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Abstract. Wetlands play a key role in hydrological and biogeochemical cycles and provide multiple 

ecosystem services to society. However, reliable data on the extent of global inundated areas and the 25 

magnitude of their contribution to local hydrological dynamics remain surprisingly uncertain. Global 

hydrological models and Land Surface Models (LSMs) include only the most major inundation sources 

and mechanisms, therefore quantifying the uncertainties in available data sources remains a challenge. 

We address these problems by taking a leading global data product on inundation extents (Global 

Inundation Extent from Multi-Satellites, GIEMS) and matching against predictions from a global 30 

hydrodynamic model (CaMa-Flood) driven by runoff data generated by a land surface model (Joint UK 

Land and Environment Simulator, JULES). The ability of the model to reproduce patterns and dynamics 

showed by the observational product is assessed in a number of case studies across the tropics, which 

show that it performs well in large wetland regions, with a good match between corresponding seasonal 

cycles. At finer spatial scale, we found that water inputs (e.g. groundwater inflow to wetland) became 35 

underestimated in comparison to water outputs (e.g. infiltration and evaporation from wetland) in some 

wetlands (e.g. Sudd, Tonlé Sap) and the opposite occurred in others (e.g. Okavango) in our model 

predictions. We also found evidence for an underestimation of low levels of inundation in our satellite-

based inundation data (approx. 10% of total inundation may not be recorded). Additionally, some 

wetlands display a clear spatial displacement between observed and simulated inundation as a result of 40 

over- or under-estimation of overbank flooding upstream. This study provides timely information on 

inherent biases in inundation prediction and observationdata that can contribute to our current ability to 

make critical predictions of inundation events at both regional and global levels. 
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1 Introduction 

Wetlands and other inundated areas make up 6-8% of the terrestrial ice-free land surface (Mitsch and 

Gosselink, 2000, 2015; Junk et al., 2013). However, this percentage greatly underestimates their 

importance to the global climate system (WMO, 2019) and to human society (Mitsch and Gosselink, 50 

2000). Wetlands, including peatlands (bogs and fens), mineral soil wetlands (swamps and marshes) and 

seasonal or permanent floodplains, play a key role in hydrological and biogeochemical cycles, are home 

to a large part of global biodiversity and provide value to human society in the form of multiple ecosystem 

services (Junk et al., 2013). Most significantly, wetlands and other inundated areas: 

          (i) Provide a spectrum of ecosystem services to human society including filtering of pollutants, 55 

maintenance of buffers against flood damage, reduction of soil erosion, biodiversity protection and 

recreational opportunities (Mitsch and Gosselink, 2015; Junk et al., 2013; Maltby and Barker, 2009); 

          (ii) Are the most significant natural source of atmospheric methane (CH4), contributing 20-31% of 

global emissions of this highly potent greenhouse gas (Saunois et al., 2020) 

          and (iii) Mediate latent heat exchange between the atmosphere and the land surface, thereby 60 

greatly affecting the occurrence of deep convection and meso-scale precipitation systems (Taylor, 2010; 

Prigent et al., 2011; Taylor et al., 2018), with implications for the availability of freshwater resources 

(WMO, 2019). 

 

1.1 Inundation extent 65 

Inundation extent is a key impact variable related to wetland dynamics produced by hydrological models, 

which is calculated from a sequence of water balance calculations carried out over the course of the 

water cycle (at canopy level, ground level, etc.) (Hewlett, 1982; Sutcliffe, 2004). Precipitation received 

at the land surface is divided at the top of any vegetation canopy (canopy interception, dividing into 

canopy storage, throughfall and canopy evapotranspiration, e.g. Best et al. (2011)) and then again at 70 

the ground surface (dividing into infiltration (to soil water and drainage into groundwater), soil 

evaporation, surface ponding and runoff). Heavy or persistent precipitation events may cause surface 

water (pluvial) flooding (= high levels of surface ponding or increased lateral displacement), resulting in 

higher runoff into local water courses. Once contained in water channels, most water flows along the 
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river network to the ocean (river routing), but high river flows may exceed channel capacity downstream, 75 

producing an areal extent of inundated water (overbank inundation). Land surface inundation, if it occurs, 

is greater or lesser as a result of a balance between all of these factors. 

 Globally, we consider wetlands defined in the widest sense of any permanently or temporarily 

inundated area outside permanent water bodies (Ramsar, 2016). Wetlands may be divided according to 

their hydrotopographical context (Wheeler and Shaw, 1995) into groundwater-maintained or 80 

groundwater-fed wetlands, where the effects of groundwater dominate over other processes (e.g. fens, 

the depressional wetlands of USEPA (2002), the non-flooded wetlands of Miguez-Macho and Fan (2012) 

or the groundwater-dependent wetlands of Froend et al. (2016)), and fluvial inundation-maintained 

wetlands, where their existence depends primarily on their proximity to a water course that regularly 

overtops its banks (e.g. igapó and várzea forests of the Brazilian Amazon, Pires and Prance (1985)). 85 

Seasonally-varying levels of inundation are primarily dependent on upstream precipitation and how this 

translates into these two forms of inflow, and secondarily on the ambient rates of evaporation and 

infiltration (Marthews et al., 2019; Clark et al., 2015; d'Orgeval et al., 2008). Further classification of 

wetlands in terms of vegetation or substrate is not required for our study (but see Wheeler and Shaw 

(1995), USEPA (2002), Gerbeaux et al. (2018) and Ramsar (2016)). The characterisation of the variation 90 

of inundation as a result of the cycles and variability of all these processes is the primary challenge in 

simulating and predicting inundation (Yamazaki et al., 2011). 

 

1.2 Uncertainty in observations 

Much of the uncertainty in the magnitude of important fluxes related to wetlands, is attributable to the 95 

wide range of estimates of global inundated areas (Parker et al., in prep. 2020; Aires et al., 2018; Melton 

et al., 2013; Tootchi et al., 2019; Pham-Duc et al., 2017; Hu et al., 2017). The importance of reducing 

this uncertainty has long been known from the perspective of policymakers concerned with implementing 

natural flood management plans (Dadson et al., 2017; Moomaw et al., 2018; Junk et al., 2013) or working 

in regions where water resources are under threat (Mitsch and Gosselink, 2000; Vörösmarty et al., 100 

2010). O, but over the last decade this has additionally been recognised more widely in the scientific 

community in terms of predictions of climate change (Zhao et al., 2017; Thirel et al., 2015), but. 

