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Abstract. Wetlands play a key role in hydrological and biogeochemical cycles and provide multiple ecosystem services to 15 

society. However, reliable data on the extent of global inundated areas and the magnitude of their contribution to local 

hydrological dynamics remain surprisingly uncertain. Global hydrological models and Land Surface Models (LSMs) include 

only the most major inundation sources and mechanisms, therefore quantifying the uncertainties in available data sources 

remains a challenge. We address these problems by taking a leading global data product on inundation extents (GIEMS) and 

matching against predictions from a sophisticated global hydrodynamic model (CaMa-Flood) that uses runoff data generated 20 

from the JULES land surface model. The ability of the model to reproduce patterns and dynamics showed by the observational 

product is assessed in a number of case studies across the tropics (including the Sudd, Pantanal, Congo and Amazon), which 

show that it performs well in large wetland regions, with a good match between corresponding seasonal cycles. However, at 

finer spatial scale, water inputs (e.g. groundwater inflow to wetland) may become underestimated in comparison to water 

outputs (e.g. infiltration and evaporation from wetland); or the opposite may occur, depending on the wetland concerned. 25 

Additionally, some wetlands display a clear spatial displacement between observed and simulated inundation as a result of 

over- or under-estimation of overbank flooding upstream. This study provides timely data that can contribute to our current 

ability to make critical predictions of inundation events at both regional and global levels. 

 

 30 

1 Introduction 

Wetlands and other inundated areas make up 6-8% of the terrestrial ice-free land surface (Junk et al., 2013; Mitsch and 

Gosselink, 2000, 2015). However, this percentage greatly underestimates their importance to the global climate system (WMO, 

2019) and to human society (Mitsch and Gosselink, 2000). Wetlands, including peatlands (bogs and fens), mineral soil 
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wetlands (swamps and marshes) and seasonal or permanent floodplains (Saunois et al., 2020), play a key role in hydrological 35 

and biogeochemical cycles, are home to a large part of global biodiversity and provide value to human society in the form of 

multiple ecosystem services (Junk et al., 2013). Most significantly, wetlands and other inundated areas: 

 

(i) Provide a spectrum of ecosystem services to human society including filtering of pollutants, maintenance of buffers against 

flood damage, reduction of soil erosion, biodiversity protection and recreational opportunities (Junk et al., 2013; Maltby and 40 

Barker, 2009; Mitsch and Gosselink, 2015); 

(ii) Are the most significant natural source of atmospheric methane (CH4), contributing 20-31% of global emissions of this 

highly potent greenhouse gas (Saunois et al., 2020) 

and (iii) Mediate latent heat exchange between the atmosphere and the land surface, thereby greatly affecting the occurrence 

of deep convection and meso-scale precipitation systems (Prigent et al., 2011; Taylor, 2010; Taylor et al., 2018), with 45 

implications for the availability of freshwater resources (WMO, 2019). 

 

1.1 Inundation extent 

Inundation extent is a key impact variable related to wetland dynamics produced by hydrological models, which is calculated 

from a sequence of water balance calculations carried out over the course of the water cycle (at canopy level, ground level, 50 

etc.) (Hewlett, 1982; Sutcliffe, 2004). Precipitation received at the land surface is divided at the top of any vegetation canopy 

(canopy interception, dividing into canopy storage, throughfall and canopy evapotranspiration, e.g. Best et al. (2011)) and 

then again at the ground surface (dividing into infiltration (to soil water and drainage into groundwater), soil evaporation, 

surface ponding and lateral displacement). Heavy or persistent precipitation events may cause surface water (pluvial) flooding 

(= high levels of surface ponding or increased lateral displacement), resulting in higher runoff into local water courses. Once 55 

contained in water channels, most water flows along the river network to the ocean (river routing), but high river flows may 

exceed channel capacity downstream, producing an areal extent of inundated water (overbank inundation). Land surface 

inundation, if it occurs, is greater or lesser as a result of a balance between all of these factors. 

 Globally, we consider wetlands defined in the widest sense of any permanently or temporarily inundated area outside 

permanent water bodies (Ramsar, 2016). Wetlands may be divided according to their hydrotopographical context (Wheeler 60 

and Shaw, 1995) into groundwater-maintained or groundwater-fed wetlands, where the effects of groundwater dominate over 

other processes (e.g. fens, depressional wetlands of USEPA (2002) or the non-flooded wetlands of Miguez-Macho and Fan 

(2012)), and fluvial inundation-maintained wetlands, where their existence depends primarily on their proximity to a water 

course that regularly overtops its banks (e.g. igapó and várzea forests of the Brazilian Amazon, Pires and Prance (1985)). 

