
Author's Response 
Throughout this response, the reviewer’s text is presented in black, our response in blue 

Reviewer 1 
This an interesting and timely study into the value of forecasts for improving the performance 
of a simple water supply reservoir system with an operational trade off between augmentation 
of stored water through pumping and associated energy cost. The selected case study is 
appropriately simple and also informative for this type of analysis. Results are quite difficult to 
follow and key details are omitted from the method. The set of forecasts selected for use in the 
simulation are also poorly justified. Finally, I feel that the paper attempts to answer too many 
questions and would benefit significantly from more focus. For example, the analysis of the 
dynamical forecast product and its failure to provide skill over ESP is an interesting study in its 
own right, demanding much more in-depth analysis and interpretation than is offered in the 
paper. The operational section then addresses ESP vs dynamical and the additional question 
relating to importance of incorporating ensemble uncertainty. The paper would be much 
stronger if you were to focus on just one of these areas and deliver a more compelling conclusion 
backed up with in-depth analysis of a specific question. I recommend that the paper would be 
publishable if significant changes are made to simplify the overall story and provide further 
method detail as outlined in the comments below. 
 
We thank the reviewer for their overall positive evaluation of our manuscript and the 
suggestions for improvement. We think the analysis of different scenarios is interesting (and 
other reviewers also seem to agree) and so we intend to keep it. Nevertheless, we appreciate 
that the manuscript writing is sometimes overly complex and that some analyses (for instance 
Fig. 6 in the original manuscript) raise more questions than they answer, so in the revised 
manuscript we have simplified some aspects of the Results section, in particular we have deleted 
Fig.6 and integrated some of its content into Fig.7 now Fig.6 in the revised manuscript). We have 
also modified Figure 4 to accommodate the Reviewers’ comments (more below) and edited the 
manuscript throughout for more clarity. 
 
- It’s not clear what optimization framework is used to deal with the forecast ensemble. The 
deterministic approach using rolling horizon (e.g., ANGHILERI et al., 2016) is quite common and 
there are very few successful examples in the literature where the full ensemble is used to 
inform the decision. Please outline exactly how the ensemble is used in your optimization and 
then justify the approach. If this is a new approach it perhaps needs to be described in its own, 
separate publication. 
 
In our optimisation framework we minimise the expected values of the two objective functions 
based on the 25 ensemble members (whereas Anghileri et al. 2016 optimised the objective 
functions evaluated at the ensemble mean). In the revised manuscript, we have given a clearer 
explanation of this in Sec. 2.3.3 and in the Formulation of the optimization problem 
(Supplementary material). Regarding the justification of this approach, as we mention on Lines 
431-436 of the revised manuscript, the use of the full ensemble has been proved to improve the 
forecast value in several studies with shorter lead time (i.e. days instead of months), while 
deterministic approaches such as the one applied by Anghileri et al (2016) did not show 
significant value in seasonal forecasts. So in our work we used the full ensemble at seasonal 
scale and also analysed the impact of the ensemble size, which confirm the value of using the 
full ensemble (see Section 3.2.2 and Figure 5): as discussed in lines 430-431, RTOS outperforms 
the current operation when using the ensemble forecasts, but it does not if uncertainty is 



removed and the ensemble mean is used. We have clarified this also in the Supplementary 
Materials, where the equations of the model and of the optimisation problem are shown. 
 
- Given the skill scores achieved for the dynamical forecasts, it’s not clear why these were 
pursued in the operational part of the study. What is the justification for using a forecast product 
that is demonstrated to be unskillful relative to ESP? 
 
One of the objectives of our work was to explore the skill-value relationship and whether one 
can extract value from forecasts in support of water resource management even if their skill is 
still relatively low. This is what led us to pursue the evaluation of DSP forecasts as well as ESP. 
As we mention in the Discussion (lines 407-408) our results suggest that inferring the forecast 
value from its skill may be misleading. This study indeed contribute to show that seasonal 
forecasts can deliver benefits to inform operational decisions even if their skill is low (as often 
the case in extra-tropical areas, such as the UK), and that under certain scenarios DSP can 
provide higher value than ESP despite its relatively similar skill. 
 
- I found the results quite difficult to follow, partly because it’s hard to keep track of the various 
operational settings. Why not simplify by showing the Pareto front for each forecast set (as 
opposed to five schemes with different symbols/colors). This would be both more 
comprehensive and easier to understand. Also, the emojis in the key figures are not appropriate. 
 
We agree with the reviewer that our Figures are quite dense; on the other hand, showing each 
Pareto front in a different plot may make comparison across sets more difficult. However, in the 
revised manuscript, we have modified Figure 4 by adding coloured circles to group points under 
the same operational priority scenario and dashed lines to link points using the same forecast 
product. 
  



Reviewer 2 
The main merit of this paper is the proposal of the methodology. The paper forms a valuable 
contribution to the methodology of quantifying the value of forecasts, here in terms of water 
availability and energy cost. Probably the methodology is more widely applicable. Generally, the 
paper is well written, although sentences tend to be too long and their structure could 
sometimes be made clearer by repeating some short words. Unfortunately, the conclusions 
from this paper are not really valuable. The problem with the first two conclusions, namely 1) 
seasonal forecasts can increase value and 2) ESP is hard to beat, is that they are case specific, as 
acknowledged by the authors (line 470). The third conclusion (the relationship between forecast 
skill and value is complex) is a trivial one. Below, there is a quite long list of main points, which 
the authors have to address in my opinion: information about the observations should be given 
(p1), any procedure based a scenario or forecasts with more inflow than in the worst-case 
scenario seems beneficial, e.g. taking the median of the historical years (p2), the methodology 
should be better explained (ps 3, 5 and 6), Mliters are not a valid unit (p4), there is an issue with 
the bias correction (p7), different processing for the benchmark and other forecasts is 
questionable (p8), it is strange that the value of the driest years with DSP and ESP processing is 
not almost equal to the benchmark (p10) and the first part of the discussion section should 
perhaps be removed (p9). In my opinion should be published after making the suggested major 
revisions. 
 
We thank the reviewer for their overall positive evaluation and suggestions for improvement. In 
the revised manuscript we have tried to shorten long sentences and simplify their structure. We 
have also addressed the specific points raised by the Reviewer, as detailed below.  
As for the generalisability of our work, we agree that the methodology here employed is widely 
applicable, and we are sharing an anonymised version of the code we developed for other users. 
We have added the link to this toolkit in Section 4.1. As for the generalisability of the results and 
conclusions, we do not fully agree with the Reviewer. We believe that case studies are necessary 
to advance our understanding and they allow in-depth, multi-faceted explorations of complex 
issues. We think that while the results are case specific the conclusions have more general 
practical implications. First, the study demonstrates that higher forecast skills do not necessarily 
translate into higher forecast value in reservoir operation and that seasonal forecasts can deliver 
benefits to inform operational decisions even if their skill is low. Second, we show that the 
hydrological conditions and the decision maker priorities can have as much or even higher 
influence on the forecast value than the forecast skill. Third, the study demonstrates the 
importance of accounting for the forecast uncertainty and highlight the potential benefits with 
respect to deterministic approaches. 
 
A section about observations (discharge and meteorological forcing) should be added. 
 
In the supplementary material we have added additional information about observational 
hydroclimatic data 
  
One of the results of this paper is that by basing the operational procedure on the forecasts, less 
energy for pumping is used while ensuring similar water availability (statistically over the years), 
compared to basing operational procedures on the worst-case scenario (driest historical year). 
It is my impression that any operational procedure based on forecasts or scenarios with more 
inflow into the reservoirs than in the worst-case scenario leads to less pumping and similar water 
storage, provided the increases are realistic. The authors confirm this in lines 395-397 for the 
case of applying a bias correction, which increases the inflows to the reservoirs and hence 
increases the value of the forecasts. So, the worst-case scenario is possibly easy-to-beat by any 
scenario with more inflow. Somewhere in the paper (in the discussion section?) the following 



points need to be discussed. Can this effect on value of increasing the inflow be generalized? 
What is the value of the forecasts if the operators base their procedure on the scenario of the 
year with the median value of the historical inflows? I suggest making a calculation with such a 
scenario. By the way: are the calculations in the worst-case scenario deterministic? 
 
We choose the worst-case scenario as a forecast value benchmark (instead of the median) as 
this is representative of the current operation of the system, and thus it enables us to show the 
potential benefits of using seasonal forecast with respect to the current approach. This scenario 
is actually not so ‘easy-to-beat’: our results (Figure 5) already demonstrate that deterministic 
optimisation under a scenario with higher inflows (“DSP-corr deterministic” in Figure 5) does not 
beat the worst-case scenario (which is also deterministic). In fact, while “DSP-corr deterministic” 
improves energy savings, it decreases the resource availability for any decision maker priority. 
We have clarified these points in the discussion (Lines 429-430). 
 
I did not understand Section 2.1 – 1b and c. These paragraphs need to be rewritten. At this stage 
this paragraph is too abstract. Perhaps providing an example of each concept (operation 
objective function, optimizer, set of operational decisions) would help. Perhaps merging  
Sections 2.1 and 2.3 helps. Moreover, after 1b the “set of operational decisions is determined”, 
so why is the operator again “selecting a set of optimal decisions” in 1c? Perhaps lines 124-126 
helped me to understand a little bit of what you try to explain, namely that you use hindcasts to 
evaluate the performance of RTOS. If this is correct, just write that you use hindcasts to evaluate 
RTOS and discuss a possible operational application in the discussion section.  
 
In this section we try to represent the process that a reservoir operator would follow. In 1.b the 
operator obtains a set of possible optimal decisions as a result of the optimization of the 
reservoir system in response to the forecasted inflows. Given that the optimisation problem has 
multiple objectives, it does not provide one optimal solution but set of Pareto-optimal solutions, 
each realising a different trade-off between the conflicting objectives. This is why in 1.c. the 
operator needs to select, according to their priorities, one of the optimal decisions among the 
ones obtained in 1.b. We have revised our description in section 2.1 to make the point clearer 
and we have also added examples (Lines 120-121, 146-148). 
 
Replace all appearances of Ml and Ml per some time unit by m3/s (per day is also ok), the 
common unit in the hydrological literature, e.g. in Figure 2, 3, 6 and 7.  
 
We have replaced Ml by m3 as suggested. 
 
I did not completely understand 2.3.1. Was river R fed by the outflow of reservoir S1 before the 
dam of S1 was built? Also, it sounds ridiculous to pump water, that was released by gravity from 
S1 to R, back to S1. So, is the water in R at the location where it is pumped out of the river partly 
fed by rivers that are not connected to S1? Is S1 located at lower elevation than D, so the water 
flow needs to be pumped?  
 
As mentioned in the manuscript, the gravity releases from S1 are used to support downstream 
abstraction during low river (R) flows/season (essentially in Summer). In contrast, during the 
high flow season (Nov to Mar), pumped inflows from R to S1 may be operated to supplement 
the natural inflows to S1. The water pumped out in R is fed by rivers that are not connected to 
S1. We have further clarified this point in Section 2.3.1 and we have improved the system 
schematic (Figure 2) to make clear that R is fed by both a natural catchment and the gravity 
release from S1. 
 



I did not really understand those “rule curves” (lines 173-179). Add a figure with a rule curve. It 
is not clear to me how the refilling (UR,S1) is done. Is the “missing water” immediately refilled or 
is the refilling spread over time until April 1, using the optimizer? In the latter case, how does 
the optimizer work? Can you give an example of an operational decision? What level is targeted 
on April 1? How does the operational procedure work for probabilistic forecasts? Since there is 
variation in resource availability by April 1 (e.g. in Figure 4), storage is not equal to the target on 
April 1. Can storage be larger than the target or is all water above the target spilled? Can storage 
be less than the target? Perhaps only in S2 and not in S1 because water can be pumped into the 
latter basin? 
 
The rule curve applied in the current operation procedures defines the storage level at which 
pumps are triggered. By the 1 April the objective is to be at full storage. Water is only spilled 
when the storage is higher than the reservoir capacity. The rule curve is only applied in the 
current operation approach (benchmark) and not in the RTOS approach. We have further 
clarified this in section 2.3.6 (Lines 270-272) and in the Supplementary material. 
 
