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Abstract. Despite the importance of temporary streams for the provision of key ecosystem services, their experimental mon-

itoring remains challenging because of the practical difficulties in performing accurate high-frequency surveys of the flowing

portion of river networks. In this study, about 30 electrical resistance (ER) sensors were deployed in a high relief 2.6km2

catchment of the Italian Alps, to monitor the spatio-temporal dynamics of the active river network during two months in the

late fall of 2019. The setup of the ER sensors was customizedpersonalized to make them more flexible for the deployment5

in the field and more accurate under low flow conditions. Available ER data wereanalysed, compared to field based estimates

of the nodes’ persistency (i.e., a proxy for the probability to observe water flowing over a given node) and then used to gen-

erate a sequence of maps representing the active reaches of the stream network with a sub-daily temporal resolution. This

allowed a proper estimate of the joint variations of active river network length (L) and catchment discharge (Q) during the

entire study period. Our analysis revealed a high cross-correlation between the statistics of individual ER signals and the flow10

persistencies of the cross sections where the sensors were placed. The observed spatial and temporal dynamics of the actively

flowing channels also revealed the diversity of the hydrological behaviour of distinct zones of the study catchment, which was

attributed to differences in the catchment geology and stream-bed composition. The more pronounced responsiveness of the

total active length to small precipitation events as compared to the catchment discharge, led to important hysteresis in the L vs.

Q relationship, thereby impairing the performances of a power-law model frequently used in the literature to relate these two15

quantities. Our data indicate some scattering in the relationship between catchment discharge and total active length, which

was attributed to two reasons: i) the larger responsiveness of the active length as compared toQ in case of small rain events and

ii) the non-synchronous increase/decrease of L and Q within individual events. Consequently, in our study site the adoption of

a unique power-law L−Q relationship to infer flowing length variability from observed discharges would underestimate the

actual variations of L by 40%. Our work emphasizes the potential of ER sensors for analysing spatio-temporal dynamics of20

active channels in temporary streams, discussing the major limitations of this type of technology, emerging from the specific

application presented herein.

1 Introduction

Headwater streams – as well as rivers located in semiarid regions – are often characterized by the presence of reaches (or

river segments) where water doesn’t flow permanently throughout the year. While the terminology might vary among different25
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authors, these non-permanent rivers are typically referred to as temporary streams. Temporary streams are frequently classified

into a number of different categories (e.g., intermittent, ephemeral, episodic, seasonal), depending on the underlying temporal

patterns of flow persistency (Williamson et al., 2015; Skoulikidis et al., 2017; Costigan et al., 2016). In recent years, many

studies have emphasized the ability of temporary streams to perform unique biogeochemical functions and provide a number

of important ecosystems services, among which is the transport of material or organisms that support the biodiversity of30

downstream ecosystems (Datry et al., 2014; Leigh et al., 2016; Stubbington et al., 2017; Acuna and Tockner, 2010). The

development of specific laws governing the use of water in non-permanent streams would represent an important step forward

in water policy, since the number and extension of temporary streams is likely to increase in the future due to the combined

action of urbanization, ground and surface water withdrawal and climate change (Creed et al., 2017; Jaeger et al., 2019; Ward

et al., 2020). To raise awareness of the importance of temporary streams in the scientific community and the society, it is35

fundamental to provide the community with new data about network expansion and contraction, possibly exploiting recent

technological advancements in instrumentation and models (Acuna et al., 2014; Whol, 2017).

Different types of measurements have been conducted over the years to monitor network dynamics (Bhamjee and Lindsay,

2011). In most cases, maps of the active network were obtained from field surveys carried out under diverse hydrologic condi-

tions. While on-the-ground inspections are especially suited to characterize monthly or seasonal variations of the wet length of40

small catchments (Day, 1980; Morgan, 1972) (Day, 1980; Morgan, 1972; Floriancic et al., 2018; Godsey and Kirchner, 2014;

Jaeger et al., 2007; Lovill et al., 2018), this method was also applied for the description of the effect of event-based rainfall

variability on the spatial and temporal patterns of flowing streams (Durighetto et al., 2020; Jaeger et al., 2019; Jensen et al.,

2018; Ward et al., 2018). However, this method also proved to be highly time-consuming also for relatively small catchments.

Recent technological advances in the field of environmental sensing provide a good opportunity to support the observational45

reconstruction of stream network dynamics. The most widespread automatic techniques applied for the study of temporary

streams include high-resolution aerial photographs, LiDAR data (Spence and Mengistu, 2016; Roelens et al., 2018) and tem-

perature sensors (Constantz et al., 2001; Blasch et al., 2004). More recently, electrical resistance (ER) sensors have been also

proposed as a new alternative to the already existing methods commonly used to detect spatiotemporal variations of active

channels. ER sensors are as cost effective as temperature sensors, and they can be used with high temporal resolutions (up to50

1 measurement every 5 minutes), thereby enabling a proper assessment of the impact of short-term climate variability on the

active channel length. Two main techniques are reported in the literature for the deployment of ER sensors. TheA first tech-

nique consists in manufacturing a sensor made up of two distinct parts: i) the head containing the electrodes, which is located

on the channel bed and ii) the logger used to measure and record the response of the sensor head, which is typically located

nearby (Bhamjee et al., 2016; Peirce and Lindsay, 2015; Assendelft and vanMeerveld, 2019). The second technique, instead,55

consists in converting already existing temperature sensors (Blasch et al., 2004; Adams et al., 2006; Jaeger and Olden, 2012)

or commercially available temperature/light data loggers into ER sensors (Chapin et al., 2014; Goulsbra et al., 2014; Jensen

et al., 2019; Kaplan et al., 2019; Paillex et al., 2020). For each specific case study, the set up of the deployment in the field was

typically chosen based on the properties of the river bed and the related substrate (e.g., rock surfaces, soil, alluvial sediments,

meadows).60
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Despite the spread of use of ERelectrical resistance sensors to monitor water presence in dynamical stream networks, the

major practical difficulties implied by the deployment of ER sensors under different setups have been seldom discussed in

the literature, and a flexible setup that can be suited to the heterogeneous substrates usually found in high relief headwater

catchments is yet to be found. Moreover, in most cases, ER sensors were designed to provide information on the flow conditions

experienced by a specific point within the cross section of a stream, and they were not able to keep track of the hydrodynamic65

conditions along the whole perimeter of the cross section where the sensors were placed, unless the stream bed was properly

reshaped to convey the entire water flow towards the sensors (Assendelft and vanMeerveld, 2019). Additionally, while ER

timeseries were often used to represent the spatial and temporal evolution of the active network in dynamical rivers, the

statistical properties of individual ER timeseries have never been compared with independent empirical estimates of the local

persistency of the channel segments hosting these sensors.70

In the search of a mathematical synthesis of the coevolution of network dynamics and the hydrological response of catch-

ments, observed variations of the active channel length were frequently compared to the corresponding discharge values ob-

served at the catchment outlet (Godsey and Kirchner, 2014; Jensen et al., 2017, 2019; Lapides et al., 2021). This led to the

formulation of a power-law model connecting the active channel length L and the catchment streamflow Q, which was often

used to obtainget a simple mathematical description of the hydrologic dynamics involved both in rainfall-runoff mechanisms75

and river network dynamics. While the L vs.Q power-law relationship is empirical, its parameters have been shown to bear the

signature of major geomorphological traits of the contributing catchment (Prancevic and Kirchner, 2019). As of now, observed

discharge vs. active length power-law relationships were mostly derived by observational data characterized by a relatively low

temporal resolution (i.e., from weekly to seasonal) (Prancevic and Kirchner, 2019). As coupled high-frequency discharge and

active stream length dynamics were seldom observed empirically (Jensen et al., 2019), the suitability of empirical power-law80

models to describe event-based the observed changes in the flowing length of a river network within and across a sequence of

rain events at different temporal resolutions still needs to be further investigated.

