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Abstract. The seasonal-to-decadal terrestrial water balance on river basin scales depends on several well-characterized but 

uncertain soil physical processes, including soil moisture, plant available water, rooting depth, and recharge to lower soil 10 

layers. Reducing uncertainties in these quantities using observations is a key step towards improving the data fidelity and skill 

of land surface models. In this study, we quantitatively characterize the capability of Gravity Recovery and Climate Experiment 

(NASA-GRACE) measurements —a key constraint on Total Water Storage (TWS) —to inform and constrain these processes. 

We use a reduced complexity physically based model capable of simulating the hydrologic cycle, and we apply Bayesian 

inference on the model parameters using a Markov Chain Monte Carlo (MCMC) algorithm, to minimize mismatches between 15 

model simulated and GRACE-observed TWS anomalies. Based on the prior and posterior model parameter distributions, we 

further quantify information gain with regards to terrestrial water states, associated fluxes, and time-invariant process 

parameters. We show that the data-constrained terrestrial water storage model can capture basic physics of the hydrologic 

cycle for a watershed in the western Amazon during the period of January 2003 through December 2012, with an r2 of 0.98 

and RMSE of 30.99 mm between observed and simulated TWS. Furthermore, we show a reduction of uncertainty in many of 20 

the parameters and state variables, ranging from a 2% reduction in uncertainty for the porosity parameter to an 85% reduction 

for the rooting depth parameter. The annual and interannual variability of the system are also simulated accurately, with the 

model simulations capturing the impacts of the 2005-2006 and 2010-2011 South America droughts. The results shown here 

suggest the potential of using gravimetric observations of TWS to identify and constrain key parameters in soil hydrologic 

models. 25 

1 Introduction 

The terrestrial water balance depends on many physical processes, including soil moisture, plant available water, rooting depth, 

recharge to lower soil layers, among others, and these processes depend on each other in a dynamical way (Margulis et al., 

2006; Massoud et al., 2019a, 2020a). Some variables, such as precipitation, surface runoff, or soil moisture, can be directly 

observed in the field or by airborne measurements (Walker et al., 2004; Swenson et al. 2006; Durand et al., 2009; Liu et al., 30 
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2019), but other processes, such as evapotranspiration or groundwater storage changes, are more difficult to detect and observe 

(Tapley et al., 2004; Pascolini‐Campbell et al., 2020). Model simulations are one tool that can be used to fill gaps where our 

understanding of the hydrologic cycle is incomplete or missing (Purdy et al., 2018; Massoud et al., 2018a). Different types of 

models exist, such as distributed models with dozens or hundreds of parameters that simulate process-based physics at the grid 

scale but are extremely expensive to run (Vivoni et al., 2007; Hanson et al., 2012; Longo et al., 2019; Massoud et al., 2019b), 35 

or lumped models that aggregate information in space and time to reduce the cost of model simulations while maintaining 

accuracy when compared to measurements (Manfreda et al., 2018; Massoud et al., 2018b). Recent advances in model-data 

fusion have paved the way to merge land model simulations with observations (Girotto et al., 2016; Khaki et al., 2017, 2018; 

Quetin et al. 2020; Sawada 2020), limiting the need for process representation in the model and increasing the efficiency in 

the inference of unknown physical processes, such as hydrologic variables that cannot be directly measured.    40 

 The wealth of data available today, including in-situ measurements, flux towers, or satellite data from remote sensing, 

has made it increasingly possible to fuse model simulations with observations. This has been shown in several works in the 

literature so far (Massoud et al., 2018ab; Seo and Lee 2020). One set of satellite observations that has been very popular in the 

literature is the NASA Gravity Recovery and Climate Experiment (GRACE) pair of satellites (Tapley et al., 2004). Satellite 

observations of Earth’s gravity field from GRACE are processed routinely into estimates of surface mass change and can 45 

provide information about basin-scale dynamics of hydrologic processes. GRACE mass change estimates can be combined 

with other hydrologic information, such as model simulations or in situ observations, to infer hydrologic parameters and state 

variables (Famiglietti et al., 2011; Xiao et al., 2017; Trautmann et al., 2018; Massoud et al., 2018a, 2020a; Liu et al., 2019). 

Numerous studies in the literature have assimilated information from GRACE into models for a better understanding of how 

groundwater systems behave on different scales (Zaitchik et al., 2008; Houburg et al., 2012; Reager et al., 2015).  50 

Across a variety of climate and land surface models (Christoffersen et al., 2016; Purdy et al., 2018; Massoud et al., 

2019a; Schmidt-Walter et al., 2020), hydrology process parameters— both physical states and empirical process variables—

constitute a major uncertainty in models. Uncertain variables include rooting depth, infiltration rates, water retention curves, 

among other soil physical processes, which are governing factors in the dynamic evolution of soil water states. Typically, 

models prescribe these parameters either by default values or by calibrating the models in well studied and extensively 55 

measured domains. However, few efforts have been made to assess uncertainties tied to the choice of these parameter values. 

Many of these prescribed parameters come from observational studies, such as Hodnett and Tomasella (2002) and the ones 

indicated in Marthews et al., (2014). Studies such as these optimize parameters, along with their dependence on soil 

characteristics, to represent field measurements of water retention curves. However, the samples are often restricted to few 

sites and not necessarily representative of larger regions. Furthermore, the models may have limitations in their physical 60 

process representation, which could induce bias in predictions if these parameters as used as the "truth". In general, information 

on parameters can be inferred with high confidence using datasets obtained from remote sensing.  

 In this study, we demonstrate the ability of the decadal GRACE Total Water Storage (TWS) record to inform and 

reduce uncertainties of terrestrial hydrologic processes regulating the seasonal and inter-annual variability of TWS in the 
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western Amazon, the Gavião watershed, for the period January 2003 through December 2012. To achieve this, we use a model 

of necessary complexity to represent the first order controls on seasonal-to-decadal soil moisture dynamics, including soil 

moisture, soil water potential, plant available water and rooting depth. To characterize and quantify information content of the 

GRACE record, we employ a Bayesian model-data fusion approach to constrain model parameters (namely initial states and 

time-invariant process variables), such that differences between GRACE and simulated TWS anomalies are statistically 70 

minimized. We henceforth collectively refer to time-invariant parameters governing soil moisture states—such as porosity, 

rooting depth and hydraulic conductivity coefficients—as model process parameters throughout the manuscript. 