Seasonally-varying levels of inundation are primarily dependent on upstream precipitation and how this translates into these 65 

two forms of inflow, and secondarily on the ambient rates of evaporation and infiltration (Clark et al., 2015; d'Orgeval et al., 

2008; Marthews et al., 2019). Further classification of wetlands in terms of vegetation or substrate is not required for our study 

(but see Wheeler and Shaw (1995), USEPA (2002), Gerbeaux et al. (2018) and Ramsar (2016)). The characterisation of the 
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variation of inundation as a result of the cycles and variability of all these processes is the primary challenge in simulating and 

predicting inundation (Yamazaki et al., 2011). 70 

 

1.2 Uncertainty in observations 

Much of the uncertainty in the magnitude of important fluxes related to wetlands, is attributable to the wide range of estimates 

of global inundated areas (Aires et al., 2018; Hu et al., 2017; Melton et al., 2013; Parker et al., in prep. 2020; Pham-Duc et 

al., 2017; Tootchi et al., 2019). The importance of reducing this uncertainty has long been known from the perspective of 75 

policymakers concerned with implementing natural flood management plans (Dadson et al., 2017; Junk et al., 2013; Moomaw 

et al., 2018) or working in regions where water resources are under threat (Mitsch and Gosselink, 2000; Vörösmarty et al., 

2010), but over the last decade this has additionally been recognised more widely in the scientific community in terms of 

predictions of climate change (Thirel et al., 2015; Zhao et al., 2017). Unfortunately, progress has been relatively slow because 

of the challenge of simultaneously improving both our observations and our predictions of global inundation extents. 80 

 Assessing the precise extent of natural wetlands and other inundated areas from remote sensing remains challenging 

across large regions (Dutra et al., 2015), especially in the context of constraining process models that produce estimates of 

wetland extent (see discussion in Saunois et al. (2020)). Observational uncertainty depends on the form of inundation (e.g. 

deep vs. shallow, colder vs. warmer water) and ambient conditions (e.g. flooding occurring during a storm under cloud cover 

vs. from snowmelt under clear conditions, or occurring during night vs. day hours). Additionally, there are the more general 85 

uncertainties in remote sensing products stemming from thresholding assumptions and/or compositing (e.g. see Liang and Liu 

(2020)). Uncertainty in inundation extent observations continues to be an issue in any study based on remote sensing data, e.g. 

this uncertainty has recently been shown to be the most significant factor in global CH4 budget uncertainty (Parker et al., in 

prep. 2020). 

 90 

1.3 Uncertainty in model predictions 

Many hydrologic models exist that are capable of simulating flood inundation, however these models differ greatly in their 

sophistication, the breadth of water cycle processes included and their optimal scale of application (Beck et al., 2017; Clark et 

al., 2017; Clark et al., 2015; Davison et al., 2016; Dutta et al., 2000). Inundation models seldom include all forms of inundation 

and hydrological processes (Clark et al., 2015; Davison et al., 2016), and the absence of even one process can lead to significant 95 

underestimation of inundation extent (e.g. as found by Parker et al. (2018) for the process of overbank inundation). The storage 

and conveyance of water in lakes, floodplains, groundwater and river channels, especially, is generally simulated only with 

relatively high uncertainty in the current generation of land surface models (LSMs) (Marthews et al., 2020; Marthews et al., 

2019). 

 Most hydrological models are run uncoupled from the atmosphere and are therefore reliant on the availability of good 100 

precipitation and other atmospheric driving data. Uncertainties in the precipitation driving data may often be very significant 

and larger than the total uncertainty inherent within the model being run (Marthews et al., 2020). Previous studies have 
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attempted to validate global hydrology models against global hydrology products (e.g. Beck et al. (2017) based on the WRR1 

configuration (see Schellekens et al. (2017), now updated to WRR2 by Fink and Martínez-de la Torre (2017)) and also see 

(Decharme et al., 2012; Gedney et al., 2014; Stacke and Hagemann, 2012; Sterk et al., 2020; Yamazaki et al., 2011)). However, 105 

many such studies evaluated only runoff or river flow against corresponding models (e.g. Zhao et al. (2017)), without 

consideration of the areal extent of inundation as we have done in this study. 

 

1.4 Model and study area selection 

The global flood simulation model CaMa-Flood was selected for our predictions of inundation extents because of its 110 

sophistication and the fact that it is already widely-used (Hoch and Trigg, 2019; Zhao et al., 2017). CaMa-Flood is the only 

open-source global river routing model that is based on the local inertial approximation of the Saint Venant equations (Bates 

et al., 2010; Dutta et al., 2000; Fassoni-Andrade et al., 2018; Yamazaki et al., 2013), which takes into account the backwater 

effects of downstream elements, i.e. the possible reversal of flow in particular reaches upstream from e.g. lakes, tributaries, 

estuaries (Hidayat et al., 2011). By including these effects, CaMa-Flood is able to produce a much better characterisation of 115 

many wetlands whose dynamics are dominated by surface water inundation. 

 CaMa-Flood requires runoff data for its simulations, which we obtained from runs of the UK land surface model 

JULES carried out previously through the EU eartH2Observe project (Schellekens et al., 2017; Sterk et al., 2020). We chose 

to use this JULES-based dataset because uncertainty in water cycle quantities for JULES were comparable to any other 

equivalent land surface model (Marthews et al., 2020) and because streamflow and runoff data produced by this model have 120 

already been validated at a global level (Martínez-de la Torre et al., 2019). Additionally, through using these models, our 

results can contribute to the current effort to include global flood inundation in the JULES model itself (Dadson et al., submitted 

2021; Lewis et al., 2019; Lewis et al., 2018). 

 Our comparison of model and observational data was carried out over the whole tropical zone (23.5°S to 23.5°N, 

excluding small oceanic islands) at a resolution of 0.25° in both latitude and longitude (Fig. 1). We have taken a case study 125 

approach (Table 1), where our wetland areas were selected on the basis of being the largest extant global wetlands, with two 

limitations. Firstly, we avoided regions with significant inundation on frozen and partially-frozen land because GIEMS does 

not account for frozen water and areas with significant snowfall are systematically masked as well (Prigent et al., 2007). 