On this basis, we have identified the following research questions for this study: (1) How is the persistency of individual

nodes of the network reflected by the statistical features of ER signals across a range of different substrates and various degree

of flow intermittency? (2) How do wet length and catchment discharge co-evolve in response to a sequence of rain events, and85

how does their mutual relation depend on the temporal resolution of the available observations? (3) Can we identify a setup for

ER sensors suitable to the heterogeneous land covers of high relief headwater catchments, and capable of detecting water flows

in any portion of the stream section? And what are the major practical problems in the deployment of this type of ER sensors?

(1) Can we identify a set up for ER sensors suitable to the heterogeneous land covers of high relief headwater catchments,

and capable of detecting water flows in any portion of the stream section? and what are the major practical problems in the90

deployment of this type of ER sensors? (2) Is it possible to link the statistical features of ER signals with observational data

about the flow persistency in individual nodes of the river network? (3) Are the goodness of fit of a power-law model that

links catchment discharge and wet length and the associated model parameters constrained by the temporal resolution of the

available data? These questions are addressed by coupling observed data obtained from a network of ER sensors placed in

a small catchment in the Italian Alps, a series of statistical analysis of the collected field data and some modeling exercises.95
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Figure 1. (a) Ortophoto of the Valfredda catchment and its location in Northern Italy (green dot), position of the meteorological station (red

dot) and of the section where discharge measurement were taken (white square). Sensors placed along the tributaries of Zone 1 (c) and Zone

2 (b).

The remainder of this paper is organized as follows. Section 2 describes the study catchment, the design of the water presence

sensors and the type of analysis performed, exploiting the available empirical data. Section 3 presents the main results of the

study: the description of the time series of the electrical signals, the statistical analyses performed on the data, the reconstruction

of the observed active network dynamics and the analysis of the relationship between active length and discharge. In Section 4,

we discuss the main findings of this work, with specific reference to the research questions of this study. A set of conclusions100

then closes then the paper.

2 Materials and Methods

2.1 Study site

This study took place in an alpine creek located in North-Eastern Italy, the Rio Valfredda (Figure 1). In particular, the test

catchment comprises the northern part of the Rio Valfredda, which has a total contributing area of 2.6 km2 and is charac-105
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terized by an average annual rainfall of approximately 1500 mm, with most of the precipitation concentrated between April

and August, while during winter the catchment is usually covered by snow. Temperatures vary among seasons; in 2019, the

minimum was recorded in January (-11.9◦C) and the maximum in July (30◦C). The catchment area spans a wide range of

elevations (between 1900 and 3000 m a.s.l) and is characterized by heterogeneous morphological traits. On the upper part of

the catchment, deposits of gravel and rocky debris are predominant. These deposits are covered by thin grasslands and ensure110

a high soil permeability. Below 2100 m a.s.l. trees grow mostly along the streams on a sedimentary bedrock (Durighetto et al.,

2020). This heterogeneity of the landscape strongly influenced the observed hydrological dynamics and placed a constrain on

the experimental setup of the study.

While the average drainage density of our study catchment (Dd = 2.22 km−1) is in line with that of other sites where

similar analyses were conducted (Jensen et al., 2018; Senatore et al., 2021), the internal distribution of the channel network115

is uneven. The hydrographic network, here seen as the sum of permanent and temporary reaches, directly drains 65% of the

total contributing area (1.7km2 out of 2.6km2). The remaining 35% of the catchment, instead, drains into a number of pits

located in the central part of the catchment, where water is allowed to infiltrate in the subsurface without generating surface

runoff, owing to the presence of a fractured bedrock and a karst region. Most of the water that infiltrates in this area originates

from a couple of localized springs with a seasonally variable discharge that ranges from about 60 l/s in the late spring to 35120

l/s in the fall. These springs feed a perennial channel with a total length of approximately 1100 m, which constitutes the non-

dynamical fraction of the network. The presence of karst areas adds complexity to the hydrological processes responsible for

the spatial patterns of surface runoff, requiring additional efforts for the correct description of the observed network dynamics.

Nevertheless, it is interesting to study these kinds of catchment since karst formations are a quite widespread phenomena

typical of the south-eastern side of the Alps (Jurkovsek et al., 2016) and common also in the USA (USGS). These landscapes125

are shaped by the erosion of sedimentary rocks, such as limestone, dolomite and chalks, which are frequently observed in

the Northeast of Italy, as documented by the geologic map released by the Italian Institute for Environmental Protection and

Research (ISPRA).

For this research, experimental data were collected between the 4th of September and the end of October 2019, when a major

snowfall covered the whole landscape and all the sensors. The limited duration of the study period (2 months) is partly implied130

by the characteristics of the catchment, which is usually covered by snow from early December until the end of spring (June).

This per se constrains the maximum duration of the time window available to analyse river network dynamics in the upper

Valfredda catchment, as long the winter season freezes the system for 6 months and renews the underlying stream dynamics.

Though relatively short, the dataset included a wide range of climatic conditions and network configurations. In particular,

the rain regime observed during the study period is in line with that driving the longer term network dynamics in this site,135

as indicated by the distribution of the daily rainfall depths observed during Sep and Oct of 2019, which resembles the rain

regime observed in the long term (2010 – 2020) during the whole period within which the network is dynamical (from July 1 to

November 30). Therefore, despite the wettest months of the summer could not be included, owing to the time spent to deploy

the sensors in the the field after the snowmelt, the study period is reasonably representative of the type of network dynamics

experienced by the Valfredda Creek.140
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2.2 Water presence sensors

The dynamics of the active stream network during the study period (September and October 2019) were observed using 31

onset HOBO Pendant loggers (HOBO UA-002-64, Onset Computer Corp, Bourne, MA, USA, hereafter HOBO) suitably

modified following the methodology suggested by Chapin et al. (2014). The main changes introduced in this study consisted

in removing the light sensor and adding two long electrodes, which recorded a positive electrical signal when connected by145

the flowing water. The obtained ERelectrical resistance (ER) sensors were placed along the river networks to estimate flow

intermittency within different network nodes. The electrical conductivity signal recorded by the HOBO ranged from 0 to

330000 lux (corresponding to the maximum value recorded by the sensors when the two electrodes were fully immersed in

water) and the temporal sampling resolution was set to 5 minutes.