 Our study is set up as follows: We describe in section 2 the TWS model, the GRACE TWS data used to constrain our 

simulations, and the Bayesian method used to infer the model parameters. In section 3, we define the model’s physically based 

equations, introduces the time-invariant model parameters that are optimized and inferred, and highlights our findings and 75 

results. We summarize our work in section 4 and discuss the implications of our results and priority points for further 

developments. 

2 Data and Methods 

 2.1 Data-constrained Terrestrial Water Storage model 

We employ a model of necessary complexity to represent basin scale hydrologic processes that regulate the storage and 80 

movement of water on monthly timescales, as shown in Figure 1. The model includes two soil layers, where the top layer 

represents the water that is available to plants via roots (Plant Available Water, or PAW), and the bottom layer representing 

depths of the soil that plant roots cannot access (Plant Unavailable Water, or PUW). The model uses monthly time steps to 

integrate the state variables and is driven with hydrologic flux variables such as evapotranspiration and precipitation. The 

model also includes other processes such as infiltration into the soil, surface runoff, drainage from each layer, recharge into 85 

the lower soil layer, and various model parameters (listed in Table 1) that control the simulations.  

 The model includes 13 parameters that represent process-based hydrologic mechanisms, ones that are hypothesized 

to be influential on basin-scale monthly resolution model simulations of the hydrologic cycle. As depicted in Figure 1, there 

are two soil layers representing the PAW and PUW pools. Each of the two separate soil layers has its own inferred physical 

properties, such as the depth of each layer, soil moisture initialization, porosity, field capacity, and retention capabilities. 90 

Various fluxes are represented in the model, such as precipitation (P), evapotranspiration (ET), infiltration, surface runoff, and 

drainage. The parameters of the model dictate the simulation of each process in the hydrologic cycle, and by adding the two 

water pools (PAW + PUW), an estimate of total water storage (TWS) can be generated which can then ultimately be compared 

with the GRACE-based TWS.  

 We describe here the model equations that dictate how the TWS is calculated in the model. To start, we know from 95 

the water mass continuity that the changes in TWS in the soil is the equivalent to the balance between input (precipitation, P) 
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and outputs (evapotranspiration ET, and the total loss through drainage and runoff Q). In effect, P and ET are prescribed 

boundary conditions for the model. In this version of the model, 

𝑇𝑊𝑆! = 𝑀!
"#$+ 𝑀!

"%$            (1) 

where 𝑀!
"#$ represents the plant available water and 𝑀!

"%$ is the plant unavailable water at each month, t. The soil is 100 

represented this way in the model because plants cannot access all the water stored in the ground, therefore two separate layers 

are used to represent the soil water in the rooting zone (PAW) and the soil water that is not accessible to plants (PUW).  

  The following model equations are used to represent the storage and flow of water in the model. The mass continuity 

equations for water stored in the MPAW and MPUW layers are: 

𝑀!&'
"#$ = 𝑀!

"#$ +	𝐼! −𝐷!,"#$ − 𝐹! − 𝐸𝑇!          (2) 105 

𝑀!&'
"%$ = 𝑀!

"%$ −𝐷!,"%$ + 𝐹!          (3) 

where	𝐼! is the infiltration into the top soil layer, 𝐷!,"#$ and 𝐷!,"%$ are the drainage terms for each layer, 𝐹! is the recharge in 

between layers, and 𝐸𝑇! is the evapotranspiration term at each month, t. We assume that a fraction of precipitation cannot 

infiltrate in the soil.  This occurs because during rainy events, the precipitation rates often exceed the percolation rates of the 

near-surface soil, which may become temporarily saturated.  These processes occur at sub-monthly scales and cannot be 110 

explicitly accounted for in the model; therefore, we use a phenomenological approach that assumes a maximum infiltration 

rate: 

𝐼! = 𝐼)*+ -1 − 𝑒
!"#
$%&'0           (4) 

where	𝑃! represents the precipitation rate at each month and 𝐼)*+ is the parameter that represents the maximum infiltration. 

The excess precipitation is lost as surface runoff (𝑆!) and never enters in the soil storage: 115 

𝑆! = 𝑃! − 𝐼!            (5) 

 The recharge flux between the PAW and PUW layers (𝐹!, positive when the flow goes from PAW to PUW) can be 

defined by the Darcy’s law, relating the difference in potentials between the two layers: 

𝐹! = 𝜌ℓ𝐾!,-*./0 4
'1!(

2ℓ3
4#,"+,54#,"-,
.
/(7"-,57"+,)

+ 1
5
         (6) 

where Ψ!,"#$ and Ψ!,"%$ [MPa] are the soil matric potential of each layer at each month, 𝜌ℓ= 1000 kg m−3 is the water density, 120 

𝑔 = 9.807 m s−2 is the gravity acceleration, 𝐾!,-*./0 [m s−1] is the hydraulic conductivity of the source layer (i.e. PAW if Fi is 

positive, and PUW if Fi is negative), and 𝐿"%$ (rooting depth) and 𝐿"#$ (remainder of soil depth) are the parameters that 

represent the thickness of each layers [m]. 
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 Then, the soil matric potential of each layer is defined as a function of relative soil moisture (𝑆𝑀!,-*./0), following 

Brooks and Corey (1964): 125 

y!,-*./0 =	y9:0:;<!. -
'

=>#,0&1230
?
          (7) 

where y9:0:;<!.= -0.117 MPa, and the parameter 𝑏 corresponds to the inverse of the pore size distribution index (Marthews et 

al. 2014). The unsaturated hydraulic conductivity (𝐾!,-*./0) is defined following Campbell (1974): 

𝐾!,-*./0 = 𝐾1	𝑆𝑀!,-*./0
@?&A            (8) 

where 𝐾1 [m s−1] is the parameter that represents the saturated hydraulic conductivity, and the parameter b is the same as in 130 

Eq. (7). The drainage function is parameterized as the removal of water that exceeds the field capacity, to represent fast (sub-

monthly) loss of water under near-saturated conditions: 

𝐷!,-*./0 =
BCD	(	1	,y#,0&1235	y45206)	

F2'7288	(	y9:3:85#15	y45206)
          (9) 

where the scaling term 𝑄/+G/;; is a free parameter from 0-1 that removes a fraction of SM excess above field capacity, yH</-I. 

