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Abstract. The presence of significant biases in real-time radar quantitative precipitation estimations (QPE) limits its use in

hydro-meteorological forecasting systems. Here, we introduce CARROTS (Climatology-based Adjustments for Radar Rainfall

in an OperaTional Setting), a set of fixed bias reduction factors, which vary per grid cell and day of the year. The factors

are based on a historical set of 10 years of 5-min radar and reference rainfall data for the Netherlands. CARROTS is both

operationally available and independent of real-time rain gauge availability, and can thereby provide an alternative to current5

QPE adjustment practice. In addition, it can be used as benchmark for QPE algorithm development. We tested this method on

the resulting rainfall estimates and discharge simulations for twelve Dutch catchments and polders. We validated the results

against the operational mean field bias (MFB) adjusted rainfall estimates and a reference dataset. This reference consists of the

radar QPE, that combines an hourly MFB adjustment and a daily spatial adjustment using observations from 32 automatic and

319 manual rain gauges. Only the automatic gauges of this network are available in real-time for the MFB adjustment. The10

resulting climatological correction factors show clear spatial and temporal patterns. Factors are higher far from the radars and

higher from December through March than in other seasons, which is likely a result of sampling above the melting layer during

the winter months. The MFB-adjusted QPE outperforms the CARROTS-corrected QPE when the country-average rainfall

estimates are compared to the reference. However, annual rainfall sums from CARROTS are comparable to the reference and

outperform the MFB-adjusted rainfall estimates for catchments far from the radars, where the MFB-adjusted QPE generally15

underestimates the rainfall amounts. This difference is absent for catchments closer to the radars. QPE underestimations are

amplified when used in the hydrological model simulations. Discharge simulations using the QPE from CARROTS outperform

those with the MFB-adjusted product for all but one basin. Moreover, the proposed factor derivation method is robust. It is

hardly sensitive to leaving individual years out of the historical set and to the moving window length, given window sizes of

more than a week.20
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1 Introduction

Radar rainfall estimates are essential for hydro-meteorological forecasting systems. In these systems, the data are used to force

hydrological models (e.g., Borga, 2002; Thorndahl et al., 2017), to initialize Numerical Weather Prediction models (e.g., Haase

et al., 2000; Rogers et al., 2000) or as input data for rainfall nowcasting techniques (e.g., Ebert et al., 2004; Wilson et al., 2010;25

Foresti et al., 2016; Heuvelink et al., 2020; Imhoff et al., 2020a). A major disadvantage of radar quantitative precipitation

estimations (QPE) are the considerable biases with respect to the true rainfall, caused by three main groups of errors: (1)

sources of errors related to the reflectivity measurements, (2) sources of errors in the conversion from reflectivity to rainfall

rate and (3) spatio-temporal sampling errors (Austin, 1987; Joss and Lee, 1995; Creutin et al., 1997; Gabella et al., 2000; Sharif

et al., 2002; Uijlenhoet and Berne, 2008; Ochoa-Rodriguez et al., 2019; Imhoff et al., 2020b). These biases can amplify when30

used in hydrological models (Borga, 2002; Borga et al., 2006; Brauer et al., 2016). Hence, radar QPE requires corrections

before operational use in hydro-meteorological (forecasting) models.

A large number of correction methods is already available. These methods range from corrections prior to the rainfall

estimations, e.g. corrections for physical phenomena such as ground clutter, attenuation, the vertical profile of reflectivity and

variations in raindrop size distribution (e.g., Joss and Pittini, 1991; Germann and Joss, 2002; Berenguer et al., 2006; Cho et al.,35

2006; Uijlenhoet and Berne, 2008; Kirstetter et al., 2010; Qi et al., 2013; Hazenberg et al., 2013, 2014), to statistical post-

processing steps for bias removal in the radar QPE using rain gauge data. These post-processing methods either merge rain

gauge and radar QPE from the same interval or base correction factors on the total precipitation in both products over a past

period, such as a number of rainy days (e.g. seven days in Park et al., 2019). An often used method is the mean field bias (MFB)

correction method, which determines a spatially-averaged correction factor from the ratio between rain gauge observations and40

the radar QPE of the superimposed grid cells at the locations of these gauges (Smith and Krajewski, 1991; Seo et al., 1999).

This method, which is used operationally in the Netherlands and many other countries (Holleman, 2007; Harrison et al., 2009;

Thorndahl et al., 2014; Goudenhoofdt and Delobbe, 2016), does not account for any spatial variability in the radar QPE bias,

even though the bias is known to increase with increasing distance from the radar (Koistinen and Puhakka, 1981; Joss and Lee,

1995; Koistinen et al., 1999; Gabella et al., 2000; Michelson and Koistinen, 2000; Seo et al., 2000).45

It is possible to account for this spatial variability with geostatistical techniques (e.g. ordinary kriging, kriging with external

drift or co-kriging, Krajewski, 1987; Creutin et al., 1988; Wackernagel, 2003; Schuurmans et al., 2007; Goudenhoofdt and

Delobbe, 2009; Sideris et al., 2014) or Bayesian merging methods (Todini, 2001). Although these methods substantially im-

prove the QPE in the spatial domain, all gauge-based radar QPE adjustment methods are limited by the timely availability

of sufficient, and ideally quality-controlled, rain gauge observations (for an overview of methods and their limitations, see50

Ochoa-Rodriguez et al., 2019). The gauge networks operated by the Royal Netherlands Meteorological Institute (KNMI) are

an example of this issue. Although there is approximately one station per 100 km2, only 32 out of 351 rain gauges operate

automatically. The remaining 319 manual rain gauges report just once a day. Thus, only the automatic rain gauges are used for

the MFB adjustment that takes place every hour in real-time (Holleman, 2007), and since recently even every five minutes.
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In addition, two potential operational (forecasting) issues need to be considered when using these more advanced geostatisti-55

cal and Bayesian merging methods: (1) the methods are computationally expensive, especially methods such as co-kriging and

Bayesian merging that integrate radar and rain gauges (Ochoa-Rodriguez et al., 2019), and (2) when the adjustment method

changes the spatial structure of the original radar rainfall fields (kriging and Bayesian methods), this may impact the continuity

of the rainfall fields over time and thereby also the radar rainfall nowcasts (Ochoa-Rodriguez et al., 2013; Na and Yoo, 2018).