The river bed of the Valfredda Creek is highly heterogeneous and hydro-morphodynamical variations induced by changes in150

flow magnitude might cause the flowing water to dodge the sensors, thereby impairing the reliability of the recorded data. To

avoid cases in which water flow paths could bypass the sensors, particularly during low-flow conditions, a novel experimental

setup was identified. It allowed the monitoring of the hydrological state of the whole cross-section where the sensors were

placed. The two machine pin electrodes coming out of the sensors’ housing cap were connected with two stainless steel

wires, from 50 cm to 100 cm long, rolled up to a geotextile net from 50 cm to 100 cm long. The length of the geotextile155

and wires guaranteed that the entire cross-section of the channel was connected to the sensor avoiding interference due to

possible variations of the flow field. Rolling the cables on the network prevented them from moving when flooded, possibly

creating artificial short circuits or by-passes that might impair the reliability of the electrical signal recorded. The net was then

attached to another geotextile using plastic buttons to separate the electrodes from the ground by a few millimeters (and avoid

interference with the wet soil). When placed in field, HOBOs were secured to their networks with suitable plastic strips; silicon160

was used to protect all the sensors’ housing caps and prevent infiltration of water within the sensors.

The water presence sensors were installed mainly into two different regions of the test catchment, as shown in Figure 1. The

location of each sensor was chosen based on field surveys carried out prior to the installation of the instruments. Technical

difficulties and the time needed to reach each node of the network were carefully considered in the selection process. The

specific location of the sensors was also chosen taking into account the heterogeneous substrates of the catchment, so as to165

enable an accurate analysis of the sensors’ behaviour in different settings while granting an even distribution of the nodes’

persistency (see Section 2.3.1). Fifteen15 sensors were deployed along tributaries of the southeastern part of the basin (Zone

1), an area that has glacial morphogenesis and is characterized by moraine deposits shaped on mild slopes covered by pastures

(Figure 2a); therein, the river width ranges from 20 to 80 cm, and the sensors were fixed to the ground using pickets (Figure

2c). The location of each sensor was chosen based on field surveys carried out prior to the installation of the instruments. ER170

sensors were placed in sections characterized by heterogeneous persistencies so as to avoid redundancy in the data. This led

to a quite uneven spatial distribution of the sensors, with a mean inter-sensors distance of approximately 55 m. Thirteen13

sensors were placed in the northwestern part of the network (Zone 2), where the riverbed is on a steep canyon composed of

quartz porphyry rocks (Figure 2b). These rocks are small and unstable, and as they can move along the channel in response to
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(a) (b)

(c) (d)

Figure 2. Left: picture of Zone 1 (a) and a sensor on the grass (c). Right: picture of Zone 2 (b) and a sensor screwed on a rock (d).

rainfall events, thereby supporting the intermittent nature of hydrologic flows. In this region, the channel width ranges from175

20 cm to about 1 m and the sensors’ net were screwed on rock emergencies (Figure 2d). In Zone 2, the criteria used in the

selection of the HOBOs’ positions were the same as for Zone 1. However, in this case, a more even spatial distribution of the

ER sensors was obtained, with a smaller mean inter-sensors distance (30 m). The other 3 sensors were installed along three

disconnected branches of the network on the grassland between Zone 1 and 2. Data collected from the latter sensors were

used only for analysing the underlying network dynamics and not for the statistical analysis of Section 3.2 because they have180

experienced very few wet/dry transitions. Some of the tributaries of the Valfredda Creek were monitored only through visual

inspection, asbecause field surveys allowed a simple yet reliable characterization of the hydrological conditions experienced

by those reaches during the study period (as they were permanently wet even under extreme low flow conditions or they were

completely dry even during the most intense precipitation event of the entire period). The field surveys are described in the

following sections.185

7



2.3 Data analysis

2.3.1 Water presence data and flow persistency

In this study, ER data were collected between the 4th of September and the end of October 2019, before a major snowfall

occurred that covered the catchment area and all the instruments. The data collected by the HOBOs were analysed and two

hydrologically-relevant indexes were calculated from the available time series: the average intensity (AI) and the exceedance190

of the threshold (E). Average intensity is the mean of the electrical signal registered by each HOBO in the period of record.

Exceedance of the threshold is the probability that the electrical signal registered by a sensor is greater or equal than a chosen

threshold value, ideally separating the wet condition from the dry condition. Different thresholds were initially considered but

the final value (270000 lux) was chosen based on the intensity measured by the instruments placed in wet nodes during the field

surveys. We decided to infer the threshold value directly from field observation instead of relying on laboratory experiments195

(e.g., with a soil column), to obtainget a more reliable representation of the complexity of the natural environments typically

found in most headwater catchments of the Alpine region. The above hydrological indexes (AI and E) were calculated for

each ER sensor and subsequently correlated with the persistency of the corresponding nodes, which was estimated as detailed

below.

During the study period, several field surveys were conducted to check the reliability of the signal recorded by the ER200

sensors, download the data and monitor the status of the network nodes under different hydrological conditions. However,

these surveys were not homogeneous in space and systematic in time, thereby making impossible a reliable estimation of the

persistency of the network nodes impossible during the study period on a purely experimental basis. Therefore, we decided

to estimate the persistency of the nodes using a model that links the spatial configuration of the network to rainfall data,

as detailed in the study by Durighetto and Botter (2021). The main model assumptions and its performance in reproducing205

observed stream dynamics are detailed in the Appendix C. The model was calibrated and validated based on 24 complete

field surveys carried out for the whole Valfredda catchment from the summer of 2018 to the fall of 2020. During each survey,

more than 500 nodes were classified as wet or dry, based on the observed hydrologic conditions of the network (Appendix

A). In the light of the good performance of the model (Durighetto et al., 2020; Botter and Durighetto, 2020; Durighetto and

Botter, 2021), this was used to estimate the persistency of the nodes (here defined as the fraction of time during which a210

node was simulated as active in the reference period), exploiting information on the antecedent precipitation accumulated

over 5 and 35 days.Therefore, we decided to estimate the persistency of the nodes using a combination of field observations

carried out between 2018 and 2020 and some modeling. In particular, we used a model that links the spatial configuration

of the network to rainfall data, as detailed in Durighetto and Botter (2021) . The model was calibrated and validated based

on 24 complete field surveys carried out for the whole Valfredda catchment from the Summer of 2018 to the Fall of 2020.215

During each survey, more than 500 nodes were classified as wet or dry based on the observed hydrologic conditions of the

network (Appendix A). The main model assumptions and its good performance in reproducing observed stream dynamics in

the Valfredda are detailed in the Appendix C. The simulation of network expansion and contraction was then used to calculate

the persistency of the nodes in the study region. The latter was calculated as the fraction of time during which a node was
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simulated as active in the reference period (September and October of 2019). Previous studies have indicated that the model220

is able to accurately reproduce the observed spatial patterns of persistency in the study catchment under different hydrological

conditions (Durighetto et al., 2020; Botter and Durighetto, 2020).

2.3.2 Rainfall and discharge data

Discharge measurements were taken in a cross-section at the outlet of the study catchment where water flows permanently.

A pressure transducer allowed the measurement of the water stage with a temporal resolution of 5 minutes. Seven - point225

streamflow measurements were combined to stage data, to estimate the rating curve at the outlet of the catchment with discharge

ranging between 9 and 300 l/s and a coefficient of determination R2 = 0.99. Discharge data were collected with a three

dimensional flow tracker under different hydrologic conditions, so as to derive a reliable rating curve. Discharge time series

were then derived for the entire study period with a temporal resolution of 3 hours, so as to reduce the noise in the recorded

signal. The same method was applied to measure the constant discharge originated by the localized springs that feed the230

permanent fraction of the river network.