Unfortunately, progress has been relatively slow because of the challenge of simultaneously improving 

both our observations and our predictions of global inundation extents. 
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 Assessing the precise extent of natural wetlands and other inundated areas from remote sensing 105 

remains challenging across large regions (Dutra et al., 2015), especially in the context of constraining 

process models that produce estimates of wetland extent (see discussion in Saunois et al. (2020)). 

Observational uncertainty depends on the form of inundation (e.g. deep vs. shallow, colder vs. warmer 

water) and ambient conditions (e.g. flooding occurring during a storm under cloud cover vs. from 

snowmelt under clear conditions, or occurring during night vs. day hours). Additionally, there are the 110 

more general uncertainties in remote sensing products stemming from thresholding assumptions and/or 

compositing (e.g. see Liang and Liu (2020)). Uncertainty in inundation extent observations continues to 

be an issue in any study based on remote sensing data, e.g. this uncertainty has recently been shown 

to be the most significant factor in global CH4 budget uncertainty (Parker et al., in prep. 2020). 

 115 

1.3 Uncertainty in model predictions 

Many hydrologic models exist that are capable of simulating flood inundation, however these models 

differ greatly in their sophistication, the breadth of water cycle processes included and their optimal scale 

of application (Dutta et al., 2000; Beck et al., 2017a; Clark et al., 2015; Davison et al., 2016; Clark et al., 

2017). Inundation models seldom include all forms of inundation and hydrological processes (Davison 120 

et al., 2016; Clark et al., 2015), and the absence of even one process can lead to significant 

underestimation of inundation extent (e.g. as found by Parker et al. (2018) for the process of overbank 

inundation). The storage and conveyance of water in lakes, floodplains, groundwater and river channels, 

especially, is generally simulated only with relatively high uncertainty in the current generation of land 

surface models (LSMs) (Marthews et al., 2020; Marthews et al., 2019). 125 

 Most hydrological models are run uncoupled from the atmosphere and are therefore reliant on 

the availability of high-quality precipitation and other atmospheric driving data obtained from independent 

sources. Uncertainties in the precipitation driving data may often be very significant and larger than the 

total uncertainty inherent within the model being run (Marthews et al., 2020). Previous studies have 

attempted to validate global hydrology models against global hydrology products (e.g. Beck et al. (2017a) 130 

based on the global Water Resources Reanalysis Tier 1 WRR1 configuration (see , now updated to Tier 

2 WRR2 by Fink and Martínez-de la Torre (2017)) and also see (Stacke and Hagemann, 2012; Sterk et 

al., 2020; Decharme et al., 2012; Yamazaki et al., 2011)). However, many such studies evaluated only 
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runoff or river flow against corresponding models (e.g. Zhao et al. (2017)), without consideration of the 

areal extent of inundation as we have done in this study. 135 

 

1.4 Model and study area selection 

The global flood simulation model CaMa-Flood (Catchment-based Macro-scale Floodplain (CaMa-

Flood) was selected for our predictions of inundation extents because of its sophistication and the fact 

that it is already widely-used ((see Hoch and Trigg (2019) , Zhao et al. (2017) and references therein)). 140 

CaMa-Flood is the only open-source global river routing model that is based on the local inertial 

approximation of the Saint Venant equations (Bates et al., 2010; Dutta et al., 2000; Yamazaki et al., 

2013; Fassoni-Andrade et al., 2018), which takes into account the backwater effects of downstream 

elements, i.e. the possible reversal of flow in particular reaches upstream from e.g. lakes, tributaries, 

estuaries (Hidayat et al., 2011). By including these effects, CaMa-Flood is able to produce a much better 145 

characterisation of many wetlands whose dynamics are dominated by surface water inundation. 

 CaMa-Flood requires runoff data for its simulations, which we obtained from runs of the UK land 

surface model JULES (Joint UK Land Environment Simulator (JULES) carried out previously through the 

EU eartH2Observe project (Schellekens et al., 2017; Sterk et al., 2020). We chose to use this JULES-

based dataset because uncertainty in water cycle quantities for JULES were comparable to any other 150 

equivalent land surface model (Marthews et al., 2020) and because streamflow and runoff data produced 

by this model have already been validated at regional (Martínez-de la Torre et al., 2019) and global 

(Arduini et al., 2017) levels. Additionally, through using these models, our results can contribute to the 

current effort to include global flood inundation in the JULES model itself (Dadson et al., submitted 2021; 

Lewis et al., 2019; Lewis et al., 2018). 155 

 Our comparison of model and observational data iswas based on the observed dataset Global 

Inundation Extent from Multi-Satellites Version 2.0 GIEMS-2 (Prigent et al., 2020; Prigent et al., 2007). 

We analysed the whole tropical zone (23.5°S to 23.5°N, excluding small oceanic islands) at a resolution 

of 0.25° in both latitude and longitude (Fig. 1). We have taken a case study approach (Table 1), where 

our wetland areas were selected on the basis of being the largest extant global wetlands, with two 160 

limitations. Firstly, we avoided regions with significant inundation on frozen and partially-frozen land 

because GIEMS does not account for frozen water and areas with significant snowfall are systematically 

masked as well (Prigent et al., 2007). Secondly, coastal or tidal wetlands were also avoided because 
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their interactions with the ocean cannot currently be simulated by JULES or CaMa-Flood. Because of 

the preponderance of coastal occurrence across subtropical and temperate wetlands (Gumbricht et al., 165 

2017; Melton et al., 2013), with these two limitations all remaining large wetlands were in the tropical 

zone (23.5°S to 23.5°N). 

 

In this study, we ask the following questions: 

   (1) How well can the CaMa-Flood model, driven by JULES runoff data at 0.25° resolution, simulate 170 

observed global inundated extents, as given by GIEMS satellite-based data? 

   (2) Can an improved match between observed and predicted inundation be obtained by simple 

transformations, e.g. removing low/high observed values or adding a constant to all predicted inundation 

fractions? 

   (3) Are these simple transformations dependent on spatial scale (e.g. regional vs. subcontinental)? 175 

Answering these questions will highlight both the strengths and weaknesses of the JULES-CaMa-Flood 

approach to global inundation prediction and indicate possible directions where improvements may be 

made in modelling predictive capability in global wetlands. 
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2 Methods 

Observed and simulated inundation extents were compared at a global resolution of 0.25° x 0.25° 

(approximately 25 km x 25 km at the Equator). 

