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Abstract. Improved skill of long-range weather forecasts has motivated an increasing effort towards developing seasonal 

hydrological forecasting systems across Europe. Among other purposes, such forecasting systems are expected to support 10 

better water management decisions. In this paper we evaluate the potential use of a real-time optimisation system (RTOS) 

informed by seasonal forecasts in a water supply system in the UK. For this purpose, we simulate the performances of the 

RTOS fed by ECMWF seasonal forecasting systems (SEAS5) over the past ten years, and we compare them to a benchmark 

operation that mimics the common practices for reservoir operation in the UK. We also attempt to link the improvement of 

system performances, i.e. the forecast value, to the forecast skill (measured by the mean error and the Continuous Ranked 15 

Probability Skill Score) as well as to the bias correction of the meteorological forcing, the decision maker priorities, 

hydrological conditions and the forecast ensemble size. We find that in particular the decision maker priorities and the 

hydrological conditions exert a strong influence on the forecast skill-value relationship. For the (realistic) scenario where the 

decision-maker prioritises the water resource availability over energy cost reductions, we identify clear operational benefits 

from using seasonal forecasts, provided that forecast uncertainty is explicitly considered by optimising against an ensemble of 20 

25 equiprobable forecasts. These operational benefits are also observed when the ensemble size is reduced up to a certain limit. 

However, when comparing the use of ECMWF-SEAS5 products to ensemble streamflow predictions (ESP), which are more 

easily derived from historical weather data, we find that ESP remains a hard-to-beat reference not only in terms of skill but 

also in terms of value. 

1. Introduction 25 

In a water-stressed world, where water demand and climate variability (Stocker et al., 2014) are increasing, it is essential to 

improve the efficiency of existing water infrastructure along with, or possibly in place of, developing new assets (Gleick, 

2003). In the current information age there is a great opportunity to do this by improving the ways in which we use hydrological 

data and simulation models (the ‘information infrastructure’) to inform operational decisions (Gleick et al., 2013, Boucher et 

al., 2012). 30 
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Hydro-meteorological forecasting systems are a prominent example of information infrastructure that could be used to improve 

the efficiency of water infrastructure operation. The usefulness of hydrological forecasts has been demonstrated in several 

applications, particularly to enhance reservoir operations for flood management (Voisin et al., 2011, Wang et al., 2012, Ficchì 

et al., 2016) and hydropower production (Faber and Stedinger, 2001, Maurer and Lettenmaier, 2004, Alemu et al., 2010, Fan 

et al., 2016). In these types of systems, we usually find a strong relationship between the forecast skill (i.e. the forecast ability 35 

to anticipate future hydrological conditions) and the forecast value (i.e. the improvement in system performance obtained by 

using forecasts to inform operational decisions). However, this relationship becomes weaker for water supply systems, in 

which the storage buffering effect of surface and groundwater reservoirs may reduce the importance of the forecast skill 

(Anghileri et al., 2016, Turner et al., 2017) particularly when the reservoir capacity is large (Maurer and Lettenmaier, 2004, 

Turner et al., 2017). Moreover, in water supply systems, decisions are made by considering the hydrological conditions over 40 

lead time of several weeks or even months. Forecast products with such lead times, i.e. ‘seasonal’ forecasts, are typically less 

skilful compared to the short-range forecasts used for flood control or hydropower production applications. 

When using seasonal hydrological scenarios or forecasts to assist water system operations, three main approaches are available: 

worst case scenario, ensemble streamflow prediction (ESP) and dynamical streamflow prediction (DSP). In the worst-case 

scenario approach, operational decisions are made by simulating their effects against a repeat of the worst hydrological 45 

droughts on records. Worst-case forecasts clearly have no particular skill, but their use has the advantage of providing a lower 

bound of system performance and reflect the risk-adverse attitude of most water management practice. This approach is 

commonly applied by water companies in the UK and it is reflected in the water resource management planning guidelines of 

the UK Environment Agency (EA, 2017). 

In the ensemble streamflow prediction (ESP) approach, a hydrological forecasts ensemble is produced by forcing a 50 

hydrological model using the current initial hydrological conditions and historical weather data over the period of interest 

(Day, 1985). Operational decisions are then evaluated against the ensemble. The skill of the ESP ensemble is mainly due to 

the updating of the initial conditions. Since ESP forecasts are based on the range of past observations, they can have limited 

skill under non-stationary climate and where initial conditions do not dominate the seasonal hydrological response (Arnal et 

al., 2018). Nevertheless, the ESP approach is popular among operational agencies thanks to its simplicity, low cost, efficiency 55 

and its intuitively appealing nature (Bazile et al., 2017). Some previous studies assessed the potential of seasonal ESP to 

improve the operation of supply-hydropower systems. For example, Alemu et al. (2010) reported achieving an average 

economic benefit of 7%  with respect to the benchmark operation policy, whereas Anghileri et al. (2016) reported no significant 

improvements (possibly because they only used the ESP mean, instead of the full ensemble). 

Last, the dynamical streamflow prediction (DSP) approach uses numerical weather forecasts produced by a dynamic climate 60 

model to feed the hydrological model (instead of historical weather data). The output is also an ensemble of hydrological 

forecasts, whose skill comes from both the updated initial condition and the predictive ability of the numerical weather 

forecasts. The latter is due to global climate teleconnections such as the El Niño Southern Oscillation (ENSO) and the North 

Atlantic Oscillation (NAO). Therefore, DSP forecasts are generally more skilful in areas where climate teleconnections exert 
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a strong influence, such as tropical areas, and particularly in the first month ahead (Block and Rajagopalan, 2007). In areas 65 

where climate teleconnections have a weaker influence, DSP can have lower skill than ESP, particularly beyond the first lead 

month (Arnal et al., 2018, Greuell et al., 2019). Nevertheless, recent advances in the prediction of climate teleconnections in 

Europe, such as the NAO (Wang et al., 2017, Scaife et al., 2014, Svensson et al., 2015), means that seasonal forecasts skill is 

likely to continue increasing in the coming years. Post-processing techniques such as bias correction can also potentially 

improve seasonal streamflow forecast skill (Crochemore et al., 2016). Studies assessing the benefits of bias correction for 70 

seasonal hydrological forecasting are still rare in the literature. While bias correction is often recommended or even required 

for impact assessments to improve forecast skills (Zalachori et al., 2012, Schepen et al., 2014, Ratri et al., 2019, Jabbari and 

Bae, 2020) studies on long-term hydrological projections (Ehret et al., 2012, Hagemann et al., 2011) highlighted a lack of 

clarity on whether bias correction should be applied or not. In recent years, meteorological centres such as the European Centre 

for Medium-Range Weather Forecast (ECMWF) and the UK Met Office, have made important efforts to provide skilful 75 

seasonal forecasts, both meteorological (Hemri et al., 2014, MacLachlan et al., 2015) and hydrological (Bell et al., 2017, Arnal 

et al., 2018) in the UK and Europe, and encouraged their application for water resource management. To our knowledge, 

however, pilot applications demonstrating the value of such seasonal forecast products to improve operational decisions are 

mainly lacking and have only very recently started to appear (Giuliani et al., 2020). 