Secondly, coastal or tidal wetlands were also avoided because their interactions with the ocean cannot currently be simulated 

by JULES or CaMa-Flood. Because of the preponderance of coastal occurrence across subtropical and temperate wetlands 130 

(Gumbricht et al., 2017; Melton et al., 2013), with these two limitations all remaining large wetlands were in the tropical zone 

(23.5°S to 23.5°N). 

 

In this study, we ask the following questions: 

   (1) How well can the CaMa-Flood model, driven by JULES runoff data at 0.25° resolution, simulate observed global 135 

inundated extents, as given by GIEMS satellite-based data? 
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   (2) Can an improved match between observed and predicted inundation be obtained by simple transformations, e.g. removing 

low/high observed values or adding a constant to all predicted inundation fractions? 

   (3) Are these simple transformations dependent on spatial scale (e.g. regional vs. subcontinental)? 

Answering these questions will highlight both the strengths and weaknesses of the JULES-CaMa-Flood approach to global 140 

inundation prediction and indicate possible directions where improvements may be made in modelling predictive capability in 

global wetlands. 

 

 

2 Methods 145 

Observed and simulated inundation extents were compared at a global resolution of 0.25° x 0.25° (approximately 25 km x 25 

km at the Equator). 

 

2.1 Observed inundation extents 

Observational data on monthly global inundation fraction were obtained from the Global Inundation Extent from Multi-150 

Satellites database version 2.0 GIEMS-2 (Prigent et al., 2020), which is considered to be one of the best, widely-available 

global products of inundation extents and captures water under vegetation very well (Hu et al., 2017; Pham-Duc et al., 2017). 

Data were regridded to a regular spatial resolution of 0.25° x 0.25° to enable comparison with model outputs. 

 GIEMS is mainly derived from passive microwave observations (Special Sensor Microwave/Imager (SSM/I) and 

SSMIS), with the help of active microwave and visible and near infrared reflectance observations (Advanced Very High 155 

Resolution Radiometer (AVHRR)) to eliminate ambiguities in surface water detection and to account for the potential 

contribution of vegetation (Prigent et al., 2020; Prigent et al., 2007). GIEMS can detect inundation of both natural wetland and 

irrigated agricultural areas. Frozen surfaces are excluded. In unfrozen areas, the accuracy of GIEMS has been comprehensively 

verified (Papa et al., 2010; Papa et al., 2006) and it is a very widely used remote sensing product (e.g. (Taylor et al., 2018; 

Zhang et al., 2016)), therefore it forms an appropriate benchmark dataset for global modelling studies. 160 

 

2.2 Simulated inundation extents 

Model-derived inundation extents were produced by a sequentially executed run of two models referred to here as JULES-

CaMa-Flood. Firstly, predictions of land surface runoff were obtained from the UK land surface model JULES 

https://jules.jchmr.org/ (Best et al., 2011; Clark et al., 2011) by accessing simulations carried out previously through the EU 165 

eartH2Observe project (Marthews et al., 2020; Schellekens et al., 2017; Sterk et al., 2020). A validation of these runoff data 

and a description of the hydrological simulation approach and water balance calculations in JULES is given in Martínez-de la 

Torre et al. (2019). 

 Secondly, these runoffs were used to drive the flood inundation model CaMa-Flood v3.9.6a (version November 2019) 

(Yamazaki et al., 2011; Yamazaki et al., 2009), to produce predictions of surface inundation at all points. CaMa-Flood was 170 
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run at a sub-daily timestep (timestep 1 min for runs; 1 day for driving data) and then the outputs were averaged to produce 

monthly data. CaMa-Flood was set to calculate river discharges and flow velocities using the local inertial equation along its 

river network map in order to include backwater effects (Bates et al., 2010; Yamazaki et al., 2013; Yamazaki et al., 2011). In 

order to compare more easily with observations on a regular grid, our CaMa-Flood simulations were in fully grid-based mode 

rather than using irregularly-shaped catchments (Yamazaki et al., 2011; Yamazaki et al., 2009). CaMa-Flood’s options for 175 

bifurcating flows within the model were not activated for these simulations (Yamazaki et al., 2014) because we did not include 

coastal wetlands in our case studies (only in coastal wetlands would bifurcation occur at a spatial scale greater than our gridcell 

scale of approximately 25 km) and because we focus on water balance in our analysis (which should be negligibly affected by 

river braiding and other bifurcations). 

 180 

2.3 Analysis 

The period for which eartH2Observe and GIEMS-2 data overlap is 1992-2014, so we used this period for all our analyses. All 

post-processing steps were carried out using NetCDF Operator (NCO) tools v.4.4.5 (Zender, 2008) and the statistical language 

environment R v.4.0.2 (R Core Team, 2020). For the R-based analyses, packages maps, rgeos (v.0.5-3), GEOS runtime 

(v.3.8.0) and rgdal (v.1.5-12) were required. All code used in the analysis will be made available on request. 185 

 

2.3.1 Evaluation metrics 

We applied the two most common efficiency statistics used in the context of river flow analysis: the Nash-Sutcliffe Efficiency 

(NSE) and Kling-Gupta Efficiency (KGE), both of which measure the alignment between model results and observations 

(Table 2). KGE is based on a decomposition of NSE into its constitutive components (correlation, variability bias and mean 190 

bias) and addresses several perceived shortcomings in NSE (Knoben et al., 2019). 