 185 

2.1 Observed inundation extents 

Observational data on monthly global inundation fraction were obtained from the Global Inundation 

Extent from Multi-Satellites database version 2.0 GIEMS-2 (Prigent et al., 2020), which is considered to 

be one of the best, widely-available global products of inundation extents and captures water under 

vegetation very well (Hu et al., 2017; Pham-Duc et al., 2017). Data were regridded to a regular spatial 190 

resolution of 0.25° x 0.25° to enable comparison with model outputs. 

 GIEMS is mainly derived from passive microwave observations (Special Sensor 

Microwave/Imager, (SSM/I) and SSMIS), with the help of active microwave and visible and near infrared 

reflectance observations (Advanced Very High Resolution Radiometer, (AVHRR)) to eliminate 

ambiguities in surface water detection and to account for the potential contribution of vegetation (Prigent 195 

et al., 2007; Prigent et al., 2020). GIEMS can detect inundation of both natural wetland and irrigated 

agricultural areas. Frozen surfaces are excluded. In unfrozen areas, the accuracy of GIEMS has been 

comprehensively verified (Papa et al., 2006; Papa et al., 2010) and it is a very widely used remote 

sensing product (e.g. (Zhang et al., 2016; Taylor et al., 2018)), therefore we suggest that it forms an 

appropriate benchmark dataset for global modelling studies. 200 

 

2.2 Simulated inundation extents 

Model-derived inundation extents were produced by a sequentially executed run of two models referred 

to here as JULES-CaMa-Flood. 

 205 

2.2.1 Validation of land surface runoff 

 Firstly, pPredictions of land surface runoff were obtained from the UK land surface model JULES 

https://jules.jchmr.org/ (Best et al., 2011; Clark et al., 2011) by accessing simulations carried out 

previously through the EU eartH2Observe project (Schellekens et al., 2017; Sterk et al., 2020; Marthews 

https://jules.jchmr.org/
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et al., 2020). A validation of these runoff data against Global Runoff Data Centre (GRDC) observations 210 

is given in Arduini et al. (2017) and a description of the hydrological simulation approach and water 

balance calculations in JULES is given in Martínez-de la Torre et al. (2019) and Blyth et al. (2019). As 

discussed in Marthews et al. (2020), uncertainties in the precipitation driving data may often be 

significant, so we selected Multi-Source Weighted-Ensemble Precipitation (MSWEP), currently 

considered the best available global precipitation product at this spatial resolution (Beck et al., 2017b; 215 

Marthews et al., 2020). The model configuration used for JULES was global Water Resources 

Reanalysis Tier 2 (WRR2) (Fink and Martínez-de la Torre, 2017). Arduini et al. (2017) analysed runoff 

data from an ensemble of land surface models including JULES both at a global level and for the Amazon 

in particular, finding that JULES was not an outlier in relation to other models, performing well both in 

terms of annual cycle and year-on-year trends. Marthews et al. (2020) analysed the same 220 

eartH2Observe ensemble on a region-by-region basis, finding that the causes of higher model 

uncertainty operated differentially in wet and dry environments, with wetter environments being modelled 

with less uncertainty than dry environments. This supports our focus on global wetlands in this study and 

our use of JULES-derived runoff data. 

 225 

2.2.2 Validation of land surface inundation 

 Secondly, these runoffs Daily runoff data from JULES were used to drive the flood inundation 

model CaMa-Flood v3.9.6a (version November 2019) (Yamazaki et al., 2011; Yamazaki et al., 2009), to 

produce predictions of surface inundation at all points. CaMa-Flood was run withat a sub-daily timestep 

(timestep length of 1 min for runs; 1 day for driving data) and then the outputs were averaged to produce 230 

monthly output data. CaMa-Flood was set to calculate river discharges and flow velocities using the local 

inertial equation along its river network map in order to include backwater effects (Bates et al., 2010; 

Yamazaki et al., 2013; Yamazaki et al., 2011). In order to compare more easily with observations on a 

regular grid, our CaMa-Flood simulations were in fully grid-based mode rather than using irregularly-

shaped catchments (Yamazaki et al., 2009; Yamazaki et al., 2011). CaMa-Flood’s options for bifurcating 235 

flows within the model were not activated for these simulations (Yamazaki et al., 2014): because we did 

not include coastal wetlands in our case studies (only in coastal wetlands would bifurcation occur at a 

spatial scale greater than our gridcell scale of approximately 25 km) and because we focus on water 

balance in our analysis (which should be negligibly affected by river braiding and other bifurcations). 
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2.3 Analysis 

The period for which eartH2Observe and GIEMS-2 data overlap is 1992-2014, so we used this period 

for all our analyses. All post-processing steps were carried out using NetCDF Operator (NCO) tools 

v.4.4.5 (Zender, 2008) and the statistical language environment R v.4.0.2 (R Core Team, 2020). For the 

R-based analyses, packages maps, rgeos (v.0.5-3), GEOS runtime (v.3.8.0) and rgdal (v.1.5-12) were 245 

required. 

 

2.3.1 Evaluation metrics 

We applied the two most common efficiency statistics used in the context of river flow analysis: the Nash-

Sutcliffe Efficiency (NSE) and Kling-Gupta Efficiency (KGE), both of which measure the alignment 250 

between model results and observations (Table 2). KGE is based on a decomposition of NSE into its 

constitutive components (correlation, variability bias and mean bias) and addresses several perceived 

shortcomings in NSE (Knoben et al., 2019). 

 Our focus in this study is wetlands, therefore we excluded areas of very high inundation 

(permanent lakes and reservoirs, which were always 100% inundated in both observed and simulated 255 

data because of substitution from the Global Lakes and Wetlands Database GLWD (Lehner and Döll, 

2004)) and also areas of continuously low or zero inundation (dry areas in the validation region, which 

would also provide a constant match between observed and simulated areas, see e.g. (Bernhofen et al., 

2018)). Our focus on variability measures ensured that our match statistics were dominated by the 

regular (seasonal) and irregular cycles occurring at points where inundation was not constant, i.e. 260 

wetland regions sensu stricto. 

