
Dear Editor 

 

Thanks for your help and reviewer’s comments. Please find enclosed responses for the final 
comment and two previous reviewer’s comments. Thanks for your help and arrangement in 
advance, 

 

Editor Decision: Reconsider after major revisions (further review by editor and referees) (07 Jul 2021) 

by Erwin Zehe 

Comments to the Author: 

I read your paper with great interest and agree with both reviewers that this work has great 

potential to evaluate to which extend machine learning methods can help to classify soil moisture 

events and to search for underlying reasons. Yet, I think in line with the assessment of reviewer 2 

that the manuscript needs major revisions to fully explore it’s potential. In addition to the points 

raised by the reviewer, I I’d like to bring the following points to your attention. 

1. Figure 2 is indeed difficult to digest. Maybe it is better to present boxplots not using the 

profile names but their topographical elevation on the x-axis (more information), and it 

might be better to separate different depths into different panels. 

 We revised x-axis of figures using topological elevations and separate different depths into 

different depths as follows. The order of measuring locations from hilltop to downslope is 

UP1-UP4-UP2-UP5-UP3-DO1-DO2-DO3-DO4-DO5. 

 The tendency of maximum variation is different from that of P2P. Both average of maximum 

variation is the lowest in the depth of 30cm except for locations UP4, DO1 and DO2. Both 

standard deviation and average of maximum variation for upslope area are lower than 

downslope area.  

 We revised context to address reviewer’s point as follows, 

 
“The statistics of soil moisture response based on the analysis of 30 points are summarized in 

terms of the P2P and maximum variation, as displayed in Fig. 2(a) - 2(f), which present 

elevations as an order of locations in x-axis as UP1-UP4-UP2-UP5-UP3-DO1-DO2-DO3-

DO4-DO5 (Fig. 1) from the hilltop to downslope. The means of P2P ranged from –0.2 d to 

+0.5 d, indicating that the maximum soil moisture could be achieved even before the 

occurrence of the rainfall peak. Both standard deviation and average of P2P tended to increase 



at deeper depths, except for locations with elevations in 224 m and 216 m (locations of DO2 

and DO5 in Fig. 1). 

Fig. 2(a), 2(c) and 2(e) indicate while the mean P2P for the upslope area was 0.24 d, that of the 

downslope area was 0.02 d. The mean values of P2P at depths of 10, 30, and 60 cm were −0.08, 

0.04, and 0.011 days for the downslope and were 0.1, 0.24, and 0.38 days for upslope, 

respectively. The differences in P2P between other points at an identical depth for the 

downslope were smaller than those for the upslope. This suggests that the soil moisture 

response in the downslope area is faster and more uniform than that in the upslope area. The 

accumulated soil water flow from the upslope area to the downslope area seems to be 

responsible for more rapid and less spatially variable soil moisture responses in the downslope 

area.  As shown in Figs. 2(b), 2(d) and 2(e), both average and standard deviation of maximum 

variation tend to increase for locations with lower elevation. The average of maximum 

variations at depths of 10 cm and 60 cm were higher than those for the 30-cm depth, indicating 

that primary lateral flow tended to be generated along boundaries (surface and subsurface).” .  
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Figure 2: Boxplots illustrating soil moisture responses of P2P and Maximum variation at 10 
cm depth (a) (b); those at 30 cm depth (c) and (d); those at 60 cm depth (e) and (f), respectively. 
Elevations in x-axis are between 260 and 215 m as an order of UP1-UP4-UP2-UP5-UP3-
DO1-DO2-DO3-DO4-DO5 shown in Fig. 1. 
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(b) 

Original form of boxplots of soil moisture responses 

 

2. I have furthermore problems with the definition of the maximum soil moisture variation 

VAR. A normalization with the antecedent soil moisture is hydrologically misleading. Let 

me explain this based on two cases: 

1) Theta_max = 0.4, Theta_asm =0.3 gives a var of 33%, 

2) Theta_max = 0.15, Theta_as = 0.05 gives a var of 200%, 

In fact, in the first case the storage change was 200% larger than in the second. I think a 

normalization with total precipitation depth is hydrologically much more appropriate. You 

could calculate storage changes, for instance by multiplying changes in theta with the 

respective depth increments that are represented by these measurements. VAR will then 

compare normalized storage changes, and the normalization is constant and not variable due 

to the variability of ASM between the profiles (see Fig. 3). To me this is a hydrologically much 

more meaningful index, which relates storage changes to the total forcing. Related to this, I 

think that Fig. 3b is misleading, as the variations downslope are normalized with systematically 

elevated antecedent soil moistures. The proposed normalization with total precipitation will 

rectify this and the downslope var will become likely larger than the upslope var. And it might 

change the results of the clustering and will differences more meaningful. 