The method of bias correction is not correct (199-203). The number of years used to compute 
the multiplication factors differ per target year. I suggest using the common leave-one-year-out-
method, i.e. the factor for each target year is computed from the data of all other years, 
including years later than the target year. Your method suggests that it is not allowed to use 
data from future years but there is no problem in doing so if different years are independent of 
each other.  
 
Using the leave-one-year-out method works statistically but it does not represent what the 
operator could have achieved historically if using seasonal forecasts, because at each simulated 
decision time-step the operator would have only been able to use data up to that moment, and 
not future years. Given that our methodology aims to simulate the behaviour of the operator 
and the operational decision-maker process, we must assume that the operator can only have 
access to past data and hindcasts for the bias correction. We have clarified this point in Section 
2.3.2 (Lines 207-208). 
 
Line 264 “but with three main variations”: Why do you treat the benchmark differently? This 
implies that if the forecast is equal to the benchmark, the forecast value differs, which seems 
undesired.  
 
We treat the benchmark differently because it represents the current operation (Lines 263-266) 
procedures and we aim to assess the potential of using a real-time optimization system informed 
by seasonal forecasts in place of current procedures (Lines 102-103). It is virtually impossible 
that the forecast is equal to the benchmark because it is not possible that the ensemble 
members are all equal to the worst-case inflow sequence. 
 
The first general lesson in the discussion is “First, we found that the use of bias correction to 
improve the skill and value of DSP forecast is less straightforward than possibly expected” (lines 
381-382). I do not agree. Such an expectation, namely that the forecast skill generally improves 
due to bias correction (is that the expectation?), just does not exist. Your study indeed confirms 
that this is a naive expectation. So, remove lines 378-393 or reformulate them. By the way: your 
bias corrections are based on observations of precipitation and temperature and not on the 
output (hydrological variables!) of ESP forecasts. So, I did not understand the sentences related 
to ESP in lines 387-388 and 391-392.  
 



Reading the literature, we have the impression that studies tend to show the benefits of bias 
correction and it is often recommended or even required for impact assessments. Here some 
examples: 
 

 From Crochemore et al, 2016: “ECMWF forecast skill is generally improved when 
applying bias correction” 

 From Ratri et al (2019): “Uncorrected meteorological forecasts are not suitable as 
direct input for quantitative models, such as those used in agriculture and water 
management (Schepen et al. 2016). The bias should be corrected because it can lead to 
significant errors in impact assessments (Murphy 1999).” 
https://doi.org/10.1175/JAMC-D-18-0210.1 

 From Schepen et al. 2016: “GCM forecasts suffer from systematic biases, and forecast 
probabilities derived from ensemble members are often statistically unreliable. Hence, 
it is necessary to postprocess GCM forecasts to improve skill and statistical reliability.” 
https://doi.org/10.1175/MWR-D-13-00248.1 

 From Zalachori et al 2012: “To improve the quality of probabilistic forecasts and provide 
reliable estimates of uncertainty, statistical processing of forecasts is recommended 
(Schaake et al., 2010)” https://doi.org/10.5194/asr-8-135-2012 

 From Jabbari and Bae 2020: “Numerical weather prediction (NWP) models produce a 
quantitative precipitation forecast (QPF), which is vital for a wide range of applications, 
especially for accurate flash flood forecasting. Since NWP models are subject to many 
uncertainties, the QPFs need to be post-processed. The NWP biases should be corrected 
prior to their use as a reliable data source in hydrological models.” 
https://doi.org/10.3390/atmos11030300 

 
We have clarified this expectation that the forecast skill generally improves due to bias 
correction by citing in the Introduction several studies such as the ones above (Lines 71-73). 
 
We agree that the sentence on lines 387-388 (original manuscript) was badly formulated and 
we have now replaced it by: “However, the result points at a possible intrinsic contradiction in 
the very idea of bias correcting based on climatology.” What we aimed to communicate in this 
paragraph is that since both bias correction and ESP forecast are based on climatology, the bias 
corrected DSP forecast skills tend to become closer to ESP skills. However, ensuring this skill 
level with bias correction (Crochemore et al. 2016) may not be the best approach especially 
under conditions significantly drier or wetter than climatology, which are likely the ones when 
water managers can extract more value from forecasts. We have further clarified this point in 
the reviewed manuscript (Lines 386-397) 
 
It is strange that the increase in the value of the system with DSP or ESP forecasts relative to the 
value of the system based on the worst-case scenario is highest in the driest years (e.g. lines 
408-409), while those driest years resemble the worst-case scenario more than the other years. 
You need to explain this.  
 
The benchmark tends to pump more water during the driest years because the lower storage 
level is more likely to cross the rule curve and trigger the pumped inflows. This explanation has 
been now included in the discussion (Lines 414-416). 
 
General text points  

1) The authors often use the term “bias correction” without mentioning what is 
corrected. As far as I understood, the forcing of the hydrological model is corrected 
but if you do not repeat mentioning this now and then, it is confusing because the 



output of the hydrological model, i.e. inflow to the reservoirs, can also be bias-
corrected. So, replace at numerous places “bias correction” by “bias correction of the 
meteorological forcing” or “bias correction of the forcing”.  
This has been corrected accordingly 

 
2) In general sentences are too long, making the manuscript difficult to read. So, shorten 

sentences where there is an opportunity and make the structure of long sentences 
clearer, especially by adding some words in sentences with “and”. I made some 
suggestions below (e.g. 15-16 in the abstract).  
In the revised manuscript we have tried to shorten long sentences and simplify their 
structure. 
 

3) “Uncertainty (considerations)” is used to discuss effects of ensemble size and the 
probabilistic nature of the forecasts. Replace throughout the paper the vague term 
“uncertainty (considerations)” by the more explicit terms “ensemble size” and 
“probabilistic/deterministic nature of the forecasts”.  
We have clarified wherever appropriate that uncertainty in forecast is represented 
through an ensemble. 

 
Minor points  
16 Insert “to” before “other factors”. Changed accordingly 
 
17 “Some of these factors” is too vague. Write which factors have a significant correlation with 
forecast value (see point Figure 6 below). Corrected accordingly 
 
24 Add reference to endorse the statement that climate variability is increasing. A new 
reference has been added 
 
44-45 Replace “it provides” by “they provide” and add “that they” before “reflect”. Changed 
accordingly 
 
54 I miss the logic behind “i.e. ESP …”. Replace this part of the sentence or clarify the logic. We 
have removed it 
 
55-56 Reorder sentence to “The possible improvements of supply-hydropower systems 
operation due to the use of ESP were assessed by Alemu …” Changed accordingly 
 
69-71 Remove this sentence: this distracts too much. We have kept this sentence because it 
raises an important point that is later discussed, is bias correction necessary?  
 
78 weaker compared to ….? We have added “than in hydropower production or flood 
management systems” 
 
83-92 Remove these sentences about some of the many existing metrics. It is not efficient to 
read about metrics not used in this paper and the metrics used in this evaluation are 
introduced 2.3.5. We have kept these sentences because they raise an important point that is 
discussed in this study, i.e. inferring the forecast value from its skill may be misleading and the 
need for skill scores better tailored to the purpose of the studied system, e.g. such as water 
resources management 
 



94 Replace “this” by “the”. Changed accordingly 
 
99 Replace “simulate and compare” by “assess”. Simulate performance sounds strange and it 
is not clear from the rest of the sentence what is compared with what. Changed accordingly 
 
151 Insert “diagram” after “Pareto front”. Changed accordingly 
 
163 Consider removing all text about two companies. It is irrelevant for your story while it is 
making your story more complex. This text has been removed, and water company has been 
replaced by system operator. 
 
168 Insert “(R)” after “river” Added accordingly 
 
188 Remove period. Removed 
 
198 Did you also use a multiplicative factor for temperature? No, we use an additive factor, we 
have corrected this in the text 
 
211 US1,D is also a pumped water flow according to Fig. 2. Yes, that’s right, as described in 
section 2.3.1 
 
214 Replace “The first objective function” by “Pumping savings” and “The second function” by 
“Resource availability”. Changed accordingly 
 
219 Replace “the 15%” by “only 15%”. Changed accordingly 
 
227 Rephrase sentence as follows: “They represent five different trade-offs of operational 
priorities, according to their relative importance” The sentence has been rephrased as follows: 
“They represent five different trade-offs of operational priorities, according to the relative 
importance given to each performance objective” 
 
237 Remove sentence. Removed  
 
247 Remove “and for a given lead time”. The role of lead time comes some sentences below. 
Removed 
 
251 Replace “lead time” by “range of the lead time (we use monthly ranges)” and “CRPS 
values” by “individual CRPS values”. Changed accordingly 
 
252 Replace “CRPS” by “individual CRPS values”. Changed accordingly 
 
253 I suggest to replace “mean error” by “discharge bias” since bias in the common word for 
mean error and the addition of “discharge” helps to distinguish this bias from that in the 
forcing. I also find the equation redundant. Just write that the bias is the difference between 
the means of the forecasts and the observation over all …….” We have kept the original 
terminology, i.e. “mean error”, because we believe that using the term “discharge bias” may 
infer that it can be corrected with bias correction. 
 
262 Add “(1975-76)” after “drought on records”. Added 
 
Figure 3 Is this the sum of the inflows to both reservoirs? Are these results for the whole year 
or a specific part of the year? In the legend of the lower panel “2006” should be replaced by 



“2016”. This has been clarified in the Fig 3 caption. 2006 is correct, as mentioned in the 
caption the 3 particularly dry winters are represented and one of them corresponds to 2005-
2006. 
 
334 and 338 Replace “Figure 6” by “Figure 5”. Changed accordingly 
 
Figure 6 If I just look at these graphs, I get the impression that there is no significant 
relationship in any of these graphs. However, according to your p-values relationships are 
significant at the 90% confidence level in panels b and e. Is the calculation of the p-values 
correct? Or are those low p-values due to using the Spearman coefficient instead of the 
Pearson coefficient? I think you should use Pearson unless you have good reasons to use 
Spearman. We have removed this figure and any reference to correlation or p-values. 
 
344 Replace “skill” now and then by “forecast skill”, to remember the reader what type of skill 
this is. This part has changed in the new version of the manuscript 
 
358 Replace “year” by “years”. Changed accordingly 
 
395 Replace “reduce” by “reduces”. Changed accordingly 
 
399 “improvement of forecast accuracy in some direction”. What do you mean by “accuracy”? 
For me this is something like the root-mean-square-error, which means that there is only one 
desired direction, namely towards 0. Do you mean something like “a change towards either 
higher or lower values can be more valuable than a change in the other direction”? We agree 
the sentence was confusing and we have now removed it and revised the paragraph. 
 
411 Is “Initial storage (total storage value)”equal to “Initial storage” in Figure 6? For clarity, be 
consequent in the use of specific terms. Moreover, panels c and h in Figure 6 do not show a 
significant correlation (p-values of 0.21 and 0.80). As mentioned above this figure has been 
removed 
 
428 Remove “)” Removed 
 
447 Replace, for clarity, “seasonal forecasts” by “seasonal meteorological forecasts”. Changed 
accordingly 
 
465 Insert “of” before “the institutional” Changed accordingly 
 
466 Insert “of” before “the most” Changed accordingly 
 
478-479 Replace “but also the methodology in the first place” by “but in the first place by the 
methodology”. Changed accordingly 
 

  



Reviewer 3 
This paper addresses comprehensively a topic that increasingly requires investigations: the value 
of seasonal forecasts for real-life applications. Until recently, many studies have worked on 
assessing or improving forecast skill, but still few manage to link this skill to value. In addition to 
being innovative, this study investigates the issue through different uncertainty lenses which 
makes it a very strong contribution to the field and results in valuable findings both for the 
scientific community but also for water management stakeholders. Overall, the paper, its ideas, 
structure and methodology are of high quality. However, additional information, for example 
about the data used and the forecast skill evaluation, would be necessary to support the 
analysis. In addition, I have some concerns about the validity of the results on linking skill and 
value due to the chosen methodology. These are detailed hereafter. 
 