 

2.3.2 Transforming inundation extents 

When comparing the observed and simulated inundation extents, it can happen that inundation predicted 

by JULES-CaMa-Flood is not observed by GIEMS. Based on the data we have, it is not possible to be 265 

certain whether this ‘low level’ inundation shows some kind of bias towards overprediction on the part of 

the model, or perhaps the inundation is actually occurredreal but wasfor some reason unobserved by 

GIEMS (see e.g. Liang and Liu (2020) for a discussion on the limitations of the satellite-based sensors 
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employed). In order to test this, during our analysis we posit a nonzero, minimum level of inundation 

fraction alpha_min below which GIEMS always returns a zero result. 270 

 It is also possible that there is a maximum inundated fraction (here called alpha_max) above 

which GIEMS loses its sensitivity (i.e. possibly GIEMS can differentiate well between 20% and 30% 

inundation, but not as reliably between 70% and 80%). This may possibly happen because vegetation 

canopy cover obscures inundation occurring beneath it, and the magnitude of this effect will depend on 

canopy coverage and the density of the canopy concerned, among other factors (GIEMS is capable of 275 

detecting some water under dense vegetation, but with high uncertainty, especially when the distribution 

of inundation within the gridcell is highly skewed, i.e. small dry areas within a very wet gridcell or vice 

versa) (Prigent et al., 2020). 

 Finally, it may also be the case that our predictions of inundated fraction have a systematic bias 

(underestimation or overestimation, on a gridcell-by-gridcell basis). In order to test this, we introduce a 280 

fraction beta which is added to all CaMa-Flood outputs of flooded fraction (fldfrc). In summary, we can 

modify the GIEMS data and CaMa-Flood outputs according to the simple transformations in Fig. 2 in 

order to investigate and quantify bias in both our simulated and observed data. 
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3 Results 

Results are presented in a sequence of case study areas, beginning with the Sudd, Pantanal, Tonlé Sap, 

Inner Niger Delta and Okavango wetlands before moving to the larger, subcontinental wetland 

complexes of the Central Amazon and the Congo Cuvette. Straight comparisons between observations 290 

and model predictions of inundation show a complicated pattern of partial overlap that is challenging to 

assess visually (Fig. 3), therefore we calculate appropriate statistics across all case study areas. 

 

3.1 Inundation extent 

GIEMS observations and JULES-CaMa-Flood predictions match very variably: monthly average 295 

inundation extent shows a clear bias in most study wetlands, and in addition there is significant year-on-

year variability (Fig. 4). However, the direction of bias is not consistent between wetlands. Nash-Sutcliffe 

Efficiency (NSE) and Kling-Gupta Efficiency (KGE) scores were calculated for each wetland study area 

in order to be able to compare consistently the match between simulated and observed wetland and 

inundation extents. NSE and KGE are metrics based on calculations of error (Normalised root-mean-300 

squared error, nRMSE) and correlation (Pearson’s r correlation coefficient) (Table 2). We do not report 

calculated values of nRMSE or Pearson’s r because plots of these statistics contained no information 

not visible on the corresponding plots of NSE and KGE. 

 Because of our gridcellpixel-based approach, we could apply our NSE and KGE calculations in 

a distributed way across each case study wetland. These scores are most usually used in relation to 305 

discharge data, yielding generally only one time series per catchment (see Suppl. Info), but our 

inundation estimates at every gridcell enabled us to calculate efficiency on a gridcellpixel-by-gridcellpixel 

basis in each of our study areas (Fig. 5). Averaged efficiency scores are generally high across each 

individual wetland, although lower in parts of the wetlands that have the most dynamic flow regime. 

 However, NSE and KGE are not capable of measuring some important aspects of the flow regime 310 

that are important from the point of view of dividing out the different sources of inundation in our study 

wetlands, most notably spatial displacement of inundation, which might indicate that inundation input is 

overestimated in one area by the model at the expense of underestimation elsewhere, or, alternatively, 

might indicate that inundation inputs have been correctly calculated at all points, but an underestimated 
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flow speed produces inundation at an incorrect location. For example, the Inner Niger Delta wetland 315 

shows apparent spatial displacement of inundation between observed and simulated: GIEMS reports 

negligible inundation north of 15.5°N in any month (a result broadly in line with the finer scale analysis 

of Bergé-Nguyen and Crétaux (2015)) even though CaMa-Flood predicts inundation reaching as far as 

Timbuktu at 16.5°N (Fig. 3). At this spatial resolution, 1° latitude is well- resolved so this is a significant 

mismatch. 320 

 

3.2 Identifying an optimal transformation of GIEMS observations and JULES-CaMa-Flood 

predictions 

Varying the values of the three parameters alpha_min, alpha_max and beta (see Fig. 2), we searched 

for an optimal value of each that brought our observed and simulated data as close together as possible, 325 

in order to quantify and therefore help understand the discrepancy between our model result and the 

(uncertain) observations. By repeating the calculations that produced Fig. 5 for an exhaustive range of 

parameter combinations of alpha_min, alpha_max and beta, the state space plots in Fig. 6 were 

produced. A notably higher value for NSE or KGE for a particular combination of alpha_min, beta and 

alpha_max identifies a consistent bias in either the model predictions or the observations (or both). 330 

 The visible maxima on our state space plots provide a best estimate of the optimal values of 

these parameters, with these optima differing markedly between our wetland study areas (Fig. 7). We 

found that alpha_min took a nonzero value ~10% across most of our study wetlands (Fig. 7), but found 

no evidence to suggest that alpha_max should consistently take any value <1.0 for any of our wetlands 

(Fig. 6; i.e. we found no evidence that the GIEMS-2 inundation extents overestimated inundated fraction 335 

in gridcells where inundation covered a large percentage of the spatial cell). 

 We found high variation in the estimated value of beta for each wetland, i.e. adding a consistent 

constant fraction of inundation extent to all gridcells within the limits of each study wetland did indeed 

provide a closer match between observations and simulation, at least in the wetlands we considered in 

this study (Fig. 7). Defining water_in = (channel + surface + subsurface inflow + precipitation) and 340 

water_out = (infiltration + evaporation), we suggest that the negative values of beta_opt in the Amazon, 

Tonlé Sap, Sudd and Inner Niger Delta show probable underestimation of hydrological output by JULES-

CaMa-Flood (water_out) (Fig. 7). Conversely, the positive values of beta_opt in the Okavango show 

probable underestimation of hydrological input by JULES-CaMa-Flood (water_in) (Fig. 7). 
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 Finally, we note the specificity of our results to the time period 1992-2014. Carrying out this 345 

analysis for an earlier or a later period would most likely havecertainly yielded different estimates of NSE, 

KGE, alpha_min, alpha_max and beta. However, we suggest that without significant climate change, or 

perhaps significant anthropogenic modification of the wetland area concerned, the values of these 

statistics should remain similar to the values calculated here. 