To visualize the hydroclimatic dynamics experienced by the study catchment during the focus period, we used rainfall

data gathered from a meteorological station, which was installed in 2018 within the basin in the context of the ERC-funded

"DyNET" project (Figure 1). The meteorological station is used to monitor precipitation, temperature, relative humidity, net

solar radiation and wind speed with a sub-hourly temporal resolution.235

2.3.3 Corrections applied to the ER data

A common problem affecting the data recorded by the water presence sensors of this study is that all the probes could not be all

deployed in the field at the same time. Moreover, several sensors didn’t work properly during their deployment. In particular,

two HOBOs placed on the grass (Zone 1) – where water flow was not observed permanently, as the channel activated only

during and after precipitation events – exhibited a tendency to silt, while others were found detached from their geotextile nets240

because of the presence of several horses grazing in the area. In Zone 2, debris flows, triggered by precipitation, prompted the

accumulation of wet sediments around the geotextile, altering the signal recorded by the electrodes of a probe placed along the

rock canyon. Thus, for both reasons, there were many missing data in the time series that had to be dealt with. In Appendix B,

we describe all the corrections that were applied to the data to take into account the lack of synchronicity of the available water

presence data and the technical problems encountered during the deployment.245

2.4 Spatial and temporal dynamics of the active network

A visual representation of spatial and temporal dynamics of the river network was obtained based on the intensity signal

recorded by the HOBOs, as detailed below. For each time of the surveyed period, the electrical signals recorded by each sensor

and its neighbours were interpolated in space, in order to define which part of the stretch connecting the nodes was wet or dry.
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The threshold value of the electrical signal used to determine the wet or dry status of the stretches was 270000 lux, as detailed250

above (§ 2.3.1). Probes were divided into three categories, depending on the electrical signal recorded:

– Active, when the value of intensity was greater than the threshold and the cross-section where the HOBO was placed was

identified as wet.

– Inactive, when the signal collected was lower than the threshold and the cross-section was identified as dry.

– Missing data, in case of no-data and zeros induced by malfunctioning of the sensorswhen the sensor didn’t provide255

reliable data (§ 2.2).

We identified a river stretch as a reach connecting two subsequent HOBOs. When two neighbouring sensors were both active,

inactive or missing data, the stretch in between was defined as active, inactive or missing data accordingly. In contrastInstead, if

two neighbouring HOBOs had data, but one of them was active and the other was inactive (or when a sensor with missing data

had two neighbouring HOBOs providing reliable data), the wet length in the stretch connecting those sensors was calculated260

using a linear interpolation of the electrical signal measured by the nearest probes. Whenever a stretch had both missing data

sensors at its end points and it was located between two concurrently active or concurrently inactive stretches, it was classified

as active or inactive accordingly. In constrastInstead, if a stretch with missing data was located between two stretches with

a different status (i.e., one active and one inactive), it was plotted as a stretch with missing data – as the data available did

not allow a proper identification of the status of the sensors and the location of the wet-dry transition. This method couldn’t265

be applied to stretches classified as missing data if they were located at the sources or in presence of confluences. In these

cases, the behaviour of the neighbouring stretches, experimental evidences and the observed spatial patterns of persistency

were considered in order to define the status of the stretch (active, inactive or missing data). Finally, a time-lapse visualization

of the stream network dynamics with a temporal resolution of 3 hours was obtained using a MATLAB code.

2.5 Active length vs. discharge power-law model270

Catchments can be seen as dynamical systems where the discharge at the outlet and the active length co-evolve in time, in

response to the underlying climatic forcing. In this study, we seek to use high frequency ER data to evaluate the robustness of

an empirical model often proposed in the literature, linking the wet length and the corresponding discharge using a power-law

relationship (Godsey and Kirchner, 2014; Jensen et al., 2017; Lapides et al., 2021):

L= aQb (1)275

Operationally, the analysis was performed as follows. Logarithms of synchronous observations of L and Q were plotted in

a Cartesian plane and a linear regression was applied to the data. The equation of the interpolating line corresponded to the

linearization of the power law model:

log(L) = log(a) + b log(Q) (2)
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The parameters log(a) (vertical intercept) and b (slope) were first calculated for the whole set of available L and Q data with a280

temporal resolution of 3 hours, and the goodness of fit of the linear regression to the data was evaluated through the coefficient

of determination, R2.

The presence of permanent springs feeding perennial channels (2.1) was properly taken into account when analysing river

network dynamics. To this aim, we decomposed the total discharge Q and the total active length L into two components: a

dynamical part (subscript d) and a constant/permanent part (subscript p). Specifically, the observed discharge was seen as the285

sum of a constant contributionQp = 35 l/s deriving from the localized springs and a dynamical contributionQd(t) =Q(t)−Qp

deriving from the catchment drainage in response to rain events. Accordingly, the total active length (L) was divided into a

constant contribution Lp = 1125 m (the length of the permanent channels fed by the groundwater springs) and a dynamical

contribution Ld(t) = L(t)−Lp. The power-law model was then applied to link the total discharge to the total active length (Q

vs. L), and the dynamical discharge to the dynamical active length (Qd vs. Ld). We compared the slope (b) and the coefficient290

of determination (R2) of the power-law relationship in the two settings, so as to isolate the potential effect of the permanent

springs and the karst areas on the underlying L vs Q relationship.

Afterwards, to understand how the parameters of Equation (1) and the goodness of fit of the linear regression depend on

the temporal resolution of the available data, we performed a statistical resampling of the collected data, as detailed below.

The resampling of the data was an attempt to reproduce a fictitious sampling campaign with sporadic measurements of active295

length and discharge, assuming that a standard power law was applied to the sampled data, as typically done in all previous

studies where the relationship between Q and L was studied (Godsey and Kirchner, 2014; Jensen et al., 2017; Lovill et al.,

2018; Prancevic and Kirchner, 2019). First, we subdivided the study period into non-overlapping sub-periods with a constant

duration equal to T days and we extracted a single random date and time within each sub-period. Then, the values of Q and L

observed during the extracted set of dates and times (one pair for each period with length T ) were selected from the available300

time-series of discharge and active length. The linear regression given by Equation (2) was applied to the resampled Q and

L data, in order to calculate the corresponding values of R2 and b. This resampling was assumed to be representative of a

sequence of surveys performed on a random date and time, with a mean interarrival equal to T days. The random extraction

was repeated 50 times and the mean value and the standard deviation of R2 and b (〈R2〉 and 〈b〉, respectively), were calculated.

All the above operations were repeated using different values of T : 1, 2, 4 and 7 days. The mean values of b and R2 (and the305

corresponding standard deviations) were analysed and plotted as a function of the mean sampling interarrival, T . The procedure

was applied to the total values of Q and L, and to their dynamical components (Qd and Ld).

3 Results

3.1 Time series of water presence and electrical resistance

In most cases, the time series of the electrical signals recorded by the sensors placed in the field, I(t), show a pronounced310

temporal variability within the whole period of record. The analysis of the time series of the electrical signals recorded by the
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Figure 3. Examples of time series recorded by some of the sensors for two weeks between October 03 and October 18. Location of these

sensors along the tributaries of Zone 1 (a) and 2 (b). The dashed line represent the threshold of 270000 lux (c).The dashed line represent the

threshold of 270000 lux (c) and location of these sensors along the tributaries of Zone 1 (a) and 2 (b).

HOBOs elucidates the different hydrological behaviour of the two study zones, andbut also emphasizes the heterogeneity of

the signal recorded by different sensors within each zone.

The HOBOs belonging to Zone 1, which were all placed on a grassy substrate, exhibited quite heterogeneous behaviours.