 Lastly, one thing to note is that precipitation and ET biases in the Amazon are known to be significant, and ET can 135 

even have an inverted seasonal cycle. The model is capable of substantially relaxing and constraining the simulated 

evapotranspiration (𝐸𝑇!) and precipitation (𝑃!) values at each month, through the parameterization and inference of scale 

factors (𝑃;G*-/ and 𝐸𝑇;G*-/). The data set used for P at each month, namely 𝑃I*!*,!, is derived from precipitation measurements 

from the Tropical Rainfall Measuring Mission (TRMM) 3B42 (Huffman et al., 2007), provided at 0.25° × 0.25° and 3‐hourly 

spatiotemporal resolutions. The data sets used for ET at each month, namely 𝐸𝑇I*!*,!, is derived following the approach in 140 

Swann and Koven (2017) and Shi et al., (2019). That is, monthly total ET is derived from satellite observations of precipitation 

and TWS and ground‐based measurements of river runoff. Unlike the ET retrievals from the Moderate Resolution Imaging 

Spectroradiometer, which have been shown to be seasonally biased in the wet tropics (Maeda et al., 2017; Swann and Koven, 

2017), this ET estimation is robust across seasons (Swann and Koven, 2017). Runoff data sets for each watershed are obtained 

from the Observation Service for the geodynamical, hydrological, and biogeochemical control of erosion/alteration and 145 

material transport in the Amazon (SO‐HYBAM) in situ river gauge discharge measurements (discharge measurements can be 

found at http://www.ore‐hybam.org/). With these three data sets, we estimate subbasin‐based monthly ET.  

To clarify this more, there are 3 different derivations used for the TWS variable. These 3 estimates provide a sense 

of uncertainty for the TWS. The uncertainty from the GRACE product is used in the likelihood function of the MCMC 

algorithm when fitting the model simulated TWS to the GRACE derived TWS. Then, there is also 3 products used in the 150 

precipitation and the runoff driving variables that were used, to get a sense of the uncertainty in each variable. To estimate the 

ET driving variable in this work, we use the mean of the TWS, P, and Q products and create a water balance that will allow us 
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to estimate a mean for the ET driving variable. Then by application of the ET scaling parameter, we try to estimate whether 

our initial calculation of ET required any scaling to match the data. Therefore, even though the GRACE TWS is somehow 

used in the derivation of the ET data, the uncertainty that is applied throughout the work allows us to still estimate ET that is 155 

not dependent on the GRACE data. See Shi et al., (2019) for more details on this derivation. In essence, the simulated fluxes 

are represented as 𝐸𝑇! =	𝐸𝑇;G*-/ ∗ 𝐸𝑇I*!*,! for evapotranspiration, and 𝑃! =	𝑃;G*-/ ∗ 𝑃I*!*,! for precipitation, where 𝐸𝑇;G*-/ 

and 𝑃;G*-/ are inferable parameters. Combining all these equations in the logical flow presented in Figure 1 of the manuscript 

allows the model to simulate total water storage as 𝑇𝑊𝑆! =	𝑀!
"%$ +𝑀!

"#$. This model has not been presented before in 

previous literature, and this manuscript is the first to report on the model simulation results. 160 

 The parameters of the model will be inferred such that the TWS in the model simulations match the observed GRACE 

TWS data. Since GRACE TWS is known to have the smallest uncertainties in the water budget (c.f. Pascolini‐Campbell et al., 

2020), we use this information to infer and understand the more poorly constrained variables or processes in the model. In this 

case study, we use the model for the Gavião Watershed, located in the western Amazon (for location of watershed refer to the 

map in Figure 1). We chose the Gavião Watershed for this study due to sufficient data availability, and because there is a 165 

strong seasonal cycle for this watershed, which allows the model to capture hydrologic signals more efficiently during the 

parameter inference. 

 2.2 GRACE Data for Total Water Storage (TWS) 

NASA’s GRACE mission (Tapley et al., 2004) has proven to be an extremely valuable tool for regional to global scale water 

cycle studies (Famiglietti 2014; Reager et al., 2015; Massoud et al., 2018a, 2020a). GRACE data have been widely used to 170 

diagnose patterns of hydrological variability (Seo et al., 2010; Rodell et al., 2009; Ramillien et al., 2006; Feng et al., 2013), to 

validate and improve model simulations (Döll et al., 2014; Güntner, 2008; Werth and Güntner, 2010; Chen et al., 2017; Eicker 

et al., 2014; Girotto et al., 2016; Schellekens et al., 2017), to constrain decadal predictions of groundwater storage (Massoud 

et al., 2018a), and to enhance our understanding of the water cycle on regional to global scales (Syed et al., 2009; Felfelani et 

al., 2017; Massoud et al., 2020a). Total Water Storage (TWS) estimates from GRACE include all of the snow, ice, surface 175 

water, soil water, canopy water, and groundwater in a region, and when combined with auxiliary hydrologic datasets, TWS 

can be utilized to infer process information on model parameters or other model states. 

 Various recent studies have demonstrated that GRACE derived estimates of variations of TWS can provide freshwater 

availability estimates with sufficient accuracy (Yeh et al., 2006; Zaitchik et al., 2008; Massoud et al., 2018a). These GRACE 

based methods have been applied to regions such as Northern India (Rodell et al., 2009; Tiwari et al., 2009), the Middle East 180 

(Voss et al., 2013; Forootan et al., 2014; Massoud et al., 2021), Northern China (Moiwo et al., 2009; Feng et al., 2013), 

California (Famiglietti et al., 2011; Scanlon et al., 2012; Xiao et al., 2017; Massoud et al., 2018a, 2020a), Northern mid- to 

high latitudes (Trautmann et al., 2018), and the Amazon (Swann and Koven 2017), among others. In this study, estimates of 

TWS are obtained from the GRACE retrievals of equivalent water thickness (Landerer & Swenson, 2012; Sakumura et al., 

2014; Wiese et al., 2016). We use three GRACE TWS retrievals from the spherical harmonic data versions generated by the 185 
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Center for Space Research (CSR), GeoforschungsZentrum Potsdam (GFZ), and Jet Propulsion Laboratory (JPL). These three 

GRACE TWS retrievals are 1-degree solutions of land field products (each was downloaded from ftp://podaac-

ftp.jpl.nasa.gov/allData/tellus/L3/land_mass/RL05/). We calculate the arithmetic mean of the three GRACE TWS retrievals 

to represent TWS used in Eq. (1). We used this GRACE product to constrain simulations of the hydrologic model described 

in Section 2.1 for the Gavião watershed from January 2003 through December 2012. 190 