  350 
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4 Discussion 

There has recently been significant progress in our understanding of wetlands and the roles they play in 

climate processes, land surface processes and their impacts on human society (Saunois et al., 2020; 355 

IPCC, 2014; Mitsch and Gosselink, 2015; Moomaw et al., 2018). However, even though the physics of 

flood inundation is relatively well-known (Yamazaki et al., 2013; Bates et al., 2010; Fassoni-Andrade et 

al., 2018), many hydrological processes relevant to the representation of flooding in Earth system models 

remain poorly characterised at the high resolutions required to address issues of local and regional 

impact (Marthews et al., 2019; Zhou et al., in prep. 2020; Bierkens, 2015; Clark et al., 2015), including 360 

infiltration (d'Orgeval et al., 2008; Clark et al., 2015), and evaporation (Robinson et al., 2017; d'Orgeval 

et al., 2008) of flood waters, as well as groundwater effects (Clark et al., 2015). 

 In this study, we have simulated inundation extent at a spatial resolution high enough to resolve 

the major details of most major global wetlands. These results are potentially of great use to a wide 

audience of academic and non-academic users interested in the broad-scale impacts of environmental 365 

change on wetlands, especially where seasonal inundation affects water and energy fluxes in Earth 

system models. It is therefore appropriate to seek as robust a validation of these predictions as possible. 

 

4.1 Comparing simulated and observed global inundated extents 

We found that our simulated inundation extents (from the CaMa-Flood model, driven by JULES runoff 370 

data at 0.25° resolution) sometimes compared very closely to our observed data (from GIEMS satellite-

based data), but at many points there were divergences (Fig. 3). For example, in the Sudd wetland, our 

model appears to over-predict inundation, whereas in the Pantanal it appears to under-predict (Fig. 3). 

Can we explain these and other differences between GIEMS observations and our model predictions? 

 CaMa-Flood flood extent and GIEMS wetland extents do capture slightly different water surfaces. 375 

CaMa-Flood is most accurate in representing river-originated, fluvial flooding, and water surfaces not 

well connected to rivers have higher uncertainty (e.g. water bodies in local depressions due to rain-fed 

pluvial flooding). Additionally, GIEMS may overestimate the surface water extent in very wet areas (e.g. 

soils close to saturation, but without a standing water surface). 
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 In order to investigate these divergences, we applied simple transformations to our data (Fig. 2) 380 

and the optimal values of the three parameters alpha_min, alpha_max and beta we found for each 

wetland provide robust explanations for observable differences. We found that our predictions of 

inundation extent could be improved at local or regional scale by simple transformations involving the 

three parameters alpha_min, alpha_max and beta. Moreover, in what follows we use our diagnosis of 

these differences to highlight opportunities to improve the representation of physical processes in land-385 

surface and large-scale hydrodynamic models. 

 We found evidence that alpha_min might generally take a nonzero value ~10% across tropical 

inundated areas, indicating that GIEMS-2 may be underestimatmissing widely-distributed occurrences 

of low inundation within these wetlands, as suggested by previous studies (Prigent et al., 2007). GIEMS 

may underestimate low levels of inundation that occur outside wetlands because of uncertainties in 390 

estimating inundation e.g. below intact forest canopies (although small in any particular location, these 

would sum to a significant missing term in regional and continental water budgets). 

 We found high variation in the estimated value of beta for each wetland, i.e. the constant fraction 

of inundation extent that must be added to all gridcells within the limits of each study wetland to elicit the 

closest match between observations and simulation. Our interpretation of this is influenced by the 395 

consideration that we know the JULES-CaMa-Flood model does not simulate several hydrodynamic 

processes that are known to have a great impact on inundation extent (e.g. evaporation of flooded areas). 

Defining water_in = (channel + surface + subsurface inflow + precipitation) and water_out = (infiltration 

+ evaporation), we found in this studysuggest that some wetlands show underestimation of hydrological 

output by JULES-CaMa-Flood (water_out) (e.g. Amazon, Tonlé Sap, Sudd and Niger Inland Delta), 400 

whereas some show underestimation of hydrological input by JULES-CaMa-Flood (water_in) (e.g. 

Okavango). From a basic comparison of observed and modelled inundation extent, it is not possible to 

identify the precise combination of climate, season or hydrotopography that produces these under- and 

over-estimations of water balance at these particular wetlands, but identifying the sign of the imbalance 

is nevertheless very useful information for interpreting model predictions in these areas. 405 

 The spatial displacement of inundation prediction downstream from observed inundation visible 

especially in our results for the Inner Niger Delta and the Sudd (Fig. 3) is a result of over- or under-

estimation of overbank flooding upstream. If overbank flooding is underestimated in our simulation then 

the water within the river course (the Niger or White Nile, respectively, in these cases) will remain in the 
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river and be taken downstream further than expected, producing a downstream wetland ‘extension’ that 410 

exists in the simulation results but not the observed (as we see in our JULES-CaMa-Flood outputs). 

 

4.1.2 Quantifying bias in JULES-CaMa-Flood inundation predictions 

Uncertainty in our model-derived inundation extents such as those from JULES-CaMa-Flood simulations 

is a combination of uncertainty from various sources. Most immediately, the calculations within CaMa-415 

Flood to predict inundation extent from runoff, but also the runoff calculations within JULES and, before 

that, the precipitation data as well. When comparing to observational data, a fourth source of uncertainty 

is bias in observations, i.e. GIEMS-2 in this study. 