We thank the reviewer for their kind words. 
  
The paper would benefit from a Data section, presenting for instance the data used as reference 
in the bias correction, the inflows used as reference in the forecast evaluation, or the demand 
model/observations.  
 
We have added a section titled ‘Observational hydrological data’ in the Supplementary material 
(as other Reviewers commented that the manuscript is too long already). 
 
Some additional information would be needed in Section 2.2 on the forecast skill evaluation. 
More specifically, (1) In Figure 2, two inflows feed the two reservoirs (Is1, Is2), which inflow is 
being considered when evaluating forecasts? (2) Which time period is used to evaluate the 
forecasts? In Figure 8, November to April is shown, but in the forecast methodology (Sections 
2.2 and 2.3.2) or in Figure 3, no specific time period is mentioned. I would recommend 
mentioning these two points in 2.1/2a.  
 
The inflow to S1 is used to evaluate the forecast skills from Nov to Apr. We have clarified and 
mentioned these two points in the case study section (2.3) and in particular in Sec. 2.3.5 (we 
would rather keep sections 2.1 and 2.2 as general as possible because this methodology is meant 
to be generalizable and applied by others). 
 
Since the goal of the paper is to assess the added value of dynamical seasonal forecasts for water 
management, and since authors evaluate the skill and performance of these forecasts against 
observations, it would be important: (1) to add information about how HBV was calibrated and 
setup for the area, or at least, to mention its performance (mean error) in simulating past inflows 
to the reservoirs (giving the possibility to make a parallel with the results in Figure 3); (2) to 
mention even briefly the hydrological regime upstream the reservoir system, as well as the 
interannual variability, which will define the added value of a method like DSP over ESP.  
 
We have added this information in the ‘Observational hydrological data’ section of the 
Supplementary material. 
 
I have concerns about the methodology chosen to link value and skill, and therefore about some 
of the subsequent results (first two paragraphs of Section 3.2.3). The authors are trying to link a 
skill obtained from comparing dynamic forecasts with forecasts based on past climatology 
(1981-20XX), with a value obtained from comparing dynamic forecasts with a worst-case 
scenario (1975/1976). On the one hand, the skill is based on the comparison of DSP-corr with 
ESP, meaning that its value solely indicates the gain in performance from using ECMWF SEAS5 
instead of historical precipitation and temperature. On the other hand, the value is obtained by 



comparing DSP-corr with a benchmark based on a worst case scenario (1975-1976). These 
choices result in skills and values that cannot be compared. Instead, the skill computed in the 
paper could be related to the gains/losses in value between DSP-corr and ESP (difference 
between the blue and green bars of Figure 7). Reversely, the value computed in the paper could 
be compared to a skill whose benchmark would be the performance obtained by using the worst 
case scenario (1975-76) as forecast in all years. This is a major point that should be addressed 
prior to publication to ensure the validity of the conclusions.  
 
We understand the reviewer concerns and we agree that there is somehow an inconsistency in 
the definition of the skill and the value, given their different benchmarks. However, we think it 
is not easy to resolve such inconsistency. In fact, we use ESP as a benchmark for the forecast skill 
because this is the standard practice in the literature (Pappenberger et al., 2015, Harrigan et al., 
2018) as it is more likely to demonstrate the “real skill” of the hydrological forecasting system 
(lines 253-255), whereas the worst case scenario is never applied as a forecast skill benchmark 
and it is not likely to demonstrate the “real skill”. As for the forecast value, we use the worst-
case-scenario as benchmark because it is the scenario applied in the current operation approach 
and hence it is a benchmark that can demonstrate the “real value” of moving away from that 
approach towards using seasonal forecasts (lines 265-266). We would thus be reluctant to 
change any of these benchmarks, as they are appropriate for their different purposes.  
However, we agree with the Reviewer that this inconsistency should prevent one from directly 
comparing the numerical values of the forecast skill and value. So, we have now removed Figure 
6 of the original manuscript, which incorrectly suggested that such value-by-value comparison 
can be drawn. On the other hand, we think one can still compare the ranking of forecast 
products induced by the forecast skill with the ranking based on the value, which is the main 
point of our work. This is what we refer to when discussing the “forecast skill-value relationship” 
(line 98). With this clarification, we think the year-by-year analysis of the different optimisation 
results (Figure 7 in the original manuscript, now Figure 6 in the revised version) still provides 
interesting insights, and supports the main conclusion that “the relationship between the 
forecast skill and its value for decision-making is strongly affected by the decision maker 
priorities and the hydrological conditions in each specific year” (lines 491-492). 
 
Specific comments  
L45: “and reflects the risk-averse attitude”  
 
L68: “to continue increasing in coming years”  
 
L75-76: More literature review would be needed on past works on seasonal (climate or 
hydrological) forecasts value. Here are a few examples to consider:  
 
Bruno Soares, Marta, Meaghan Daly, and Suraje Dessai. ‘Assessing the Value of Seasonal Climate Forecasts for 
Decision-Making’. WIREs Climate Change 9, no. 4 (2018): e523. doi:10.1002/wcc.523.  
 
Giuliani, M., L. Crochemore, I. Pechlivanidis, and A. Castelletti. ‘From Skill to Value: Isolating the Influence of End-User 
Behaviour on Seasonal Forecast Assessment’. Hydrology and Earth System Sciences Discussions 2020 (2020): 1–20. 
doi:10.5194/hess-2019-659.  
 
Parton, Kevin A., Jason Crean, and Peter Hayman. ‘The Value of Seasonal Climate Forecasts for Australian Agriculture’. 
Agricultural Systems 174 (2019): 1–10. doi:10.1016/j.agsy.2019.04.005.  
 
Thank you for the interesting references. In this part of the literature review we refer to the lack 
of pilot studies demonstrating the value of seasonal forecast products in UK and Europe but it 
was not very clear in the manuscript so we have further clarified this in the new version of the 



manuscript. We make reference to past general studies on seasonal forecast value in reservoir 
operation in the 2nd paragraph of the Introduction.  
 
We thank the reviewer for the references. The Bruno Soares et al (2018) study has been included 
it in the Introduction as well as Giuliani et al. (2020). The latter is the first pilot application in 
Europe demonstrating the value of seasonal forecast products, in this case ECMWF, that we 
have found in the literature. It must be noted that this study is still under review.  
 
The study by Parton et al (2019) is a review of the use of seasonal forecast in agriculture in 
Australia. However, in the context of our study, we could not find any reference using seasonal 
forecast for reservoir operation. 
 
L107: In this sentence, the authors seem to assume that their results could be generalized to 
extra-tropical regions and that the potential for use is region-dependent. However, as the 
authors state, results (forecast value) are in fact highly dependent on the investigated system, 
and therefore this sentence may sound a bit too ambitious compared to the paper objectives.  
 
We have deleted the reference to extra-tropical areas. 
 
Section 2.1: I found this section very clear and helpful.  
 
We thank the reviewer for this positive comment. 
 
L118: Here, I was wondering what type of demand model was used. It is later in the discussion 
that the authors mentioned that the demand is based on observations. This would be worth 
mentioning earlier in the text, and would fit in a Data section.  
 
This is mentioned in section 2.3.3. As we would like to keep this section as generalizable as 
possible we mention this later, in the Case study, in particular in section 2.3.3.  
 
L142 (2.a): More information would be needed at this stage about the forecast skill evaluation, 
for example by mentioning the reference and the benchmark used.  
 
Since we would like this section to be used by others and hence to be as generalizable as 
possible, we have deleted this reference to the specifics of our case study (explained in section 
2.3) in 2.a as well as 2.b 
 
L160-161: The notation for units is not consistent between the text (Ml) and Figure 2 (ML).  
 
This has been corrected. In the new version of the manuscript we use m3 instead of ML 
 
L176: Did you mean a “reasonable chance”?  
 
Yes, thank you 
 
L182: Please consider adding the following reference for ECMWF SEAS5:  
 
Johnson, S. J., Stockdale, T. N., Ferranti, L., Balmaseda, M. A., Molteni, F., Magnusson, L., Tietsche, S., Decremer, D., 
Weisheimer, A., Balsamo, G., Keeley, S. P. E., Mogensen, K., Zuo, H. and Monge-Sanz, B. M.: SEAS5: the new ECMWF 
seasonal forecast system, Geoscientific Model Development, 12(3), 1087–1117, doi:10.5194/gmd-12-1087-2019, 
2019.  
 
Thanks, this reference has been added. 



 
L182-183: I suggest writing “The ECMWF SEAS5 hindcast dataset” because it is the hindcast 
dataset that includes 25 members, while the real-time operational ECMWF SEAS5 has more 
members.  
 
Changed accordingly. 
 
L187: There are two points on this line.   
 
Corrected 
 
L195: This statement needs to be refined. Linear scaling and distribution mapping may lead to 
similar results in terms of bias removal, but they will have very different results on the forecast 
themselves, e.g. linear scaling will just shift the ensemble, while distribution mapping will have 
a different correction for each member, resulting in larger impacts on the spread.  
 
We have added this clarification 
 
L196-198: Usually a difference approach is applied to calculate the correction factor for 
temperatures (see e.g. Lucatero et al. 2018, Teutschbein and Seibert 2012). Similarly the 
correction factor is added/subtracted to correct the raw forecasts. If a ratio approach was 
applied for temperatures, I would suggest adding a short justification of this choice. For instance, 
how are negative temperatures handled?  
 
Lucatero, D., Madsen, H., Refsgaard, J. C., Kidmose, J. and Jensen, K. H.: On the skill of raw and post-processed 
ensemble seasonal meteorological forecasts in Denmark, Hydrology and Earth System Sciences, 22(12), 6591–6609, 
doi:10.5194/hess-22-6591-2018, 2018.  
Teutschbein, C. and Seibert, J.: Bias correction of regional climate model simulations for hydrological climate-change 
impact studies: Review and evaluation of different methods, Journal of Hydrology, 456–457, 12–29, 
doi:10.1016/j.jhydrol.2012.05.052, 2012.  
 
We used an additive factor in the case of temperature but we did not mention this in the 
manuscript. We have clarified this in the new version of the manuscript 
 
L206: “with what was done”  
 
Corrected 
 
L208: The ensemble size has an impact on the CRPS (Ferro et al. 2008) and therefore, on the skill 
when the benchmark has a different ensemble size than the evaluated system. This could impact 
the results presented in this paper, and I would suggest adding comment about the impact of 
the varying ESP ensemble size on your skill results.  
Ferro, C. A. T., Richardson, D. S. and Weigel, A. P.: On the effect of ensemble size on the discrete and continuous 
ranked probability scores, Met. Apps, 15(1), 19–24, doi:10.1002/met.45, 2008.  
 
We thank the reviewer for the comment and reference suggested. However, the ensemble size 
is very unlikely to have a considerable effect on the results of this study because a) the ESP 
forecast quality in this study is too limited and the time range too short to have an important 
effect on the forecast skills and b) the results already show that the forecast value is fairly 
insensitive to changes in the ensemble size (Figure 5) unless a very low number of members (5 
or less) are considered. Nevertheless, it would be an interesting question to explore by means 
of a sensitivity analysis in a future publication.  
 



Section 2.3.5: I would suggest presenting the CRPS (L245-252) before presenting the CRPSS 
(L239-244) since it would define the CRPS notation before using it in the skill equation. There 
are also inconsistencies between the first two equations (CRPS and CRPSS) and the third one 
(mean error), such as the notation for the observations (y vs IObs), the notation for the system 
(Sys vs Syst), the mention of the lead time only in the third equation but not in the previous 
ones.  
 
We have corrected the inconsistencies and we have also changed the order and now CRPS is 
presented before CRPSS as suggested by the reviewer 
 
L237-238: This sentence is repeated twice.  
 
We have removed the duplicated sentence 
 
L243: By choosing ESP as a benchmark, you also make the decision of only analysing the added 
skill from using dynamic weather forecasts over meteorological history, it would be worth 
mentioning.  
 
We have mentioned this as suggested by the reviewer. 
 