 We partially agree reviewer’s point for the normalized index with precipitation depth. Actually, 

we also considered this point in our initial approach because it looks sound and meaningful 

before we actually applied SOM. However, this storage coefficient provided substantially skewed 

measures due to the very wide ranges of precipitation depth (from 1 mm to 360.6 mm as 

denominator depending on event). The application of the storage coefficient into SOM provide 

unacceptable and unreasonable results in terms of the relationship between rainfall properties 

and its outcomes (storage coefficients) as shown following component planes. 



 

Component planes of SOM using the storage coefficient (with precipitation depth) 

 As shown in component planes of SOM (above Figure) with the storage coefficient, there was 

no meaningful relationship between any rainfall properties (e.g., rainfall amount(AMO), 

duration(DUR), and intensity(INT)) and storage coefficients (STO-UP10, STO-UP30, STO-UP60, 

STO-DO10, STO-DO30, STO-DO60), which make no hydrological sense. Furthermore, the 

relationships between rainfall properties and P2Ps (standard deviation of peak time) (P2P-UP10, 

and so on) were also less meaningful. This is because that the storage coefficient is substantially 

skewed by the precipitation depth that heavily depends on events. The maximum, minimum, 

median, mean and standard deviation of precipitation depth (mm) were 1, 360.6, 11.7, 27.4 and 

44.4. These skewed impact by the precipitation depth was much higher than those by the initial 

status of soil moisture. 

 The variation feature of soil moisture substantially depends on the local property of soil texture 

and its flow path connectivity. The initial status of soil moisture also important, which varied 

spatially and temporally. Actually, soil moisture variation can be described by soil moisture 

characteristic curve (SMCC). As shown in following figures (from Lee and Kim, 2019), SMCC 

varies for depth, location and season. Spatially and temporally different initial soil moisture 

before wetting or drying is important to express the wetness change. 

   
UP1-30cm UP3-30cm UP3-60cm 

- Lee, E., Kim S., Seasonal and spatial characterization of soil moisture and soil water 

tension in a steep hillslope, Journal of Hydrology, 2019, 568, 676-685 



https://doi.org/10.1016/j.jhydrol.2018.11.027 

 While the storage coefficient is the normalized index based on precipitation, the soil moisture 

difference index used in this paper addresses spatially and temporally distinct initial soil moisture 

status. Therefore, the SOM analysis (component planes) using the soil moisture difference index 

provides more reasonable, and hydrologically meaningful and interpretable results as presented 

in following Figs. 6.  

 Following Figs. 6 show the component planes of SOM using the volumetric soil moisture 

difference index. The relationships between rainfall properties (AMO, DUR, INT) and soil moisture 

difference indices at upslope depths and downslope depths were significant and meaningful in 

hydrological causality. Depending on the cluster (expressed as divided areas), the relationship 

between rainfall properties and its resulting volumetric soil moisture indices can be distinctly 

addressed in component planes shown in Figs. 6. Furthermore, the relationship between rainfall 

properties and standard deviation of peak time was significant only in the cluster 4, which can 

be explained by the lowest antecedent soil moisture condition.   

    
(a) (b) (c) (d) 

(e) (f) (g) (h) (i) (j) 

(k) (l) (m) (n) (o) (p) 



 Figure 6: (a)–(p) Component planes of variable weightings for rainfall amount (AMO) (a); 
rainfall duration (DUR) (b); rainfall intensity (INT) (c); antecedent soil moisture (ASM) 
(d); volumetric soil moisture difference indices for the upslope and downslope at depths of 
10, 30, and 60 cm (VUP10, VUP30, VUP60, VDO10, VDO30, and VDO60) (e)-(j); 
standard deviation of peak time for the upslope and downslope at depths of 10, 30, and 60 
cm (SUP10, SUP30, SUP60, SDO10, SDO30, and SDO60) (k)-(p). 