While the skill of DSP is likely to keep increasing in the next years, it may still remain low at lead times relevant for the 80 

operation of water supply systems. Nevertheless, a number of studies have demonstrated that other factors, which are not 

necessarily captured by forecast skill scores, may also be important to improve the forecast value. These include accounting 

explicitly for the forecast uncertainty in the system operation optimization (Yao and Georgakakos, 2001, Boucher et al., 2012, 

Fan et al., 2016), using less rigid operation approaches (Yao and Georgakakos, 2001, Brown et al., 2015, Georgakakos and 

Graham, 2008) and making optimal operational decisions during severe droughts (Turner et al., 2017, Giuliani et al., 2020). 85 

Additionally, the forecast skill itself can be defined in different ways, and it is likely that different characteristics of forecast 

errors (sign, amount, timing, etc.) affect the forecast value in different ways. Widely used skill scores for hydrological forecast 

ensembles are the rank histogram (Anderson, 1996), the relative operating characteristic (Mason, 1982) and the ranked 

probability score (Epstein, 1969). The ranked probability score is widely used by meteorological agencies since it provides a 

measure of both the bias and the spread of the ensemble into a single factor, while it can also be decomposed into different 90 

sub-factors in order to look at the different attributes of the ensemble forecast (Pappenberger et al., 2015, Arnal et al., 2018). 

However, whether these skill score definitions are relevant for the specific purpose of water resources management, or whether 

other definitions would be better proxy of the forecast value, remains an open question. 

In this paper, we aim at contributing to the ongoing discussion on the value of seasonal weather forecasts in decision making 

(Bruno Soares et al., 2018) and at assessing the value of DSP for improving water system operation by application to a real-95 

world reservoir system, and in doing so we build on the growing effort to improve seasonal hydrometeorological forecasting 

systems and make them suitable for operational use in the UK (Bell et al., 2017, Prudhomme et al., 2017). Through this 

application we aim to answer the three following questions: 1) can the efficiency of a UK real-world reservoir supply system 
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be improved by using DSP forecasts?, 2) does accounting explicitly for forecast uncertainty improve forecast value (for the 

same skill)? and 3) what other factors influence the forecast skill-value relationship? 100 

For this purpose, we will simulate a real-time optimization system informed by seasonal weather forecasts over a historical 

period for which both observational and forecast datasets are available, and we will compare it to a worst-case scenario 

approach that mimics current system operation. As for the seasonal forecast products, we will assess both ESP and DSP derived 

from the ECMWF seasonal forecast products (Tim et al., 2018). We will also compare the forecast skill and value before and 

after applying bias correction, and for different ensemble sizes. System performances will be measured in terms of water 105 

availability and energy costs, and we will investigate five different scenarios for prioritising these two objectives depending 

on the decision-maker preferences. Finally, we will discuss opportunities and barriers to bring such approach into practice.  

Our results are meant to provide water managers with an evaluation of the potential of using seasonal forecasts in the UK and 

to give forecasts providers indications on directions for future developments that may make their products more valuable for 

water management. 110 

2. Methodology 

2.1. Real-time optimization system 

An overview of the real-time optimization system (RTOS) informed by seasonal weather forecasts is given in Figure 1 (left 

part). It consists of three main stages that are repeated each time an operational decision must be made. These three stages are:  

1.a Forecast generation. We use a hydrological model forced by seasonal weather forecasts to generate the seasonal 115 

hydrological forecasts. The initial conditions are determined by forcing the same model by (recent) historical weather data for 

a warm-up period. Another model determines the future water demand during the forecast horizon. Although not tested in this 

study, in principle such a demand model could also be forced by seasonal weather forecasts. 

1.b Optimization. This stage uses (i) a reservoir system model to simulate the reservoir storages in response to given inflows 

and operational decisions, (ii) a set of operation objective functions to evaluate the performance of the system, for instance, to 120 

maximize the resource availability or to minimize the operation costs, and (iii) a multi-objective optimizer to determine the 

optimal operational decisions. When a problem has multiple objectives, optimisation does not provide a single optimal solution 

(i.e. a single sequence of operational decisions over the forecast horizon) but rather it provides a set of (Pareto) optimal 

solutions, each realising a different trade-off between the conflicting objectives (for a definition of Pareto optimality see e.g. 

(Deb et al., 2002)).  125 

1.c Selection of one trade-off solution. In this stage, we represent the performance of the optimal trade-off solutions in what 

we call a “pre-evaluation Pareto front”. The terms “pre-evaluation” highlights that these are the anticipated performances 

according to our hydrometeorological forecasts, not the actual performances achieved when the decisions are implemented 

(which are unknown at this stage). By inspecting the pre-evaluation Pareto front, the operator will select one Pareto-optimal 

solution according to their priorities, i.e. the relative importance they give to each operation objective. In a simulation 130 

experiment, we can mimic the operator choice by setting some rule to choose one point on the Pareto front (and apply it 

consistently at each decision timestep of the simulation period).  
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2.2. Evaluation 

When the RTOS is implemented in practice, the selected operational decision is applied to the real system and the RTOS used 

again, with updated system conditions, when a new decision needs to be made or new weather forecasts become available. If 135 

however we want to evaluate the performance of RTOS in a simulation experiment (for instance to demonstrate the value of 

using RTOS to reservoir operators) we need to combine it with the evaluation system depicted in the right part of Figure 1. 

Here, the selected operational decision coming out of the RTOS is applied to the reservoir system model, instead of the real 

system. The reservoir model is now forced by hydrological inputs observed in the (historical) simulation period, instead of the 

seasonal forecasts, which enables us to estimate the actual flows and next-step storage that would have occurred if the RTOS 140 

was used at the time. This simulated next-step storage can then be used as the initial storage volume for running the RTOS at 

the following timestep. Once the process has been repeated for the entire period of study, we can provide an overall evaluation 

of the hydrological forecast skill and the performance of the RTOS, i.e. the forecast value. This evaluation (Figure 1) consists 

of two stages: 

2.a Forecast skill evaluation. The forecast skill is evaluated based on the differences between hydrological forecasts and 145 

observed reservoir inflows over the simulation period. For this purpose, we can calculate the absolute differences between the 

observed and the forecasted inflows or we can use forecast skill scores such as the continuous ranked probability skill score 

(CRPSS). 

2.b Forecast value evaluation. The forecast value is presented as the improvement of the system performance obtained by using 

the RTOS over the simulation period, with respect to the performance under a simulated benchmark operation. Notice that, 150 

because the RTOS deals with multi objectives and hence provides a set of Pareto optimal solutions, in principle we could run 

a different simulation experiment for each point of the pre-evaluation Pareto front, i.e. for each possible definition of the 

operational priorities.  However, for the sake of simplicity, we will simulate a smaller number of relevant and well 

differentiated operational priorities. The simulated performances of these solutions are visualised in a “post-evaluation” Pareto 

front. In this Pareto front diagram, the origin of the coordinates represents the performance of the benchmark operation, and 155 

the performances of any other solution are rescaled with respect to the benchmark performance. Therefore, a positive value 

along one axis represents an improvement in that operation objective with respect to the benchmark, whereas a negative value 

represents a deterioration. When values are positive on both axes, the simulated RTOS solution dominates (in a Pareto sense) 

the benchmark; the further away from the origin, the more the forecast has proven valuable for decision-making. If instead one 

value is positive and the other is negative then we would conclude that the forecast value is neither positive or negative, because 160 

the improvement of one objective was achieved at the expenses of the other.  