L256: Do I understand correctly that the mean error is computed over a time window that varies 
with the lead time you consider, for example to evaluate lead time 6 weeks, you average the 
mean error from week 0, 1, … to 6? Is the same calculation method applied when computing the 
CRPS?  
 
The average CRPS or mean error for a given lead time is equal to the average of the individual 
CRPS or mean error values obtained for the forecasts published across the time frame. We have 
clarified this in the revised manuscript. 
 
L279: I suggest replacing “gets lower” with “gets larger in absolute value”.  
 
Here we refer to DSP-corr which gets lower and not larger for longer lead times 
 
L334: The reference should be to Figure 5 instead of Figure 6.  
 
Corrected 
 
L358: “two specific years”  
 
Corrected 
 
L381-393: In this paragraph, conclusions are likely only valid for linear scaling, and not for any 
bias correction. I would suggest being more specific throughout the paragraph.  
 
We have mentioned that in particular we refer to linear scaling 
 
L446: “that should be kept in mind”  
 
Corrected 
 
Figure 6: I wonder why, for each of the five operation scenarios, the authors do not display both 
DSP-corr and ESP in the same graphs.  



 
This figure has been removed in the revised version of the manuscript after comments from 
other reviewers 
 
Figure 6b and 6g: Shouldn’t the absolute mean error be used to assess the correlation between 
the increase of resource availability and the performance, since both high positive and low 
negatives reflect poor performance?  
 
This figure has been removed in the revised version of the manuscript after comments from 
other reviewers but we wanted to keep the sign of the error because we have observed that 
underestimation has different impacts on the forecast value as compared to overestimation. 
 
Figure 7: It could be interesting to see the mean error and the CRPSS in this figure, even if they 
are not correlated.  
 
We have added both. 
 
Supplementary material – Figure 8: In the legend, I could not remember that 1975-1976 was the 
worst-case scenario. It could be worth mentioning it again at the end of the caption.  
 
We have specified this in the end of the caption too 
 
Supplementary material – Figures 9 to 13: The CRPSS is used to try and explain the gains in value 
from using ESP. Here, it is not clear which benchmark the performance of ESP was compared to 
in order to compute the skill, if it is indeed the CRPSS of ESP being shown. If not, then please 
refer to the fourth general comment. 
 
These figures have been removed in the revised version of the manuscript after comments from 
other reviewers 
  



Reviewer 4 
Dear authors, 
Thank you for this interesting research, written up in a well-organised and clear paper. Overall, 
I have not hesitation to recommend your paper for publication. I do agree with you, that this 
kind of research, with continuous simulation of operational water management to test new 
information sources, methods, or strategies, is valuable for science and in particular for bringing 
findings forward to practice in an informed and iterative way. 
I appreciate in particular your Conclusions section, and clear description of data used, 
methodology, and presentation of results. 
 
We thank the reviewer for their kind words. 
 
General comments 
I have the following main comments: 
 
- The authors assumed the water demand to be known in advance and to be equal to the 
observed reservoir releases (line 220). This may be an important assumption. If more than 
needed was pumped-in for storage, this would perhaps also lead to releasing more than the 
actual demand. Could the authors reflect on this? The actual releases are the result of the 
current water management priorities, which focus on water resources availability. Could this 
have led to the forecast value also being maximum for the rap scenario’s? Could the authors 
address this with a limited sensitivity analysis, varying water demand? (if time, sensitivity 
analysis of other aspects would be interesting as well, e.g. towards the set-up and settings of 
the NSGA optimisation experiment.) 
 
The release data that we use are only the controlled releases (from the outlet tower) and do not 
include spills, so we believe that our assumption that they reflect the demand is reasonable, and 
they should not exceed the actual demands, as suggested by the Reviewer. Moreover, in our 
experiment we have only simulated the refill period during winter when demands are fairly 
stable and predictable, hence also the assumption that demand are known in advance should 
not be too limiting. Finally, the forecast value is quantified with respect to the benchmark and 
both benchmark and DSP under all the scenarios assume the same demand, so it is unlikely that 
changing the demand is going to have an influence on how better DSP does with respect to the 
benchmark. We have clarified these points in section 2.3.3 and in the Details of the optimization 
(Supplementary material). This said, we agree that one could test the influence of the demand 
assumption through a sensitivity analysis, but we would leave this experiment to future studies, 
especially as the manuscript is already quite long (and other Reviewers asked to shorten it 
already). We have thus only mentioned the point in the Discussion of future research (Lines 462-
467). 
 
- To my view, the results show that the bias correction applied, did not work in this particular 
case study, Figure 3 (only changed sign of MAE from under- to over-prediction, as authors also 
indicate in line 364). Could the authors reflect on this in their section on limitations of the 
research? What may be the reason? Could other bias correction methods work better or is this 
not to be expected (e.g. perhaps higher forecast skill is needed to begin with, for post-processing 
methods to be effective)? The poor performance of the bias correction also connects to the 
following comment. 
 
The main reason for the bias correction to fail is the DSP forecast was already doing relatively 
good in terms of skills in 3 exceptionally dry years (Figure 3) and worse in the others, which are 
closer to the average climate conditions. After bias correction, the forecast skills are worsened 



in these 3 exceptionally dry years, but improved in the others. We have included this explanation 
in the Discussion. We think that to find the best bias correction method as well as the best skill 
score is out of the scope of this study but would be interesting to look at this in future works 
together with the sensitivity analysis mentioned above. We have included this in the section 4.1 
Limitations and perspective for future research and implementation (Lines 462-467). 
 
- The Discussion section contains notes and even recommendations on the use of bias 
correction. In my view, the poor performance of the bias correction in this case study, and the 
fact that, as the authors point out, indeed there is only one particular case study analysed here, 
do not warrant such discussion on the merits of bias correction. Could the authors reflect on 
this, and depending on whether they agree or disagree, adjust the Discussion accordingly. 
 
We do not intend to recommend nor reject the use of bias correction. We conclude that more 
studies are needed to investigate the benefits of bias correction when seasonal hydrological 
forecasts are specifically used to inform water resource management. We have now revised the 
manuscript to make sure that our conclusions do not sound like recommendations (Lines 395-
397) 
 
- The Discussion section also recommends use of ensemble (probabilistic) forecasts in 
operational management, which is supported by the research findings, but then connects this 
to UK policy recommendations on long-term water resources planning. This I think is a bridge 
too far, and not needed. I would favour the Discussion to be less broad, and stay focused on the 
research findings presented (see my detailed comments for specific suggestions on where and 
how to make the Discussion section more specific). This leads to my next comment. 
 
As a case study we do not aim to make general recommendations but rather bring into attention 
for future studies and practical applications the importance of some aspects or factors such as 
the uncertainty consideration. We believe that this reference to planning helps the reader 
understand that while rarely considered currently in short term management, risk-based 
approaches attempting to deal with the range of potential future conditions expected are 
already starting to become standard methods in the industry for long term planning. These are 
two fields that are strongly linked, where seasonal and long term planning are often the 
responsibility of the same practitioners/teams within companies, or at least teams that strongly 
interact, and that (could) apply fairly similar methodologies at different time scales.    
 
- I miss a more in-depth discussion on the forecast skill of the DSP used, and the influence of 
forecast lead time throughout the analysis chain. The CRPSS results nicely show that only for the 
first two months the uncorrected forecasts have skill (the bias-forecasts do not have skill). Is this 
positive skill utilised by the operational water management strategies simulated. Could the 
authors suggest ways on how to capitalise more on this positive skill, e.g. by using DSP for the 
first 2-month lead time, and using ESP for months 3 to 6? 
 
The Reviewer suggestion is interesting and potentially worth exploring in future studies. We 
have not included it because of the need to keep the paper concise and because it is not said 
that what brings more skill also brings more value. We believe that a more in-depth analysis of 
the forecast skills-lead time relationship would need a sensitivity analysis what would fit better 
in a potential future publication. It is difficult to say a priori how a mixed DSP-ESP would perform. 
Besides, our results overall suggest that inferring the forecast value from its skill may be 
misleading, given the weak correlation between the two (at least as long as we use skill scores 
that are not specifically tailored to water resources management). We have included this in Sec. 
4.1. as a suggestion for future studies (Lines 462-467) 
 



- Lastly, to come back to the motivation of the authors to bridge science to practice, I would like 
to see observed and simulated releases for sample priority scenarios and years. These actual 
releases throughout a season is what operators will recognise and this will enable a discussion 
on how and to what extend the use of ensemble seasonal forecasts would lead to changes in 
operation. 
 
We thank the reviewer for the interesting suggestion. We cannot, however, publish the 
company data on reservoir releases. The value of the data may also not be representative also 
of the simplified system in study, which is part of a broader conjunctive use system, where 
releases may be driven by broader resource considerations. 

Detailed comments: 
- line 275: Indeed the bias corrected DSP "improves" skill for longer lead times, but only from 
negative skill to less negative skill. I would suggest to point that out. 
 
We have pointed this out. 
 
- line 281: Yes, with bias correction there is "some improvements for some lead times", but still 
with negative skill. Rather than pointing out "some improvements for some lead times", I think 
it is more relevant to point out here that the bias correction as applied here, in this case study, 
is not working and even has adverse effect on forecast performance. 
 
We have modified this paragraph to reflect the in summary the bias correction does not produce 
an improvement in the forecast skills 
 
- line 311: The question is why? Again (See my first general comment, and note that resource 
availability in the results varies only with 1-2%) this may indicate a constraint set-up, favouring 
a focus on rao. Please reflect on this. 
 
Rather than a constraint set-up, this can simply be explained by the reduction of the pumping 
costs after bias correction, which is a consequence of the overestimation of the inflows. We 
have now included this explanation to rap and bal Pareto dominating the benchmark which can 
be also applied to rao (lines 400-401). 
 
- line 382: "Our results show that on average bias correction slightly improves the DSP forecast 
skill (as measured by CRPSS and mean error)". I do not agree here. When looking at the results, 
also on average, bias correction reduced the CRPSS for the first 2 months lead time where the 
DSP had skill (bias correction made skill less negative for further lead times, but still negative), 
and it changed the sign of the average error but did not reduce it, so bias correction was not 
working well. 
 
We agree on this with the reviewer and we have modified this paragraph accordingly. 
 
- line 392: I agree with the authors. Based on this particular study, not much can be discussed 
on the merits of bias correction. Instead I would recommend to focus discussion in the paper 
more on the skill of the ensemble DSP (slightly positive for the first 2 months), how and why this 
is or is not being used in the water system operations simulated (see my last two General 
comments above). 
 
We thank the reviewer for this interesting suggestion. As mentioned above, we have included 
the possibility of combining DSP with ESP as a way to improve seasonal forecast as a suggestion 
for future studies. 



 
- lines 399-404: While I agree with this statement in general, I do not think the research 
presented provides sufficient supporting evidence. Nor is it a surprise or a new finding. 
 
It is true that this cannot be generalized but we believe that the results of this particular study 
support the need to further investigate the adequacy of different skill scores to evaluate the 
forecast value for water management purposes. To our knowledge, the literature on forecasts 
evaluation often overlook the issue of defining scores that are specifically tailored to a particular 
purpose. 
 
- lines 413-416: This is quite a strong recommendation not substantiated with any 
analysis/numbers on what these ’costs’ are. The authors could consider leaving this out. 
 
This was not meant to be a recommendation but a hypothetical and explanatory scenario where 
one product could be preferred over the other. As mentioned above, we do not aim to make 
general recommendations but rather bring into attention for future studies and practical 
applications the importance of some aspects or factors. We have revised the manuscript to 
make sure that they do not sound like recommendations. 
 
- lines 433-436: I am not sure if the link with Long-term water resources planning is appropriate, 
and also I think it is not needed to make the case of risk-based operation on the basis of 
ensemble (probabilistic) forecasts. The results of your study do show this nice enough. The 
authors could consider leaving this out. 
 
As already mentioned above, we believe that this reference to planning may be useful for some 
readers (particularly UK practitioners) who are maybe familiar with risk-based approaches in 
long-term planning, and point them to the fact that similar concepts may be usefully applied in 
short-term management. 
 