In case the nowcasts suffer from errors due to these adjustments, this suggests that adjustment methods should be applied to60

the nowcasts as a post-processing step. To do this, the forecaster would need to estimate the future (bias) correction factors (a

method for this using MFB adjustment is described in Seo et al., 1999) or simply assume that the latest correction factors are

exemplary for the coming hours.

Hence, operational hydro-meteorological forecasting calls for a radar rainfall adjustment approach that (1) takes the spatial

variability in radar QPE errors into account and (2) is available in real time so that it can be used operationally for radar-based65

rainfall forecasts, such as nowcasting. Here, we present CARROTS (Climatology-based Adjustments for Radar Rainfall in an

OperaTional Setting): a set of gridded climatological adjustment factors for every day of the year, based on a historical set of

10 years of 5-min radar and reference rainfall data for the Netherlands. When sufficient rain gauges are operationally available,

which would allow for a robust application of more advanced geostatistical and Bayesian merging methods, CARROTS can

serve as a benchmark for testing these and other more sophisticated adjustment techniques.70

2 Data and methods

2.1 Radar rainfall estimates

The archive (2009–2018) of radar rainfall composites in this study originates from two C-band weather radars operated by

KNMI (Fig. 1). Between September 2016 and January 2017, both radars were replaced by dual-polarization radars and the

radar in De Bilt (‘DB’ in Fig. 1) was replaced by a new one in Herwijnen (‘H’ in Fig. 1). The radar renewals and relocation75

have had a limited impact on the QPE product, mainly because the operational products are not yet (fully) using the additional

information from the dual-polarization (Beekhuis and Holleman, 2008; Beekhuis and Mathijssen, 2018).

The radar product is Doppler filtered for ground clutter. This product is then used to construct horizontal cross-sections

at a nearly constant altitude of 1,500 m, called pseudo-constant plan position indicators (pseudo-CAPPI). Subsequently,

range-weighted compositing is used to combine the reflectivities from both radars (Overeem et al., 2009b). Since 2013, non-80

meteorological echoes are removed as an additional step with a cloud-mask obtained from satellite imagery. As a final step,

rainfall rates are estimated with a fixed Z −R relationship (Marshall et al., 1955):

Zh = 200R1.6. (1)

In this equation, Zh is the reflectivity at horizontal polarization (mm6 m−3, but generally given in dBZ, according to 10 ×
log10[Zh]) and R is the rainfall rate (mm hr−1). The final product is called the unadjusted radar QPE (RU) in this study.85
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Table 1. Statistics of Fig. 2. Indicated are the sample size, the slope of a linear fit between the two rainfall products (RA and RU; the colored

dashed lines in Fig. 2) for all observations and the Pearson correlation coefficient. This is indicated per season (DJF is winter, MAM is spring,

JJA is summer and SON is autumn) and for all seasons together (Total).

Season Sample size Slope Pearson correlation

DJF 902 0.35 0.90

MAM 920 0.48 0.89

JJA 920 0.50 0.89

SON 910 0.45 0.92

Total 3652 0.45 0.89

KNMI also provides adjusted radar rainfall products, based on the aforementioned product, but adjusted with quality con-

trolled observations from both 32 automatic hourly and 319 manual daily rain gauges (Overeem et al., 2009a,b, 2011, note

that the number of rain gauges slightly changed from 2009 until present). The same 32 automatic rain gauges are used for the

MFB-adjustment method, which will be introduced in Sec. 2.2.1. In contrast to the spatially uniform hourly MFB adjustment,

the observations from the manual rain gauges are used for daily spatial adjustments, based on distance-weighted interpolation90

of these observations (Barnes, 1964; Overeem et al., 2009b). See Sec. 2.2.3 for a more detailed description of this method.

This product is considered as a reference rainfall product in the Netherlands and it is therefore also regarded as reference

here (referred to as RA in this study). The RA data is not available in real time (available with a delay of one to two months,

because it only uses quality-controlled and validated rain gauge observations), but it is archived and can therefore be used for

‘offline’ methods. Both RA and RU have a 1-km2 spatial and 5-min temporal resolution.95

The year 2008 is actually the first year in the KNMI archive of both data sets, but it was left out of the analysis here. RU

for this year showed a significantly different behaviour than the other years, especially during the first half year in which the

product rarely underestimated and frequently even overestimated the rainfall sums. The reason for this behaviour is not yet fully

understood. KNMI (2009) reported that spring was exceptionally dry in the north of the country and that the months January

and May were among the warmest on record. On some days with overestimations, clear bright band effects were visible in the100

radar mosaic, which may have contributed to the systematic differences.

2.2 Bias correction factors

Figure 2 indicates the need for correction of the real-time available radar rainfall product. RU systematically underestimates

the true rainfall amounts, averaged for the land surface area of the Netherlands, by 55%. This bias is not uniform in space, as

will be highlighted in Sec. 3, and in time with higher underestimations during winter (on average 65%) than during the other105

seasons (50 – 55 %). In the following two subsections, the operationally used MFB-adjustment method and the in this study

proposed CARROTS method will be introduced.
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2.2.1 Mean field bias adjustment

The mean field bias (MFB) adjustment method is the operational adjustment technique in the Netherlands and it was used in

this study for comparison with the proposed climatological bias reduction method (Sec. 2.2.2). This method provides a spatially110

uniform multiplicative adjustment factor that is applied to RU. The adjustment factor (FMFB) was calculated as (Holleman,

2007; Overeem et al., 2009b):

FMFB =

N∑
n=1

G(in, jn)

N∑
n=1

RU(in, jn)

, (2)

with G(in, jn) the hourly rainfall sum for gauge n at location (in, jn) and RU(in, jn) the unadjusted hourly rainfall sum for

the corresponding radar grid cell. The calculation of FMFB was only performed when both the rainfall sum of all rain gauges115

together and the sum of all corresponding radar grid cells was at least 1.0 mm. In all other cases, FMFB = 1.0.

The MFB-adjustment factors were determined from the 1-hr accumulations of both RU and the 32 automatic rain gauges, as

only the automatic gauges were operationally available every hour (Holleman, 2007; Overeem et al., 2009b). The adjustment

factors at the temporal resolution of the radar QPE (5 min) were assumed to equal the 1-hr adjustment factors for a given hour.