 Our focus in this study is wetlands, therefore we excluded areas of very high inundation (permanent lakes and 

reservoirs, which were always 100% inundated in both observed and simulated data because of substitution from the GLWD 

(Lehner and Döll, 2004)) and also areas of continuously low or zero inundation (dry areas in the validation region, which 

would also provide a constant match between observed and simulated areas, see e.g. (Bernhofen et al., 2018)). Our focus on 195 

variability measures ensured that our match statistics were dominated by the regular (seasonal) and irregular cycles occurring 

at points where inundation was not constant, i.e. wetland regions sensu stricto. 

 

2.3.2 Transforming inundation extents 

When comparing the observed and simulated inundation extents, it appears to be the case that a certain amount of inundation 200 

is predicted by JULES-CaMa-Flood but is not observed by GIEMS (e.g. Sudd results, Fig. 1). Based on the data we have, it is 

not possible to be certain whether this ‘low level’ inundation shows some kind of bias towards overprediction on the part of 

the model, or perhaps the inundation is actually real but for some reason unobserved by GIEMS (see e.g. Liang and Liu (2020) 
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for a discussion on the limitations of the satellite-based sensors employed). In order to test this, during our analysis we posit a 

nonzero, minimum level of inundation fraction alpha_min below which GIEMS always returns a zero result. 205 

 It is also possible that there is a maximum inundated fraction (here called alpha_max) above which GIEMS loses its 

sensitivity (i.e. possibly GIEMS can differentiate well between 20% and 30% inundation, but not as reliably between 70% and 

80%). This may possibly happen because vegetation canopy cover obscures inundation occurring beneath it, and the magnitude 

of this effect will depend on canopy coverage and the density of the canopy concerned, among other factors (GIEMS is capable 

of detecting some water under dense vegetation, but with high uncertainty, especially when the distribution of inundation 210 

within the gridcell is highly skewed, i.e. small dry areas within a very wet gridcell or vice versa) (Prigent et al., 2020). 

 Finally, it may also be the case that our predictions of inundated fraction have a systematic bias (underestimation or 

overestimation, on a gridcell-by-gridcell basis). In order to test this, we introduce a fraction beta which is added to all CaMa-

Flood outputs of flooded fraction (fldfrc). In summary, we can modify the GIEMS data and CaMa-Flood outputs according to 

the simple transformations in Fig. 2 in order to investigate and quantify bias in both our simulated and observed data. 215 

 

 

3 Results 

Results are presented in a sequence of case study areas, beginning with the Sudd, Pantanal, Tonlé Sap, Inner Niger Delta and 

Okavango wetlands before moving to the larger, subcontinental wetland complexes of the Central Amazon and the Congo 220 

Cuvette. Straight comparisons between observations and model predictions of inundation show a complicated pattern of partial 

overlap that is challenging to assess visually (Suppl. info). We therefore calculate spatial matching statistics across all case 

study areas. 

 

3.1 Inundation extent 225 

GIEMS observations and JULES-CaMa-Flood predictions match very variably: monthly average inundation extent shows a 

clear bias in most study wetlands, and in addition there is significant year-on-year variability (Fig. 3). However, the direction 

of bias is not consistent between wetlands. Mapping pixel-based calculations of error (Normalised RMSE) and correlation 

coefficient (Pearson’s r) indicated that the correspondence between observed and simulated data is generally good (low RMSE) 

and correlations are almost always positive (high r), however plots of RMSE and Pearson’s r contained no information not 230 

visible on the corresponding plots of NSE and KGE and are therefore not shown (because these metrics are modified versions 

of those statistics, Table 2). 

 Nash-Sutcliffe and Kling-Gupta efficiency scores are most usually used in relation to discharge data, yielding 

generally only one time series per catchment (see Suppl. Info), but in this study we have inundation estimates at every gridcell 

and therefore it is possible to calculate efficiency on a pixel-by-pixel basis in each of our study areas (Fig. 4). Averaged 235 

efficiency scores are generally high within the borders of the wetland itself, although lower in parts of the wetlands that have 

the most dynamic flow regime. 
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 However, these statistics are not capable of measuring some aspects of the flow regime that are important from the 

point of view of allowing us to divide out the different sources of inundation in our study wetlands. For example, the Inner 

Niger Delta wetland shows apparent spatial displacement of inundation between observed and simulated: GIEMS reports 240 

negligible inundation north of 15.5°N in any month (a result broadly in line with the finer scale analysis of Bergé-Nguyen and 

Crétaux (2015)) even though CaMa-Flood predicts inundation reaching as far as Timbuktu at 16.5°N (Fig. 1). At this spatial 

resolution, 1° latitude should be easily resolved so this is a significant mismatch. 

 

3.2 Identifying an optimal transformation of GIEMS observations and JULES-CaMa-Flood predictions 245 

Varying the values of the three parameters alpha_min, alpha_max and beta (see Fig. 2), we searched for an optimal value of 

each that brought our observed and simulated data as close together as possible, in order to quantify and therefore help 

understand the discrepancy between our model result and the (uncertain) observations. By repeating the calculations that 

produced Fig. 4 for a range of reasonable parameter combinations of alpha_min, alpha_max and beta, the state space plots in 

Fig. 5 were produced. The visible maxima on these state space plots provide a best estimate of the optimal values of these 250 

parameters, with these optima differing markedly between our wetland study areas (Table 1). A notably higher value for NSE 

or KGE for a particular combination of alpha_min, beta and alpha_max would identify a consistent bias in either the model 

predictions or the observations (or both). 