Some sensors, such as S35 (Figure 3), systematically recorded intensity values close to the maximum intensity, asbecause they315

were located along streams where water flowed permanently during the entire study period. Other sensors, instead, were placed

in more dynamical streams and displayed an electrical signal that fluctuated between the maximum intensity (during rainfall

events) and 100000 – 150000 lux (during the driest periods: S10). Other sensors, mainly located in the higher part of Zone 1,

recorded no intensity at all during most of the time, with intensity peaks over the threshold that were observed only during

rainfall events, when discontinuous ephemeral ponds were generated in correspondence toof the stream network (S05).320

Unlike the HOBOs of Zone 1, none of those placed in Zone 2 (Figure 3) was consistently wet during the whole study period.

The probes activated during rainfall events and dried out afterwards with heterogeneous velocities, depending on their position:

sensors located in the central part of the creek persisted being wet for longer (see e.g. S24), while those placed close to the

channel heads turned off very quickly after each rain event (S22). Other sensors, while they recorded an increase in the electrical

signal during precipitation events, remained consistently below the 270000 lux threshold for the entire study period (S40).325

3.2 Statistical analysis

A statistical analysis was carried out to assess the consistency between the hydrologically relevant indexes (namely, the average

intensity and the exceedance of the threshold) calculated for each sensor and the persistency of the corresponding nodes, as

derived from field surveys (§ 2.3.1). Figure 4 shows the scatter plots of persistency vs. AI and persistency vs. E for 28 sensors
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Figure 4. Scatter plots of persistency vs average intensity (a) and persistency vs exceedance of the threshold (b) of the sensors of Zone 1

(green points) and Zone 2 (orange points).

of zonesZone 1 and 2. All the available data were represented in the same two plots in order to emphasize differences and330

similarities among the HOBOs located in different zones.

We hypothesize that an higher persistency of the nodes is reflected by an higher average intensity of the current recorded by

the sensors and an enhanced probability that the electrical signal exceeds the selected saturation threshold. These hypotheses

seem to be supported by the high coefficients of determination thatwhich were calculated from the data (R2 always above

0.84). However, Figure 4 also shows that the morphological characteristics of the studied zones (altitude and heterogeneous335

land cover) can influence the electrical signal registered by the instruments. Data collected from sensors of Zone 1 are not

homogeneous despite beingthey are located close-by in the field. The HOBOs of Zone 1 are clustered in two separate groups

(Figure 4): one cluster includes the sensors located downstream that are mostly wet (E > 0.7 andAI > 2 105 lux) and the other

includes only the HOBOs located upstream that turn on only during rainfall events (E ≤ 0.2 and AI < 0.8 105 lux). Instead,

the tributary along which sensors of Zone 2 are located completely dries down, as indicated by the low values of the maximum340

persistencies observed in this area. The data points in thesethis cases are evenly distributed along the regression line, indicating

a more homogeneous internal distribution of the node persistencies. It is also interesting to note that the two zones display very

heterogeneous regression slopes between mean intensity and persistency. In contrastInstead, the slopes of the regression lines

between exceedance of the threshold and persistency are comparatively more similar in the two zones. This suggests that E

might be a more robust indicator of the underlying hydrological dynamics experienced by the nodes in the network, regardless345

of the specific position of the sensors in the catchment.
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3.3 Stream network dynamics

Data collected by the sensors deployed along the watercourse provide information regardingabout the high frequency spatial

and temporal dynamics of the stream network. The full video of the observed river network dynamics is shown in the SI,

while the main text presents a sequence of snapshots taken from the video that represent the temporal evolution of the spatial350

configuration of active channels in the study catchment (Figure 5). Figure 5a represents the channel network during the most

intense rainfall event of the period studied, on the 8th of September, when all of the sensors of Zone 1 (left) were wet (blue

dots). Not all the sensors of Zone 2 (right) had already been installed at that time. This circumstance explains the reason why

some stretches are represented as no data (white dots) in that region. Also in Zone 2, on September 8, most of the network

streams were wet, with the exception of two river segments (shown in orange) that remained dry during the entire study period.355

After the rainfall event that was observed on September 8, 2019, the network kept drying out for several weeks, and then

wetted up again, owing to a rain event that was observed on the 25th of September (shown in Figure 5b). This precipitation

event was less intense than the previous one and it was characterized by a lower antecedent precipitation. Consequently, some

headwater branches did not get wet in both zones.

The snapshot in Figure 5c shows the network on October 5, three days after an isolated precipitation event that took place in360

between a relatively dry period. On that date, all the HOBOs of Zone 2 were dry, while only the downstream sensors of Zone

1 (those closer to the permanent part of the network) became wet. Figure 5c emphasizes, once again, the dynamical nature of

the channel network in the study catchment, and the different hydrological behaviour of the two focus regions identified in this

study.

3.4 Active length – discharge relationship365

The available hydrologic data and the data derived from the water presence sensors were also used to study the relationship

between discharge and active length in the Valfredda catchment.

Figure 6 shows The temporal evolution of rainfall (h), total discharge and total active length during the entire study period

is shown in Figure 6. During the first precipitation event, the most intense of the period, observed variations of Q and L were

both significant. After September 11, instead, the intensity of the events was smaller and discharge variations were barely370

noticeable less important. However, ER sensors indicate that small rainfall volumes were able to activate several channels for

some days, leading to noticeable changes in the total wet length L. Overall, the figure indicates that the dynamics of L were

mainly driven by precipitation, the temporal pattern of which differs from the corresponding streamflow dynamics because of

the non linearity of rainfall-runoff mechanisms.

Figure 7 shows the joint changes in active length and catchment discharge observed during the five periods shaded in green in375

Figure 6. During the most consistent precipitation event of the period (September 8), the peaks of active length and streamflow

were reached at the same time (Figure 7a). However, during the early recession ofQ, the active length remained stable and close

to its peak value. Afterwards, the discharge showed a non-monotonic behaviour with a small second peak, while L decreased

consistentlyfrom 2070m (September 9) to 444m (September 23).
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Figure 5. Map of the active stream network of Zone 1 (left) and Zone 2 (right) on the 8th of September (a), on the 25th of September (b) and

on the 5th of October 2019 (c). Active stretches and sensors are blue, inactive are orange and no-data elements are white.
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Figure 6. Top: temporal evolution of rainfall during the study period. Centre: temporal evolution of catchment discharge, Q(t), during the

study period. Bottom: temporal dynamics of active length, L(t), during the study period. Areas in green represent the periods during which

active length and discharge are plotted in Figure 7.