2.3. Case study 

2.3.1. Description of the reservoir system 

The reservoir system used in this case study is a two-reservoir system in the South West of the UK (schematised in Figure 2). 

The two reservoirs are moderately sized with storage capacities in the order of 20,000,000 m3 (S1) and 5,000,000 m3 (S2) (the 165 

average of UK reservoirs is 1,377,000 m3 (EA, 2017)). The gravity releases from reservoir S1 (uS1,R) feed into river R, and 



6 

 

thus contribute to support downstream abstraction during low flows periods. Pumped releases from S1 (uS1,D) and gravity 

releases from reservoir S2 (uS2,D) are used to supply the demand node D. A key operational aspect of the system is the 

possibility of pumping water back from river R into reservoir S1. Pumped inflows (uR,S1) may be operated in the winter months 

(from 1st November till 1st April) to supplement natural inflows, provided sufficient discharge is available in the river (R). This 170 

facility provides additional drought resilience by allowing the operator to increase reservoir storage in winter to help ensure 

that the demand in the following summer can be met. As the pump energy consumption is costly, there is an important trade-

off between the operating cost of pump storage and drought resilience. 

The pumped storage operation is constrained by a rule curve, and has operated in eleven years since 1995. The rule curve 

defines the storage level at which pumps are triggered. Each point on the curve is derived based on the amount of pumping 175 

that would be required to fill the reservoir by the end of the pump storage period (1st April), under the worst historical inflows 

scenario. The pumping trigger is therefore risk-averse, which means there is a reasonable chance of pumping too early on 

during the refill period and increasing the likelihood of reservoir spills if spring rainfall is abundant. This may result in 

unnecessary expenditure on pumping. Informing pump operation by using seasonal forecasts of future natural inflows (IS1 and 

IS2) may thus help to reduce the volume of water pumped whilst achieving the same reservoir storage at the end of the refilling 180 

period. 

2.3.2. Forecast generation 

In this study we generated dynamical streamflow predictions (DSP) by forcing a lumped hydrological model, the HBV model 

(Bergström and Singh, 1995), with the seasonal ECMWF SEAS5 weather hindcasts (Tim et al., 2018, Johnson et al., 2019). 

The ECMWF SEAS5 hindcast dataset consists of an ensemble of 25 members starting on the 1st day of every month and 185 

providing daily temperature and precipitation with a lead time of 7 months.  The spatial resolution is 36 km which compared 

to the catchment sizes (28.8 km2 for S1 and 18.2 km2 for S2) makes it necessary to downscale the ECMWF hindcasts. Given 

the lack of clarity in the potential benefits of bias correction (Ehret et al., 2012), we will provide results of using both non-

corrected and bias corrected forecasts. The dataset of weather hindcast is available from 1981, whereas reservoir data are 

available for the period 2005-2016. Hence, we used the period 2005-2016 for the RTOS evaluation and the earlier data from 190 

1981 for bias correction of the meteorological forcing. While limited, this period captures a variety of hydrological conditions, 

including dry winters in 2005-06, 2010-2011 and 2011-12, which are close to the driest period on records (1975-1976) (see 

more details in Figure 7 of the Supplementary Material). This is important because, under drier conditions, the system 

performance is more likely to depend on the forecast skill and the benefits of RTOS may become more apparent (Turner et al., 

2017). Daily inflows were converted to weekly inflows for consistency with the weekly time step applied in the reservoir 195 

system model. 

A linear scaling approach (or “monthly mean correction”) was applied for bias correction of precipitation and temperature 

forecasts. This approach is simple and often provides similar results in terms of bias removal as more sophisticated approaches 

such as the quantile or distribution mapping (Crochemore et al., 2016). A correction factor is calculated as the ratio (for 

precipitation) or the difference (for temperature) between the average daily observed value and the forecasted value (ensemble 200 
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mean), for a given month and year. The correction factor is then applied as a multiplicative factor (precipitation) or as an 

additive factor (temperature) to correct the raw daily forecasts. A different factor is calculated and applied for each month and 

each year of the evaluation period (2005-2016). For example, for November 2005 we obtain the precipitation correction factor 

as the ratio between the mean observed rainfall in November from 1981 to 2004 (i.e. the average of 24 values) and the mean 

forecasted rainfall for those months (i.e. the average of 24x25 values, as we have 25 ensemble members). For November 2006, 205 

we re-calculate the correction factor by also including the observations and forecasts of November 2005, hence taking averages 

over 25 values; and so forth. The rationale of this approach is to best mimic what would happen in real-time, when the operator 

would likely access all the available past data and hindcasts for the bias correction. 

As anticipated in the Introduction, the ESP is an ensemble of equiprobable weekly streamflow forecasts generated by the 

hydrological model (HBV in our case) forced by meteorological inputs (precipitation and temperature) observed in the past. 210 

For consistency with the bias correction approach used for the ECMWF SEAS5 hindcasts, we produce the ESP using 

meteorological observations from 1981 until the year before the simulated decision timestep. This leads to producing an 

ensemble of increasing size (from 24 to 35 members) but roughly similar to the ECMWF ensemble size (25 members). 

2.3.3. Optimization: Reservoir system model, objective functions and optimiser 

The reservoir system dynamics is simulated by a mass balance model implemented in Python. The simulation model is linked 215 

to an optimiser to determine the optimal scheduling of pumping (uR,S1) and release (uS1,D and uS2,D) decisions. For the optimiser 

we use the NSGA-II multi-objective evolutionary algorithm (Deb et al., 2002) implemented in the open-source Python package 

Platypus (Hadka, 2018). We set two operation objectives for the optimiser: to minimize the overall pumping energy cost and 

to maximize the water resource availability at the end of the pump storage period. The pumping cost is calculated as the sum 

of the weekly energy costs associated to pumped inflows and pumped releases (uR,S1 and uS1,D) over the optimisation period. 220 

The resource availability is the mean storage volume in S1 and in S2 at the end of the optimisation period (1st April). When 

optimisation is run against a forecast ensemble, the two objective functions are evaluated against each ensemble member and 

the average is taken as final objective function value. The gravity releases from S1 (uS1,R) are not considered as decision 

variables and they are set to the observed values during the period of study. This choice is unlikely to have important 

implications on the optimization results because uS1,R on average represents only 15% of the total releases from S1 (uS1,D + 225 

uS1,R). Also, we assume that future water demands are perfectly known in advance, and set them to the sum of the observed 

releases from S1 (uS1,D) and S2 (uS2,D) for the period of study. This simplification is reasonable for our case study as the water 

demand is fairly stable and predictable in winter, and it enables us to focus on the relationship between skill and value of the 

seasonal hydrological forecasts while assuming no error in demand forecasts. More details about the reservoir simulation 

model and the optimisation problem are given in the Supplementary Material. 230 

2.3.4. Selection of the trade-off solution 

We use five different rules for the selection of the trade-off solution from the pre-evaluation Pareto front (see Figure 1), and 

apply them consistently at each decision timestep of the simulation period. The five rules correspond to five different scenarios 

of operational priorities. They are: 1) resource availability only (rao), which assumes that the operator consistently selects the 
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extreme solution that delivers the largest improvement in resource availability; 2) resource availability prioritised (rap) selects 235 

the solution delivering the 75% percentile in resource availability increase; 3) balanced (bal) selects the solution delivering the 

median improvement in resource availability; 4) pumping savings prioritised (psp) selects the solution delivering the 75% 

percentile in energy cost reductions; and 5) pumping savings only (pso), which selects the best solution for energy saving. 