Moreover, this analysis took place with archived datasets, which were validated and consisted of quality-controlled rain120

gauge observations. It is noteworthy that the same quality control is absent and that missing data occurs in real-time, which

can lead to deteriorating results when the MFB adjustment is applied in an operational test case.

2.2.2 CARROTS method

To derive the climatological bias correction factors for the CARROTS method, both RU and RA were used for the years 2009–

2018. The use of the reference data for this method was possible, because the CARROTS method did not require a real-time125

availability of the data. The bias correction factors were determined per grid cell in the radar domain according to the following

three steps:

1. For every day in the period 2009–2018, all 5-min rainfall sums (both RU and RA) within a moving window of 31 days

(the day of interest plus the fifteen days before and after it) were summed. The purpose of the moving window was to

smooth the systematic day-to-day variability of the estimated rainfall in the 10-year data. Sections 2.4 and 3.4 describe130

a leave-on-year-out validation of the method and they describe the sensitivity of the method to the moving window size.

2. For every day of the year, the 31-day sums around that day were averaged over the ten years. Thus, the value for e.g. 16

January consisted of the average 31-day sum for the period 1 to 31 January over the ten years.

3. Finally, gridded climatological adjustment factors (Fclim) were calculated per day of the year as:

Fclim(i, j) =
RA(i, j)

RU(i, j)
, (3)135
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with RA(i, j) the reference rainfall sum and RU(i, j) the unadjusted (operational) radar rainfall sum at grid cell (i, j) for

the ten years.

2.2.3 Spatial adjustments for the reference product

The adjustment procedure to derive RA consists of three steps: (1) mean field bias correction (one adjustment factor for the

whole country which varies per hour, see Sec. 2.2.1), (2) derivation of a daily spatial adjustment factor per grid cell, and (3)140

spatial adjustment of the hourly or higher frequency MFB-adjusted rainfall fields (step 1) using the spatial adjustment from

step 2.

A spatial adjustment factor (step 2) is derived per grid cell as follows (for a more elaborate description, see Sec. 3 in Overeem

et al., 2009a,b):

FS(i, j) =

∑N
n=1wn(i, j) ·G(in, jn)∑N
n=1wn(i, j) ·RU (in, jn)

, (4)145

with N the number of radar-gauge pairs, G(in, jn) the daily rainfall sum for manual rain gauge n at location (in, jn) and

RU (in, jn) the unadjusted daily rainfall sum for the corresponding radar grid cell. wn(i, j) is a weight for gauge n, based on

the following function:

wn(i, j) = e−
d2n(i,j)

σ2 . (5)

Here, d2n(i, j) is the squared distance between gauge n and the grid cell for which the factor is derived. σ determines the150

smoothness of the adjustment factor field. It was set to 12 km by Overeem et al. (2009a,b), based on the average gauge spacing

in the Netherlands.

Finally, to spatially adjust the hourly MFB-adjusted rainfall fields (step 3), two more steps are followed. First, the hourly

MFB-adjusted rainfall fields (see Sec. 2.2.1 for the MFB-adjustment method) are accumulated to daily sums. For each grid

cell, a new adjustment field is then determined:155

FMFBS(i, j) =
RS(i, j)

RMFB(i, j)
, (6)

with RS(i, j) the spatially-adjusted daily sum for grid cell (i, j) obtained using Eq. 4, and RMFB(i, j) the MFB-adjusted

daily sum for grid cell (i, j). Second, the 1-h or higher frequency (5-min in this study) MFB-adjusted rainfall fields are multi-

plied with adjustment factor FMFBS(i, j).

2.3 Hydrometeorological application160

Both bias adjustment methods were applied to the ten years (2009–2018) of RU. In order to provide a hydro-meteorological

testbed, both the CARROTS and MFB-adjusted QPE products (from here-on referred to as RC and RMFB, respectively) were
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validated against the reference rainfall. First, this was done at country level. The estimated daily rainfall sums for all grid cells

within the land surface area of the Netherlands were compared to the reference in a similar way as the comparison in Fig. 2. To

subdivide these results per year and season, an additional hourly rainfall sum validation was perfomed as well. The results of165

this analysis can be found in the appendix and the analysis was done as follows: for every rainy hour (when the sum of at least

one grid cell was larger than 0.0 mm), we computed the Root Mean Square Error (RMSE) by squaring the differences between

the three QPE products (RU, RC and RMFB) on the one hand and the reference on the other, and taking the average of these

squared differences over all grid cells within the land surface area of the Netherlands. Subsequently, the RMSE was averaged

over all rainy hours in that season and year. Finally, the seasonal mean RMSE was divided by the average hourly rainfall rate170

for that season and year, resulting in the Fractional Standard Error (FSE) score. The FSE score was calculated for every season

in the ten years to be able to compare the seasonal performance of the hourly rainfall estimates of RU, RC and RMFB.

Second, the annual rainfall sums for twelve basins (a combination of catchments and polders) in the Netherlands (Fig. 1)

were compared with the reference. In addition, RC and RMFB were used as input for the rainfall-runoff models of the twelve

basins. Most of the involved water authorities use these (lowland) rainfall-runoff models either operationally or for research175

purposes, often embedded in a Delft-FEWS system, which is a data-integration platform, used world-wide by many hydro-

logical forecasting agencies and water management organizations, that brings data handling and model integration together

for operational forecasting (Werner et al., 2013). For this reason, most models were already calibrated using interpolated rain

gauge data or the RA product (e.g. Brauer et al., 2014b; Sun et al., 2020). The calibration period was based on the availability

and quality of discharge observations for that basin, but it was generally one to two years within the period considered in this180

study (2009 – 2018). The WALRUS models for catchments Roggelsebeek and Dwarsdiep were not calibrated prior to this

study and were therefore calibrated with the reference data (RA) for the periods 2013–2014 (Roggelsebeek) and 2016–2017

(Dwarsdiep). The choice for these periods was based on discharge observation availability and quality. The employed SOBEK

RR(-CF) model (Stelling and Duinmeijer, 2003; Stelling and Verwey, 2006; Prinsen et al., 2010) is semi-distributed and there-

fore we used sub-catchment averaged rainfall sums from the gridded radar QPE. The four basins with a SOBEK model have185

the following number of sub-catchments: 7 for Gouwepolder, 1 for Beemster, 25 for Delfland and 23 for Linde. WALRUS

(Brauer et al., 2014a) is lumped, so the catchment-averaged radar QPE was used as input. A more detailed description of both

rainfall-runoff models is outside the scope of this paper. All twelve model setups were run with a 5-min time step for the period

2009–2018.