- lines 458-467: Yes, developing such toolkit and making available to the water management 
organisation is very valuable. Indeed question here would be to what extend the toolkit is 
customised to the specific case study, and how much time/effort customisation to a new case 
study would require. Could the authors reflect on this in the text? 
 
This toolkit was tailored to this study case. It is an interesting and relevant question that we are 
still not able to answer but we are now testing the use of the toolkit as a mechanism to support 
knowledge transfer to practitioners and to evaluate how easily they can customise it, and this 
will be the focus of a future publication. We have clarified this in section 4.1 (Lines 475-478). 
 
- line 475: DSP is now more readily available from international weather forecast centres and 
more easily processed, such that this by-sentence on "ESP being more easily derived", in my 
view is perhaps becoming less relevant. Also because, as the authors describe, they have 
provided a Toolkit for ease-of-use. 
 
From our own experience and through our collaboration with practitioners at water companies, 
downloading and post-processing the seasonal forecasts still needs a considerable level of 
expertise and while weather forecast centres, such as ECMWF, are gradually facilitating the 
access to the data, the process of bias correction is still quite difficult. Not only because they still 
do not provide with such tools but because first we need to decide whether applying bias 
correction or not and also select (and understand) the most adequate bias-correction method. 
And as we have seen in this study this is still not clear. This has been added to the Discussion 
(Lines 418-422) 



 
Please see for suggested technical changes (editorials) the annotated pdf. 
 
Apart from the pdf with the reviewer comments we couldn’t find an annotated pdf. 
 
Thank you and with best regards. 

  



List of all relevant changes 
Dear editor, 

Thank you for the opportunity to respond to the reviewers’ comments and submit a revised 
manuscript. 

The reviews were positive overall and very helpful to improve the manuscript. However, 
sometimes the reviewers asked for changes or additions to the paper in different directions so 
that we found it impossible to accommodate all of them simultaneously. Some reviewers 
appreciated the applied nature of our work and suggested to give more details about the case 
study, while another reviewer asked for more details about the methodology; all reviewers 
suggested further analyses of various aspects of our modelling chain, while also asking for a 
more concise, shorter paper. Some of these suggestions for further analysis are very interesting 
and are worthwhile exploring in future publications, but in our opinion are beyond the scope of 
this paper.  

So, we have tried to accommodate as many as possible of the reviewers’ comments while also 
maintaining the focus on the key question of our work (what is the value of seasonal forecast 
for water resource management?) and mentioned in the Discussion session the further 
analyses that we think are beyond the scope of this paper. 

List of relevant changes. We have: 

 edited the manuscript throughout for more clarity 
 added more references 
 improved the following aspects of the Methodology: 

o clarified the formulation of the optimization problem 
o further justified the use of ensemble modelling instead of deterministic, the use of 

past data for bias correction method and the use of ESP as forecast value 
benchmark 

 improved the following aspects of the Case study description: 
o the system schematic (Fig. 2) 
o the explanation of how the rule curve operates 
o added information about the observed hydrological data in the Supplementary 

material 
 simplified the Results section: 

o removed Fig. 6 (in the original manuscript), which we realised was making the 
storyline unnecessarily complex and was raising more questions than it was 
answering. Some of the content of that Fig. 6 has been integrated into what was 
Fig.7 (and is now Fig.6 in the revised manuscript). 

 improved the Discussion section: 
o further clarified the reasons of why bias correction deteriorates the forecast skills 

but improves the forecast value and further discussed whether ESP or DSP should 
be applied 

o added further possible future research. 
 shared a link to an anonymised version of the code for application of our methodology. 
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Abstract. Improved skill of long-range weather forecasts has motivated an increasing effort 
towards developing seasonal hydrological forecasting systems across Europe. Among other 
purposes, such forecasting systems are expected to support better water management 
decisions. In this paper we evaluate the potential use of a real-time optimisation system 
(RTOS) informed by seasonal forecasts in a water supply system in the UK. For this purpose, we 
simulate the performances of the RTOS fed by ECMWF seasonal forecasting systems (SEAS5) 
over the past ten years, and we compare them to a benchmark operation that mimics the 
common practices for reservoir operation in the UK. We also attempt to link the improvement 
of system performances, i.e. the forecast value, to the forecast skill (measured by the mean 
error and the Continuous Ranked Probability Skill Score) as well as other factors such as to the 
bias correction of the meteorological forcing, the decision maker priorities, hydrological 
conditions and level of uncertainty consideration.the forecast ensemble size. We find that 
some of these factors control the forecast value much more strongly thanin particular the 
decision maker priorities and the hydrological conditions exert a strong influence on the 
forecast skill.-value relationship. For the (realistic) scenario where the decision-maker 
prioritises the water resource availability over energy cost reductions, we identify clear 
operational benefits from using seasonal forecasts, provided that forecast uncertainty is 
explicitly considered. by optimising against an ensemble of 25 equiprobable forecasts. These 
operational benefits are also observed when the ensemble size is reduced up to a certain limit. 
However, when comparing the use of ECMWF-SEAS5 products to ensemble streamflow 
predictions (ESP), which are more easily derived from historical weather data, we find that ESP 
remains a hard-to-beat reference  not only in terms of skill but also in terms of value. 

1. Introduction 
In a water-stressed world, where water demand and climate variability are increasing, it is 
essential to improve the efficiency and lifespan of existing water infrastructure along with, or 
possibly in place of, developing new one(Stocker et al., 2014) are increasing, it is essential to 
improve the efficiency of existing water infrastructure along with, or possibly in place of, 
developing new assets (Gleick, 2003). In the current information age, there is a great 
opportunity to do this by improving the ways in which we use hydrological data and simulation 
models (the ‘information infrastructure’) to inform operational decisions (Gleick et al., 2013, 
Boucher et al., 2012). 



Hydro-meteorological forecasting systems are a prominent example of information 
infrastructure that has a huge potential for improvingcould be used to improve the efficiency 
of water infrastructure operation efficiency. The usefulness of hydrological forecasts has been 
demonstrated in several applications, particularly to enhance reservoir operations for flood 
management (Voisin et al., 2011, Wang et al., 2012, Ficchì et al., 2016) and hydropower 
production (Faber and Stedinger, 2001, Maurer and Lettenmaier, 2004, Alemu et al., 2010, Fan 
et al., 2016). In these types of systems, we usually find a strong relationship between the 
forecast skill (i.e. the forecast ability to anticipate future hydrological conditions) and the 
forecast value (i.e. the improvement in system performance obtained by using forecasts to 
inform operational decisions). However, this relationship becomes weaker for water supply 
systems, in which the storage buffering effect of surface and groundwater reservoirs may 
reduce the importance of the forecast skill (Anghileri et al., 2016, Turner et al., 2017), 
particularly when the reservoir capacity is large (Maurer and Lettenmaier, 2004, Turner et al., 
2017). Moreover, in water supply systems, decisions are made taking into considerationby 
considering the hydrological conditions over lead time of several weeks or even months. 
Forecast products with such lead times, i.e. ‘seasonal’ forecasts, are typically less skilful 
compared to the short or medium -range forecasts used for flood control or hydropower 
production applications. 

When using seasonal hydrological scenarios or forecasts to assist water system operations, 
three main approaches are available: worst case scenario, ensemble streamflow prediction 
(ESP) and dynamical streamflow prediction (DSP). In the worst-case scenario approach, 
operational decisions are made by simulating their effects against a repeat of the worst 
hydrological droughts on records. Worst-case forecasts clearly have no particular skill, but 
their use has the advantage that it providesof providing a lower bound of system performance 
and reflect the risk-adverse attitude of most water resource management practice. This 
approach is commonly applied by water companies in the UK for reservoir operation and it is 
recommended byreflected in the water resource management planning guidelines of the UK 
Environment Agency (EA, 2017). 

In the ensemble streamflow prediction (ESP) approach, a hydrological forecasts ensemble is 
produced by forcing a hydrological model using the current initial hydrological conditions and 
historical weather data over the period of interest (Day, 1985). Operational decisions are then 
evaluated against suchthe ensemble. The skill of the ESP ensemble is mainly due to the 
updating of the initial conditions. However, sinceSince ESP is limited toforecasts are based on 
the range of past observations, ESP forecaststhey can have limited skill under non-stationary 
climate and where initial conditions do not dominate the seasonal hydrological response 
(Arnal et al., 2018). Nevertheless, the ESP approach is popular among operational agencies 
thanks to its simplicity, low cost, efficiency and its intuitively appealing nature (Bazile et al., 
2017), i.e.. Some previous studies assessed the potential of seasonal ESP is coherent to the 
human tendency to examine a situation according to past experiences. Seasonal ESP was used 
to assess possible improvementsimprove the operation of supply-hydropower systems 
operation, e.g. by. For example, Alemu et al. (2010) who reported achieving an average 
economic benefit of 7%  with respect to the benchmark operation policy, and bywhereas 
Anghileri et al. (2016) who however did not observereported no significant improvements 
(possibly because they only used the ESP mean, instead of the full ensemble). 

Last, the dynamical streamflow prediction (DSP) approach uses seasonalnumerical weather 
forecasts produced by a dynamic climate model to feed the hydrological model (instead of 



historical weather data). The output is also an ensemble of hydrological forecastforecasts, 
whose skill comes from both the updated initial condition as well asand the predictive ability 
of the numerical weather forecasts,. The latter is due to global climate teleconnections such as 
the El Niño Southern Oscillation (ENSO) and the North Atlantic Oscillation (NAO). Therefore, 
theseDSP forecasts are generally more skilful in areas where climate teleconnections exert a 
strong influence, such as tropical areas, and particularly in the first month ahead (Block and 
Rajagopalan, 2007). In areas where climate teleconnections have a weakweaker influence, 
instead, DSP can have lower skill than ESP, particularly beyond the first lead month (Arnal et 
al., 2018, Greuell et al., 2019). Nevertheless, recent advances in the prediction of climate 
teleconnections in Europe, such as the NAO (Wang et al., 2017, Scaife et al., 2014, Svensson et 
al., 2015), means that seasonal forecasts skill is likely to continue increasing in nextthe coming 
years. Post-processing techniques such as bias correction can also potentially improve seasonal 
streamflow forecast skill (Crochemore et al., 2016). However, studiesStudies assessing the 
benefits of bias correction for seasonal hydrological forecasting are still rare in the literature, 
while. While bias correction is often recommended or even required for impact assessments to 
improve forecast skills (Zalachori et al., 2012, Schepen et al., 2014, Ratri et al., 2019, Jabbari 
and Bae, 2020) studies on long-term hydrological projections (Ehret et al., 2012, Hagemann et 
al., 2011) highlighted a lack of clarity on whether bias correction should be applied or not. In 
recent years, meteorological centres such as the European Centre for Medium-Range Weather 
Forecast (ECMWF) and the UK Met Office, have made important efforts to provide skilful 
seasonal forecasts, both meteorological (Hemri et al., 2014, MacLachlan et al., 2015) and 
hydrological (Bell et al., 2017, Arnal et al., 2018) in the UK and Europe, and encouraged their 
application for water resource management. To our knowledge, however, pilot applications 
demonstrating the value of such seasonal forecast products to improve operational decisions 
are still lacking.To our knowledge, however, pilot applications demonstrating the value of such 
seasonal forecast products to improve operational decisions are mainly lacking and have only 
very recently started to appear (Giuliani et al., 2020). 