2.3.5. Forecast skill evaluation 

We use two metrics, a skill score and the mean error, to evaluate the quality of the hydrological forecasts over our simulation 240 

period (from November to April).  

A skill score evaluates the performance of a given forecasting system with respect to the performance of a reference forecasting 

system. As a measure of performance, we use the continuous ranked probability score (CRPS) (Brown, 1974) (Hersbach, 

2000). The CRPS is defined as the distance between the cumulative distribution function of the probabilistic forecast and the 

empirical distribution of the corresponding observation. At each forecasting step, the CRPS is thus calculated as: 245 

𝐶𝑅𝑃𝑆(𝑝(𝑥), 𝐼𝑂𝑏𝑠) =  ∫(𝑝(𝑥) − 𝐻(𝑥 < 𝐼𝑂𝑏𝑠))2𝑑𝑥 

where p(x) represents the distribution of the forecast; IObs is the observed inflow [m3]; and H is the empirical distribution of 

the observation, i.e. the step function which equals 0 when x < IObs and 1 when x > IObs. The lower the CRPS, the better the 

performance of the forecast. In this study weekly forecast and observation data were used to compute individual CRPS values. 

The skill score is then defined as: 250 

𝐶𝑅𝑃𝑆𝑆 = 1 − 
𝐶𝑅𝑃𝑆𝑆𝑦𝑠

𝐶𝑅𝑃𝑆𝑅𝑒𝑓
 

When the skill score is higher (lower) than zero, the forecasting system is more (less) skilful than the reference. When it is 

equal to zero, the system and the reference have equivalent skill. Following the recommendation by Harrigan et al. (2018) we 

used ensemble streamflow predictions (ESP) as a “tough to beat” reference, which is more likely to demonstrate the “real skill” 

of the hydrological forecasting system (Pappenberger et al., 2015) based on dynamic weather forecasts.  255 

The mean error measures the difference between the forecasted and the observed inflows (at monthly scale). The mean error 

is negative when the forecasts tend to underestimate the observations and positive when the forecasts overestimate the 

observations. The mean error for a given forecasting step and lead time T [months] is: 

𝑚𝑒𝑎𝑛 𝑒𝑟𝑟𝑜𝑟 =
1

𝑀
∑ (

1

𝑇
∑(𝐼𝑡,𝑚

𝑆𝑦𝑠
− 𝐼𝑡

𝑂𝑏𝑠)

𝑇

𝑡=0

)

𝑀

𝑚=0

 

where I is the inflow [m3], t is the timestep [month] and M the total number of members (m) of the ensemble.  260 

2.3.6. Forecast value evaluation and definition of the benchmark operation 

To evaluate the value of the hydrological forecasts, we compared the simulated performance of the RTOS informed by these 

forecasts with the simulated performance of a benchmark operation. The benchmark mimics common practices in reservoir 

operation in the UK, whereby operational decisions are made against a worst-case scenario – a repeat of the worst hydrological 

drought on records (1975-76). This comparison enables us to show the potential benefits of using seasonal forecast with respect 265 
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to the current approach. We simulate the benchmark operation using similar steps as in the RTOS represented in Figure 1, but 

with three main variations.  First, instead of seasonal weather forecasts, we use the historical weather data recorded in Nov 

1975-Apr 1976 (the worst drought on records). Second, the optimiser determines the optimal scheduling of reservoir releases 

(uS1,D and uS2,D) but not that of pumped inflows (uR,S1). Instead, these are determined by the rule curve applied in the current 

operation procedures. Specifically, if at the start of the week the storage level in S1 is below the storage volume defined by 270 

the rule curve for that calendar day, the operation triggers the pumping system during that week (we assume that the triggered 

pumped inflow is equal to the maximum pipe capacity).  Third, the optimiser only aims at minimising pumping costs, whereas 

the resource availability objective is turned into a constraint, i.e.  the mean storage volume of the two reservoirs must be 

maximum by the end of the pump storage period (1st April) and no trading-off with pumping costs reduction is allowed. 

3. Results 275 

3.1 Forecast skills 

First, we analyse the skill of DSP hydrological forecasts. Figure 3a shows the average CRPSS at different lead times before 

(red) and after (blue) bias correction of the meteorological forecasts. We compute the average CRPSS for a given lead time as 

the average of the CRPSS obtained for each forecast used for the simulation of the reservoir system in that time frame. For 

instance, the forecast for a 3-month lead time, since the simulation time frame is in this case 1 Jan to 1 Apr, we average the 280 

CRPSS values obtained for the 1 Jan-1 Apr, 1 Feb-1 Apr and 1 Mar-1 Apr forecasts.  

Before bias correction, the average skill score is positive, i.e. the forecast is more skilful than the benchmark (ESP), only at 1-

month or 2-month lead times (solid red line). CRPSS is higher than average in the three driest winters, i.e. 2005-2006, 2010-

2011, 2011-2012 (dashed lines). If we compare DSP to DSP-corr (red and blue solid lines), we see that bias correction 

deteriorates the average skill scores for shorter lead times (1 and 2 months) while it improves them for longer ones (3,4 and 5 285 

months) but the value is still negative, i.e. the forecast is less skilful than the benchmark (ESP). In the driest years (dashed 

lines) bias correction deteriorates the skill score for most lead times.  

We compute the average mean error for a given lead time as for CRPSS. The computed mean error values (Figure 3b) indicate 

that DSP systematically underestimates the inflow observations but less so in the three driest winters. After bias correction 

(DSP-corr), this systematic underestimation turns into a systematic overestimation. Also, the average mean error gets lower 290 

for longer lead times, though not as much in the driest years. 

In summary, we can conclude that bias correction does not seem to produce an improvement in the forecast skill for our 

observation period. On the other hand, what we find in our case study is a clear signal of bias correction turning negative mean 

errors (inflow underestimation) into positive errors (overestimation). So, while the magnitude of errors stays relatively similar, 

the sign of those errors changes. We will go back to this point later on, when analysing the skill-value relationship.   295 

 

3.2 Forecast value 

The forecast value is presented here as the simulated system performance improvement, i.e. increase in resource availability 

and in pumping cost savings, with respect to the benchmark operation.  



10 

 

3.2.1 Effect of operational priority scenario and forecast product on the forecast value 300 

We start by analysing the average forecast value over the simulation period 2005-2016 (Figure 4) for the three seasonal forecast 

products (DSP, DSP-corr and ESP) and the perfect forecast, under five operational policy scenarios (rao: resource availability 

only; rap: resource availability prioritised;  bal: balanced; psp: pumping savings prioritised; and pso: pumping savings only).  