 The JULES-CaMa-Flood modelling sequence used in this study is an example of ‘uncoupled 

routing’ where one model produces the runoff and a second model running separately calculates 420 

inundation, rather than both steps being integrated into a single model. This has significant advantages 

in terms of simplicity and ease of use in comparison to coupled alternatives, but also disadvantages 

especially in the context of wetland simulation. For example, in a mixed wetland such as the Pantanal 

with water input derived both from groundwater effects (lateral inflow - in the absence of any visible 

stream - from surrounding areas where the water table is higher than the wetland surface) and fluvial 425 

effects (overbank inundation from a stream or river), the groundwater input will be calculated by the 

runoff-generation routine (e.g. JULES) but the fluvial component will be calculated by the routing/flooding 

routine (e.g. CaMa-Flood). Separate simulation of these two input processes is undesirable, for example: 

because CaMa-Flood does not calculate runoff, it includes no representation of a soil column and 

therefore does not have any explicit representation of subsurface processes, which means that important 430 

processes such as infiltration, which controls how wetlands recede in dry spells, can only be represented 

very approximately. 

 Do our optimal values for alpha_min, alpha_max and beta indicate model simulation bias in 

JULES-CaMa-Flood under certain conditions?  Perhaps yes: for example, tThe optimal parameter 

value derived in this study beta_opt may be understood as an estimateindex ofunique to each wetland 435 

that estimates the amount that is missing or underestimated in the overall wetland water balance. For 

example, beta_opt will be negative if evaporation and infiltration are being significantly underestimated 

by JULES-CaMa-Flood in this study area (neither JULES nor CaMa-Flood explicitly models evaporation 

from inundated water in their present configurations). Conversely, beta_opt will be positive if e.g. 
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groundwater inflow is being underestimated. More preciselyTherefore, the value of beta_opt may be 440 

thought of as an estimate of how much water_in is underestimated by JULES-CaMa-Flood minus how 

much water_out is underestimated. This estimate indicates model bias and also provides a measure of 

the direction and magnitude of that bias. 

 

4.2 Implications for the hydrodynamic balance of wetlands 445 

Wetlands exist as a balance between water input and water output, (i.e. water_in and water_out above; 

a landscape-scale water balance sensu Sutcliffe (2004)). In order to understand these and other points 

of divergence between observation and prediction, we need to understand this balance calculation in 

that particular wetland, and also assess what types of water bodies are represented in the simulated 

data (Zhou et al., 2020; Zhou et al., in prep. 2020). 450 

 The optimal parameter value derived in this study beta_opt may be understood as an index 

unique to each wetland that estimates the amount that is missing or underestimated in the overall wetland 

water balance. For example, beta_opt will be negative if evaporation and infiltration are being significantly 

underestimated by JULES-CaMa-Flood in this study area (neither JULES nor CaMa-Flood explicitly 

models evaporation from inundated water in their present configurations). Conversely, beta_opt will be 455 

positive if e.g. groundwater inflow is being underestimated. Therefore, the value of beta_opt may be 

thought of as an estimate of how much water_in is underestimated by CaMa-Flood minus how much 

water_out is underestimated. 

 Categorising wetlands in terms of positive or negative beta_opt would be superficially similar to 

the division by Junk et al. (2011) of South American wetlands into fluvial (wetlands that are predominantly 460 

maintained by river overbank inundation rather than by groundwater effects) and interfluvial wetlands 

(where groundwater effects dominate), however theirs was a distinction based on overall water balance 

rather than the balance of water input. In the context of our analysis here, we understand fluvial and 

interfluvial wetlands to mean ones where water_in is dominated by channel/surface flow or subsurface 

inflow, respectively. Both fluvial and interfluvial wetlands may of course experience high evaporation 465 

rates (e.g. the Inner Niger Delta) or high infiltration rates (based on underlying soil type) and therefore 

may occur either above or below the y=0 line in Fig. 7. 
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4.3 Inundation at subcontinental and larger scales 

Looking at subcontinental scales (the Amazon and the Congo) and larger scales (the three main tropical 470 

zones, Fig. 1), a number of additional considerations become more important. As with all very large river 

basins, the inland reaches of the Amazon and the Congo are collectively enormous wetland complexes, 

with some areas dominated by river flow and others by topographic factors (e.g. the “cuvette” of the 

Congo Cuvette indicates the whole subcontinent is approximately a shallow bowl). The same diagnosis 

of biases may be carried out over these larger areas, but our optimal value for beta generally converges 475 

closer and closer to the ‘null’ value beta=0.0 as larger and larger regions are considered (at least, for 

regions that do not include significant coastal or permafrost areas). This is reasonable, because even 

the largest wetland areas are localised regions at this scale and therefore these optima will be averaged 

together with an increasing number of relatively terra firme gridcells (i.e. gridcells which experience little 

or no regular inundation) and, at the largest scales, with entire mountain ranges where little or no 480 

inundation occurs (either in our model or in the observations). 

 In addition, we should expect that beta_opt should converge to zero at the largest scales because 

we know that these models return reliable global estimates (Yamazaki et al., 2011), therefore from a 

global perspective the magnitude of values for a particular wetland or wetland complex should be 

understood as biases that are balanced out elsewhere. However, wetland-specific values nevertheless 485 

provide useful information about the inundation processes that dominate in those particular wetlands 

and allow us to improve our understanding of landscape-scale and continental-scale inundation 

hydrodynamics. 

 

4.4 Conclusions 490 

Simulations of inundation extent are important because they allow us to predict what will happen to 

globally-important wetlands in the future. Wetlands are known to be key nodes in the biosphere system 

in terms of vulnerability to climate change (Maltby and Barker, 2009; Mitsch and Gosselink, 2015). 

However, wetlands are also highly dynamic landscape-level entities produced by the balance of a 

number of different water cycle processes acting together (Hewlett, 1982; Sutcliffe, 2004), not all of which 495 

are yet represented in global hydrodynamic models (Yamazaki et al., 2013; Yamazaki et al., 2011). 

 Reducing uncertainty in predictions from large-scale inundation models has long been a 

prerequisite for their use in global Earth system models. In this study we have shown that a very 
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reasonable and close match may be derived between JULES-CaMa-Flood model predictions of 

inundation extent and independent GIEMS-2 global satellite-based observations of inundation. 500 

Differences do occur at regional scale in particular large wetlands, however, and these differences 

indicate clearly the importance of incorporating into the modelling framework a better representation of 

the hydrological impacts of, especially, infiltration, evaporation and groundwater-fed inundation. These 

comments are not only relevant to GIEMS-2 and JULES-CaMa-Flood data: all satellite-based inundation 

data have biases that may be assumed to be very similar to those inherent in GIEMS data, and all model 505 

predictions of inundation have biases and uncertainties presumably similar to those that are in JULES-

CaMa-Flood predictions (Dutra et al., 2015; Liang and Liu, 2020; Parker et al., in prep. 2020; Saunois et 

al., 2020), so we believe that our results and analysis provide a blueprint for users of other 

model/observational data on how they might assess and account for these types of bias in their own 

data. 510 

 Improving our understanding of the dynamics of inundated areas and the role they play in the 

generation of land-atmosphere fluxes requires a better representation in general of wetlands within 

global land-surface and hydrodynamic models (Zhang et al., 2016). The results of this study point clearly 

towards the need for greater attention to be paid to hydrological dynamics and water cycle processes 

within these models, which we expect to result in improved modelling predictive capability in global 515 

wetlands in the future. A firm focus on producing a better characterisation of hydrodynamics within this 

class of models will produce enormous positive returns in terms of our global capability to predict 

inundation and its global impacts and will make a welcome contribution to our preparedness for the 

impacts of future climate change (Moomaw et al., 2018; IPCC, 2014). 