 2.3 Bayesian Parameter Inference with MCMC 

In this study, we aim to estimate parameters of a medium complexity model that simulates the hydrologic cycle using physics-

based equations that capture large scale dynamics of the watershed. We showcase how the data-constrained physically based 

model can simulate the hydrologic cycle by fusing the model with auxiliary observations. When simulated on its own, the 

model can represent a wide range of physical possibilities, but when calibrated and trained to fit some desired observed metric, 195 

the model simulations begin to represent the underlying physical system it is being trained to. Many tools exist to achieve 

model-data fusion, such as Bayesian parameter inference with Markov Chain Monte Carlo (MCMC) algorithms (Schoups and 

Vrugt, 2010; Bloom et al., 2015; Vrugt 2016; Vrugt and Massoud 2018; Massoud et al., 2019c, 2020b) or data assimilation 

(Reichle et al., 2002; Vrugt et al. 2005; Girotto et al., 2016; Khaki et al., 2017, 2018; Massoud et al., 2018b). These state-of-

the-art tools require enough computational cost but can ensure that the underlying system dynamics are being accurately 200 

replicated to an agreeable amount of uncertainty. The model parameters in this study are estimated using Bayesian inference 

with MCMC (Vrugt and Massoud 2018), where the final estimated distributions are not required to follow any form, such as 

Gaussian or bimodal, amongst others. The final estimates of the model parameters, shown later to be the posterior of q in Eq. 

(12), are the posterior solutions and are utilized to constrain the spread of uncertainty in the simulations. 

 In recent decades, Bayesian inference has emerged as a working paradigm for modern probability theory, parameter 205 

and state estimation, model selection and hypothesis testing (Vrugt and Massoud 2018). According to Bayes’ theorem, the 

posterior parameter distributions, 𝑃(𝐴|𝐵), depend upon the prior distributions, 𝑃(𝐴), which captures our initial beliefs about 

the values of the model parameters, and a likelihood function, 𝐿(q), which quantifies the confidence in the model parameters, 

q, considering the observed data, 𝐘. The likelihood function is a critical property of this calculation. This section shows the 

derivation of the likelihood function used in this study. According to Bayes’ Theorem, the probability of an event is estimated 210 

based on prior knowledge of conditions that might be related to the event. In equation form, this looks like: 

𝑃(𝐴|𝐵) = B	
"J𝐵K𝐴L∗	"(#)

"(N)
	C .          (10) 

For the purposes of this study, we can express P(A) as the prior information of our calculation, which assumes log-uniform 

distribution for all parameters and the probability outside the parameter bounds is equal to 0 (the minimum and maximum 

values for each parameter are reported in Table 1).  P(B) is the evidence and is a normalizing constant and therefore taken out 215 

of the equation. This leaves us with: 
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𝑃(𝐴|𝐵) 	∝ 	𝑃(𝐵|𝐴)		;  𝑃(𝐴|𝐵) ∝ 𝐿(q).         (11) 

where 𝑃(𝐴|𝐵) is the final distribution of the model parameters, or the posterior of q in Eq. (12) described in the next paragraph, 

and 𝑃(𝐵|𝐴) is equivalent to the chosen likelihood function, 𝐿(q), also described in the next paragraph. Therefore, the MCMC 220 

algorithm samples model parameter combinations (q) that will maximize the fit to the GRACE data, and thus will maximize 

the value of the likelihood function, 𝐿(q). 

 The observed data in this case study is the GRACE satellite observations, and our goal is to find the optimal set of 

model parameters, q, that produces a model simulation, 𝐗(q), which maximizes the fit, or the likelihood, relative the 

observations. Our likelihood function is therefore set up as: 225 

𝐿(q) = 	−
'

@s;<=>?
/ ∑ 	[		𝐘𝐆𝐑𝐀𝐂𝐄,𝒕 −	𝐗𝐌𝐨𝐝𝐞𝐥,𝒕(q)		]𝟐!         (12) 

where 𝑡 refers to the time index (in months) of the simulations, 𝐘𝐆𝐑𝐀𝐂𝐄,𝒕 is the observed GRACE data at month 𝑡, 𝐗𝐌𝐨𝐝𝐞𝐥,𝒕(q) 

is the optimized model simulations at month t using the parameters q, and s[\]^_@  is the uncertainty associated with the GRACE 

data which was chosen to be a homogeneous 50 mm/month for our applications. Since GRACE data is represented as anomalies 

from climatology, we format the model simulations into anomalies as well to perform this model-data fitting experiment. That 230 

is: 

𝐘𝐆𝐑𝐀𝐂𝐄,𝒕 =	𝐓𝐖𝐒𝐆𝐑𝐀𝐂𝐄,𝒕 – mean( 𝐓𝐖𝐒𝐆𝐑𝐀𝐂𝐄	)        (13) 

indicating that the form of the GRACE observations is in climatological anomalies. Furthermore, we format the model 

simulations in this manner for the parameter inference, as follows: 

𝐗𝐌𝐨𝐝𝐞𝐥,𝒕 =	𝐓𝐖𝐒𝐌𝐨𝐝𝐞𝐥,𝒕 – mean( 𝐓𝐖𝐒𝐌𝐨𝐝𝐞𝐥	)        (14) 235 

We apply Bayesian inference on the model parameters in an optimization framework and sample the likelihood function in 

Eq. (12). This allows for the inference of the model parameters, or q. These inferred model parameters will be used to inform 

and constrain the spread of uncertainty in the model simulations. 

 Successful use of the MCMC application in a Bayesian framework depends on many input factors, such as the number 

of chains, the prior used for the parameters, number of generations to sample, the convergence criteria, among other things. 240 

For our application, we use the adaptive Metropolis-Hastings MCMC, as described in Bloom et al., (2020). We use C=4 chains, 

the prior was a log-uniform distribution for each parameter and the ranges shown are listed in Table 1, the number of 

generations was set at G=100,000, and the convergence of the chains relied on the Gelman and Rubin (1992) diagnostic, where 

we applied the commonly used convergence threshold of R=1.2. Given the high efficiency of running this parsimonious model 

(as compared with other high dimensional and expensive models), it was computationally feasible to obtain the set of 245 

G=100,000 simulations for the MCMC algorithm (i.e., less than one hour of CPU time to perform the parameter inference). 
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 2.4 Averaging Kernel Matrix 

To better quantify the reduction of uncertainty for each parameter, we apply an Averaging Kernel (AK) calculation (Worden 

et al., 2004), which is typically a measure of how a modelled state (posterior) is sensitive to changes in the “true” state (prior) 

and is a method that is common for satellite retrievals. The AK matrix is calculated as follows: 250 

𝐀𝐊	 = 𝐈 − `ab(𝐏𝐨𝐬𝐭𝐞𝐫𝐢𝐨𝐫)
`ab(𝐏𝐫𝐢𝐨𝐫)

           (15) 

where AK is the diagonal vector of the averaging kernel matrix, I is the identity matrix, Posterior is the Bayesian parameter 

posteriors sampled with MCMC, Prior are samples randomly drawn from the prior distribution, and cov is the covariance 

function. We take the main diagonal of the AK matrix, which represents uncertainty reduction from the prior to the posterior 

parameter distributions. The AK diagonal values for each parameter are listed in Table 1 under ‘AK Diagonal’. A value of AK 255 

= 1 represents a 100% reduction in uncertainty, while a value of AK = 0 represents no information gain and therefore no 

reduction in uncertainty. 