Firstly, we notice in Figure 4 that the monthly pumping energy cost savings vary widely with the operational priority. The 

range of variation depends on the forecast type, going from £20,000 to £48,000 for the perfect forecast and from -£77,000 to 305 

£48,000 for DSP, DSP-corr and ESP.  For all forecast products, the improvement in resource availability shows lower 

variability, with an improvement of less than +2% (of the mean storage volume in S1 and in S2 at the end of the optimisation 

period) for rao, and a deterioration of -2% for pso. While this seems to suggest a lower sensitivity of the resource availability 

objective, variations of few percent points in storage volume may still be important in critically dry years. 

As for the forecast value, we find that the perfect forecast brings value (i.e. a simultaneous improvement of both objectives) 310 

in the two scenarios that prioritize the increase in resource availability (rao and rap), DSP brings no value in any scenarios, 

DSP-corr has positive value in the rap and bal scenario, and ESP in the bal only. In other words, real-time optimisation based 

on seasonal forecasts can outperform the benchmark operation, but whether this happens depends on both the forecast product 

being used and the operational priority. 

An interesting observation in Figure 4 is that the distance in performance between using perfect forecasts and real forecasts 315 

(DSP, DSP-corr, ESP) is very small under scenarios that prioritise energy savings (bottom-right quadrant) and much larger 

under scenarios prioritising resource availability (top quadrants). This indicates a stronger skill-value relationship under the 

latter scenarios, i.e. improvements in the forecast skill are more likely to produce improvements in the forecast value if resource 

availability is the priority. 

Last, if we compare DSP with DSP-corr we see that the effect of bias correcting the meteorological forcing is mainly a 320 

systematic shift to the right along the horizontal axis, i.e. an improvement in energy cost savings at almost equivalent resource 

availability. Thanks to this shift, in the scenario that prioritises resource availability (rap), DSP-corr outperforms ESP. In fact, 

using DSP-corr is win-win with respect to the benchmark (i.e. the rap performance falls in the top-right quadrant in Figure 4) 

while using ESP is not, as it improves the resource availability at the expenses of pumping energy savings (i.e. producing 

negative savings). 325 

 

3.2.2 Effect of the forecast ensemble size on the forecast value 

We now analyse the effect that different characterisations of the forecast uncertainty have on the DPS-corr forecast value. We 

start by the extreme case when uncertainty is not considered at all in the real-time optimisation, i.e. when we take the mean 

value of the DSP-corr forecast ensemble and use it to drive a deterministic optimisation. The results are reported in Figure 5, 330 

which shows that the solution space shrinks to the bottom-right quadrant and, no matter the decision maker priority, the 

deterministic forecast has no value because energy savings are only achieved at the expenses of reducing the resource 

availability.  
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We also consider intermediate cases where optimisation explicitly considers the forecast uncertainty (i.e. it is based on the 

average value of the objective functions across a forecast ensemble) but the size of the ensemble varies between 5 and 25 335 

members (the original ensemble size). For clarity of illustration, we focus on the resource availability prioritised (rap) scenario 

only. We choose this scenario because it seems to best reflect the current preferences of the system managers, whose priority 

is to maintain the resource availability while reducing pumping costs as a secondary objective. Moreover, the previous analysis 

(Figure 4) has shown that the optimised rap has a larger window of opportunity for improving performance with respect to the 

benchmark and could potentially improve both operation objectives if the forecast skill was perfect. 340 

For each chosen ensemble size, we randomly choose 10 replicates of that same size from the original ensemble, then we run a 

simulation experiment using each of these replicates, and finally average their performance. Results are again shown in Figure 

5. For a range of 10 to 20 ensemble members, the forecast value remains relatively close to the value obtained by considering 

the whole ensemble (25 members). However, if only 5 members are considered, the resource availability is definitely lower 

and cost savings higher, so that the trade-off that is actually achieved is different from the one that was pursued (i.e. to prioritise 345 

resource availability). Notice that the extreme case of using 1 member, i.e. the deterministic forecast case (green cross in Figure 

5), further exacerbates this effect of ‘achieving the wrong trade-off’ as resource availability is even lower than in the 

benchmark. 

3.2.3 Year-by-year analysis of the forecast value 
 350 
Last, we investigate the temporal distribution of the forecast skill and value (i.e. increased resource availability and energy 

cost savings) along the simulation period and compare it to the hydrological conditions observed in each year (Figure 6). The 

“hydrological conditions” is the sum of the initial storage value and the total inflows during the optimisation period, hence 

enabling us to distinguish dry and wet years. Again, for the sake of simplicity we focus on the simulation results in the most 

relevant priority scenario of resource availability priority (rap). First, we observe that two specific years play the most 355 

important role in improving the system performance with respect to the benchmark: 2010-11 for pumping cost savings (Figure 

6e) and 2011-12 for resource availability (Figure 6d). These years correspond to the driest conditions in the period of study 

(see Figure 6a , and the Supplementary Material for further analysis of the inflow data) but not to the highest forecast skills 

either quantified with CRPSS or mean error (Figure 6b and c). In general, the temporal distribution of the average yearly 

forecast skill does not show any correspondence with the yearly forecast value. When comparing DSP-corr with DSP (blue 360 

and grey bars), we observe that they perform similarly in terms of resource availability but DSP-corr performs better for energy 

savings. This difference was observed already when looking at average performances over the simulation period (Figure 4) 

and can be related to the change in sign of forecasting errors induced by the bias correction of the meteorological forcing 

(Figure 3b). In fact, without bias correction, reservoir inflows tend to be underestimated, which leads the RTOS to pump more 

frequently and often unnecessarily (e.g. in 2005-06, 2006-07, 2007-08, etc.). With bias correction, instead, inflows tend to be 365 

overestimated, and the RTOS uses pumping less frequently. Interestingly, the reduction in pumping still does not prevent to 

improve the resource availability with respect to the benchmark. This is achieved by the RTOS through a better allocation of 

pump and release volumes over the optimisation period. When comparing DSP-corr with ESP, we find that the largest 
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improvements are gained in the same years by both products, i.e. in the driest ones. As already emerged from the analysis of 

average performances (Figure 4), we see that ESP achieves slightly better resource availability than DSP-corr but with less 370 

pumping cost savings. ESP in particular seems to produce ‘unnecessary’ pumping costs in 2006-07, 2011-12 and 2013-14, 

where DSP-corr achieves a similar resource availability (Figure 6d) at almost no cost (Figure 6e). It must be noted that for the 

ESP approach, these three specific years, 2006-07, 2011-12 and 2013-14. play the most important role in decreasing the 

pumping energy cost savings with respect to the benchmark. 

4. Discussion 375 

Our study provides some insights on the complex relationship between forecast skill and its value for decision-making. 

Although these findings may be dependent on the case study and time period that was available for the analysis, they still 

enable us to draw some more general lessons that could be useful also beyond the specific case investigated here. 