 

 255 

4 Discussion 

There has recently been significant progress in our understanding of wetlands and the roles they play in climate processes, 

land surface processes and their impacts on human society (IPCC, 2014; Mitsch and Gosselink, 2015; Moomaw et al., 2018; 

Saunois et al., 2020). However, even though the physics of flood inundation is relatively well-known (Bates et al., 2010; 

Fassoni-Andrade et al., 2018; Yamazaki et al., 2013), many hydrological processes relevant to the representation of flooding 260 

in Earth system models remain poorly characterised at the high resolutions required to address issues of local and regional 

impact (Bierkens, 2015; Clark et al., 2015; Marthews et al., 2019; Zhou et al., in prep. 2020), including infiltration (Clark et 

al., 2015; d'Orgeval et al., 2008), and evaporation (d'Orgeval et al., 2008; Robinson et al., 2017) of flood waters, as well as 

groundwater effects (Clark et al., 2015). 

 In this study, we have simulated inundation extent at a spatial resolution high enough to resolve the major details of 265 

most major global wetlands. These results are potentially of great use to a wide audience of academic and non-academic users 

interested in the broad-scale impacts of environmental change on wetlands, especially where seasonal inundation affects water 

and energy fluxes in Earth system models. It is therefore appropriate to seek as robust a validation of these predictions as 

possible. 

 270 
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4.1 Comparing simulated and observed global inundated extents 

We found that our simulated inundation extents (from the CaMa-Flood model, driven by JULES runoff data at 0.25° resolution) 

sometimes compared very closely to our observed data (from GIEMS satellite-based data), but at many points there were 

divergences (Fig. 1). For example, in the Sudd wetland, our model appears to over-predict inundation, whereas in the Pantanal 

it appears to under-predict (Fig. 1). Can we explain this difference between GIEMS observations and our model predictions? 275 

 In order to investigate these divergences, we applied simple transformations to our data (Fig. 2) and the optimal values 

of the three parameters alpha_min, alpha_max and beta we found for each wetland provide robust explanations for observable 

differences. We found that our predictions of inundation extent could be improved at local or regional scale by simple 

transformations involving the three parameters alpha_min, alpha_max and beta. Moreover, in what follows we use our 

diagnosis of these differences to highlight opportunities to improve the representation of physical processes in land-surface 280 

and large-scale hydrodynamic models. 

 We found evidence that alpha_min might generally take a nonzero value ~10% (Fig. 5b), indicating that GIEMS-2 

may be missing widely-distributed occurrences of low inundation within these wetlands, as suggested by previous studies 

(Prigent et al., 2007). Although we accept that GIEMS may underestimate low levels of inundation that occur outside wetlands 

because of uncertainties in estimating inundation e.g. below intact forest canopies (although small in any particular location, 285 

these would sum to a significant missing term in regional and continental water budgets), however we believe that most of this 

percentage is simply indicating that JULES-CaMa-Flood overestimates inundation in wetland areas (which is then averaged 

out with the zero bias outside wetland areas). 

 We found no evidence to suggest that alpha_max should consistently take any value <1.0 for any of our wetlands 

(Fig. 5; i.e. we found no evidence that the GIEMS-2 inundation extents overestimated inundated fraction in gridcells where 290 

inundation covered a large percentage of the spatial cell) 

 We found high variation in the estimated value of beta for each wetland (Fig. 5b), i.e. adding a consistent constant 

fraction of inundation extent to all gridcells within the limits of each study wetland did indeed provide a closer match between 

observations and simulation, at least in the wetlands we considered in this study. Our interpretation of this is influenced by the 

consideration that we know the JULES-CaMa-Flood model does not simulate several hydrodynamic processes that are known 295 

to have a great impact on inundation extent (e.g. evaporation of flooded areas). We suggest that the negative values of beta_opt 

in the Sudd and Inner Niger Delta show probable underestimation of hydrological output by JULES-CaMa-Flood (water_out). 

Conversely, the positive values of beta_opt in the Okavango show probable underestimation of hydrological input by JULES-

CaMa-Flood (water_in). 

 The spatial displacement of inundation prediction downstream from observed inundation visible especially in our 300 

results for the Inner Niger Delta and the Sudd (Fig. 1) is a result of over- or under-estimation of overbank flooding upstream. 

If overbank flooding is underestimated in our simulation then the water within the river course (the Niger or White Nile, 

respectively, in these cases) will remain in the river and be taken downstream further than expected, producing a downstream 

wetland ‘extension’ that exists in the simulation results but not the observed (as we see in our JULES-CaMa-Flood outputs). 
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 305 

4.2 Implications for the hydrodynamic balance of wetlands 

Wetlands exist as a balance between water input and water output, where we may define water_in = (channel + surface + 

subsurface inflow + local precipitation) and water_out = (infiltration + evaporation) (Fig. 5b) (i.e. a landscape-scale water 

balance, Sutcliffe (2004)). In order to understand these and other points of divergence between observation and prediction, we 

need to understand this balance calculation in that particular wetland, and also assess what types of water bodies are represented 310 

in the simulated data (Zhou et al., 2020; Zhou et al., in prep. 2020). 