  520 
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Figure 1: TropicalExample wetlands and inundated areas referred to in this study. 
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Figure 2: Transforming the GIEMS inundated fraction (inunfrac) data (left) and CaMa-Flood output flooded fraction (fldfrc) 

variable (right). Note that values alpha_min = beta =0.0 and alpha_max =1.0 are equivalent to making no modification. 10 
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Figure 3: Fraction of gridcell inundated (in addition to water contained in channels and watercourses, which are not shown) 15 

in each study area. Superposed lakes and reservoirs are from the Global Lakes and Wetlands Database GLWD (Lehner and 

Döll, 2004). Resolution is 0.25° in both latitude and longitude (n.b. the Tonlé Sap is our smallest wetland, therefore the gridcells 

are relatively large in that plot). View window extent is taken from references in Table 1. Cities with populations >100 000 

are shown (Simplemaps, 2019) for view extents up to 2 000 000 km2. Data shown are an average for 1992-2014 from GIEMS-

2 observations (left) and equivalent JULES-CaMa-Flood simulations (right). 20 
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Figure 4: Seasonal variation in inundation across the study wetlands, averaged across the years 1992-2014: Red = Observations 

(GIEMS), Blue= Simulated (JULES-CaMa-Flood). The three main tropical zones are not shown because they include areas 25 

both north and south of the Equator. 
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Figure 5: Mapped values for efficiency statistics based on inundated gridcell fraction, averaged across the years 1992-2014 30 

(with alpha_min=0.0, beta=0.0 and alpha_max=1.0) (white indicates no value could be calculated). 
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Figure 6: State space plots for evaluation statistics based on inundated gridcell fraction, calculated from varying parameters 35 

alpha_min and beta, with panels showing values of alpha_max. Each point is the mean of all NSE or KGE values, averaged 

both over time (years 1992-2014) and over the wetland region concerned (white indicates no value could be calculated). 
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Figure 7: Summary of plots in Fig. 6. Optimal values of beta and alpha_min are shown (referred to as beta_opt and 

alpha_min_opt in the text), calculated as the centroids of the maximal region on the KGE plots (black) or NSE plots (red) for 

each site (with alpha_max=1.0) from Fig. 6. On this plot, we define water_in = (channel + surface + subsurface inflow + 45 

precipitation) and water_out = (infiltration + evaporation). Note that clear maxima were not present for all case studies for 

NSE (Fig. 6), but when present they are shown connected to the equivalent maxima for KGE. 
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Table 1: The wetland case study areas. Total tropical land area is approx. 56 000 000 km2 (approx. 38% of total global land) 

Site Location Surface area 

   

Pantanal 

The Pantanal (Brazil, 
Bolivia, Paraguay) 
22.0°S to 14.8°N, 61.1°W 
to 54.6°W 

Varies up to 220 000 km2 (Parker et al., 2018) 

Niger Inland 
Delta 

The Inner Niger Delta 
wetland (Mali) 
13.6°N to 17.1°N, 5.2°W 
to 2.8°W 

Varies up to 80 000 km2 (Dadson et al., 2010; Bergé-Nguyen and 
Crétaux, 2015; Haque et al., 2020; Balek, 1977; Andersen et al., 
2005) 

Sudd 
The Sudd (South Sudan) 
4.5°N to 10.0°N, 28.0°E to 
33.0°E 

Varies up to 64 000 km2 (Balek, 1977; Mohamed and Savenije, 
2014; Sutcliffe and Parks, 1999; Tootchi et al., 2019), including 
the Bahr el Ghazal to the west and the Machar marshes to the 
east. 

Okavango 

The Okavango Wetlands 
(Botswana) 
24.0°S to 16.0°S, 19.0°E 
to 27.0°E 

Varies up to 38 000 km2 (the main delta NW of Maun varies up to 
22 000 km2 and the Makgadikgadi pans are an additional 16 000 
km2) (Milzow et al., 2009; Wolski et al., 2012).. 

Tonlé Sap 

Tonlé Sap wetland 
(Cambodia) 
11.6°N to 13.6°N, 103.0°E 
to 105.1°E 

Varies up to 16 000 km2 (Sithirith, 2015) 

Amazon 

The Central Amazon 
(Brazil, Colombia, Peru) 
15.0°S to 7.0°N, 75.0°W to 
47.0°W 

Approx. 1 900 000 km2 (Yamazaki et al., 2011; Gedney et al., 
2019) 

Congo 

The Congo Cuvette 
Centrale (D. R. Congo, 
Congo-Brazzaville) 
3.2°S to 3.6°N, 14.6°E to 
25.2°E 

Approx. 1 000 000 km2 (Alsdorf et al., 2016; Betbeder et al., 2014; 
Balek, 1977) 

Neotropics 
23.5°S to 23.5°N, 
110.4°W to 34.6°W 

Approx. 18 000 000 km2 land area (Malhi, 2010) 

   Amazon 

The Central Amazon 
(Brazil, Colombia, Peru) 
15.0°S to 7.0°N, 75.0°W to 
47.0°W 

Approx. 1 900 000 km2 (Yamazaki et al., 2011; Gedney et al., 
2019) 

   Pantanal 

The Pantanal (Brazil, 
Bolivia, Paraguay) 
22.0°S to 14.8°N, 61.1°W 
to 54.6°W 

Varies up to 220 000 km2 (Parker et al., 2018) 

   

West 
Paleotropics 

Tropical Africa and Arabia 
23.5°S to 23.5°N, 17.6°W 
to 64.0°E 

Approx. 21 000 000 km2 land area 
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   Niger Inland 
Delta 

The Inner Niger Delta 
wetland (Mali) 
13.6°N to 17.1°N, 5.2°W 
to 2.8°W 

Varies up to 80 000 km2 (Dadson et al., 2010; Bergé-Nguyen and 
Crétaux, 2015; Haque et al., 2020; Balek, 1977; Andersen et al., 
2005) 

   Sudd 
The Sudd (South Sudan) 
4.5°N to 10.0°N, 28.0°E to 
33.0°E 

Varies up to 64 000 km2 (Balek, 1977; Mohamed and Savenije, 
2014; Sutcliffe and Parks, 1999; Tootchi et al., 2019), including 
the Bahr el Ghazal to the west and the Machar marshes to the 
east. 