 

 Regarding to reviewer’s point related to storage coefficient, we addressed the storage changes 

in Table 2 that showed 5 different clusters well addressed the storage changes, which only used 

storage as depth change and not normalized by the precipitation depth.   

 

3. Figure 4 is interesting, but the numbers are too small. Please clarify whether this is the 

coefficient of determination R2 or the correlation R. The corresponding text mentions both. 

I also wonder whether you could correlate ASM and optional other predictors with VAR (to 

explain variations between the profiles). 

 The numbers in Figure 4 represents the coefficient of Determination, R2, ranged from 0 to 1. 

We explicitly noted ‘Coefficient of Determination’ in Figs.  

 We enlarged the size of both numbers and text in Figure 4 compared to previous figures. 

   
 

 The relationship between ASM and optional other predictors of soil moisture difference index 

and SDP2P are shown as heatmap below. The ranges of the relationships ranged from 0 to 0.2 

in R2 which showed very week impacts of ASM on the other predictors. Therefore, we did not 

include ASM in analysis.  



  
Heatmap for coefficient of determination between 

soil moisture difference index and ASM 

Heatmap for coefficient of determination between 

SDP2P and antecedent soil moisture 

 

4. Last but not least, I agree with reviewer 2 that a clear physical interpretation of the 

clusters is highly desirable. Boxplots are an abstract representation of an event. In a 

different context (model error classification), Reusser et al. (2009) used typical errors in 

runoff events and classified those with am SOM. I am sorry to mention my own work in 

this context, this approach helped to interpret the corresponding error clusters (and to 

create an imagination how they looks like). Another option would be to show the events 

closed to the cluster centroids. 

 Our datasets were generated by the event-based approach. It is unavailable for our dataset to 

be applied on the comparison between time series data. Therefore, the second option to show 

the event close to the cluster centroid can be possible option on our dataset.  

 The centroid for each cluster was calculated by averaging of combinations with weighting 

vectors in the neurons corresponds to each cluster. The rainfall event with the smallest root 

mean squared error between input variables of the event and centroid of each cluster was 

selected as the events closed to the cluster centroids. The combinations of weighting vectors 

for the neurons, centroids, and the selected rainfall events were displayed below.  
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Cluster 2 Cluster 3 

  
Cluster 4 Cluster 5 

 

 Since the selected rainfall event can represent the typical features of hydrological processes of 

each cluster, the exemplary event in appendix were replaced into the selected events based on 

cluster centroids. 

  
Cluster 1 Cluster 2 
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Cluster 5  

 

 Also, following contexts were added to provide process for selection of exemplary events based 

on centroid of each cluster.  

“The centroid for each cluster was calculated by averaging combinations of weighting 

vectors in the neurons. The event having the smallest root mean squared error between input 

variables of each event and the centroid of each cluster was selected as the exemplary event for 

corresponding cluster. Appendix presents exemplary events with rainfall and soil moisture 

responses at several upslope and downslope points for Clusters 1 to 5. The exemplary event for 

Cluster 1 showed almost no response to rainfall and that of Cluster 2 resulted into limited 

responses in designated downslope locations. Both events from Cluster 3 and 4 showed 

apparent response in many points with a difference in lower antecedent soil moisture condition 

for Cluster 4. The exemplary event for cluster 5 showed significant recharge impact in soil 

moisture for most points.” 

 The reference which you suggested is also added in the sentence as reference.  

“The SOM can be considered an effective tool for understanding substantial hydrologic data 

by reducing the dimensionality of a dataset, which can help provide hydrologic interpretation 

(Reusser et al., 2009).” 

 

I would like to summarized all revised points for comment of previous reviewers as follows; 

We revised paper addressing two comments from Reviewer 1 as follows; 

 Figure 7 is mentioned in text as; 

“The hydrologic events classified by the SOM can be characterized through a comparative 
feature presentation for all clusters (Fig. 7).”  