During the precipitation events that took place between the 25th and the 30th of September (Figure 7b), and between the380

02nd and the 03rd of October (Figure 7c), the maximum active length was reached a few hours after each rain pulse – though in

the absence of significant Q variations. Afterwards, the wet length first experienced a rapid decrease (again without significant

changes in the discharge) and then it remained almost steady while the discharge kept decreasing. A rainfall event preceded

the event shown in Figure 7b and it was responsible to increase the catchment moisture conditions at the beginning ofprior

to the considered event. Therefore, after the end of the rainfall input, the active length remained stable for some time before385

it started declining. The trend observed during the event occurred between October 02 and 03 (Figure 7c) is similar to that

shown in Figure 7b, but in this case, the soil was drier before the event and the precipitation was less intense, thereby inducing

a quicker decrease of the active length as compared to what observed in the recession between 09/25 and 09/30. In both cases,

however, consistent variations of the wet length (∆L ' 1km) corresponded to comparatively small variations of the discharge

(∆Q ' 50l/s).390

The rain events that took place between the 14th and the 18th of October (Figure 7d) and between the 20th and the 24th of

October (Figure 7e), instead, exhibited a different trend: the maximum wet length preceded the maximum discharge that was

reached only when the active length was almost back to its initial value. In both these cases, the intensity of the rainfall events

was small and the variations of Q were barely noticeable (∆Q≤ 5l/s).
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Figure 8 summarizes the joint changes of wet length and discharge during the whole study period, for both the total values395

of L and Q (Figure 8 a) and for their dynamical contributions Ld and Qd (Figure 8 b). As expected, in both cases, the pattern

is similar. The variations of Q caused by the first precipitation event (blue dots) are larger than those observed in the remainder

of the period. Instead, active length dynamics are observed during the entire study period. The available data of Q and L were

fitted with a power law relationship, of the type shown in Eq. (1) (see Figure 8, where the joint changes of L and Q are shown

in a log-log plot).400

While we found that log(L) and log(Q) are linearly correlated (p−value below 10−5 at the 0.01 significance level), we also

observed a pronounced scatter of the points around the regression line, which is due to intra- and inter-event changes in the

responsiveness ofQ and L to the underlying rainfall forcing.mainly due to the effect of small rain events. This scatter underpins

the relatively low value of the coefficient of determination (R2 ' 0.5R2 = 0.48) of the power-law model. interpolation obtained

in this case There is no noticeable difference in the scattering of the points in the two plots of Figure 8, as the observed pattern405

is mainly driven by the dynamical components of L and Q. In both cases, the exponent of the power-law model b is close to

0.2, which is relatively low but still falls in the literature range (Godsey and Kirchner, 2014; Prancevic and Kirchner, 2019).

it is interesting to note that the value of b found in Figure 8 seems to be weakly impacted by the temporal resolution of the

data used for the regression, as shown by the plot in Figure 9a.

Figure 9 investigates the impact of the resampling on the apparent values of b and R2. The dependence of the scaling410

exponent b and the coefficient of determination of the power-law model R2 on the sampling frequency T was similar in the

two cases that refer to the total discharge and active length (top) and their dynamical components (bottom). The variations of

〈b〉 obtained for different values of the mean resampling interarrival were negligible in both cases, (Figure 9a and c), while

the differences among different realizations systematically increased with T . Nevertheless, the range of variability of b is not

huge (+/− 30% for T = 7d). The goodness of fit of the model shows a similar trend (Figure 9b and d), but in this case, the415

standard deviation across different realizations is much larger (about 50% of the mean for T = 7d). Consequently, the fit of the

power-law model is highly dependent on the specific sampling dates for T = 7d.

In particular, the maximum variation of 〈b〉 obtained for different values of the mean resampling interarrival T is around 1%.

As expected, instead, the scattering of b among different realizations increases with T , owing to the different response of the

L and Q signals to small precipitation events. The goodness of fit shows a similar trend (Figure 9b), though the mean value of420

R2 systematically increases with T from 〈R2〉= 0.485 for T = 1 day to 〈R2〉= 0.519 and 〈R2〉= 0.522 for T = 4 and T = 7

days, respectively.

4 Discussion

Our customizedpersonalized version of water presence ER sensors was successfully deployed in the field in two different

regions of the Valfredda catchment, which are characterized by heterogeneous substrates and different types of river bed. The425

sensors proved to be reliable in recording the hydrologic conditions of the whole cross section where the sensors were placed,

especially during low-flow conditions, when the observed stages were very low and the flow field was spatially heterogeneous
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Figure 7. Plots of discharge and active length during individual events across the study period, as indicated in Figure 5.
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Figure 8. (a) Plot of total discharge (Q) and total active length (L). (b) Plot of dynamical discharge (Qd) and active length (Ld) for the entire

period studied.

and irregular within many cross sections. Nevertheless, our study indicates that water presence sensors require particular

caution during their deployment in the field and the interpretation of the field data. The major issues that were faced during

the deployment changed based on the location where the HOBOs were placed: in the portion of the network dominated by430

debris (Zone 2), ER sensors were prone to be covered by sediments or flushed away by the flow field; conversely, in other

regions of the network, where the substrate was made by a thin organic soil covered by grass (Zone 1), the main problems were

represented by grazing of animals and the formation of local pools with standing water during the drying of the network that

could not be distinguished from flowing stream in the ER time series. In addition, in both regions, there were issues related

to the fragility of the steel cables and/or the sealing system used to protect them from water infiltration during floods. Thus,435

intensive field surveys were necessary to check the functioning of the sensors and repair possible damages during the study

period.

The high sampling frequency set for each instrument (5 minutes) and the large number of sensors used (more than 30 sensors

for a maximum network length close to 2 km) allowed us to reconstruct maps of the active stream network with a high spatio-

temporal resolution. The low cost of the HOBOs and their long-lasting batteries support their potential tofor monitor active440

network dynamics in a wide range of contexts. However, while planning the use of these sensors, it should be taken into account

that some probes can be damaged or lost during the deployment and data acquisition, creating frequent gaps in the available

time series.

Our data suggest that the two regions of the study catchments are strongly heterogeneous, not only in terms of land cover but

also in many features of the underlying network dynamics. The lower part of Zone 1 was permanently wet, with high values445

of E and persistencies close to 1 for most of the sensors. In the upper part of the same zone, instead, the network branches
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Figure 9. Plot of resampled b (a) and R2 (b) mean values and standard deviations as a function of the mean frequency of the resampling T

calculated for total active length (LT ) and discharge (QT ) and plot of resampled b (c) and R2 (d) for dynamical discharge (Qd) and active

length (Ld).

were more dynamical and they usually becamegot wet in response to precipitation events. Along the main channel of Zone 2,

instead, water was able to infiltrate and exfiltrate rapidly, creating frequent stream disconnections, promoted by the unstable

morphology of the river bed. In this case, mean current intensities and node persistencies were consistently smaller than those

observed in Zone 1.450

In both regions, we found a good correlation between the persistency of the nodes and two statistical features of the electrical

signal recorded by the ER sensors (namely, the mean intensity and the exceedance of a suitably selected saturation threshold).