First, we found that the use of bias correction, and in particular linear scaling of the meteorological forcing, to improve the 

skill and value of DSP forecast is less straightforward than possibly expected. Our results show that on average bias correction 380 

does not improve the DSP forecast skill (as measured by CRPSS and mean error) and can even deteriorate it in dry years 

(Figure 3). This is because in our system DSP forecasts systematically underestimate inflows (before bias correction), which 

means their skill is relatively higher in exceptionally dry years and is deteriorated by bias correction. To our knowledge, no 

previous study reported such difference in skill for the ECMWF SEAS5 forecasts in dry years in the UK, hence we are not 

able to say whether our result applies to other systems in the region. However, the result points at a possible intrinsic 385 

contradiction in the very idea of bias correcting based on climatology. In this study, the main reason for the bias correction to 

fail in improving the forecast skills is that the DSP forecast before bias correction was already performing relatively well in 

terms of skills in the three particularly dry winters (Figure 3) and worse in the rest, which are less dry and hence closer to the 

average climate conditions. After bias correction we worsened the forecast skills of these three exceptionally dry winters, but 

we improved the skills in the rest. In this case the bias correction would have performed better if these three dry years were 390 

not considered, i.e. under less exceptional climate conditions the bias correction would have been more effective. More 

generally, by pushing forecasts to be more alike climatology, one may reduce the ‘good signal’ that may be present in the 

original forecast in years that will indeed be significantly drier (or wetter) than climatology. As exceptional conditions are 

likely the ones when water managers can extract more value from forecasts, the argument that bias correction ensures average 

performance at least equivalent to climatology or ESP (e.g. Crochemore et al. (2016)) may not be very relevant here. We would 395 

conclude that more studies are needed to investigate the benefits of bias correction when seasonal hydrological forecasts are 

specifically used to inform water resource management. 

While we could not find an obvious and significant improvement of forecast skill after bias correction, we found a clear 

increase in forecast value (Figure 4). RTOS based on bias-corrected DSP considerably reduces pumping costs with respect to 

the original DSP, while ensuring similar resource availability. A consequence of this is that decision maker priorities rap 400 

(resource availability prioritised) and bal (balanced) dominate (in a Pareto sense) the benchmark. We explained this reduction 
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in pumping costs by the change in the sign of forecasting errors induced by bias correction – from a systematic underestimation 

of inflows to a systematic overestimation. While this change is again case specific, a general implication is that not all forecast 

errors have the same impact on the forecast value, and thus not all skill scores may be equally useful and relevant for water 

resource managers. For example, in our case a score that is able to differentiate between overestimation and underestimation 405 

errors, such as the mean error, seems more adequate than a score such as CRPSS, which is insensitive to the error sign. This 

said, our results overall suggest that inferring the forecast value from its skill may be misleading, given the weak relationship 

between the two (at least as long as we use skill scores that are not specifically tailored to water resources management). 

Running simulation experiments of the system operation, as done in this study, can shed more light on the value of different 

forecast products. 410 

While we found a weak relationship between forecast skill and value, we found that forecast value is more strongly linked to 

hydrological conditions (Figure 6). As expected, a forecast-based RTOS system is particularly useful in dry years, where we 

find most of the gains with respect to the benchmark operation (Figure 6). This is consistent with previous studies for water 

supply system, e.g. Turner et al., 2017. In our case study, RTOS not only improve resource availability but also reduce pumping 

costs because, in the dryer years, storage levels are more likely to cross the rule curve and trigger pumping in the benchmark 415 

operation. 

In light of the pre-processing costs of seasonal weather forecasts, it is interesting to discuss whether their use is justified with 

respect to a possibly simpler-to-use product such as ESP. While weather forecast centres are increasingly reducing the pre-

processing costs by facilitating access to their seasonal weather forecast datasets, bias correction still needs a considerable 

level of expertise. This is not only because the necessary tools are currently not provided but also because we first need the 420 

knowledge to decide whether applying bias correction is appropriate for the specific case study. Further, once deciding that it 

is appropriate, we then need to select and understand the most adequate bias-correction method. In this study, we found ESP 

to be a ‘hard-to-beat’ reference not only in terms of skill (as previously found by others, e.g. (Harrigan et al., 2018)) but also 

in terms of forecast value (Figure 4). In fact, the use of DSP-corr delivers higher energy savings with respect to ESP (without 

compromising the resource availability) at least in the most relevant operating priority scenario (the rap scenario, see Figure 425 

6). However, whether these cost-savings are large enough to justify the use of DSP-corr, or whether water managers may fall 

back on using simpler ESP, it is difficult to argue and remain an open question with the simulations results available so far.  

One point where our results instead point to a univocal and clear conclusion is in the importance of explicitly considering 

forecast uncertainty (Figure 5). In fact, RTOS outperforms the current operation when using ensemble forecasts, but it does 

not if uncertainty is removed and the system is optimised against the ensemble mean. In this case, in fact, DSP-corr improves 430 

energy savings but it decreases the resource availability under all operational priority scenario. This is in line with previous 

results obtained using short-term forecasts for flood control (Ficchì et al., 2016), who found that consideration of forecast 

uncertainty could largely compensate the loss in value caused by forecast errors, hydropower generation (Boucher et al., 2012) 

and multi-purpose systems (Yao and Georgakakos, 2001). It is also consistent with previous results by Anghileri et al. (2016), 
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who did not find significant value in seasonal forecasts while using a deterministic optimisation approach (they did not explore 435 

the use of ensemble though).  

Finally, we tried to investigate whether we could evaluate the effect of the ensemble size on the value of the uncertain forecasts. 

We found that in our case study we could reduce the number of forecast members down to about 10 (from the original size of 

25) with limited impact on the forecast value (Figure 5). This is important for practice because by reducing the number of 

forecast members one can reduce the computation time of the RTOS. While we cannot say if such ‘optimal’ ensemble size 440 

would apply to other systems too, we would suggest that future studies could look at how the quality of the uncertainty 

characterisation impacts on the forecast value, and whether a ‘minimum representation of uncertainty’ exists that ensures the 

most effective use of forecasts for water resource management. 

From the UK water industry perspective, we hope our results will motivate a move away from the deterministic (worst-case 

scenario) approach that often prevails when using models to support short-term decisions, and a shift towards more explicit 445 

consideration of model uncertainties. Such a move would also align with the advocated use of “risk-based” approaches for 

long-term planning (Hall et al., 2012, Turner et al., 2016, UKWIR, 2016a, UKWIR, 2016b), which have indeed been adopted 

by water companies in the preparation of their Water Resource Management Plans (SouthernWater, 2018, UnitedUtilities, 

2019). The results presented here, and in the above cited studies, suggest that greater consideration of uncertainty and trade-

offs would also be beneficial in short-term production planning.  450 

4.1 Limitations and perspective for future research and implementation 

Our study is subject to a range of limitations that should be kept in mind when evaluating our results. First, the current (and 

future) skill of seasonal meteorological forecasts varies spatially across the UK depending on the influence of climate 

teleconnections and particularly the NAO. Given that our case study is located in the South-west of the UK, where the NAO 

influence has been found to be stronger than in the East (Svensson et al., 2015), our simulated benefits of using DSP seasonal 455 

forecasts may be particularly optimistic. Second, the general validity of the results is limited by the relatively short period 

(2005-2016) that was available for historical simulations, and which may be insufficient to fully characterise the variability of 

hydrological conditions and hence accurately estimate the system’s performances (see for example discussion in Dobson et al. 

(2019)). Hence, we aim at continuing the evaluation of the RTOS over time as new seasonal forecasts and observations become 

available. Another limitation is that we used the observed water demand, hence implicitly assuming that operators know in 460 

advance the demand values for the entire season with full certainty. 