While the skill of DSP is likely to keep increasing in the next years, thisit may still not produce 
considerable improvement in water system operations soon, especially inremain low at lead 
times relevant for the operation of water supply systems where the forecast skill-value 
relationship is weaker. Nevertheless, a number of studies have demonstrated that other 
factors, which are not necessarily captured by forecast skill scores, may also be important to 
improve the forecast value of short-term and seasonal forecasts.. These include accounting 
explicitly for the forecast uncertainty in the system operation optimization (Yao and 
Georgakakos, 2001, Boucher et al., 2012, Fan et al., 2016), using less rigid operation 
approaches (Yao and Georgakakos, 2001, Brown et al., 2015, Georgakakos and Graham, 2008) 
and making optimal operational decisions during severe droughts (Turner et al., 2017).(Turner 
et al., 2017, Giuliani et al., 2020). Additionally, the forecast skill itself can be defined in 
different ways, and it is likely that different characteristics of forecast errors (sign, amount, 
timing, etc.) affect the forecast value in different ways. Widely used skill scores for hydrological 
forecast ensembles are the rank histogram (Anderson, 1996), the relative operating 
characteristic (Mason, 1982) and the ranked probability score (Epstein, 1969). The ranked 
probability score is widely used by meteorological agencies and it is the recommended score 
for evaluation of overall performance since it provides a measure of both the bias and the 
spread of the ensemble into a single factor, while it can also be decomposed into different 
sub-factors in order to look at the different attributes of the ensemble forecast (Pappenberger 
et al., 2015, Arnal et al., 2018). However, whether these skill score definitions are relevant for 



the specific purpose of water resources management, or whether other definitions would be 
better proxy of the forecast value, remains an open question. 

In this paper, we aim at contributing to the ongoing discussion on the value of seasonal 
weather forecasts in decision making (Bruno Soares et al., 2018) and at assessing the value of 
DSP for improving water system operation by application to a real-world reservoir system, and 
in doing so we build on thisthe growing effort to improve seasonal hydrometeorological 
forecasting systems and make them suitable for operational use in the UK (Bell et al., 2017, 
Prudhomme et al., 2017). Through this application we aim to answer the three following 
questions: 1) can the efficiency of a UK real-world reservoir supply system be improved by 
using DSP forecasts?, 2) does accounting explicitly for forecast uncertainty improve forecast 
value (for the same skill)? and 3) what other factors influence the forecast skill-value 
relationship? 

For this purpose, we will simulate and compare the performance of a real-time optimization 
system informed by seasonal weather forecasts over a historical period for which both 
observational and forecast datasets are available, and we will benchmarkcompare it to a 
worst-case scenario approach, which is commonly used to inform water supply management 
in the UK that mimics current system operation. As for the seasonal forecast products, we will 
assess both ESP and DSP derived from the ECMWF seasonal forecast products (Tim et al., 
2018). We will also compare the forecast skill and value before and after applying bias 
correction to the ECMWF forecast products, and for different degrees of forecast uncertainty 
(i.e. different ensemble sizes). To account for decision-making uncertainty,. System 
performances will be measured in terms of water availability and energy costs, and we will also 
simulate the performance of the system underinvestigate five operatingdifferent scenarios 
representing different operational prioritiesfor prioritising these two objectives depending on 
the decision-maker preferences. Finally, we will discuss opportunities and barriers to bring 
such approach into practice.  

Our results are meant to provide water managers with an evaluation of the potential of using 
seasonal forecasts in extra-tropical areas, such as the UK, and to give forecasts providers 
indications on directions for future developments that may make their products more valuable 
for water management. 

2. Methodology 
2.1. Real-time optimization system 

An overview of the real-time optimization system (RTOS) informed by seasonal weather 
forecasts is given in Figure 1 (left part). It consists of three main stages that are repeated each 
time an operational decision must be made. These three stages are:  

1.a Forecast generation. We use a hydrological model forced by seasonal weather forecasts to 
generate the seasonal hydrological forecasts. The initial conditions are determined by forcing 
the same model by (recent) historical weather data for a warm-up period. Another model 
determines the future water demand during the forecast horizon. Although not tested in this 
study, in principle such a demand model could also be forced by seasonal weather 
forecastforecasts. 

1.b Optimization. This stage uses (i) a reservoir system model to simulate the reservoir 
storages in response to given inflows and operational decisions, (ii) a set of operation objective 
functions to evaluate the performance of the system, for instance, to maximize the resource 



availability or to minimize the operation costs, and (iii) an a multi-objective optimizer to 
determine the set of optimal operational decisions that realise. When a problem has multiple 
objectives, optimisation does not provide a single optimal solution (i.e. a single sequence of 
operational decisions over the forecast horizon) but rather it provides a set of (Pareto) optimal 
solutions, each realising a different trade-offsoff between the objective functions.conflicting 
objectives (for a definition of Pareto optimality see e.g. (Deb et al., 2002)).  

1.c Selection of one trade-off solution. In this stage, we represent the performance of the 
optimal trade-off decisionssolutions in what we call a “pre-evaluation Pareto front”. The terms 
“pre-evaluation” highlights that these are the anticipated performances according to our 
models and hydrometeorological forecasts, not the actual performances achieved when the 
decisions are implemented (which are unknown at this stage).  Among this set of optimal 
decisionsBy inspecting the pre-evaluation Pareto front, the operator will select one Pareto-
optimal solution according to their priorities, i.e. the relative importance giventhey give to 
each operation objectivesobjective. In a simulation experiment, we can mimic the operator 
choice by setting some rule to choose one point on the Pareto front (and apply it consistently 
at each decision timestep of the simulation period).  

2.2. Evaluation 
When the RTOS is implemented in practice, the selected operational decision is applied to the 
real system and the RTOS used again, with updated system conditions, when a new decision 
needs to be made or new weather forecasts become available. If however we want to evaluate 
the performance of RTOS in a simulation experiment (for instance to demonstrate the value of 
using RTOS to reservoir operators) we need to combine it with the evaluation system depicted 
in the right part of Figure 1. Here, the selected operational decision coming out of the RTOS is 
applied to the reservoir system model, instead of the real system. The reservoir model is now 
forced by hydrological inputs observed in the (historical) simulation period, instead of the 
seasonal forecasts, which enables us to estimate the actual flows and next-step storage that 
would have occurred if the RTOS was used at the time. This simulated next-step storage can 
then be used as the initial storage volume for running the RTOS at the following timestep. 
Once the process has been repeated for the entire period of study, we can provide an overall 
evaluation of the hydrological forecast skill and the performance of the RTOS, i.e. the forecast 
value. This evaluation (Figure 1) consists of two stages: 

2.a Forecast skill evaluation. In order to evaluateThe forecast skill is evaluated based on the 
capacity of the differences between hydrological forecast to predictforecasts and observed 
reservoir inflows over the simulation period. For this purpose, we can calculate the observed 
inflows we apply forecast skill scores and absolute error indicators. In this paper, we will 
usedifferences between the observed and the forecasted inflows or we can use forecast skill 
scores such as the continuous ranked probability skill score (CRPSS) and the absolute 
difference between the observed and forecasted inflows.). 

2.b Forecast value evaluation. The forecast value is presented as the improvement of the 
system performance obtained by using the RTOS over the simulation period, with respect to 
the performance under a simulated benchmark operation. Notice that, because the RTOS deals 
with a multi-objective problem objectives and we have to implementhence provides a rule to 
select one solution outset of the pre-evaluation Pareto frontoptimal solutions, in principle we 
could run a different simulation experiment for each possible definitionpoint of the selection 
rulepre-evaluation Pareto front, i.e. for each possible definition of the operational priorities.  
However, for the sake of simplicity, we onlywill simulate five differenta smaller number of 



relevant and well differentiated operational priorities, and thus obtain a . The simulated 
performances of these solutions are visualised in a “post-evaluation” Pareto front with five 
points.. In this Pareto front diagram, the origin of the coordinates represents the performance 
of the benchmark operation, and the performances of any other solution are rescaled with 
respect to the benchmark performance. Therefore, a positive value along one axis represents 
an improvement in that operation objective with respect to the benchmark, whereas a 
negative value represents a deterioration. When values are positive on both axes, the 
simulated RTOS solution dominates (in a Pareto sense) the benchmark; the further away from 
the origin, the more the forecast has proven valuable for decision-making. If instead one value 
is positive and the other is negative then we would conclude that the forecast value is neither 
positive noror negative, because the improvement of one objective by the RTOS was achieved 
at the expenses of the other.  

2.3. Case study 
2.3.1. Description of the reservoir system 

The reservoir system used in this case study is a two-reservoir system in the South West of the 
UK (schematised in Figure 2).Figure 2). The two reservoirs are moderately sized with storage 
capacities in the order of 20,000 megalitres (Ml),000 m3 (S1) and 5,000 Ml,000 m3 (S2) (the 
average of UK reservoirs is 1,377 Ml,000 m3 (EA, 2017)). The system is partially shared 
between two different water companies, reservoir S1 being the system element used by both 
companies. The gravity releases from this reservoir S1 (uS1,R) are used by the owner  
companyfeed into river R, and thus contribute to support downstream abstraction during low 
river (R) flows. The other company can also use pumped  periods. Pumped releases from S1 
(uS1,D) to complementand gravity releases from reservoir S2 (uS2,D)  from their own reservoir 
(S2) in supplying D in a wider conjunctive use system. Both reservoirs are required to make 
environmental compensation releases. 

are used to supply the demand node D. A key operational aspect of the system is the 
possibility of pumping water back from river R into the shared reservoir S1. Pumped inflows 
(uR,S1) may be operated in the winter months to (from 1st November till 1st April) to supplement 
natural inflows, provided sufficient waterdischarge is available in the river. (R). This facility 
provides additional drought resilience, as it allows by allowing the companiesoperator to 
increase reservoir storage if natural inflows are insufficient during the in winter months (from 
1st November till 1st April) to to help ensure meetingthat the demand in the following summer 
demand. The two companies that operate the system liaise regularly, particularly regarding 
the pumped storage operation, which is constrained by rule curves, and has operated in eleven 
years since 1995can be met. As the pump energy consumption is costly, there is an important 
trade-off between the operating cost of pump storage and achieving drought resilience. 

The pumped storage operation is constrained by a rule curve applied, and has operated in the 
current operation procedureseleven years since 1995. The rule curve defines the storage level 
at which pumps are triggered. Each point on the curve is derived based on the amount of 
pumping that would be required to refillfill the reservoir under the worst historical observed 
inflows between that point in time and by the end of the pump storage period (1st April).), 
under the worst historical inflows scenario. The pumping trigger is therefore risk-averse, which 
means there is a reasonable changechance of pumping too early on during the refill period. 
This increases and increasing the likelihood of reservoir spills if spring rainfall is abundant, 
which means . This may result in unnecessary expenditure on pumping. Informing the pump 
operationsoperation by using seasonal forecasts of future natural inflows (IS1 and IS2) may thus 



help to reduce the volume of water pumped whilst achieving the same reservoir storage at the 
end of the refilling period. 

2.3.2. Forecast generation 
In this study we generated dynamical streamflow predictions (DSP) by forcing a lumped 
hydrological model, the HBV model (Bergström and Singh, 1995), with the seasonal ECMWF 
SEAS5 weather hindcasts (Tim et al., 2018). The ECMWF SEAS5(Tim et al., 2018, Johnson et al., 
2019). The ECMWF SEAS5 hindcast dataset consists of an ensemble of 25 members starting on 
the 1st day of every month and providing daily temperature and precipitation with a lead time 
of 7 months.  The spatial resolution is 36 km which compared to the catchment sizes (28.8 km2 
for S1 and 18.2 km2 for S2) makes it necessary to bias correct and downscale the ECMWF 
hindcasts. Given the lack of clarity in the potential benefits of bias correction (Ehret et al., 
2012), we will provide results of using both non-corrected and bias corrected forecasts. . The 
dataset of weather hindcast is available from 1981, whereas reservoir data are available for 
the period 2005-2016. Hence, we used the period 2005-2016 for the RTOS evaluation and the 
earlier data from 1981 for bias correction. of the meteorological forcing. While limited, this 
period captures a variety of hydrological conditions, including dry oneswinters in 2005-06, 
2010-2011 and 2011-12, relativelywhich are close to the driest period on records (1975-1976) 
(see more details in (Figure 7) of the Supplementary Material). This is important because, under 
drier conditions, the system performance is more likely to depend on the forecast skill and the 
benefits of RTOS may become more apparent (Turner et al., 2017). Daily inflows were 
converted to weekly inflows for consistency with the weekly time step applied in the reservoir 
system model. 