The resulting discharge simulations were validated for the same period and 5-min timestep using the Kling-Gupta Efficiency190

(KGE) metric (Gupta et al., 2009):

KGE = 1−
√
(ρ− 1)2 +(α− 1)2 +(β− 1)2, (7)

with

α=
σs
σo
, (8)

β =
µs

µo
, (9)195
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Here, ρ is the Pearson correlation between observed and simulated discharge, α the flow variability error between observed

and simulated discharge and β the bias between mean simulated (µs) and mean observed (µo) discharge. σs and σo are the

standard deviations of the simulated and observed discharge. The KGE metric ranges from -∞ to 1.0, with 1.0 representing a

perfect agreement between observations and simulations. In this study, the discharge simulated with RA as input was regarded

as the observation.200

Note that this validation method was not a leave-one-out or split-sample validation, as the full 10-year dataset was used for

RA, the CARROTS- and MFB-adjustment derivation, and shorter periods in those 10 years were used for hydrological model

calibration. However, the sensitivity of the CARROTS factor was tested by leaving individual years out of the derivation period

(Sec. 2.4).

2.4 Sensitivity analysis205

As mentioned in Sec. 2.2.2, the purpose of the 31-day moving window in the factor derivation of CARROTS was to smooth

the day-to-day variability of rainfall. To test the sensitivity of the method to the employed moving window size, the adjustment

factors were re-derived for a range of moving window sizes (1 day, 1 week, 2 weeks, 6 weeks and 2 months). The derived

factors were then compared to the original factor in this study, which was based on a moving window size of 31 days, and used

to derive adjusted QPE products. Subsequently, these QPE products served as input for one of the 12 catchments, namely the210

WALRUS model for the Aa catchment (Fig. 1), to test the effect on the simulated discharges (see Sec. 3.4 and Fig. 8 for the

results). The Aa catchment was chosen because the unadjusted QPE product (RU) for this catchment has one of the highest

biases of the twelve studied catchments (see Sec. 3 and Fig. 4).

Besides the moving window choice, the length of the radar rainfall archive (ten years) was finite. To test whether or not this

archive length was sufficient for reaching a stable factor derivation, individual years in the ten-year archive were left out of the215

CARROTS method. Hence, the adjustment factors were recalculated ten times in a leave-one-year-out method, applied to RU

and used as input for the WALRUS simulations for the Aa catchment. See Sec. 3.4 and Fig. 4 for the results.

3 Results

3.1 Seasonal and spatial variability

The adjustment factors from CARROTS present the spatial variability in the radar QPE errors, with generally higher adjustment220

factors towards the edges of the radar domain (Fig. 3). This difference is most pronounced from December through March,

with more than two times higher factors in the south and east of the country than in the central and northwestern parts (Fig. 3a,

b and l). Figure 3 demonstrates a clear annual cycle of the adjustment factors, with higher adjustment factors from December

through March than in the other months. Figure 4a shows similar results for the catchment-averaged adjustment factors, with

factors ranging from 2.1 for the Beemster polder to 3.2 for the Hupsel Brook catchment in January, whereas adjustment factors225

range from 1.3 for the Grote Waterleiding catchment to 1.6 for the Roggelsebeek catchment in June.
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Table 2. Statistics of Fig. 5. Indicated are the sample size, the Pearson correlation and the slope of a linear fit between the reference and the

two adjusted radar QPE products (RMFB and RC; the colored dashed lines in Fig. 5). This is indicated per season and for all seasons together

(Total).

Slope Pearson correlation

Season Sample size RMFB RC RMFB RC

DJF 902 0.87 0.95 0.99 0.92

MAM 920 0.90 0.86 0.99 0.92

JJA 920 0.92 0.90 0.99 0.91

SON 910 0.90 0.94 0.99 0.93

Total 3652 0.90 0.92 0.99 0.92

An explanation for these higher adjustment factors from December through March is that radar QPE often severely underes-

timates the rainfall amounts for stratiform systems, which regularly occur during the Dutch winter. This especially holds when

the QPE is constructed from reflectivities sampled above the melting layer (Fabry et al., 1992; Kitchen and Jackson, 1993; Ger-

mann and Joss, 2002; Bellon et al., 2005; Hazenberg et al., 2013). This seems to be the case here as well. A simple first-order230

estimation of the 0◦C isotherm level, using a constant wet adiabatic lapse rate of 5.5 K km−1 with ground temperature data for

all rainy hours in the ten years (Fig. 4b), indicates that the 1500 m pseudo-CAPPI is generally above the 0◦C isotherm level

from December through March. This coincides with the months with higher adjustment factors (Fig. 4c) and could thus explain

the winter effect on the adjustment factors. This effect is presumably even stronger further away from the radars, because the

QPE product consists of samples at even higher altitudes than 1500 m for locations at more than 120 km from the radars.235

Besides, an additional dependency of the monthly factor on the time of year that cannot be explained by temperature, seems to

be present with lower adjustment factors during spring and early summer and higher factors for the subsequent period (Fig. 4c).

3.2 Evaluation of the rainfall sums

The MFB-adjusted QPE (RMFB) significantly reduces the systematic bias of RU (Fig. 2), from a 55% underestimation on

average for the Netherlands to 10% (Fig 5a and Tab 2). However, the remaining bias in RMFB is generally caused by a240

systematic underestimation of the reference rainfall. The overall underestimation is less for RC (8%, Fig. 5b), but results from

estimation errors associated with either under- or overestimates of the reference rainfall. The spread in Fig. 5b is significantly

wider than in Fig. 5a, indicating that the country-wide QPE error of RC is often higher than for RMFB. The yearly FSE in

Tab. A1 clearly indicates this too, with a systematically higher FSE for RC than for RMFB.

