 
data, at least to some degree?  May be worth talking about here. 
 
Yes, this is possible, especially considering that CNNs have been used to map coarse resolution 
climate data to fine resolution climate data, indicating that sufficient information of high-
resolution climate data is present within coarse resolution climate data (Vandal et al. (2017)).  
We now make the following point in the text: 
 
Line 940: “Our model uses forcing data at relatively coarse spatial resolution (0.75° x 0.75°, or 
~75 km resolution)  as compared to studies identified in Table 2 (e.g. 0.0625° x 0.0.0625° in 
Shrestha et al. (2012); 10 km resolution in Eum et al. (2017)).  Studies that employ a climate 
downscaling step first map coarse resolution climate data to fine resolution climate data, and 
then map the downscaled fine resolution climate data to streamflow.  Here, the CNN-LSTM is 
effectively representing a single transfer function that maps coarse resolution climate data 
directly to streamflow, and it is possible that an effective downscaling of climate data is learned 
by the model.  This indirect downscaling is plausible since statistical methods are often used for 
climate downscaling, including CNNs (Vandal et al., 2017).” 
 
* Lines 646-653: are the authors sure their method requires less data than an LSTM, as claimed 
here?  Doesn’t the CNN-LSTM still ultimately need data for all N basins?  This passage needs 
further explanation/clarification. 
 
It is not that our method requires less data, but that our method leads to having fewer 
observations for training.  Consider a scenario where an LSTM is being used to predict streamflow 
at 10 stations individually (1 station-day of streamflow per observation), compared with a CNN-
LSTM which is being used to predict streamflow at all 10 stations simultaneously (10 station-days 
of streamflow per observation).  Suppose that each station has 20 years of observations for 
training, meaning that there are (365 days / year) * (20 years) * (10 stations) station-days of 
streamflow in this dataset.  The LSTM approach converts 1 station-day to 1 observation for 
training.  The CNN-LSTM approach converts 10 station-days to 1 observation for training.  This 
reduces the number of observations for training by the CNN-LSTM approach by a factor of 10 (i.e. 
reducing the number of observations for training, but not reducing the total data requirements).  
We do not wish to frame this as a “good” or “bad” thing, but rather it is something to consider 
when designing a model and how to train it. 
 
We rephrase and include the following to improve clarity on this point: 
 



Line 947: “In order for the model to learn the mapping between the meteorological forcing and 
streamflow, a sufficiently long data record is necessary for training.  The CNN-LSTM architecture 
presented here predicts streamflow at multiple stations simultaneously.  For a model which 
predicts at 𝑁 stations simultaneously, one target observation is 𝑁 station-days of streamflow.  
For a model which predicts at a single station (e.g. an LSTM with a single output neuron), one 
target observation is a single station-day of streamflow.  For a given training dataset with 𝑀 
station-days of streamflow observations, the CNN-LSTM with 𝑁 output neurons would have 𝑀/𝑁 
observations for training, while the model with a single output neuron would have 𝑀 
observations for training.  That the number of observations for training has been reduced is 
potentially detrimental to the model’s performance.  A potential solution to this problem could 
be to use transfer learning with a CNN-LSTM model pre-trained in a region with a sufficiently long 
streamflow record and then transferred to the new region of interest.” 
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