A linear scaling approach (or “monthly mean correction”) was applied for bias correction. of 
precipitation and temperature forecasts. This approach is simple and often provides similar 
results in terms of bias removal as more sophisticated approaches such as the quantile or 
distribution mapping (Crochemore et al., 2016). A correction factor is calculated as the ratio 
(for precipitation) or the difference (for temperature) between the average daily observed 
value and the forecasted value (ensemble mean) values of the variable of interest 
(precipitation or temperature) ), for a given month and year. The correction factor is then 
applied as a multiplicative factor (precipitation) or as an additive factor (temperature) to 
correct the raw daily forecast valuesforecasts. A different factor is calculated and applied for 
each month and each year of the evaluation period (2005-2016). For example, for November 
2005 we obtain the precipitation correction factor as the ratio between the mean observed 
rainfall in November from 1981 untilto 2004 (i.e. the average of 24 values) and the mean 
forecasted rainfall for the samethose months (i.e. the average of 24x25 values, as we have 25 
ensemble members). For November 2006, we re-calculate the correction factor by also 
including the observations and forecasts of November 2005, hence taking averages over 25 
values; and so forth. The rationale of this approach is to best mimic what would happen in 
real-time, when the operator would likely access all the available past data and hindcasts for 
the bias correction. 

As anticipated in the Introduction, the ESP is an ensemble of equiprobable weekly streamflow 
forecasts generated by the hydrological model (HBV in our case) forced by meteorological 
inputs (precipitation and temperature) observed in the past. In our case and for For 
consistency with what done for the bias correction of approach used for the ECMWF SEAS5 
forecastshindcasts, we useproduce the ESP using meteorological observations (precipitation 
and temperature) from 1981 until the year before the simulated decision timestep to produce 



the ESP.. This also producesleads to producing an ensemble of similarincreasing size (from 24 
to 35 members) with respect but roughly similar to the ECMWF ensemble size (25 members). 

2.3.3. Optimization: Reservoir system model, operation objective 
functions and optimiser 

The reservoir system dynamics is simulated by a mass balance model implemented in Python. 
The simulation model is linked to an optimiser to determine the optimal scheduling of 
pumping (uR,S1) and release (uS1,D and uS2,D) decisions. AsFor the optimiser we useduse the 
NSGA-II multi-objective evolutionary algorithm (Deb et al., 2002) implemented in the open-
source pythonPython package Platypus (Hadka, 2018). We set two operation objectives for the 
optimiser: to minimize the overall pumping energy costscost and to maximize the water 
resource availability at the end of the pump storage period. The first objective 
functionpumping cost is calculated as the sum of the weekly energy costs associated to 
pumped inflows and pumped releases (uR,S1 and uS1,D) over the optimisation period. The second 
function resource availability is the mean storage volume in S1 and in S2 at the end of the 
optimisation period (1st April). The release of S1 uS1,When optimisation is run against a forecast 
ensemble, the two objective functions are evaluated against each ensemble member and the 
average is taken as final objective function value. The gravity releases from S1 (uS1,R is) are not 
considered aas decision variablevariables and is defined bythey are set to the observed values 
during the period of study. This choice is however not likelyunlikely to have important 
implications on the optimization results because uS1,R on average only represents theonly 15% 
of the total S1 releases from S1 (uS1,D + uS1,R). Also, we made the simplifying assumptionassume 
that the future water demand isdemands are perfectly known at each time stepin advance, 
and thus defined D byset them to the sum of the observed releases from S1 (uS1,D) and S2 
(uS2,D) for the period of study, instead of using a demand model. The. This simplification is 
reasonable for our case study as the water demand is fairly stable and predictable in winter, 
and it enables us to focus on the relationship between skill and value of the seasonal 
hydrological forecast skill and the forecast value while avoiding the influence of non-perfect 
water demand forecasts. while assuming no error in demand forecasts. More details about the 
reservoir simulation model and the optimisation problem are given in the Supplementary 
Material. 

2.3.4. Selection of the trade-off solution 
In order to take into account the uncertainty inWe use five different rules for the selection of 
the trade-off solution, we estimate the forecast value under five operating scenarios out of the 
20 available in from the pre-evaluation Pareto front (see Figure 1). They represent five 
selection rules based on different operational priorities, according to the relative importance 
given to each performance objectives: 1) resource availability only (rao), 2) resource 
availability prioritised (rap), 3) balanced (bal), 4) pumping savings prioritised (psp) and 5) 
pumping savings only (pso). The same selection rule is), and apply them consistently applied at 
each decision timestep of the simulation period. The relative importance of the objectives is 
quantified as the percentile of the performance improvement along the axes of the pre-
evaluation Pareto front. For instance, rao isThe five rules correspond to five different scenarios 
of operational priorities. They are: 1) resource availability only (rao), which assumes that the 
operator consistently selects the extreme solution in the pre-evaluation Pareto front that 
delivers the largest improvement in resource availability; rap is2) resource availability 
prioritised (rap) selects the solution delivering the 75% percentile in resource availability 
increase among the 20 operation scenarios available; bal delivers; 3) balanced (bal) selects the 



solution delivering the median improvement; etc in resource availability; 4) pumping savings 
prioritised (psp) selects the solution delivering the 75% percentile in energy cost reductions; 
and 5) pumping savings only (pso), which selects the best solution for energy saving. 

2.3.5. Forecast skill evaluation 
We useduse two metrics to evaluate the forecast skill:, a skill score and the mean error., to 
evaluate the quality of the hydrological forecasts over our simulation period (from November 
to April).  

A skill score evaluates the performance of a given forecasting system with respect to the 
performance of a reference forecasting system. As a measure of performance, we use the 
continuous ranked probability score (CRPS) (Brown, 1974) (Hersbach, 2000). The CRPS is 
defined as the distance between the cumulative distribution function of the probabilistic 
forecast and the empirical distribution of the corresponding observation. At each forecasting 
step, the CRPS is thus calculated as: 

𝐶𝑅𝑃𝑆(𝑝(𝑥), 𝐼ை௦) =  න(𝑝(𝑥) − 𝐻൫𝑥 < 𝐼ை௦൯)ଶ𝑑𝑥 

where p(x) represents the distribution of the forecast; IObs is the observed inflow [m3]; and H is 
the empirical distribution of the observation, i.e. the step function which equals 0 when x < IObs 
and 1 when x > IObs. The lower the CRPS, the better the performance of the forecast. As a 
measure of performance, we use the continuous ranked probability score (CRPS) (Brown, 
1974).In this study weekly forecast and observation data were used to compute individual 
CRPS values. The skill score is then defined as: 

𝐶𝑅𝑃𝑆𝑆 = 1 − 
𝐶𝑅𝑃𝑆ௌ௬௦

𝐶𝑅𝑃𝑆ோ
 

When the skill score is higher (lower) than zero, the forecasting system is more (less) skilful 
than the reference. When it is equal to zero, the system and the reference have equivalent 
skill. Following the recommendation by Harrigan et al. (2018) we used ensemble streamflow 
predictions (ESP) as a “tough to beat” reference, which is more likely to demonstrate the “real 
skill” of the hydrological forecasting system (Pappenberger et al., 2015). based on dynamic 
weather forecasts.  

The continuous ranked probability score appearing in the above equation is defined as the 
distance between the cumulative distribution function of the probabilistic forecast and the 
empirical distribution of the corresponding observation. At each forecasting step, and for a 
given lead time, CRPS is thus calculated as: 

𝐶𝑅𝑃𝑆(𝑝(𝑥), 𝑦) =  න(𝑝(𝑥) − 𝐻(𝑥 < 𝑦))ଶ𝑑𝑥 

Where p(x) represents the distribution of the forecast; y is the observation; and H is the 
empirical distribution of the observation, i.e. the step function which equals 0 when x < y and 1 
when x > y. The lower the CRPS, the better the performance of the forecast. The average CRPS 
for a given lead time is equal to the mean of the CRPS values across the time frame. In this 
study weekly forecast and observation data were used to compute CRPS.  

The mean error measures the difference between the forecasted and the observed inflows. (at 
monthly scale). The mean error is negative when the forecasts tend to underestimate the 



observations and positive when the forecasts overestimate the observations. The mean error 
for a given forecasting step and lead time T [weeksmonths] is: 
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where I is the inflow [MLm3], t is the timestep [weekmonth] and M the total number of 
members (m) of the ensemble.  

2.3.6. Forecast value evaluation and definition of the benchmark 
operation 

To evaluate the forecast value of DSP (before and after bias correction) and ESPthe 
hydrological forecasts, we compared the simulated performance of the RTOS (Figure 1) 
informed by these seasonal weather forecast productsforecasts with the simulated 
performance of a benchmark operation. The benchmark mimics common practices in reservoir 
operation in the UK, whereby operational decisions are made against a worst-case scenario – a 
repeat of the worst hydrological drought on records. We can (1975-76). This comparison 
enables us to show the potential benefits of using seasonal forecast with respect to the 
current approach. We simulate the benchmark operation using similar steps as in the RTOS 
represented in Figure 1, but with three main variations.  First, instead of seasonal weather 
forecasts, we use the historical weather data recorded in Nov 1975-Apr 1976. (the worst 
drought on records). Second, the optimiser only determines the optimal scheduling of 
reservoir releases (uS1,D and uS2,D), whereas) but not that of pumped inflows (uR,S1)). Instead, 
these are determined by the rule curve applied in the current operation procedures. 
Specifically, if at the start of the week the storage level in S1 is below the storage volume 
defined by the rule curve for that calendar day, the operation triggers the pumping system 
during that week (we assume that the triggered pumped inflow is equal to the maximum pipe 
capacity).  Third, the optimiser only aims at minimising pumping costs, whereas the resource 
availability objective is turned into a constraint, i.e.  the mean storage volume of the two 
reservoirs must be maximum by the end of the pump storage period (1st April) and no trading-
off with pumping costs reduction is allowed. 

3. Results 
3.1 Forecast skills 

First, we analyse the skill of DSP hydrological forecasts. Figure 3a shows the average CRPSS at 
different lead times before (red) and after (blue) bias correction.  of the meteorological 
forecasts. We compute the average CRPSS for a given lead time as the average of the CRPSS 
obtained for each forecast used for the simulation of the reservoir system in that time frame. 
For instance, the forecast for a 3-month lead time, since the simulation time frame is in this 
case 1 Jan to 1 Apr, we average the CRPSS values obtained for the 1 Jan-1 Apr, 1 Feb-1 Apr and 
1 Mar-1 Apr forecasts.  

Before bias correction, the average forecast skill is highestscore is positive, i.e. the forecast is 
more skilful than the benchmark (ESP), only at 1 -month or 2-month lead time and decreases 
with larger lead timetimes (solid red line). Furthermore, the skillCRPSS is higher than average 
in the three driest winters, i.e. 2005-2006, 2010-2011, 2011-2012 (dashed lines). If we 
compare DSP to DSP-corr (red and blue solid lines), we see that bias correction deteriorates 
the average skillsskill scores for shorter lead times (1 and 2 months) while it improves itthem 



for longer ones (3,4 and 5 months).) but the value is still negative, i.e. the forecast is less skilful 
than the benchmark (ESP). In the driest years (dashed lines) bias correction deteriorates the 
skill score for most lead times.  

The We compute the average mean error for a given lead time as for CRPSS. The computed 
mean error values (Figure 3b) indicatesindicate that DSP systematically underestimates the 
inflow observations but less so in the three driest winters. After bias correction (DSP-corr), this 
systematic underestimation turns into a systematic overestimation. Also, the average mean 
error gets lower for longer lead times, though not as much in the driest years. 

In summary, we can conclude that bias correction does not seem to produce a systematican 
improvement in the forecast skill for our observation period, but only some improvement at 
some lead times. On the other hand, what we find in our case study is a clear signal of bias 
correction turning negative mean errors (inflow underestimation) into positive errors 
(overestimation). So, while the magnitude of errors stays relatively similar, the sign of those 
errors changes. We will go back to this point later on, when analysing the skill-value 
relationship.   

   

 

3.2 Forecast value 
The forecast value is presented here as the simulated system performance improvement, i.e. 
increase in resource availability and in pumping cost savings, with respect to the benchmark 
operation.  