An advantage of the MFB adjustment is that it corrects for the circumstances during that specific day and thus also for245

instances with overestimations (Fig. 4a). On a country-wide level, this is clearly advantageous, also compared to CARROTS

(Fig. 5). The negative effect of the spatial uniformity of the factor, however, becomes apparent in Fig. 6, which compares the
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annual precipitation sums of the two adjusted radar rainfall products with the reference and RU for the twelve basins. For all

basins, both adjusted products manage to significantly increase the QPE towards the reference. However, for nine out of twelve

basins, RC outperforms RMFB (Fig. 6e). Exceptions are Beemster, Luntersebeek and Dwarsdiep, where the performance of250

both products is similar. Differences between the performance of RC and RMFB become most apparent for catchments that are

located closer to the edges of the radar domain. For instance, RMFB for the Aa and Regge catchments, which are located in the

far south and east of the country, still underestimates the annual reference rainfall sums with on average 20% for the Aa (mean

annual RMFB is 610 mm and mean annual RA = 761 mm) and 13% for the Regge (mean annual RMFB is 673 mm and mean

annual RA = 776 mm), while this is on average only 5% (both under- and overestimations occur) for RC (Fig. 6b and c).255

The MFB-adjusted QPE performs better for the Beemster polder, Dwarsdiep polder (Fig. 6d) and Luntersebeek catchment

(Fig. 6a) due to their location in the radar mosaic. The Luntersebeek catchment (central Netherlands, Fig. 1) is located closer

to both radars. There, RMFB generally performs better and sometimes even overestimates the true rainfall, which is consistent

with Holleman (2007). The performance of RMFB for the Dwarsdiep catchment is similar to its performance for the Linde

catchment (both in the north of the country), but RC shows more variability in the error from year to year for the Dwarsdiep260

catchment (Fig. 6d), leading to a better relative performance of RMFB. The CARROTS QPE tends to overestimate the rainfall

amount of the three aforementioned basins (Beemster, Dwarsdiep and Luntersebeek) for some years (e.g. by 16% for the

Luntersebeek in 2016). Overall, the performance of RC and RMFB are not that different for these three basins, with on average

just a lower MAE for RMFB than for RC for the Luntersebeek catchment and Dwarsdiep polder (Fig. 6e).

Summarizing, the CARROTS factors have a clear annual cycle, with generally higher adjustment factors further away from265

the radars (Sec. 3.1). On average for the Netherlands, the MFB-adjusted QPE outperforms the CARROTS-corrected QPE.

However, the spatial variability in the CARROTS factors, in contrast to the uniform MFB adjustment, results in estimated

annual rainfall sums for the twelve hydrological basins that are generally closer to the reference (for nine out of twelve basins)

than with the MFB-adjusted QPE, especially for the east and south of the country. This effect is expected to become more

pronounced when the adjusted QPE products are used for discharge simulations.270

3.3 Effect on simulated discharges

The severe underestimations of RU have a considerable effect on the discharge simulations for the twelve basins (Fig. 7). This

leads to hardly any discharge response and thus negative KGE values for most basins as compared to discharge simulations with

the reference rainfall data. The effect is most pronounced for the freely draining catchments in the east and south of the country.

These catchments are more driven by groundwater flow than the polders in the west of the country. Groundwater flow gets275

hardly replenished, because of similar estimated annual evapotranspiration and RU sums, resulting in too low baseflows. The

polders, especially Delfland and Beemster, are an exception to this, because they are less driven by groundwater-fed baseflow

and more by direct runoff from greenhouses or upward seepage flows, which makes them more responsive to individual rainfall

events leading to higher KGE values (with RU as input) compared to the other basins.

The model runs using RMFB as input significantly improve the simulated discharges, compared to the runs with RU. Nev-280

ertheless, the model runs still strongly underestimate the simulated discharges compared to those from the reference runs for
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the catchments in the south and east of the country (Fig. 7a–f). This is particularly noticeable for the catchments Reusel (KGE

= 0.26) and Roggelsebeek (KGE = 0.04). The spatial uniformity of the MFB factors is identified as the cause of these effects,

because the MFB method can not correct for the sources of errors leading to the biased QPE in space. This already led to clear

underestimations in the annual rainfall sums for these regions (Fig. 6).285

The CARROTS QPE outperforms RMFB, when this product is used as input for the twelve rainfall-runoff models. This is

not exclusively the case for the six catchments in the east and south of the country (Fig. 7a–f), but also for the other polder and

catchment areas. The exception to this is the Beemster polder. The Beemster is mostly fed by upward seepage, leading to a

more predictable baseflow for all models runs. In addition, the catchment is located close to an automatic weather station and

is located in between both operational radars, which makes the MFB adjustment more beneficial for this region. The difference290

in performance between the hydrological model simulations is small, with a KGE of 0.92 (using RC) versus 0.96 for RMFB,

as compared to the reference run.

3.4 Sensitivity analysis

The use of a different moving window size hardly influences the CARROTS factors for moving window sizes of two weeks or

longer, but this does not hold for moving window sizes of a day or, to a lesser extent, one week (Fig. 8a). The factor derived295

with a moving window size of one day fluctuates heavily from day to day. This suggests that the adjustment factor is still quite

sensitive to individual events in the 10-year period, when a moving window size of seven days or less is used. Moving window

sizes of more than a month (6 weeks and 2 months were tested here), lead to similar CARROTS factors as with a 1-month (31-

day) moving window size, but somewhat more smoothed. A similar effect likely takes place for a seasonal (3-month) moving

window. For larger moving window sizes (half a year to a year, for instance), we expect that the seasonality in the factor is lost300

and that an average correction factor remains.

In contrast to this, the differences between these six sets of CARROTS factors (Fig. 8a) lead to minimal variations in the

simulated discharges for the Aa catchment, when these factors are used to adjust the input QPE (Fig. 8b). Differences in timing

and magnitude (0.2–0.3 mm d−1) are visible during peaks and recessions, for instance in early April. However, these are small

compared to the differences between the model runs with RC and RMFB (Fig. 7). However, the use of a window size of 1 day305

or, to a lesser extent, of a week clearly leads to more fluctuations in the CARROTS factor (Fig. 8a) and can therefore influence

the rainfall estimation for individual events (and the factor will also be influenced by these individual events). For quickly

responding catchments and urban catchments, this could still lead to different results. Concluding, a 31-day smoothing of the

climatological adjustment factor is warranted.