3 Results and Discussion 

 3.1 Sensitivity of TWS variability to model parameter 

To characterize the sensitivity of the monthly TWS variability to model parameters, we perturb posterior parameters and 260 

generate corresponding TWS simulations. Figure 2 shows the sensitivity of the model simulated TWS to minor perturbations 

in parameter values. In these plots, the green curves show changes in simulated TWS (d TWS) when each parameter is 

perturbed (d Par) by 1% of its prior range, indicating the magnitude and the time steps of model sensitivity. Results in these 

plots show that sensitivity to initial conditions is larger for the first 12-month period but are diminished after that. Furthermore, 

the sensitivity of simulated TWS varies between wet and dry seasons.  265 

The rooting depth parameter (Figure 2A) is sensitive during initialization as well as during the wet periods, the 

maximum infiltration parameter (Figure 2B) seems to only be sensitive during the wet periods, and the parameter representing 

the initialization of soil moisture in the top layer (Figure 2C) is only sensitive during initialization. Figure S1 in the 

supplementary section shows how the remaining parameters affect TWS sensitivity. To summarize these curves in a single 

value (i.e. [mm change in TWS per 1%-unit change in parameter]), we show in Table 1 under ‘TWS sensitivity’ the aggregated 270 

value for each parameter, calculated as the mean variance of all (d TWS / d Par) curves for each parameter. 

3.2 Posterior model parameters and simulated states 

3.2.1 Model parameters, TWS, and states - the Gavião watershed 

We apply Bayesian inference on the model parameters and simulations and optimize the fit to the GRACE data to obtain 

posterior solutions of the model parameters. We apply this parameter inference for 3 basins. The first is the Gavião watershed 275 

(shown in Figure 1), which has a generally wet climate. We then perform the same parameter inference to a basin that is more 
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wet than Gavião and is located upstream from the Acanaui river gauge station (hereafter called Basin 1), and to a basin that is 

drier than Gavião and is upstream from the Guayaramerin river gauge station (hereafter called Basin 2).  

For the Gavião watershed, the prior and posterior parameter distributions are shown in Figure 3, and the median value for these 

distributions is listed in Table 1 under ‘MCMC’ for each parameter. We investigated how the estimated parameter values we 280 

find in this study compare with other studies in the literature. For example, the retention parameter ‘b’ in our study is estimated 

to be around 2, which is lower than the tabulated values of Cosby et al., (1984), Tomasella and Hodnett (1998), or Marthews 

et al. (2014). Of course, the model in this study is simulated at much coarser resolution, and the physical meaning of these 

parameters may change due to processes being solved at very different scales. This is an important message for the 

interpretation of these results, as taking a model developed in one scale and applying it to a different scale can induce spurious 285 

errors if parameters are not adequately constrained at the intended resolution. We found that most parameters exhibited a 

significant uncertainty reduction for the Gavião watershed. To quantify this reduction of uncertainty, we apply an Averaging 

Kernel (AK) calculation. The results from the AK matrix are listed in Table 1 under ‘AK diagonal’, and they indicate that 

significant uncertainty reduction occurs in some parameters, namely the depth of the PAW layer (rooting depth) and depth of 

the PUW layer, as well as the retention and maximum infiltration parameters. In contrast, we found porosity, conductivity at 290 

saturation, and yH</-I exhibited the smallest relative uncertainty reductions. 

In Figure 4 we show the model simulations of 10-year monthly TWS for the Gavião watershed, including the prior 

and the posterior simulations, and compare these with the values obtained from satellite data (GRACE TWS). Posterior ranges 

of the model simulated TWS are shown in the orange envelopes, and precipitation values used to drive the model are shown 

to indicate wet vs dry periods. Results in Figure 4 show that GRACE-informed soil hydrologic model simulations (posterior) 295 

can capture the monthly TWS compared to concurrent GRACE measurements, with an r2=0.9837 and RMSE=30.99 mm 

between observed and simulated TWS. Comparing this result with the prior model simulations (mean of the prior shown in 

Figure 4, and the distribution from the prior is shown in Figure S2), we see a major improvement in the constrained posterior 

model simulations. The mean prior has an r2=0.4360 and RMSE=410.50 mm compared to the GRACE TWS, and the range of 

the prior simulations in Figure S2 span a wide range of possibilities. This result indicates that this simple model can accurately 300 

simulate TWS in the Gavião watershed when the parameters are inferred using GRACE measurements as a fitting target. 

The model is then simulated using all samples from the posterior, which provides posterior solutions for the state 

variables. These are shown in Figure 5, which displays specific model processes for the Gavião watershed (map of the basin 

shown in the bottom right panel of Figure 5). The matric potential of plant available water (PAW y) and the matric potential 

of plant unavailable water (PUW y) represent the suction pressure in each soil layer that is associated with dryness/wetness. 305 

In other words, a completely wet soil layer would have a matric potential of 0 and higher levels of dryness result in more 

negative matric potential values. Based on the results in Figure 5AB, the PUW layer seems to have more wetness, and therefore 

less suction pressure, for this watershed (i.e., values closer to 0 for the PUW layer). The recharge value (PUW -> PAW flux) 

represents the flux of water from the top layer to the bottom layer, where negative values indicate a downwards flux. Results 
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in Figure 5C show there is a continually flowing downwards flux of water from the top layer (PAW) to the bottom layer 

(PUW), roughly at the magnitude of 50-100 mm/month. The discharge values represent the drainage from the top layer (Q 

PAW) and from the bottom layer (Q PUW). The results in Figure 5DE show that there is drainage from the top layer (PAW) 

that peaks in the wet season at roughly 40 mm/month, and there is a drainage that follows a seasonal cycle from the bottom 

layer (PUW) at around 40-80 mm/month. The infiltration represents the water that infiltrates from the surface into the top soil 320 

layer. According to Figure 5F, this flux also follows a seasonal cycle, with about 250 mm/month infiltrated into the top layer 

during the wet season and dropping to roughly 50 mm/month in the dry season. Lastly, soil moisture of the top (SM PAW) 

and bottom layers (SM PUW) represent the state of soil moisture in each layer. Based on the results in Figure 5GH, the PUW 

layer seems to have more wetness, and therefore higher soil moisture values, for this watershed and these results correspond 

to what is seen for the matric potential in Figure 5AB (i.e., more wetness in the PUW layer). In Figure 5, the ranges shown in 325 

orange envelopes are the posterior ranges, indicating the range of possible solutions for each GRACE-informed state variable 

for the Gavião watershed. Some dynamical constraints were applied in the Bayesian optimization, such as SM1,t0 and SM2,t0 

are greater than 0.1 but less than 0.5 [m3/m3]. The rationale for these ‘common-sense’ rules follows that of Bloom and Williams 

(2015), to ensure that non-realistic physical properties of the system are not allowed. 