 The exemplary events were added in Appendix  

Appendix section is added to represent exemplary events. 



 

We revised paper addressing comments from Reviewer 2 as follows; 

The manuscript is written with a simple language however it is still very difficult to easily 
follow the manuscript. I think, although, the use of the English language in formulating 
the sentences is sufficient however the logical flow of the text is not intuitive and 
hampers by evolving around the technicalities and repetition. 

 We revised paper in many parts with help from professional English edior   

 

1. I think figures can be improved and can be better explained in the text. For 
example, it is very hard for me to comprehend Figure 2 (and other figures which 
perhaps has a lot of dense information). 

- Figure 2 and Figure 3 were revised to improve readability (simple way) and 
corresponding explanations were added. 

 

“3.1 Soil moisture responses of all measuring points during rainfall events 

The statistics of soil moisture response based on the analysis of 30 points are summarized in 

terms of the P2P and maximum variation, as displayed in Fig. 2(a) - 2(f), which present 

elevations as an order of locations in x-axis as UP1-UP4-UP2-UP5-UP3-DO1-DO2-DO3-

DO4-DO5 (Fig. 1) from the hilltop to downslope. The means of P2P ranged from –0.2 d to 

+0.5 d, indicating that the maximum soil moisture could be achieved even before the 

occurrence of the rainfall peak. Both standard deviation and average of P2P tended to increase 

at deeper depths, except for locations with elevations in 224 m and 216 m (locations of DO2 

and DO5 in Fig. 1). 

Fig. 2(a), 2(c) and 2(e) indicate while the mean P2P for the upslope area was 0.24 d, that of the 

downslope area was 0.02 d. The mean values of P2P at depths of 10, 30, and 60 cm were −0.08, 

0.04, and 0.011 days for the downslope and were 0.1, 0.24, and 0.38 days for upslope, 

respectively. The differences in P2P between other points at an identical depth for the 

downslope were smaller than those for the upslope. This suggests that the soil moisture 

response in the downslope area is faster and more uniform than that in the upslope area. The 



accumulated soil water flow from the upslope area to the downslope area seems to be 

responsible for more rapid and less spatially variable soil moisture responses in the downslope 

area.  As shown in Figs. 2(b), 2(d) and 2(e), both average and standard deviation of maximum 

variation tend to increase for locations with lower elevation. The average of maximum 

variations at depths of 10 cm and 60 cm were higher than those for the 30-cm depth, indicating 

that primary lateral flow tended to be generated along boundaries (surface and subsurface). 

 

3.2 Soil moisture response features in measuring locations and depths 

The soil moisture response features (e.g., ASM, soil moisture difference index, and SDP2P) 

were expressed in different spatially averaged responses (Fig. 3), depending on the depth and 

location. As shown in Fig. 3(a), the ASM in the downslope area was higher than that in the 

upslope area. It was apparent that the ASM in the downslope area increased with increasing 

depth; however, ASM for the upslope area did not display any notable trend in the depth profile. 

This indicated that soil water infiltration in the upslope area did not necessarily occur for all 

depth profiles. 

The soil moisture difference index in the downslope area was higher than that in the upslope 

area, as shown in Fig. 3(b). The average soil moisture difference index in the downslope area 

(50.67%) was higher than that of the upslope area (38.73%), and the average soil moisture 

difference indices at depths of 10, 30, and 60 cm for the upslope area were 44.51%, 34.27%, 

and 37.39%, while those for the downslope area were 64.49%, 40.83%, and 46.69%, 

respectively. This indicates higher wetness along both the surface and subsurface boundaries, 

and this trend is pronounced in the downslope direction. 

The SDP2Ps for the soil moisture datasets represent the degree of spatial heterogeneity in the 

temporal soil moisture response. The statistics of the SDP2P (Fig. 3(c)) revealed that the 

downslope response varied less than the upslope response. While the SDP2P of the downslope 



displayed an apparent increasing trend at deeper depths, those for the upslope showed a similar 

in-depth profile. The difference in the SDP2P profile between the upslope and downslope 

indicates that the impact of rainfall on soil moisture response timing can be completely 

different between the upslope and downslope directions. 