In addition, leaving individual years out of the ten-year archive has a limited impact on the CARROTS factors (see also310

the vertical bars in Fig. 4c). Similar to the aforementioned results for the moving window size analysis, it leads to hardly any

variations in the simulated discharges for the Aa catchment (not shown here). This suggests that the ten-year archive length

was sufficiently long for the factor derivation.
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4 Discussion

In this study, we introduced the CARROTS method to derive adjustment factors that reduce the bias in radar rainfall estimates.315

We derived these factors using 10 years of 5-min radar and reference rainfall data for the Netherlands. The method and resulting

QPE product outperformed the mean field bias (MFB) adjustment, that is used operationally in the Netherlands, for catchments

in the east and south of the country. When the QPE products were used as input for hydrological model runs, the method

outperformed the MFB-adjustment method for all but one basin.

The main difference that distinguishes the CARROTS method from the MFB adjustment is the presence of a high-density320

network of (manual) rain gauges in the reference dataset, a dataset that is not available in real-time. This allows for spatial

adjustments. Overeem et al. (2009b) demonstrate that this reference dataset mostly depends on the daily spatial adjustments

from the manual rain gauges, while the higher-frequency MFB adjustment based on the automatic gauges plays a smaller role in

the adjustments of this reference product. According to Saltikoff et al. (2019), at least 40 countries have an archive of historical

radar data for a period of ten years or more. The proposed CARROTS method is potentially valuable for these countries,325

especially when the density of their network of automatic rain gauges is, similar to the Netherlands, significantly smaller than

the total network of rain gauges. An additional advantage of the method is the real-time availability of the correction factors,

which is independent of the timeliness of the rain gauge data.

MFB adjustment of radar rainfall fields is still the most frequently applied adjustment method (Holleman, 2007; Harrison

et al., 2009; Thorndahl et al., 2014; Goudenhoofdt and Delobbe, 2016). The results indicate that this choice may be reconsidered330

for hydrological applications in the Netherlands, especially further away from the radar and in case a country-wide or large-

region adjustment factor is applied. This could also hold for other regions, especially mountainous regions where the uniformity

of the MFB-adjustment factor is likely not sufficient to correct for all orography-related errors (Borga et al., 2000; Gabella et al.,

2000; Anagnostou et al., 2010). More regionalized MFB adjustments are possible, but depend on the density and availability

of the automatic gauge stations.335

However, the proposed CARROTS method has to be recalculated for every change in the radar setup, calibration, additional

post-processing steps (e.g. VPR corrections, Hazenberg et al., 2013) or final composite generation algorithm. For instance,

including a new radar in the composite would require a recalculation of the adjustment factors, thereby assuming the presence

of an archive of the new composite product. This could potentially limit the usefulness of the proposed method. As mentioned

in Sec. 2.1, the replacement of both Dutch radars by dual-polarization radars in combination with the replacement of the radar340

at location De Bilt to location Herwijnen (Fig. 1) between September 2016 and January 2017 only had a limited impact on the

operational products, and thereby on the CARROTS derivation. The operational products are not yet (fully) making use of the

dual-polarization potential. We expect that the factors will have to be recalculated as soon as the additional information from

the dual-polarization radars is used to improve the products or when e.g. the German and Belgian radars close the Dutch border

are added to the composite.345

That CARROTS is relatively insensitive to such minor changes in the composite or the year-to-year variability of rainfall, is

likely a result of the ten-year archive that has been used. The sensitivity analysis in Sec. 3.4 has shown that leaving individual
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years out of the archive hardly influences the CARROTS factors. Nevertheless, based on the current analysis we cannot con-

clude what the minimum number of years in the archive has to be to obtain stable CARROTS factors that are similar to the

factors derived in this study. This is a recommendation for future research. In the case of a new radar QPE product, it is also350

recommended to recalculate the archive (if possible), to make sure new CARROTS factors can be derived.

Although the results are promising, this method is not expected and meant to outperform more advanced spatial QPE ad-

justment methods, such as geostatistical and Bayesian merging methods (for an overview of methods and their limitations, see

Ochoa-Rodriguez et al., 2019). A major advantage of these methods is the real-time derivation of spatial adjustment factors, in

contrast to the proposed method in this study, which was solely based on historical data. The MFB-adjustment factors can also355

be derived in near real-time, but are uniform in space, which can explain the worse performance as compared to the proposed

method in this study. A possible disadvantage of these real-time methods (MFB, geostatistical and Bayesian merging) is the

dependency on the timely availability of rain gauge data, which is not the case for CARROTS. Altogether, we consider the

proposed climatological radar rainfall adjustment method as a benchmark for the development and testing of operational radar

QPE adjustment techniques.360

Another possible option would be to combine the CARROTS method with the real-time application of the MFB adjustment,

i.e. CARROTS is applied and the resulting QPE is then adjusted with real-time MFB-adjustment factors. This would allow for

real-time temporal corrections of the QPE, without the need for a high density of rain gauges in real-time, while the corrections

in space are based on the (historical) CARROTS factors.

As mentioned in the previous paragraph, the climatological adjustment factor is not calculated for the current meteorological365

conditions and resulting QPE errors, which could lead to considerable errors during extreme events. Nonetheless, this is also

the case for the MFB-adjustment technique (Schleiss et al., 2020). The absolute errors for the 10 highest daily sums in this

study for the Aa and Hupsel Brook catchments (one of the largest and the smallest catchment in the study) are similar for the

MFB and climatological adjustment methods, with on average a 20% difference with the reference (this would have been 50 to

60 % without corrections). In most of these events, both RC and RMFB underestimated the true rainfall amount. However, for370

a small number of these top 10 events, the QPE products overestimated the true rainfall amount. This occurred more frequently

with CARROTS (25% of the cases) than with the MFB adjustment (15% of the cases). Note that for individual events in these

twenty extremes, the errors can still reach 48% for the QPE adjusted with CARROTS and 64% for the MFB-adjusted QPE.

A way to better correct for biases during extreme events could be to derive either different Z-R relationships, depending on

the type of rainfall, or dBZ-dependent correction factors, which could be derived in a similar way to the CARROTS derivation375

method. Whether this works or not for extreme events depends on the number of such events in the available historical dataset.