The resulting model simulations are largely affected by the way that ET is used in the model. We described in the 330 

methods section how ET is calculated in our study, and it is important to note that there are alternative approaches for 

prescribing watershed ET. For example, FLUXCOM (Jung et al., 2020), JPL-PT ET (Fisher et al., 2009) or parsimonious 

prognostic ET scheme (Liu et al., 2021) estimates can provide robust alternatives for the residual-based ET approach. 

3.2.2 Interpretation of results 

The posterior parameters and model simulations provide information that can be used to identify and estimate the processes 335 

responsible for TWS variability in this watershed. Insights of rooting depth (histograms in Figure 3) are critical for determining 

resilience of rootzone water storage during dry season events (c.f. Lewis et al., 2011, Shi et al., 2019, Liu et al., 2017, amongst 

others). Insights of soil water potential seasonality (posteriors in Figure 5) are critical for resolving plant hydraulic process 

responses to atmospheric water demand and soil water supply (Novick et al., 2019, Konings et al., 2017, Liu et al., 2021). 

Quantitative top-down insights into the infiltration, retention, and runoff parametrizations (histograms in Figure 3 and 340 

posteriors in Figure 5) are key for understanding the partitioning of precipitation — and its associated seasonal and inter-

annual variability — into runoff and storage (which all remain key uncertainties in hydrological models). Ultimately, 

mechanistic insights allow for further investigations into instantaneous and lagged responses of soil hydrological states to 

climatic variability. Of course, these process dynamics can vary between watersheds, and it is important to understand the 

causes and drivers of variability in water storage between basins.  345 

3.2.3 Model parameters, TWS, and states – other basins 

To assure the results from the parameter inference can provide insights for other basins, we estimate parameter posteriors and 

corresponding TWS simulations for the two other basins mentioned above, Basins 1 (a basin that is more wet than Gavião and 

is located upstream from the Acanaui river gauge station) and Basin 2 (a basin that is drier than Gavião and is upstream from 
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the Guayaramerin river gauge station). Table S1 reports the median value for the posterior distributions of each parameter in 350 

each basin. The TWS simulations for each basin are shown in Figure S3 (Basin 1) and S4 (Basin 2). Applying the parameter 

inference for these basins also produced accurate simulations, with an r2=0.9548 and RMSE=28.49 mm between observed and 

simulated TWS for Basin 1 (Figure S3), and an r2=0.9891 and RMSE=18.89 mm between observed and simulated TWS for 

Basin 2 (Figure S4). Furthermore, we show in Figures S5 and S6 the GRACE-informed model simulated states and fluxes for 

Basins 1 and 2, respectively. From these results, it is apparent that Basin 1 is more wet than Basin 2, e.g., this can be seen by 355 

comparing the precipitation levels depicted in Figures S3 and S4, but also by comparing the matric potential values in Panel 

A or the discharge values in Panels D-E in Figures S5-S6. The location of these basins in the context of the broader South 

America are shown in the bottom right panel of Figures S5 and S6. Overall, the modelled state variables and parameters for 

these basins are constrained using the GRACE data, and this information can be used to identify and estimate the processes 

responsible for TWS variability in these watersheds. 360 

3.3 Model simulations at the Gavião watershed: model validation, annual cycle, and annual variability 

  3.3.1 Model calibration and validation 

It is typical in works involving parameter inference to apply a model calibration and a model validation to different periods of 

the data set to ensure that the estimated parameters are not over-fitting the data and can be used to describe the underlying 

system and thus make predictions. In this section, we apply a model calibration in the Gavião watershed for the first half of 365 

the data set spanning 5 years, and then we apply a validation for the second half of the data set spanning the remaining 5 years. 

Figure 6 shows results for the model calibration and validation. Posterior ranges of the model simulated TWS are shown in 

Figure 6 in the orange envelopes for the calibration and validation years, and the red line represents the mean estimates for the 

validation period. The results in Figure 6 show that the calibration period RMSE is 47.71 mm with a correlation of 0.9520, 

and for the validation period the RMSE is 40.17 mm with a correlation of 0.9801. This shows that the estimated parameters 370 

during the calibration period are still valid for the validation period and indicates that the GRACE-informed soil hydrologic 

model parameters are both useful for diagnosing present-day soil water dynamics (calibration) as well as predicting seasonal 

and inter-annual soil water dynamics (validation). 

  3.3.2 Annual cycle and annual variability 

We further investigate the ability of the tuned model to capture the annual variability in TWS in the Gavião watershed. We 375 

compare in Figure 7A the annual cycle of the TWS anomalies produced from GRACE with those produced by the model. The 

annual variability is captured well with the model, with an r2=0.9979 and RMSE=11.00 mm between observed and simulated 

TWS annual cycles. The annual cycle of the mean prior simulation is also shown in Figure 7 (red dashed line) for comparison. 

In Figure 7B, the timeline of de-seasonalized TWS anomaly estimates are shown. To obtain this plot, we subtract the annual 

cycle in Figure 7A from each month’s estimate shown in Figure 4. The de-seasonalized plot in Figure 7B has an r2=0.8512 380 

and RMSE=29.27 mm between observed and simulated timelines, and the model accurately portrays whether a dry or wet 

period is experienced relative to what is expected in the annual cycle. This is a vast improvement from estimating the annual 
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cycle and de-seasonalized TWS timeline in the prior simulations (mean prior simulation shown in Figure 7, and the distribution 

of prior simulations is shown in Figure S7). For the prior simulations of the annual cycle, the model has a r2=0.9761 and 

RMSE=417.62 mm, and for the de-seasonalized TWS timeline, the model prior has a r2=0.4323 and RMSE=93.32 mm between 385 

observed and simulated timelines. Therefore, the model posterior solutions show a great improvement from the prior for 

simulating the annual cycle and capturing the seasonality of the hydrologic cycle for each watershed. 