This suggests that the statistics of the ER signals recorded in the field could be robust indicators of the hydrological status of

different network nodes. In particular, ER time series could be used to extrapolate information on the spatial patterns of node

persistency, which could be, in turn, used to define the hierarchy according to which the nodes in the network are activated in455

response to rain events and then deactivated during the subsequent drying (Botter and Durighetto, 2020).
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In line with the results presented by Jensen et al. (2019) Our data indicate the presence of someimportant hysteresis in the

active length vs. discharge relationship at fine temporal resolution, especially during low flow conditions (Figure 8). Network

length was found to be more sensitive than discharge to small precipitation inputs: while most rain events induced visible

changes in the active channel length, the catchment streamflow was sensitive only to the rain events lasting for several consec-460

utive days (6–9/09, 13–18/10, 20–24/10) and to intense storms (more than 20–30 mm in 9–12 hours). Within a single intense

rain event, the hysteresis in the L vs. Q relationship depended on the fact that the active length increased faster than Q in

the early stages of the event, while decreased much slower than Q in the recession. In contrast, the hysteresis across different

events was generated by shifts in the sensitivity of Q and L to different types of rain events. In particular, when rain events

were moderate, the channel network activated, but the amount of water conveyed to the outlet was limited, owing to network465

disconnections and limited flow velocities; conversely, when rain events were more intense, the same active length contributed

a much larger discharge to the outlet (e.g., 11/09: L= 2900 mQ= 338 l/s; 26/09: L= 2900 mQ= 143 l/s ). We recognize

the value of fitting discharge and active length data with simple power-law functions, to analyse how stream network dynam-

ics are constrained by flow regimes in river basins. However, the low value of the regression coefficient emerging from our

analysis (R2 ' 0.5R2 < 0.5, see Figure 8) indicates that in some cases, the use of a bijective L−Q function to infer active470

length changes in catchments where discharge time series are available might underestimatelead to significant underestimation

of the actual variations of the flowing channel network. In our case study, the standard deviation of the wet length, as derived

from the sensors’ data, is 360 m, while the standard deviation of L predicted by the power-law model based on the observed

variability of the discharges is only 240224 m (about 3540 % lower). This underestimation is induced by the poor ability of the

power law model to capture the observed network dynamics produced by small precipitation inputs.475

It is worth noting that the presence of the localized springs did not affect the performance of the power-low model, indicating

that the presence of karst areas might not be the cause of the observed hysteresis in the L vs. Q relation. Nevertheless – while

some scatter in the L vs. Q plots has been already observed in the literature (Jensen et al., 2019; Senatore et al., 2021) –

caution should be placed in generalizing our results. In fact, the Valfredda catchment is an high relief catchment with several

temporary and permanent disconnections in the channel network and a marked spatial variability of geologic substrate and480

stream persistency. All these factors might possibly contribute to enhance the non-linearity of the hydrological response of

the Valfredda, thereby preventing the emergence of a clear one-to-one relationship between total active length and catchment

discharge in this case.

Interestingly, The results of the resampling procedure performed in this study (Figure 9) indicate that the mean slope of the

regression exponent, 〈b〉, is not significantly impacted by the specific sampling strategy adopted. This was observed not only485

when the total values ofQ and Lwere considered, but also when the analysis was restricted to their dynamical components (Qd

and Ld) only. , thereby suggesting that the estimation of the parameter b of the power-law model could be performed exploiting

data collected with a relatively coarse temporal resolution (e.g through weekly surveys). The standard deviation of b instead

increases with T , but even at weekly timescales, the observed inter-sample variations of b are not huge, suggesting a certain

stability of the exponent of the power-law model. The moderate variations of b observed across different samples with various490

mean sample frequencies were not expected, in the light of the pronounced scattering of the points in the Q vs. L points of
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Figure 8. We attributed this behaviour to the fact that the scattering in the L vs. Q relationship is particularly enhanced during

individual events. Nevertheless, when a set of (L,Q) points belonging to different events is considered (which corresponds to

select a set of points with different colours in Figure 8), they are interpolated by a power-law model with an exponent that does

not change dramatically if the specific dates of the sampled points are modified.495

Our analysis also suggests that when the frequency of the data is low, the hysteresis in the L vs.Q relationship are on average

similar to those observed at higher temporal resolutions as shown by the pattern of 〈R2〉 vs. T in Figure 9b and 9d. , leading

to an increase of the mean goodness of fit for larger sampling inter-arrivals. Nevertheless, when the mean interarrival between

the observations increases, the variability across the samples is more pronounced and the chances that the experimental (L,Q)

pairs don’t exhibit a clear power-law trend also increases, as shown by the growth of the standard deviation of R2 with T . This500

suggests that the goodness of fit of the power-law model can be strongly dependent on the specific timing of the field surveys

in which active length and discharge are evaluated, making the observed pattern of 〈R2〉 poorly informative.

5 Conclusion

In this work, we have tested the use of ER sensors for the monitoring of active network dynamics in a high-relief 2.6km2

catchment of the Italian Alps during the fall of 2019. To this aim, we have utilized a customizedpersonalized version of505

the HOBO sensors previously proposed in the literature, which was modified to be suited for a deployment under different

substrates and is deemed to be more accurate under unstable hydrodynamic conditions and during low-flow conditions. The

following conclusions are worth emphasizing:

– ER sensors provided precious information about high frequency space-time network dynamics in the study catchment

during the fall of 2019; in particular, collected ER data were used to produce a video and a sequence of maps representing510

the dynamics of the active network with a sub-daily temporal resolution;

– The mean intensity of the ER signal, and the exceedance of a suitably selected intensity threshold were found to be

highly correlated with the persistency of the network nodes. This suggests that ER sensors signal provides statistically

meaningful information on the hydrologic status of different nodes of the river network;

– The successful application of ER sensors under the heterogeneous environmental conditions found in the Valfredda515

catchment suggests the good potential and the flexibility of the tool for river network mapping. Likewise, the study

highlighted the major shortcomings of this type of technology and the dependence of these shortcomings on the type

of substrate: in steep rocky channels, the main problem is the sensor flushing during floods and the accumulation of

sediments; in grassy regions, the major problems relate to water ponding and grazing of animals that might remove the

sensors during the deployment. For the above reasons, we propose that the use of ER sensors for river network mapping520

needs to be quite intensively supervised;

– The high-frequency monitoring of flow rates and active stream lengths performed in this study allowed an in-depth

analysis of the relationship between catchment discharge (Q) and active length (L) over a broad range of timescales.
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Our data highlighted the presence of important hysteresis in the high-frequency L−Q relationship, mainly due to the

different responsiveness of the catchment streamflow and the active length to small precipitation inputs. The high-525

frequency monitoring of flow rates and active stream lengths performed in this study allowed an in-depth analysis of the

relationship between catchment discharge (Q) and active length (L). Out data indicated the presence of some hysteresis in

the L−Q relation, both within individual events and across different events. The hysteresis observed in the Valfredda was

attributed to the larger responsiveness of the active length to small rain events and to non-synchronous increase/decrease

of L and Q within individual events;530

– The mean value of the exponent of the power law relationship between catchment discharge and total active length was

found to be almost independent on the frequency of the observational data relatively stable in case of changes of the

underlying sampling frequency, which instead had a larger impact on the goodness of fit of the power-law model. When

the frequency of the data is lower, the scattering in the L−Q plane is observed values of R2 are on average, larger but

they are highly sensitive to dependent on the specific times during which L and Q observations are taken.535

It is fair to stress that a longer dataset could further enhance the robustness of our results, as new events could be included in

the analysis. This, however, would require significant efforts, especially in the light of the challenges imposed by the specifics

of the site (e.g., the heterogeneous substrate, snow dynamics, the high frequency of floods and presence of grazing animals that

might interfere with the sensors). Furthermore, we believe that more extensive field campaigns would not significantly modify

the main conclusions of this study, as the features outlined in the paper emerged systematically from the data collected during540

a sequence of events, which were few in number but characterized by heterogeneous hydroclimatic features.