   Congo 

The Congo Cuvette 
Centrale (D. R. Congo, 
Congo-Brazzaville) 
3.2°S to 3.6°N, 14.6°E to 
25.2°E 

Approx. 1 000 000 km2 (Alsdorf et al., 2016; Betbeder et al., 2014; 
Balek, 1977) 

   Okavango 

The Okavango Wetlands 
(Botswana) 
24.0°S to 16.0°S, 19.0°E 
to 27.0°E 

Varies up to 38 000 km2 (the main delta NW of Maun varies up to 
22 000 km2 and the Makgadikgadi pans are an additional 16 000 
km2) (Milzow et al., 2009; Wolski et al., 2012).. 

   

East 
Paleotropics 

India to New Guinea 
23.5°S to 23.5°N, 64.0°E 
to 153.5°E 

Approx. 17 000 000 km2 land area 

   Tonlé Sap 

Tonlé Sap wetland 
(Cambodia) 
11.6°N to 13.6°N, 103.0°E 
to 105.1°E 

Varies up to 16 000 km2 (Sithirith, 2015) 
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Table 2: Efficiency metrics widely used in flood model assessment and forecast verification (Knoben et al., 2019). In all 

equations, Q = flow variable (e.g. discharge) over time steps t=1,..,T. Subscripts “obs” and “sim” refer to observed and model-

predicted values, respectively, 𝜇𝑜𝑏𝑠 = 𝑄𝑜𝑏𝑠̅̅ ̅̅ ̅̅  is the observation mean and 𝜎𝑜𝑏𝑠 = √
1

𝑁−1
∑ (𝑄𝑜𝑏𝑠(𝑡) − 𝑄𝑜𝑏𝑠̅̅ ̅̅ ̅̅ )2𝑡  is the standard 

deviation (and similarly for µsim and σsim) and r is the Pearson correlation coefficient between observed and simulated values. 

Evaluation 
metric 

Equation Description 

Nash-
Sutcliffe 
efficiency 
(NSE) * 

𝑁𝑆𝐸 = 1 −
∑ (𝑄𝑠𝑖𝑚(𝑡) − 𝑄𝑜𝑏𝑠(𝑡))

2
𝑡

∑ (𝑄𝑜𝑏𝑠(𝑡) − 𝑄𝑜𝑏𝑠̅̅ ̅̅ ̅̅ )2𝑡

 

Standard thresholds for NSE (but see Supp. Info): 
1.0 = Perfect alignment 
> 0.5 = Good alignment (Knoben et al., 2019; 
Decharme et al., 2012) (although some other authors 
specify >0.6, e.g. Martínez-De La Torre et al. (2019)) 
0.0 = No predictive skill (mean of observations 
provides as good an estimate as simulations) 
< 0.0 = Increasing divergence between simulations 
and observations 
Note that in this study points of very low inundation 
(dry areas sensu Bernhofen et al. (2018)) and very 
high inundation (permanent lakes and reservoirs) 
were removed before calculating NSE (because of 
the requirement to have at least some flow variability 
for the calculation), therefore our NSE values were 
slightly lower than usual. Our analysis rests on 
relative rather than absolute values of NSE, so our 
results are unaffected by this, but for clarity of 
comparison between sites we have used a 
consistent colour scale on all NSE plots based on the 
standard thresholds. 

Kling-Gupta 
efficiency 
(KGE) *, ** 

𝐾𝐺𝐸
= 1

−√(𝑟 − 1)2 + (
𝜎𝑠𝑖𝑚
𝜎𝑜𝑏𝑠

− 1)
2

+ (
𝜇𝑠𝑖𝑚
𝜇𝑜𝑏𝑠

− 1)
2

 

Standard thresholds for KGE: 
1.00 = Ideal model performance 

> (1 −
1

√2
=) 0.29 = Good performance (Knoben et 

al., 2019) 

( 1 − √2 = ) -0.41 = No predictive skill (mean of 
observations provides as good an estimate as 
simulations; n.b. negative values above this 
threshold still indicate that a model is an 
improvement over the mean flow benchmark) 
(Knoben et al., 2019) 
< -0.41 = Increasing divergence between simulations 
and observations 
Note that in this study points of very low inundation 
(dry areas sensu Bernhofen et al. (2018)) and very 
high inundation (permanent lakes and reservoirs) 
were removed before calculating KGE (because of 
the requirement to have at least some flow variability 
for the calculation), therefore our KGE values were 
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slightly lower than usual. Our analysis rests on 
relative rather than absolute values of KGE, so our 
results are unaffected by this, but for clarity of 
comparison between sites we have used a 
consistent colour scale on all KGE plots based on the 
standard thresholds. 

* n.b. Both NSE and KGE are uncorrected for the magnitude of the variability of the observations σobs, (see Suppl. Info). 60 
** n.b. KGE without the penalty terms (in µ and σ) reduces simply to Pearson’s correlation coefficient =

𝑐𝑜𝑣(𝑄𝑠𝑖𝑚(𝑡),𝑄𝑜𝑏𝑠(𝑡))

𝜎𝑠𝑖𝑚𝜎𝑜𝑏𝑠
 =

1

𝑁−1

√∑ ((𝑄𝑠𝑖𝑚(𝑡)−𝑄𝑠𝑖𝑚̅̅ ̅̅ ̅̅ ̅)(𝑄𝑜𝑏𝑠(𝑡)−𝑄𝑜𝑏𝑠̅̅ ̅̅ ̅̅ ̅))𝑡

𝜎𝑠𝑖𝑚𝜎𝑜𝑏𝑠
. 
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