In the results shown in Figure 7, we see that the model can capture the 2005-2006 and 2010-2011 droughts in the 

Gavião watershed that are shown in the GRACE data (c.f. Lewis et al., 2011). The model also captures the wet periods observed 

in 2003, 2004, 2008, 2009, and 2012 (see Figure 7B). The model captures the positive and negative anomalies quite well; 390 

however, it does have some limitation in capturing the magnitude of some extreme events (positive and negative), which may 

be partly caused by the coarser time step and spatial scale of the simulation. Yet, the model does succeed in capturing some 

delayed anomalies in water storage following the 2005-2006 and 2010-2011 droughts, which is very promising. This gives 

confidence in the data-constrained model to provides meaningful estimates of TWS anomalies on monthly and seasonal scales.  

 3.4 Correlations between posterior model parameters and model states 395 

After the model parameters and states variables are constrained by the GRACE data for the Gavião watershed, relationships 

between the model parameters and simulated states begin to emerge. We show in Figure 8A the scatter plot between posterior 

solutions of model simulated TWS and the excess runoff parameter. This figure shows that the region inside the black box, or 

the high-density region of the posterior, is the region within the posterior domain that has high information content (i.e., 

plausible solutions with high likelihood). The true value provided by the GRACE data is marked with a red line in Figure 8A. 400 

Other regions of this space, such as locations with excess runoff values below 0.2, produce unlikely model simulations, and 

similarly locations with excess runoff values higher than 0.5 are also less likely. This can also be seen in Figure 3, in the 

posterior histograms for the excess runoff parameter. Similar relationships between other parameters and state variables 

(including soil moisture of layer 1 and discharge from layer 1) are shown in Figure S8 of the supplementary section. Overall, 

these plots not only show the emergent relationships between variables as informed by GRACE, but also indicate if and how 405 

they are correlated in the Gavião watershed. 

 Similarly, the posterior parameter solutions can be used to infer relationships between the parameters themselves. To 

this end, we show in Figure 8B a scatter plot depicting the GRACE-informed correlation of the posterior parameter values for 

the soil moisture initialization parameters in the Gavião watershed. We see that the initial soil moisture in the bottom layer is 

greater than 0.2 [m3/m3], and in the top layer is less than 0.3 [m3/m3], which can be seen in Figure 3, in the posterior histograms 410 

for the soil moisture initialization parameters. One property that also emerges in Figure 8B is that the initial soil moisture in 

the bottom layer is larger than that of the top layer. This indicates that, in the initial time step of the simulations, the bottom 

layer should have a higher soil moisture than the top layer. These relationships can be created for any pair of parameters in the 

posterior space, and Figure S9 of the supplementary section portrays these relationships for several combinations of 

parameters, indicating what combinations of parameters are possible for this hydrologic system, as inferred by GRACE. 415 
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 We summarize the results reported in this subsection with the following points. First, we find considerable 

correlations between the posteriors of individual model parameters and model states in the Gavião watershed. We also find 

considerable correlations between the posteriors of individual model parameters and with other parameters. This is important, 420 

because the correlations between parameters and states indicate that the choice of hydrological constants can have a 

considerable impact on simulated TWS. The relationships found in the parameter posteriors imply that while several 

parameters exhibit considerable uncertainty, only a subset of parameter combinations provide GRACE-consistent model 

solutions. In essence, these GRACE-based relationships portray what parameter combinations are possible for accurately 

simulating the chosen watershed.  425 

4 Summary 

In this paper we used a parsimonious hydrologic model capable of simulating various aspects of land surface hydrology, and 

we ran the model for different basins in the western Amazon. We performed extensive analysis on the Gavião watershed, a 

relatively wet basin, and also reported results for two other basins, one being more wet (Basin 1) and one being more dry 

(Basin 2). The model used in this study includes two soil layers (plant available and unavailable water pools), is driven with 430 

hydrologic flux variables such as evapotranspiration and precipitation and includes other processes such as infiltration into the 

soil, surface runoff, drainage from each layer, and recharge into the lower soil layer. Listed in Table 1 are various model 

parameters that control the simulations for the Gavião watershed, with their respective estimated values. Table S1 lists these 

parameter values for Basins 1 and 2. We applied Bayesian inference to estimate posteriors for the model parameters that 

allowed the simulations to match satellite-based estimates of Total Water Storage (TWS) obtained from GRACE.  435 

 Results in this paper showcased the estimated parameter posteriors along with their priors (Figure 3), the posterior 

solution of simulated TWS (Figure 4), and the estimated model states (Figure 5). We also performed a model calibration and 

validation exercise (Figure 6), to show how estimated parameters during the calibration period are still useful for the validation 

period. We also compared the annual cycle and de-seasonalized TWS anomalies produced from both the GRACE data and the 

model, and we showed how the data constrained TWS model can capture the annual variability as well as drought events that 440 

occurred in this system (Figure 7AB). For further diagnosis of our results, we showed the relationships between model 

simulated states and the estimated parameters (Figure 8A and Figure S8). Then we showed relationships between combinations 

of estimated parameters (Figure 8B and Figure S9). Furthermore, we investigated the sensitivity of the model simulated TWS 

to minor perturbations in parameter values (Figure 2 and Figure S1), and we showed how parameters can create sensitivities 

in TWS in different ways, for example during wet or dry periods, or during model initialization. Simulation results for Basins 445 

1 and 2 are shown in supplementary Figures S3-S6. 

 Overall, the results in this paper allowed us to make the following conclusions. First, GRACE-informed soil 

hydrologic model parameters are useful for diagnosing present-day soil water hydrology. Substantial uncertainty reduction 

was found for parameters that represent soil moisture initialization, rooting depth, and conductivity and retention relationships. 

However, limited uncertainty reduction was found for infiltration rates and porosity parameters, and further model 450 
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development may be needed to describe the information content of these processes and their associated uncertainties more 

accurately. The second conclusion is that GRACE-informed model parameters can be used for predicting seasonal and inter-455 

annual soil water hydrology. We showed that using a 5-year data record of TWS allows the parameter inference to still be 

applicable to the remaining 5-year data record, which is simulated without the use of information from GRACE. Lastly, a 

medium complexity model like the one used here can be sufficient for capturing monthly to seasonal-scale hydrology of the 

land surface at the basin scale, such as the Gavião watershed in the Amazon.  