Future studies should extend the testing of the RTOS over a longer time horizon and evaluate the influence of errors in 

forecasting water demand. To improve our understanding of the forecast skill-value relationship and the benefits of bias 

correction it would also be interesting to test the sensitivity of our results to the use of different skill scores and bias correction 

methods. The results of this study and in particular the higher DSP forecast skills than ESP for 1 or 2-month lead times, suggest 465 

that combining DSP for the first two months and ESP for the rest of the forecast horizon may be way worthwhile to explore in 

the future studies. 
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The Python code developed to: generate the seasonal inflow forecasts from weather forecasts; to optimise the system operation 

and; to visualise the pre-evaluation Pareto front (with its uncertainty), has been implemented in a set of interactive Jupyter 

Notebooks, which we have now transferred to the water company in charge of the pumped-storage decisions. The general code 470 

and Jupyter Notebooks for application of our methodology to other reservoir systems are available as part of the open-source 

toolkit iRONS (https://github.com/AndresPenuela/iRONS). This toolkit aims at addressing some of the problems identified in 

the literature for the implementation of forecast informed reservoir operation systems, by providing better “packaging” 

(Goulter, 1992) of model results and their uncertainties, enabling the interactive involvement of decision makers (Goulter, 

1992) and creating a standard and formal methodology (Labadie, 2004) to support model-informed decisions. Besides 475 

supporting the specific decision-making problem faced by the water company involved in this study, through this collaboration 

we aim at evaluating more broadly how effective our toolkit is to promote knowledge transfer from the research to the 

professional community and how easily the toolkit can be adapted for different purposes. Through the use of the toolkit, we 

also hope to gain a better understanding of how decision-makers view forecast uncertainty, of the institutional constraints 

limiting the use and implementation of this information (Rayner et al., 2005) and of the most effective ways in which forecast 480 

uncertainty and simulated system robustness can be represented. 

5. Conclusions 

This work assessed the potential of using a real-time optimization system informed by seasonal forecasts to improve reservoir 

operation in a UK water supply system. While the specific results are only valid for the studied system, they enable us to draw 

some more general conclusions. First, we found that the use of seasonal forecasts can improve the efficiency of reservoir 485 

operation, but only if the forecast uncertainty is explicitly considered. Uncertainty is characterised here by a forecast ensemble, 

and we found that the performance improvement is maintained also when the forecast ensemble size is reduced up to a certain 

limit. Second, while dynamical streamflow predictions (DSP) generated by numerical weather predictions provided the highest 

value in our case study (under a scenario that prioritise water availability over pumping costs), still ensemble streamflow 

predictions (ESP), which are more easily derived from observed meteorological conditions in previous years, remain a hard-490 

to-beat reference in terms of both skill and value. Third, the relationship between the forecast skill and its value for decision-

making is complex and strongly affected by the decision maker priorities and the hydrological conditions in each specific year. 

It must be noted that in practice the decision-making priorities are not solely related to the selection of a specific Pareto-optimal 

solution, but in the first place by the methodology, i.e. the “risk” taken in using something other than the worst-case scenario 

approach and in applying bias correction of the meteorological forcing or not. We also hope that the study will stimulate further 495 

research towards better understanding the skill-value relationship, and in finding ways to extract value from forecasts in support 

of water resources management. 

 

https://github.com/AndresPenuela/iRONS
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Figure 1 Diagram of the methodology used in this study to generate operational decisions using a Real-time optimisation 

system (RTOS) (left) and to evaluate its performances  (right). In the evaluation step, the RTOS is nested into a closed 

loop simulation where at every time step historical data (weather, inflows and demand), along with the operational 670 

decisions suggested by the RTOS, are used to move to the next step by updating the initial hydrological conditions and 

reservoir storage. 
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Figure 2 A schematic of the reservoir system investigated in this study to test the Real-time optimization systems.  675 

Reservoir inflows from natural catchments are denoted by I, S1 and S2 are the two reservoir nodes, u denote controlled 

inflows/releases, R is the river from/to which reservoir S1 can abstract and release, and D is a demand node.  
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Figure 3 Skill of the hydrological forecast ensemble (inflow to reservoir S1) during the pumping licence window (1 Nov - 1 Apr) 680 
measured by the CRPSS (a) and the mean error (b) for different lead times from 1 Nov.  Red lines represent the skill without bias 

correction of the meteorological forcing (ECMWF seasonal forecasts), blue lines represent the skill after bias correction. Solid lines 

represents the average skill over the period 2005-2016, while circles, crosses and triangles represent the skill in 3 particularly dry 

winters (Nov-Apr). CRPSS = 1 represents the perfect forecast and CRPSS = 0 the no skill threshold with respect to the benchmark 

(ESP).     685 
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Figure 4 Post-evaluation Pareto fronts representing the average system performance improvement (over period 2005-2016) of the 

real-time optimization system during the pumping licence window (1 Nov - 1 Apr) with respect to the benchmark (black diamond), 

using four forecast products: non-corrected forecast ensemble (DSP), bias corrected forecast ensemble (DSP-corr), ensemble 690 
streamflow prediction (ESP) and perfect forecast. For each of the four forecast products, five scenarios of operational priorities are 

represented: resource availability only (rao; in blue), resource availability prioritised (rap; in green), balanced (bal; in grey), 

pumping savings prioritised (psp; in green) and pumping savings only (pso; in red).  For visualization purposes, the coloured circles 

group points under the same operational priority scenario and the dashed lines link points using the same forecast product. The 

pumping energy cost is calculated as the sum of the energy costs associated to pumped inflows and pumped releases and the resource 695 
availability as the mean storage volume in both reservoirs (S1 and S2) at the end of the optimisation period. Both objective values 

are rescaled with respect to the performances of the benchmark operation. 
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Figure 5 Post-evaluation Pareto fronts representing the average system performance (over period 2005-2016) of the real-time 700 
optimization system during the pumping licence window (1 Nov - 1 Apr) with respect to the benchmark (black diamond), using bias 

corrected forecast ensemble (DSP-corr) with different ensemble size, and the mean of the forecast ensemble (DSP-corr 

deterministic). For practical purposes, only the “resource availability prioritised” scenario (rap) is represented for the DSP-corr. 