 The optimal parameter value derived in this study beta_opt may be understood as an index unique to each wetland 

that estimates the amount that is missing or underestimated in the overall wetland water balance. For example, beta_opt will 

be negative if evaporation and infiltration are being significantly underestimated by JULES-CaMa-Flood in this study area 

(neither JULES nor CaMa-Flood explicitly models evaporation from inundated water in their present configurations). 315 

Conversely, beta_opt will be positive if e.g. groundwater inflow is being underestimated. Therefore, the value of beta_opt may 

be thought of as an estimate of how much water_in is underestimated by CaMa-Flood minus how much water_out is 

underestimated. 

 Categorising wetlands in terms of positive or negative beta_opt would be superficially similar to the division by Junk 

et al. (2011) of South American wetlands into fluvial (wetlands that are predominantly maintained by river overbank inundation 320 

rather than by groundwater effects) and interfluvial wetlands (where groundwater effects dominate), however theirs was a 

distinction based on overall water balance rather than the balance of water input. In the context of our analysis here, we 

understand fluvial and interfluvial wetlands to mean ones where water_in is dominated by channel/surface flow or subsurface 

inflow, respectively. However, both fluvial and interfluvial wetlands may of course experience high evaporation rates (e.g. the 

Inner Niger Delta) or high infiltration rates (based on underlying soil type) and therefore may occur either above or below the 325 

y=0 line in Fig. 5b. 

 

4.3 Inundation at subcontinental and larger scales 

Looking at subcontinental scales (the Amazon and the Congo) and larger scales (the three tropical zones), a number of 

additional considerations become more important. As with all very large river basins, the inland reaches of the Amazon and 330 

the Congo are collectively enormous wetland complexes (Fig. 1), with some areas dominated by river flow and others by 

topographic factors (e.g. the “cuvette” of the Congo Cuvette indicates the whole subcontinent is approximately a shallow 

bowl). The same diagnosis of biases may be carried out over these larger areas, but our optimal value for beta generally 

converges closer and closer to the ‘null’ value beta=0.0 as larger and larger regions are considered (at least, for regions that 

do not include significant coastal or permafrost areas). This is reasonable, because even the largest wetland areas are localised 335 

regions at this scale and therefore these optima will be averaged together with an increasing number of relatively terra firme 

gridcells (i.e. gridcells which experience little or no regular inundation) and, at the largest scales, with entire mountain ranges 

where little or no inundation occurs (either in our model or in the observations). 
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 In addition, we should expect that beta_opt should converge to zero at the largest scales because we know that these 

models return reliable global estimates (Yamazaki et al., 2011), therefore from a global perspective the magnitude of values 340 

for a particular wetland or wetland complex should be understood as biases that are balanced out elsewhere. However, wetland-

specific values nevertheless provide useful information about the inundation processes that dominate in those particular 

wetlands and allow us to improve our understanding of landscape-scale and continental-scale inundation hydrodynamics. 

 

4.4 Conclusions 345 

Simulations of inundation extent are important because they allow us to predict what will happen to globally-important 

wetlands in the future. Wetlands are known to be key nodes in the biosphere system in terms of vulnerability to climate change 

(Maltby and Barker, 2009; Mitsch and Gosselink, 2015). However, wetlands are highly dynamic landscape-level entities 

produced by the balance of a number of different water cycle processes acting together (Hewlett, 1982; Sutcliffe, 2004), not 

all of which are yet represented in global hydrodynamic models (Yamazaki et al., 2013; Yamazaki et al., 2011). 350 

 Reducing uncertainty in predictions from large-scale inundation models has long been a prerequisite for their use in 

global Earth system models. In this study we have shown that a very reasonable and close match may be derived between 

JULES-CaMa-Flood model predictions of inundation extent and independent GIEMS-2 global satellite-based observations of 

inundation. Differences do occur at regional scale in particular large wetlands, however, and these differences indicate clearly 

the importance of incorporating into the modelling framework a better representation of the hydrological impacts of, especially, 355 

infiltration, evaporation and groundwater-fed inundation.  

 Improving our understanding of the dynamics of inundated areas and the role they play in the generation of land-

atmosphere fluxes requires a better representation in general of wetlands within global land-surface and hydrodynamic models 

(Zhang et al., 2016). The results of this study point clearly towards the need for greater attention to be paid to hydrological 

dynamics and water cycle processes within these models, which we expect to result in improved modelling predictive 360 

capability in global wetlands in the future. A firm focus on producing a better characterisation of hydrodynamics within this 

class of models will produce enormous positive returns in terms of our global capability to predict inundation and its global 

impacts and will make a welcome contribution to our preparedness for the impacts of future climate change (IPCC, 2014; 

Moomaw et al., 2018). 