 By fusing information from the signal of the surface mass change with other hydrologic information, such as physical 460 

constrains in model simulations or seasonal behaviour of in-situ observations, GRACE has proven its ability to infer hydrologic 

parameters and state variables accurately. We found that this methodology is generalizable to other regions, and we reported 

the results from additional testing that was conducted to other watersheds in the Amazon. Our results suggest the potential of 

using gravimetric observations of TWS from GRACE to identify and constrain key parameters in soil hydrologic models. 

 465 
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Parameter Symbol Min Max Units MCMC AK 
Diagonal 

TWS 
Sensitivity 

1) Porosity Layer 1 ρ1 0.2 0.8 
 

0.4686 0.0509 0.1192 

2) Porosity Layer 2 ρ2 0.2 0.8 
 

0.4544 0.0127 0.0614 

3) Ψ_field Ψfield  -0.1 -0.01 MPa -0.0375 0.3735 0.3656 

4) Layer 1 Depth (Rooting Depth) LPAW 1 100 m 23.7214 0.8441 0.2262 

5) Layer 2 Depth (PUW Depth) LPUW 1 100 m 12.2266 0.7136 0.5975 

6) Retention Parameter b b 1.5 10 
 

2.3767 0.8448 0.3647 

7) Saturated Hydraulic 
Conductivity 

K0 1.00E-07 1.00E-05 m/s 2.57E-06 0.2593 0.4455 

8) Maximum Infiltration Imax 100 2000 mm/month 1275.9 0.7758 0.0485 

9) SM@t=0 PAW SM1,t0 0.1 0.5 m3/m3 0.1607 0.5873 0.3128 

10) SM@t=0 PUW SM2,t0 0.1 0.5 m3/m3 0.4117 0.7889 0.133 

11) ET scale factor ETscale 0.5 1.5 
 

0.5364 0.9694 0.0179 

12) P scale factor Pscale 0.5 1.5 
 

0.8284 0.897 0.0586 

13) Q excess factor Qexcess 0.01 1 
 

0.2832 0.864 0.0246 

 

Table 1: Parameter estimation results for the Gavião watershed. Shown here are the model parameters and associated symbols, prior ranges 
(Min – Max), units, Posterior solution median estimate (MCMC), AK matrix diagonal values showing the level of uncertainty reduction 
(i.e., AK=1 for full reduction, AK=0 for no reduction in uncertainty), and TWS sensitivities ([mm change in TWS per 1%-unit change in 695 
parameter]) showing the sensitivity of TWS variability to model parameters. 
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 700 
Figure 1: Model schematic for the data-constrained terrestrial water storage model. Arrows indicate the logical flow that describes the 
movement and storage of water in the model. The domain on the right highlights the western Amazonian watershed investigated in this 
study, the Gavião Watershed.  
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Figure 2: Sensitivity of the model simulated TWS to minor perturbations in parameter values. Shown here (from top to 
bottom) are sensitivities to A) the Rooting depth parameter, B) the Maximum infiltration parameter, and C) the soil moisture 
initialization parameter for layer 1. Green curves are the changes in simulated TWS (d TWS) when each parameter is 
perturbed (d Par) by 1% of its prior range, indicating the magnitude and the time steps of model sensitivity. TWS 710 
sensitivities to other parameters are shown in Figure S3 of the supplementary section. The x-axis depicts the number of 
months since 2003, showing the ten-year period starting in January 2003 and ending in December 2012. 
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Figure 3: Histograms of the prior (blue) and posterior (orange) distributions of the GRACE-informed parameters for the 715 
Gavião watershed. 
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Figure 4: Monthly Total Water Storage (TWS) anomaly estimates from satellite data (GRACE TWS), the prior simulation 720 
from the model, and the data-constrained version of the model simulations for the Gavião watershed. GRACE-informed 
posterior ranges of the model simulated TWS are shown here in the orange envelopes. Precipitation values used to drive the 
model are shown to indicate the seasonal cycle. 
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Figure 5: GRACE-informed model simulated states and fluxes for the Gavião watershed (basin shown in the bottom right 
panel in the context of the broader South American domain). These figures show specific model processes, such as (A) the 
matric potential of plant available water (PAW y), (B) the matric potential of plant unavailable water (PUW y), (C) recharge 730 
(PUW -> PAW flux) where negative values indicate a downwards flux, (D) discharge from the top layer (Q PAW), (E) 
discharge from the bottom layer (Q PUW), (F) infiltration, (G) soil moisture of the top layer (SM PAW), and (H) soil 
moisture of the bottom layer (SM PUW). The ranges shown here in orange envelopes indicate the GRACE-informed 
posterior ranges. A map showing the location of the Gavião watershed is shown in the bottom right panel. 
  735 
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Figure 6: Model calibration and validation for monthly TWS anomaly estimates in the Gavião watershed, for the period 
January 2003 through December 2012. The plot shows the first 5 years of the data for calibration and the remaining 5 years 
for validation. GRACE-informed posterior ranges of the model simulated TWS are shown here in the orange envelopes for 740 
the calibration and validation years, and the red line is used to represent the mean estimates for the validation period.   
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Figure 7: A) Annual cycle of the monthly TWS anomalies [mm], from satellite data (GRACE), the prior simulation from the 
model (Prior), and the data-constrained version of the model simulations (Posterior) for the Gavião watershed. GRACE-
informed posterior ranges of the model simulated TWS annual cycle are shown here in the orange envelopes. B) To obtain 745 
the de-seasonalized values of TWS for the Gavião watershed shown in Panel B, we subtract the annual cycle in Panel A from 
each month’s estimate shown in Figure 4. This shows whether the anomaly values in each time step of Panel B portrays an 
extremely dry or wet period relative to what is expected in the annual cycle. Hence, the data-constrained model can capture 
the 2005-2006 and 2010-2011 droughts that are shown in the GRACE data.  
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Figure 8: A) Posterior relationship of the model simulated TWS [mm] during April 2003 and the runoff excess parameter 755 
[unitless]. The region inside the black box indicates the posterior region with high density, i.e., plausible solutions with high 
likelihood. The red line shows the ‘true’ TWS value seen in the GRACE data for this period. B) Posterior relationship of the 
initialization parameters for soil moisture in layers 1 and 2, respectively. Initial SM in layer 2 is larger than 0.2 [m3/m3], 
initial SM in layer 1 is less than 0.3 [m3/m3], and SM2,t0 is generally larger than SM1,t0, as indicated in this plot. See Table 1 
and Section 3.4 for details. 760 
 