2. I think the questions which the authors are asking were not directly answered. 
Perhaps the questions can be better elaborated in the discussions and reflect on 
the conclusions. 

Following contexts were added to provide direct answers for questions in discussion 
section  

“The machine learning algorithm (SOM) can be considered a useful analysis platform not 

only for elucidating soil moisture response patterns in conjunction with rainfall and ASM 

(Fig. 7), but also for an effective characterization of soil water storage changes at different 

locations and depths (Table 2).” 

“As presented in Table 3, delineated clusters of hydrologic events can be considered to 

distinctly explain the combinations of hydrological processes such as vertical and lateral 

flows (either surface and subsurface boundaries) between the upslope and downslope 

directions. 

- in conclusion section 

“The SOM can be considered a useful analysis tool not only to understand the different soil 

moisture response patterns between the upslope and downslope areas but also to configure 

particular hydrological processes for delineated clusters. “ 

 

3. The key points are very vague please make them more specific to this study and 
the finding of this study. Title can also be improved; title is very generic and 
broad. 

Key points were revised as follows 

“A hydrologic dataset can be classified and characterized by applying a machine learning 

algorithm. 



The self-organizing map is useful to understand the soil moisture response pattern at a 

hillslope scale. 

Five event clusters distinctively represent different combinations of hydrological processes.” 

Title is revised as follows 

“Characterization of Soil Moisture Response Patterns and Hillslope Hydrological Processes 

Through a Self-Organizing Map” 

 

4. Perhaps reduce the long explanation on the method and wordy results to sharpen 
the messages. 

On order to address reviewer’s point, many parts of text in method and results in revised 
paper was reduced. Thanks. 

Eqs. 1 – 3(from old version of paper) were eliminated. 

 

5. I would like to encourage the authors to bring their study into wider hydrological 
modeling efforts. What is the message of the results for the hillslope hydrology at 
a larger scale? The hydrological models carry memory (antecedent soil moisture) 
for example, so the strong correlation the author is showing here is implicitly 
taken care of in the models that using time-stepping of storage over time. I do not 
see an important message from this study which is different from the general 
knowledge that we already have on how hillslope might behave; the findings may 
not be that different from what it can be inferred from a model. as an example, 
how Figure 4 would look like if the authors have repeated their study on a 
hydrological model at hillslope scale rather than the data itself. I would say we 
would strongly find the same pattern, so what is new? The authors can cite 
modeling work at catchment scale and try to contextualize their work. The 
previous studies such as Fang, Clark, et al., 2019 WRR, Loritz et al., 2017 HESS, 
Gharari et al., 2014 HESS, Gharari et al., 2011 HESS, Gao et al., 2014 HESS 
among others. 

 

In order to address reviewer’s concern following context was added as 

“Several studies have been conducted to model the behavior of hillslope hydrology (Fan et al., 

2019; Loritz et al., 2017). The SOM analysis for a large dataset showed an apparent distinct 

pattern in soil moisture response and flow path generation between upslope and downslope 



areas depending on antecedent soil moisture and rainfall conditions. This suggests that the 

performance of the model can be improved as the storage structure of the model (fast and slow 

reservoirs) (Gao et al., 2014; Gharari et al. 2015) is further classified into upslope and 

downslope categories. The appearance of Cluster 4 (Table 3) demonstrates nonlinear behaviors 

in the hydrologic response, which can be explained by the apparent role of macropore flow 

even under low soil moisture conditions (Beven and Germann, 2013; Nimmo, 2012). The 

implementation of bypass flow under low ASM and high rainfall conditions into the model 

structure can help improve the modeling of soil water travel time (Kim, 2014). Further 

elaboration in modeling to represent dual lateral boundary flows in Cluster 5 can be useful to 

address multiple drain flow pathways under extreme rainfall conditions.” 

J.R. Nimmo, Preferential flow occurs in unsaturated conditions. Hydrol. Process. 
26, 786-789, https://doi.org/10.1002/hyp.8380 2012.  
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R. Loritz, K.H. Sibylle, J. Conrad, A. Niklas, L.v. Schaik, J. Wienhöfer, E. Zehe, 
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