Data availability. Data can be found on the online repository, https://doi.org/10.25430/researchdata.cab.unipd.it.00000437

Video supplement. Two videos of the spatio-temporal dynamics of the river network of Zone 1 and Zone 2 can be found on the online

repository, https://doi.org/10.25430/researchdata.cab.unipd.it.00000437

Appendix A: Flow persistency545

A conventional criterion was identified in order to classify as wet or dry the nodes as wet or dry along the intermittent tributaries

of the Valfredda Creek during surveys in the field: if the streamflow had a width equal to or greater than 10 cm, the node was

considered as wet (otherwise the node was identified as dry). This lays at the basis of all the calculations of active network

lengths and the persistencies of the nodes, as detailed in AppendixSection C. The analysis of the persistency of the nodes along

the tributaries helped in the selection of the positions of the HOBOs. This position was identified so as to guarantee a reliable550

representation of the underlying stream network dynamics (Figure A1). In doing that, a one-to-one association between the ER

sensors and specific network nodes was established.
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Figure A1. Nodes and corresponding sensors of the tributaries of Zone 1 (a) and Zone 2 (b).

Appendix B: Corrections applied to the data

To account for missing data, weights (η) that relate the probability of exceedance of the threshold of all the active sensors of

a zone to the exceedance of the threshold of a sensor during a period of time containing missing data, were calculated (Tables555

B1, B2).

The ratio between the probability of exceeding the threshold of a sensor during the period tA, when it is not active, and tB,

when it is functioning, is assumed to be equal to the ratio between the mean probability of exceeding the threshold of all the

other active sensors of the zone during tA (PtA ) and tB (PtB ) (η).

η =
P tA

P tB
(B1)560

During rainfall events some of the sensors were buried by sediments, but they kept measuring 330000 lux as if they were

completely wet even when there wasn’t flowing water on the channel anymore. Their time series were reconstructed based on

those of the closest sensors not affected by sediment dynamics.

In some parts of the tributary of Zone 2 the channel bedrocks were particularly fragile and unstable, and this prompted the

movement of debris along the channel and their deposition between a sensor and its geotextile network. In the upper part of565

Zone 2, sensor S39 was subject to frequent sediments depositions. During one of the surveys, it was found covered by debris
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Sensor corrected Missing data Sensors used for

the corrections

Data used η

S29 Sep 6th - Sep 11th S25 Sep 11th - Sep 16th 1

S25 Sep 16th - Oct 18th S29 Sep 11th - Sep 16th 0.433

S21 S38 S39 S40 Sep 4th - Sep 11th S24 S26 S30 S31 Sep 11th - Oct 18th 2.238

S22 S23 S28 Sep 4th - Sep 16th S24 S26 S30 S31 Sep 16th - Oct 18th 1.871

Table B1. Corrections applied to some of the HOBOs of Zone 2.

Figure B1. Sensor S39 covered by sediments.

(Figure B1), and the luminous intensity that it registered was 330000 lux, as if it was completely wet even though there was no

flowing water at the time. After cleaning the sensor (on the 7th of October), the measured value of electrical current dropped

drastically and, as shown by the time series (Figure B2), the intensity recorded by the sensor remained low until the following

rainfall event (October 9th).570

The temporal dynamics of the electrical signal in the periods from the 26th of September to the 7th of October and from the

17th to the 18th of October were reconstructed based on the time series of sensor S38, not affected by sediment dynamics and

close to S39. The recession rate with which the signal of S38 declines after a rainfall event was estimated, and that same rate

was applied to S39 (Figure B2).

To correct the asynchronicity between the electrical signals recorded by the sensors and the persistencies of the corre-575

sponding nodes, the model developed by Durighetto et al. (2020); Botter and Durighetto (2020); Durighetto and Botter (2021)

(Durighetto et al., 2020; Botter and Durighetto, 2020; Durighetto and Botter, 2021) was applied. It links the spatial configu-

ration of the network to weather data, and here it was applied to estimate the persistency of the nodes between the 4th of

September and the 24th of October 2019, knowing rainfall heights of that same period as well as persistencies and precipitation

data collected between July 2018 and January 2019 used to develop the model (Figure C1).580
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Sensor corrected Missing data Sensors used for

the corrections

Data used η

S04 S13 Sep 4th - Oct 3rd S02 S07 S09 S11 Oct 3rd - Oct 24th 0.922

S05 Sep 15th - Oct 3rd S02 S07 S09 S11

S14

Sep 4th - Sep 15th 0.667

S08 Sep 15th - Oct 3rd S02 S07 S09 S11

S14

Sep 4th - Sep 15th 0.666

S10 Sep 16th - Oct 3rd S02 S07 S09 S11

S14

Sep 4th - Sep 16th 0.663

S14 Oct 17th - Oct 24th S02 S07 S09 S11

S35

Sep 11th - Oct 17th 1.097

S15 Oct 8th - Oct 16th S02 S07 S09 S11

S33 S35

Sep 11th - Oct 8th 1.129

S32 S33 S34 S35 Sep 4th - Sep 11th S02 S07 S09 S11

S14 S15

Sep 11th - Sep 26th 1.300

S32 Oct 16th - Oct 24th S02 S07 S09 S11

S35

Sep 11th - Oct 16th 1.099

S34 Sep 26th - Oct 18th S02 S07 S09 S11

S35

Sep 11th - Sep 26th 0.981

Table B2. Corrections applied to some of the HOBOs of Zone 1.

Appendix C: Empirical model for local persistency

The local persistency of each node during the study period (4th September to 31th October, 2019) was estimated by means of

the field surveys carried out in 2018 and 2020 and the models described in Durighetto et al. (2020); Botter and Durighetto

(2020); Durighetto and Botter (2021). The procedure is composed of three steps. In the first step, the active length is estimated

from antecedent precipitation via the equation:585

L(t) = k0 + k5h5(t) + k35h35(t) (C1)

where L(t) is the active length, h5(t) and h35(t) are the antecedent daily precipitation accumulated over 5 and 35 days,

respectively, and k0, k5, k35 are calibrated regression coefficients. The daily precipitation was measured by a weather station

of the Veneto Region Environmental Protection Agency (ARPAV), located 4.5 km far from the catchment centroid. The coef-

ficients were calibrated on the 9 field surveys carried out during 2018 (mean absolute error = 1.1%) and validated with the 13590

field surveys of 2020 (MAE = 3%). The simulated active length and the corresponding field surveys are shown in Figure C1

(for more information, the reader is referred to Durighetto et al. (2020)).
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Figure B2. Top: hyetograph of the period during which the corrections to S39 were appliedstudy period. Center: time series of S38. Bottom:

time series of S39 before the corrections (light blue) and after the corrections (orange).

The second step consists in simulating the spatial patterns of the active network, starting from the active length. This was

accomplished exploiting the hierarchical model of network activation introduced by Botter and Durighetto (2020). The hierar-

chical model states that, during network expansion, nodes are activated in a given order (from the most persistent to the least595

persistent nodes in the network) and deactivated in the reverse order during network contraction. Botter and Durighetto (2020)

proved the robustness of this model in the Valfredda catchment (average F1 score equal to 0.98). The specific order of node

activation (and thus the hierarchy of the nodes) was identified from the field surveys. Then, for each day of the study period,

the active nodes were determined by combining the hierarchical model and the empirical model for the active length.

In the third and last step, the local persistency of each node was calculated as the fraction of time for which that node was600

active during the study period.
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Figure C1. Timeseries of daily precipitation h, and the corresponding active length L estimated by the empirical model in Durighetto et al.

(2020). Blue dots show the 28 field surveys carried out on the catchment. The blue shade identifies periods with snow cover, while the green

shade highlights the period during which the ER sensors were employed.
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