 365 
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Table 1: The wetland case study areas. Total tropical land area is approx. 56 000 000 km2 (approx. 38% of total global land) 

Site Location Surface area 

   

Neotropics 
23.5°S to 23.5°N, 
110.4°W to 34.6°W 

Approx. 18 000 000 km2 land area (Malhi, 2010) 

   Amazon 

The Central Amazon 
(Brazil, Colombia, 
Peru) 
15.0°S to 7.0°N, 
75.0°W to 47.0°W 

Approx. 1 900 000 km2 (Gedney et al., 2019; Yamazaki et al., 2011) 

   Pantanal 

The Pantanal (Brazil, 
Bolivia, Paraguay) 
22.0°S to 14.8°N, 
61.1°W to 54.6°W 

Varies up to 220 000 km2 (Parker et al., 2018) 

   

West 
Paleotropics 

Tropical Africa and 
Arabia 
23.5°S to 23.5°N, 
17.6°W to 64.0°E 

Approx. 21 000 000 km2 land area 

   Niger 
Inland Delta 

The Inner Niger Delta 
wetland (Mali) 
13.6°N to 17.1°N, 
5.2°W to 2.8°W 

Varies up to 80 000 km2 (Andersen et al., 2005; Balek, 1977; Bergé-
Nguyen and Crétaux, 2015; Dadson et al., 2010; Haque et al., 2020) 

   Sudd 

The Sudd (South 
Sudan) 
4.5°N to 10.0°N, 
28.0°E to 33.0°E 

Varies up to 64 000 km2 (Balek, 1977; Mohamed and Savenije, 2014; 
Sutcliffe and Parks, 1999; Tootchi et al., 2019), including the Bahr el 
Ghazal to the west and the Machar marshes to the east. 

   Congo 

The Congo Cuvette 
Centrale (D. R. 
Congo, Congo-
Brazzaville) 
3.2°S to 3.6°N, 
14.6°E to 25.2°E 

Approx. 1 000 000 km2 (Alsdorf et al., 2016; Balek, 1977; Betbeder et al., 
2014) 

   Okavango 

The Okavango 
Wetlands (Botswana) 
24.0°S to 16.0°S, 
19.0°E to 27.0°E 

Varies up to 38 000 km2 (the main delta NW of Maun varies up to 22 000 
km2 and the Makgadikgadi pans are an additional 16 000 km2) (Milzow 
et al., 2009; Wolski et al., 2012).. 

   

East 
Paleotropics 

India to New Guinea 
23.5°S to 23.5°N, 
64.0°E to 153.5°E 

Approx. 17 000 000 km2 land area 

   Tonlé Sap 

Tonlé Sap wetland 
(Cambodia) 
11.6°N to 13.6°N, 
103.0°E to 105.1°E 

Varies up to 16 000 km2 (Sithirith, 2015) 

   

  375 
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Table 2: Efficiency metrics widely used in flood model assessment and forecast verification (Knoben et al., 2019). In all 

equations, Q = flow variable (e.g. discharge) over time steps t=1,..,T. Subscripts “obs” and “sim” refer to observed and model-

predicted values, respectively, 𝜇𝑜𝑏𝑠 = 𝑄𝑜𝑏𝑠̅̅ ̅̅ ̅̅  is the observation mean and 𝜎𝑜𝑏𝑠 = √
1

𝑁−1
∑ (𝑄𝑜𝑏𝑠(𝑡) − 𝑄𝑜𝑏𝑠̅̅ ̅̅ ̅̅ )2𝑡  is the standard 380 

deviation (and similarly for µsim and σsim) and r is the Pearson correlation coefficient between observed and simulated values. 

Evaluation 
metric 

Equation Description 

Nash-
Sutcliffe 
efficiency 
(NSE) * 

𝑁𝑆𝐸 = 1 −
∑ (𝑄𝑠𝑖𝑚(𝑡) − 𝑄𝑜𝑏𝑠(𝑡))

2
𝑡

∑ (𝑄𝑜𝑏𝑠(𝑡) − 𝑄𝑜𝑏𝑠̅̅ ̅̅ ̅̅ )2𝑡

 

Standard thresholds for NSE (but see Supp. Info): 
1.0 = Perfect alignment 
> 0.5 = Good alignment (Decharme et al., 2012; 
Knoben et al., 2019) (although some other authors 
specify >0.6, e.g. Martínez-de la Torre et al. (2019)) 
0.0 = No predictive skill (mean of observations 
provides as good an estimate as simulations) 
< 0.0 = Increasing divergence between simulations 
and observations 
Note that in this study points of very low inundation 
(dry areas sensu Bernhofen et al. (2018)) and very 
high inundation (permanent lakes and reservoirs) 
were removed before calculating NSE (because of 
the requirement to have at least some flow variability 
for the calculation), therefore our NSE values were 
slightly lower than usual. Our analysis rests on 
relative rather than absolute values of NSE, so our 
results are unaffected by this, but for clarity of 
comparison between sites we have used a 
consistent colour scale on all NSE plots based on the 
standard thresholds. 

Kling-Gupta 
efficiency 
(KGE) *, ** 

𝐾𝐺𝐸
= 1

−√(𝑟 − 1)2 + (
𝜎𝑠𝑖𝑚
𝜎𝑜𝑏𝑠

− 1)
2

+ (
𝜇𝑠𝑖𝑚
𝜇𝑜𝑏𝑠

− 1)
2

 

Standard thresholds for KGE: 
1.00 = Ideal model performance 

> (1 −
1

√2
=) 0.29 = Good performance (Knoben et 

al., 2019) 

( 1 − √2 = ) -0.41 = No predictive skill (mean of 
observations provides as good an estimate as 
simulations; n.b. negative values above this 
threshold still indicate that a model is an 
improvement over the mean flow benchmark) 
(Knoben et al., 2019) 
< -0.41 = Increasing divergence between simulations 
and observations 
Note that in this study points of very low inundation 
(dry areas sensu Bernhofen et al. (2018)) and very 
high inundation (permanent lakes and reservoirs) 
were removed before calculating KGE (because of 
the requirement to have at least some flow variability 
for the calculation), therefore our KGE values were 
slightly lower than usual. Our analysis rests on 
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relative rather than absolute values of KGE, so our 
results are unaffected by this, but for clarity of 
comparison between sites we have used a 
consistent colour scale on all KGE plots based on the 
standard thresholds. 