Finally, the CARROTS factors were derived with the reference rainfall data for the Netherlands. The same data was used as

reference in this study. Although the use of the same data as training and validation set is sub-optimal, leaving out individual

years has had a limited impact on the estimated adjustment factors and the resulting QPE and discharge simulations (see also

the vertical bars in Fig. 4c). Note, however, that in basins with a large number of manual rain gauges, but where automatic380

rain gauges are not nearby, the CARROTS results will likely be closer to the reference than the MFB-adjusted simulations.
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Although this is warranted for the CARROTS method, it can partly explain why the method works better for some catchments

than others.

5 Conclusions

A known issue of radar quantitative precipitation estimations (QPE) are the significant biases with respect to the true rainfall385

amounts. For this reason, radar QPE adjustments are needed for operational use in hydro-meteorological (forecasting) models.

Current QPE adjustment methods depend on the timely availability of quality-controlled rain gauge observations from dense

networks. This especially applies to methods that correct for the spatial variability in the QPE errors. To overcome this is-

sue and to provide a benchmark for future QPE algorithm development, we have presented CARROTS (Climatology-based

Adjustments for Radar Rainfall in an OperaTional Setting): a set of gridded climatological adjustment factors for every day390

of the year. The factors were based on a historical set of 10 years of 5-min radar rainfall data and a reference dataset for

the Netherlands. The climatological adjustment factors were compared with the mean field bias (MFB) adjustment factors,

which are used operationally in the Netherlands. For the period 2009–2018, daily and sub-daily rainfall estimates with both

the MFB-adjusted and CARROTS-adjusted QPE were validated against the reference rainfall for the land surface area of the

Netherlands. In order to provide a hydrometeorological testbed, both adjustment factors were also validated on the estimated395

annual rainfall sums and the effect of the adjusted QPE products on simulated discharges with the rainfall-runoff models for

twelve Dutch basins.

The CARROTS factors show clear spatial and temporal patterns, with higher adjustment factors towards the edges of the

radar domain. This is caused by larger QPE errors further away from the radars. The factors are also higher from December

through March than in other seasons. This is likely a result of sampling above the melting layer during these months, which400

causes higher underestimations in the unadjusted radar rainfall product.

On average for the Netherlands, the MFB-adjusted QPE outperforms the CARROTS-corrected QPE. Although the MFB

factors are based on the current over- or underestimations in the QPE, the factor is spatially uniform and does not correct

for spatial errors. This directly impacts the adjusted QPE when the QPE products are tested for the twelve Dutch basins. The

MFB-adjusted QPE leads to annual rainfall sums that still underestimate those of the reference for the catchments in the east405

and south of the country (towards the edge of the radar domain). This bias is almost absent for the annual rainfall sums after

correction with the CARROTS factors (up to 5% over- and underestimation for the same catchments). For basins closer to

radars, this effect decreases and both adjustment methods perform well.

The effects of both adjustment methods on the QPE is amplified when they are used as input for the rainfall-runoff models of

the twelve studied basins. The discharge simulations with the CARROTS QPE outperforms those using the MFB-adjusted QPE410

for all but one basin. For hydrological applications in the Netherlands, these results indicate that the current operational use of

a country-wide MFB adjustment may be reconsidered as it often performs worse than the proposed climatological adjustment

factor, which can be seen as the minimum benchmark to outperform.
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Despite the aforementioned results, the CARROTS method has two main limitations: (1) for every change in the radar setup,

the radar calibration, post-processing algorithms or the final composite generation method, the adjustment factors have to be415

recalculated; (2) the factor is not calculated for the actual meteorological conditions and resulting QPE errors, which could

lead to considerable errors during extreme events. Nonetheless, the latter is also the case for the MFB-adjustment technique

(Schleiss et al., 2020), even though the MFB factors are derived in real-time.

The main advantage of the introduced method is the continuous availability of spatially distributed adjustment factors, due to

the independence of timely rain gauge observations. This is beneficial for operational use. In addition, the CARROTS factors420

are shown to be robust, as the derivation is not found to be sensitive to leaving out individual years or the used moving window,

especially when this window is longer than a week.

Finally, this method is not expected and meant to outperform more advanced spatial QPE adjustment methods (which require

data from dense rain gauge networks for robust application), but it can serve as a benchmark for the development and testing of

more advanced operational radar QPE adjustment techniques. QPE adjustment methods (including CARROTS) greatly benefit425

from a denser, frequently-available rain gauge network. From that perspective, crowd-sourced personal weather stations hold

a promise for improving radar rainfall products, given their direct surface measurements and dense networks (Vos et al.,

2019). This also holds for rain gauge observations from other governmental or third parties, e.g. the water authorities in the

Netherlands. Hence, we think that this could further improve radar rainfall products in the near future.

Code availability.430

Data availability. The archived gauge-adjusted (reference) and unadjusted radar QPE are available via https://dataplatform.knmi.nl/dataset/

rad-nl25-rac-mfbs-em-5min-2-0 and https://doi.org/10.4121/uuid:05a7abc4-8f74-43f4-b8b1-7ed7f5629a01. The daily climatological bias

adjustment factors for the Netherlands can be found at: https://doi.org/10.4121/13573814. The used parameter values for WALRUS and

SOBEK RR are operationally used by the water authorities and should therefore be requested via them. Interested readers are invited to

contact the authors about this. The used color schemes in Fig. 3 and 4 are described in Crameri (2018) and Crameri et al. (2020), and are435

available via: https://doi.org/10.5281/zenodo.4153113.

Code and data availability.

Sample availability.

Video supplement. The supplement contains a visualisation of the daily spatial variability of the CARROTS factors.
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Table A1. Country-average Fractional Standard Error (FSE) between the hourly reference rainfall (RA) and the three QPE products (RU,

RMFB and RC) per year for the winter (DJF) and summer (JJA) seasons. The FSE was only calculated for hours where the country-average

rainfall rate was larger than 0.0 mm h−1.