The annotation numbers refer to the ensemble size. 
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 705 

Figure 6 Year-by-year a) Hydrological conditions (Total observed inflows + Initial storage); forecast skills of the meteorological 

forcing: b) CRPSS and c) Mean error; d) Increase of resource availability and e) Pumping energy cost savings of the real operation 

system informed by: the dynamical streamflow prediction (DSP), the bias corrected dynamical streamflow prediction (DSP-corr) 

and the ensemble streamflow prediction (ESP) for the “resource availability prioritised” (rap) scenario. Please note that ESP is not 

shown in b) as it is the CRPSS benchmark. 710 
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Supplementary material 

Reservoir system model 

We use weekly resolution to simulate the system and its operation for both the benchmark and the real-time optimization 

system (RTOS) approaches. For each reservoir (S1 and S2), the volume of stored water (s(t+1)) is equal to the previous week’s 

storage (s(t)) plus natural and controlled inflows minus releases, evaporation and spills. The mass balance equations are: 715 

S1: 𝑠𝑡+1 = 𝑠𝑡 + (𝐼𝑆1,𝑡 + 𝑢𝑅,𝑆1,𝑡) − (𝑢𝑆1,𝐷,𝑡 + 𝑢𝑆1,𝑅,𝑡 + 𝑒𝑣𝑎𝑝𝑡 + 𝑠𝑝𝑖𝑙𝑙𝑡 + 𝑒𝑛𝑣𝑡) 

S2: 𝑠𝑡+1 = 𝑠𝑡 + (𝐼𝑆2,𝑡) − (𝑢𝑆2,𝐷,𝑡 + 𝑒𝑣𝑎𝑝𝑡 + 𝑠𝑝𝑖𝑙𝑙𝑡 + 𝑒𝑛𝑣𝑡) 

Spills are calculated by imposing the hard constraint that the storage at next time-step should never exceed the reservoir 

capacity, hence they are either equal to zero or to the excess volume generated by the storage plus inflows minus outflows: 

S1: 𝑠𝑝𝑖𝑙𝑙𝑡 = 𝑚𝑎𝑥(𝑠𝑡 + (𝐼𝑆1,𝑡 + 𝑢𝑅,𝑆1,𝑡) − (𝑢𝑆1,𝐷,𝑡 + 𝑢𝑆1,𝑅,𝑡 + 𝑒𝑣𝑎𝑝𝑡 + 𝑒𝑛𝑣𝑡) − 𝑠𝑚𝑎𝑥 , 0) 720 

S2: 𝑠𝑝𝑖𝑙𝑙𝑡 = 𝑚𝑎𝑥(𝑠𝑡 + (𝐼𝑆1,𝑡) − (𝑢𝑆2,𝐷,𝑡 + 𝑒𝑣𝑎𝑝𝑡 + 𝑒𝑛𝑣𝑡) − 𝑠𝑚𝑎𝑥 , 0) 

where smax the reservoir storage capacity in m3. Controlled inflows and outflows (u) are limited by the real-world system 

capacity. Besides, pumped inflows are limited such that flow downstream of R does not drop below a legal constraining value, 

unless using water released from S1. Evaporation fluxes (evap) are computed as the product of the reservoir surface area by 

the potential evaporation rate. Environmental compensation flows (env) are given by prescribed values that are kept constant 725 

over the year. 

Formulation of the optimization problem 

Both the release scheduling of the benchmark approach and the release and pumped inflow scheduling of the real-time 

optimization system (RTOS) approach are optimized using the NSGA2 genetic optimization algorithm included in the Platypus 

Python package (https://platypus.readthedocs.io/). In the RTOS, the optimization decision variables are both the weekly 730 

reservoir releases (uS1,D and uS2,D) and the weekly pumped inflows (uS1,R); in the benchmark operation, the decision variables 

are the reservoir releases only, while the pumped inflows are calculated according to the control curve. We assume that the 

future water demand is perfectly known in advance, and equal to the sum of the observed releases from S1 (uS1,D) and S2 (uS2,D) 

for the period of study. Unless physically unfeasible, the sum of reservoir releases (uS1,D + uS2,D) is always forced to meet such 

demand. 735 

When simulating the benchmark operation, the optimization is constrained to achieve maximum storage for both reservoirs 

(S1 and S2) by the end of the pumping license period window (1 April). The (single) optimisation objective is to minimize the 

sum of the energy costs for pumped release (uS1,D) and pumped storage (uR,S1): 

∑ 𝑐𝑅,𝑆1

𝑇

𝑡=0

𝑢𝑅,𝑆1,𝑡 + ∑ 𝑐𝑠1,𝐷

𝑇

𝑡=0

𝑢𝑆1,𝐷,𝑡 

where c is the pumping energy cost and T is the lead time in weeks.  740 

https://platypus.readthedocs.io/
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For the RTOS approach, the optimization decision variables are the weekly reservoir releases (uS1,D and uS2,D) and the weekly 

pumped inflows (uS1,R) and the optimization objectives to be minimized are two: 

1) Sum of the pumping energy costs (same equation as above) 

2) Average difference between the reservoir capacity and storage volume by 1 April in the two reservoirs (S1 and S2): 

1

𝑀
∑

(𝑠𝑆1,𝑚𝑎𝑥 − 𝑠𝑆1,𝑇,𝑚) + (𝑠𝑆2,𝑚𝑎𝑥 − 𝑠𝑆2,𝑇,𝑚)

2

𝑀

𝑚=0

 745 

where smax is the reservoir storage capacity in m3, s is the reservoir storage volume in m3, T is the final week of the 

optimisation period, and M the total number of ensemble members. Notice that, as denoted by the subscript m, the 

final storage of S1 and S2 will differ depending on the inflow forecast ensemble member that is used to force the 

simulation, even if the set of pumping and release decisions remain the same. Hence, at each iteration of the 

optimisation procedure, the same set of decisions is evaluated against each ensemble member and then the objective 750 

value is obtained by averaging across all the simulations (with the exception of the “deterministic” case presented in 

Sec. 3.2.2, where the ensemble forecast is replaced by the mean forecast and therefore averaging is not needed as 

only one simulation is run against any set of decisions).  

For both operation approaches, benchmark and RTOS, the population size for the multi-objective optimization of the RTOS 

approach was 20. 755 

 

Observational hydrological data 

Daily rainfall in the study area from 1981 to 2016 was derived from the UK Centre for Ecology and Hydrology (CEH) Gridded 

Estimates of Areal Rainfall (CEH-GEAR) dataset (Tanguy et al., 2014) and daily temperature and PET data for the period was 

derived from the CEH Gridded CEH-CHESS dataset (Robinson et al., 2016, Robinson et al., 2017). CEH-GEAR is a gridded 760 

1km product derived from the interpolation of observed rainfall across all daily and monthly rain gauges in the UK. CEH-

CHESS is a gridded 1km product derived from the Met Office 40km gridded MORECS dataset (Hough and Jones, 1997). We 

used the HBV model forced by observed weather data to simulate a proxy of the daily observed inflows (Figure 7). The HBV 

model was previously calibrated against observed hydrographs from 1972 to 2003 in the Wimbleball catchment. For the 

Wimbleball catchment the average observed yearly inflow is 24,462,227 m3/year with an interannual standard deviation equal 765 

to 4,340,594 m3/year. Given the lack of good calibration data for the Clatworthy catchment, we applied the Wimbleball 

parameter set to the Clatworthy catchment, given that they are adjacent to each-other. The averaged mean error from 1972 to 

2004 of the Wimbleball calibrated inflow is 33,283 m3/month (from 1 Nov to 1 Apr).  
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Supplementary figures 770 

 

Figure 7 Cumulative inflows to the S1 reservoir  in the worst-case scenario (1975-1976) and in the three driest years 

(2005-2006, 2010-2011 and 2011-2012) of the period used for the simulation of the RTOS (2005-2016). Only data relative 

to the pumping licence window (Nov to Apr) are shown. Shaded areas show the weekly inflow distribution calculated 

on the period used for the forecast bias correction of the meteorological forcing and ESP generation (1981-2016). Notice 775 

that the three driest years are relatively close to the worst-case scenario (1975-1976). 

 

 