* n.b. Both NSE and KGE are uncorrected for the magnitude of the variability of the observations σobs, (see Suppl. Info). 

** n.b. KGE without the penalty terms (in µ and σ) reduces simply to Pearson’s correlation coefficient 𝑟 =
𝑐𝑜𝑣(𝑄𝑠𝑖𝑚(𝑡),𝑄𝑜𝑏𝑠(𝑡))

𝜎𝑠𝑖𝑚𝜎𝑜𝑏𝑠
 =

1

𝑁−1

√∑ ((𝑄𝑠𝑖𝑚(𝑡)−𝑄𝑠𝑖𝑚̅̅ ̅̅ ̅̅ ̅)(𝑄𝑜𝑏𝑠(𝑡)−𝑄𝑜𝑏𝑠̅̅ ̅̅ ̅̅ ̅))𝑡

𝜎𝑠𝑖𝑚𝜎𝑜𝑏𝑠
. 

 385 
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 Fraction of gridcell inundated 

Site GIEMS JULES-CaMa-Flood 

   

Neotropics 

  

   Amazon 

  

   Pantanal 
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West Paleotropics 

  

   Niger Inland Delta 

  

   Sudd 

  

   Congo 
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   Okavango 

  
   

East Paleotropics 

  

   Tonlé Sap 

  
   

Figure 1: Fraction of gridcell inundated (in addition to water contained in channels and watercourses, which are not shown) 

in each study area. Superposed lakes and reservoirs are from the Global Lakes and Wetlands Database (GLWD) Lehner and 

Döll (2004). Resolution is 0.25° in both latitude and longitude (n.b. the Tonlé Sap is our smallest wetland, therefore the 

gridcells are relatively large in that plot). View window extent is taken from references in Table 1. Cities with populations 390 

>100 000 are shown (SimpleMaps, 2019) for view extents up to 2 000 000 km2. Data shown are an average for 1992-2014 

from GIEMS-2 observations (left) and equivalent JULES-CaMa-Flood simulations (right). 
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 395 

 

 
Figure 2: Transforming the GIEMS inundated fraction (inunfrac) data (left) and CaMa-Flood output flooded fraction (fldfrc) 

variable (right). Note that values alpha_min = beta =0.0 and alpha_max =1.0 are equivalent to making no modification. 

 400 
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Site 
Seasonal variation of inundation 

(fraction of area) 

  

   Amazon 

 

   Pantanal 

 
  

   Niger Inland Delta 

 

   Sudd 
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   Congo 

 

   Okavango 

 
  

   Tonlé Sap 

 
  

Figure 3: Seasonal variation in inundation across the study wetlands, averaged across the years 1992-2014: Red = Observations 

(GIEMS), Blue= Simulated (JULES-CaMa-Flood). The three main tropical zones are not shown because they include areas 

both north and south of the Equator. 405 
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Site Nash-Sutcliffe Efficiency, NSE Kling-Gupta Efficiency, KGE 

   

Neotropics 

  

   Amazon 

  

   Pantanal 

  
   

West Paleotropics 
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   Niger Inland Delta 

  

   Sudd 

  

   Congo 

  

   Okavango 
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East Paleotropics 

  

   Tonlé Sap 

  
   

Figure 4: Mapped values for efficiency statistics based on inundated gridcell fraction, averaged across the years 1992-2014 

(with alpha_min=0.0, beta=0.0 and alpha_max=1.0) (white indicates no value could be calculated). 410 
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Site Nash-Sutcliffe Efficiency, NSE Kling-Gupta Efficiency, KGE 

   

Neotropics 

  

   Amazon 

  

   Pantanal 
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West Paleotropics 

  

   Niger Inland Delta 

  

   Sudd 

  

   Congo 
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   Okavango 

  
   

East Paleotropics 

  

   Tonlé Sap 

  
   

Figure 5a: State space plots for evaluation statistics based on inundated gridcell fraction, calculated from varying parameters 

alpha_min and beta, with panels showing values of alpha_max. Each point is the mean of all NSE or KGE values, averaged 415 

both over time (years 1992-2014) and over the wetland region concerned (white indicates no value could be calculated). 
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Figure 5b: Summary of plots in Fig. 5a. Optimal values of beta and alpha_min are shown (referred to as beta_opt and 

alpha_min_opt in the text), calculated as the centroids of the maximal region on the KGE plots (black) or NSE plots (red) for 

each site (with alpha_max=1.0) from Fig. 5a. On this plot, we define water_in = (channel + surface + subsurface inflow + 420 

precipitation) and water_out = (infiltration + evaporation). Note that clear maxima were not present for all case studies for 

NSE (Fig. 5a), but when present they are shown connected to the equivalent maxima for KGE. 

 

 

 425 
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