FSE

Seaon Year Avg rain rate (mm h−1) RU RMFB RC

DJF 2009 0.32 1.10 0.49 0.74

2010 0.26 1.23 0.61 0.82

2011 0.38 1.12 0.50 0.73

2012 0.36 1.09 0.51 0.65

2013 0.30 1.04 0.56 0.90

2014 0.33 1.06 0.51 0.72

2015 0.34 1.04 0.51 0.84

2016 0.34 1.15 0.61 0.84

2017 0.37 0.56 0.32 0.44

2018 0.37 1.22 0.65 0.76

JJA 2009 0.33 1.18 0.80 1.08

2010 0.43 1.34 0.71 1.02

2011 0.37 1.31 0.78 1.03

2012 0.36 1.19 0.72 0.99

2013 0.36 1.34 0.86 1.20

2014 0.33 1.37 0.91 1.28

2015 0.44 1.24 0.69 1.08

2016 0.30 1.46 1.00 1.46

2017 0.37 1.29 0.76 1.09

2018 0.34 1.26 0.78 1.20

Appendix A: Hourly evaluation of the rainfall sums440

Table A1 shows the country-average FSE between RA and the three QPE products for every year and the winter and summer

seasons. The method to calculate the FSE score is described in Sec. 2.3.
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Figure 1. Overview of the basins in this study: (a) study area with the location of the three radars (green triangles) operated by KNMI and

the twelve basins (orange polygons). The two grey circles indicate a range of 100 km around the radars in Den Helder (DH) and Herwijnen

(H). The other radar (DB) is the radar in De Bilt, which was used until January 2017 and replaced by the radar in Herwijnen; Note that the

used range in the composite was more than 100 km, but 100 km is often regarded as the distance up to where the radar QPE is expected to

be reliable. (b) locations of the 32 automatic and 319 manual rain gauges currently operated by KNMI. Note that the number of rain gauges

slightly changed from 2009 until present; (c) list of the basin names, sizes, number of gauges in the basin and employed hydrological models.

The numbers in the left column refer to the numbers in (a). The right column states the used model for these areas.
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Figure 2. The systematic discrepancy between the reference rainfall (RA) and the unadjusted radar QPE (RU). Shown are the daily country-

average rainfall sums based on ten years (2009–2018), classified per season. The slope, Pearson correlation and sample size per season are

indicated in Tab. 1. The colored dashed lines are a linear fit, forced through the origin, per season between RA and RU.
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Figure 3. Spatial variability of the CARROTS factors, as derived from the archived radar and reference data for the period 2009–2018.

Shown are monthly averages of the daily factors.

25



Jan  Mar  May  Jul  Sep  Nov  Jan

1.0

2.0

3.0
F c

lim
 (-

)
a) Aa

Reusel
Roggelsebeek
Hupsel
Grote Waterleiding
Regge
Dwarsdiep
Linde
Luntersebeek
Rijnland
Delfland
Beemster
Country-wide
MFB - 2018

Jan  Mar  May  Jul  Sep  Nov  Jan
0

500

1000

1500

2000

2500

3000

3500

0 
C 

le
ve

l (
m

)

b) Median
IQR

500 1000 1500 2000 2500 3000 3500
0 C level (m)

1.5

2.0

2.5

3.0

F c
lim

 (-
)

c)

Jan

Feb

Mar

Apr

May
Jun

Jul

Aug
Sep

Oct

Nov

Dec

Median
IQR

Figure 4. Seasonal dependency of the CARROTS factors and comparison with the operational MFB-adjustment factor. (a) Temporal vari-

ability of the climatological daily adjustment factors for the twelve basins (colours, catchment-averaged), the country-average (black line)

and of the country-wide hourly MFB factor for the (example) year 2018 (grey dots, some also fall outside the indicated range). (b) Estimate

of the height of the 0◦C isotherm at KNMI station De Bilt for all rainy hours in the ten year period, based on a constant wet adiabatic lapse

rate of 5.5 K km−1. (c) Dependency of the monthly adjustment factor on the estimated 0◦C isotherm level for KNMI station De Bilt and the

superimposed grid cell of this station. Depending on the location in the radar composite, the minimum CARROTS factor can take place in a

different month, but is always between April and June. Note that for this analysis, the adjustment factor was based on only the rainfall sums

within that month, the effective adjustment factor for that month, which roughly coincides with the factor for the 15th of the month in the

CARROTS method. The grey bars indicate the interquartile range (IQR) for that month, based on the spread in hourly 0◦C isotherm level

estimates (the horizontal bars) and the sensitivity to leaving out individuals years in the ten-year period for the factor derivation (vertical

bars).
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Figure 5. Comparison between the reference rainfall (RA) and the two adjusted radar QPE products: (a) RMFB and (b) RC). Shown are the

daily country-average rainfall sums based on ten years (2009–2018), classified per season. The slope, Pearson correlation and sample size

per season are indicated in Tab. 2. The colored dashed lines are a linear fit, forced through the origin, per season between the reference and

the two QPE products.
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Figure 6. Effect of the adjustment factors on the catchment-averaged annual rainfall sums. (a – d) The results for a sample of four catchments

that are spread over the country (and thus the radar domain): (a) Luntersebeek, (b) Aa, (c) Regge and (d) Dwarsdiep. Shown are RA (grey),

the estimated rainfall sum after correction with the CARROTS factors (RC; green), the estimated rainfall sum after correction with the

MFB-adjustment factors (RMFB; dark blue) and the rainfall sum with the unadjusted radar rainfall estimates (RU; light blue). The distance

between the catchment center and the closest radar in the domain is given in the title of subfigures a-d (DH is Den Helder and DB is De Bilt).

The radar in Herwijnen, which replaced the radar in De Bilt in January 2017, is not included here, because this radar was operational for the

shortest time in this analysis. (e) the mean absolute error of the annual precipitation sum between the QPE products and the reference rainfall

sum (RA). The vertical grey lines, per bar, indicate the IQR of the mean absolute error (MAE) based on the ten years.
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Figure 7. Differences in simulated discharges for the twelve basins (a–l) as a result of the differences between rainfall estimates. The

models are run for the period 2009–2018 with the following rainfall products as input: the reference (RA; grey), the QPE corrected with

the CARROTS factors (RC; green), the MFB-adjusted QPE (RMFB; dark blue) and the unadjusted radar rainfall estimates (RU; light blue).

Only the simulated discharges for 2015 are shown here for clarity; the KGE is based on all years.
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Figure 8. Sensitivity of the CARROTS factor derivation to the moving window size. (a) The adjustment factors for the Aa catchment for

six different moving window sizes. The moving window size of 31 days was used in the methodology of this study. (b) The effect of the six

moving window sizes in (a) on the simulated discharges for the Aa. Similar to Fig. 7, the CARROTS factors were derived and discharge was

simulated for the full period (2009–2018), but only 2015 is shown here. The grey line indicates the observed discharge.
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