3.2.1 Effect of operational priority scenario and forecast product on the forecast value 
We start by analysing the average forecast value over the simulation period 2005-2016 (Figure 
4) for the three seasonal weather forecast products (DSP, DSP-corr and ESP) and the perfect 
forecast, under five operational policy scenarios (rao: resource availability only; rap: resource 
availability prioritised;  bal: balanced; psp: pumping savings prioritised; and pso: pumping 
savings only).  

Firstly, we notice in Figure 4 that the monthly pumping energy cost savings vary widely with 
the operational priority. The range of variation depends on the forecast type, going from 
£20,000 to £48,000 for the perfect forecast and from -£77,000 to £48,000 for the three 
seasonal weather forecasts.DSP, DSP-corr and ESP.  For all forecast products, the improvement 
in resource availability shows lower variability, with an improvement of less than +2% (of the 
mean storage volume in S1 and in S2 at the end of the optimisation period) for rao, and a 
deterioration of -2% for pso. While this seems to suggest a lower sensitivity of the resource 
availability objective, variations of few percent points in storage volume may still be important 
in critically dry years. 

As for the forecast value, we find that the perfect forecast brings value (i.e. a simultaneous 
improvement of both objectives) in the two scenarios that prioritize the increase in resource 
availability (rao and rap), DSP brings no value in any scenarios, DSP-corr has positive value in 
the rap and bal scenario, and ESP in the bal only. In other words, real-time optimisation based 
on seasonal forecasts can outperform the benchmark operation, but whether this happens 
depends on both the forecast product being used and the operational priority. 



An interesting observation in Figure 4 is that the distance in performance between using 
perfect forecasts and real forecasts (DSP, DSP-corr, ESP) is very small under scenarios that 
prioritise energy savings (bottom-right quadrant) and much larger under scenarios prioritising 
resource availability (top quadrants). This indicates a stronger skill-value relationship under the 
latter scenarios, i.e. improvements in the forecast skill are more likely to produce 
improvements in the forecast value if resource availability is the priority. 

Last, if we compare DSP with DSP-corr we see that the effect of bias correctioncorrecting the 
meteorological forcing is mainly a systematic shift to the right along the horizontal axis, i.e. an 
improvement in energy cost savings at almost equivalent resource availability. Thanks to this 
shift, in the scenario that prioritises resource availability (rap), DSP-corr outperforms ESP. In 
fact, using DSP-corr is win-win with respect to the benchmark (i.e. the rap performance falls in 
the top-right quadrant in Figure 4) while using ESP is not, as it improves the resource 
availability at the expenses of pumping energy savings (i.e. producing negative savings). 

 

3.2.2 Effect of uncertainty consideration onthe forecast ensemble size on the forecast 
value 

We now analyse the effect that different characterisations of the forecast uncertainty have on 
the DPS-corr forecast value. We start by the extreme case when uncertainty is not considered 
at all in the real-time optimisation, i.e. when we take the mean value of the DSP-corr forecast 
ensemble and use it to drive a deterministic optimisation. The results are reported in Figure 
5Figure 5, which shows that the solution space shrinks to the bottom-right quadrant and, no 
matter the decision maker priority, the deterministic forecast has no value because energy 
savings are only achieved at the expenses of reducing the resource availability.  

We also consider intermediate cases where optimisation explicitly considers the forecast 
uncertainty, (i.e. it is based on the average value of the objective functions across a forecast 
ensemble) but the size of the forecast ensemble varies between 5 and 25 members (the 
original ensemble size). For clarity of illustration, we focus on the resource availability 
prioritised (rap) scenario only. We chosechoose this scenario because it seems to best reflect 
the current preferences of the system managers, whose priority is to maintain the resource 
availability while reducing pumping costs as a secondary objective. Moreover, the previous 
analysis (Figure 4) has shown that the optimised rap has a larger window of opportunity for 
improving performance with respect to the benchmark and could potentially improve both 
operation objectives if the forecast skill was perfect. 

For each chosen ensemble size, we randomly choose 10 replicates of that same size from the 
original ensemble, then we run a simulation experiment using each of these replicates, and 
finally average their performance. Results are again shown in Figure 6.Figure 5. For a range of 
10 to 20 ensemble members, the forecast value remains relatively close to the value obtained 
by considering the whole ensemble (25 members). However, if only 5 members are 
considered, the resource availability is definitely lower and cost savings higher, so that the 
trade-off that is actually achieved is different from the one that was pursued (i.e. to prioritise 
resource availability). Notice that the extreme case of using 1 member, i.e. the deterministic 
forecast case (green cross in Figure 6),Figure 5), further exacerbates this effect of ‘achieving 
the wrong trade-off’ as resource availability is even lower than in the benchmark. 



3.2.3 Year-by-year analysis of the forecast value 
 

Last, We now study more in detailwe investigate the year-by-year relationship 
betweentemporal distribution of the forecast skill and value, and between  (i.e. increased 
resource availability and energy cost savings) along the simulation period and compare it to 
the hydrological conditions and observed in each year (Figure 6). The “hydrological conditions” 
is the sum of the initial storage value. and the total inflows during the optimisation period, 
hence enabling us to distinguish dry and wet years. Again, for the sake of simplicity we focus 
on the simulation results in the most relevant priority scenario of resource availability priority 
(rap). For this scenario, Figure 6 plots the improvement in system performance achieved in 
every year against different indicators of skill and hydrological conditions (the plots for the 
other scenarios are reported in the Supplementary Material). 

The two top and bottom panels on the left (a,b, f and g) show that the forecast skill, measured 
by either the CRPSS or the mean error, is in general weakly correlated to the system 
performances (Spearman coefficient < 0.5 and p-value > 0.05). Similarly, weak correlation was 
found in the other priority scenarios (see Supplementary material). The other panels (c-e,h-j) 
show that the Initial storage (on November, 1st), the Total inflows (from November to the end 
of April), and their sum (called ‘Hydrological conditions’) are more strongly correlated to the 
performance. In particular, the correlation is strongest and with highest confidence (Spearman 
correlation = -0.60, p-value = 0.05) between the Hydrological conditions and the Increase in 
resource availability (Figure 6e). The correlation between the Initial storage and the Increase of 
resource availability (Figure 6c) is lower (Spearman correlation = -0.41, p-value = 0.21), 
although visually we can observe a threshold effect with a sharp increase of the value in the 
two years with the lowest initial storage (2011-2012 and 2010-2011). This result may have 
interesting operational implications, as further discussed in the next Section. 
 

Last, in Figure 7 we investigate the distribution of benefits (i.e. increased resource availability, 
top, and energy cost savings, bottom) along the simulation period. We compare three different 
forecast products, DSP, DSP-corr and ESP, in the rap scenario. First, we observe that two 
specific yearyears play the most important role in improving the system performance with 
respect to the benchmark: 2010-11 for pumping cost savings (bottom panel(Figure 6e) and 
2011-12 for resource availability (top).(Figure 6d). These years correspond to the driest 
conditions in the period of study (see inflow and initial condition data in the top panelFigure 6a 
, and the Supplementary Material for further analysis of the inflow data).) but not to the 
highest forecast skills either quantified with CRPSS or mean error (Figure 6b and c). In general, 
the temporal distribution of the average yearly forecast skill does not show any 
correspondence with the yearly forecast value. When comparing DSP-corr with DSP (blue and 
grey bars), we observe that they perform similarly in terms of resource availability but DSP-
corr performs better for energy savings. This difference was observed already when looking at 
average performances over the simulation period (Figure 4) and can be related to the change 
in sign of forecasting errors induced by the bias correction of the meteorological forcing 
(Figure 3b). In fact, without bias correction, reservoir inflows tend to be underestimated, 
which leads the RTOS to pump more frequently and often unnecessarily (e.g. in 2005-06, 2006-
07, 2007-08, etc.). With bias correction, instead, inflows tend to be overestimated, and the 
RTOS uses pumping less frequently. Interestingly, the reduction in pumping still does not 
prevent to improve the resource availability with respect to the benchmark. This is achieved by 
the RTOS through a better allocation of pump and release volumes over the optimisation 
period. When comparing DSP-corr with ESP, we find that the largest improvements with 



respect to the benchmark are gained in the same years forby both products, i.e. in the driest 
yearsones. As already emerged from the analysis of average performances (Figure 4), we see 
that ESP achieves slightly better resource availability than DSP-corr but with less pumping cost 
savings. ESP in particular seems to produce ‘unnecessary’ pumping costs in 2006-07, 2011-12 
and 2013-14, where DSP-corr achieves a similar resource availability (top panel(Figure 6d) at 
almost no cost (bottom).(Figure 6e). It must be noted that for the ESP approach, these three 
specific years, 2006-07, 2011-12 and 2013-14. play the most important role in decreasing the 
pumping energy cost savings with respect to the benchmark, 2006-07, 2011-12 and 2013-14 
(Figure 7b), which together with 2010-11 have the lowest initial storage (Figure 7a).. 

4. Discussion 
Our study provides some insights on the complex relationship between forecast skill and its 
value for decision-making. Although these findings may be dependent on the case study and 
time period that was available for the analysis, they still enable us to draw some more general 
lessons that could be useful also beyond the specific case investigated here. 

First, we found that the use of bias correction, and in particular linear scaling of the 
meteorological forcing, to improve the skill and value of DSP forecast is less straightforward 
than possibly expected. Our results show that on average bias correction slightly improvesdoes 
not improve the DSP forecast skill (as measured by CRPSS and mean error) but itand can 
reduceeven deteriorate it in dry years (Figure 3). This is because in our system DSP forecasts 
systematically underestimate inflows (before bias correction), which means their skill is 
relatively higher in exceptionally dry years and is deteriorated by bias correction. To our 
knowledge, no previous study reported such difference in skill for the ECMWF SEAS5 forecasts 
in dry years in the UK, hence we are not able to say whether our result applies to other 
systems in the region. However, the result points at a possible intrinsic contradiction in the 
very idea of bias correcting based on climatology-based forecast (e.g. ESP). In fact. In this 
study, the main reason for the bias correction to fail in improving the forecast skills is that the 
DSP forecast before bias correction was already performing relatively well in terms of skills in 
the three particularly dry winters (Figure 3) and worse in the rest, which are less dry and hence 
closer to the average climate conditions. After bias correction we worsened the forecast skills 
of these three exceptionally dry winters, but we improved the skills in the rest. In this case the 
bias correction would have performed better if these three dry years were not considered, i.e. 
under less exceptional climate conditions the bias correction would have been more effective. 
More generally, by pushing forecasts to be more alike climatology, one may reduce the ‘good 
signal’ that may be present in the original forecast in years that will indeed be significantly 
drier (or wetter) than climatology. As exceptional conditions are likely the ones when water 
managers can extract more value from forecasts, the argument that bias correction ensures 
average performance at least equivalent to climatology or ESP (e.g. Crochemore et al. (2016)) 
may not be very relevant here. We would conclude that more studies are needed to 
investigate the benefits of bias correction when seasonal hydrological forecasts are specifically 
used to inform water resource management. 

While we could not find an obvious and significant improvement of forecast skill after bias 
correction, we found a clear increase in forecast value (Figure 4). In fact, RTOS based on bias-
corrected DPSDSP considerably reducereduces pumping costs with respect to the original 
DPSDSP, while ensuring similar resource availability. A consequence of this is that decision 
maker priorities rap (resource availability prioritised) and bal (balanced) dominate (in a Pareto 
sense) the benchmark. We explained this findingreduction in pumping costs by the change in 



the sign of forecasting errors induced by bias correction – from a systematic underestimation 
of inflows to a systematic overestimation. While this change is again case specific, a general 
implication is that not all forecast errors have the same impact on the forecast value. From a 
water resource management perspective, the improvement of forecast accuracy in some 
directions can be more ‘valuable’ than others. This also implies that, and thus not all skill 
scores may be equally useful and relevant for water resource managers. For example, in our 
case a score that is able to differentiate between overestimation and underestimation 
errorerrors, such as the mean error, seems more adequate than a score such as CRPSS, which 
is insensitive to the error sign. This said, our results overall suggest that inferring the forecast 
value from its skill may be misleading, given the weak correlationrelationship between the two 
(at least as long as we use skill scores that are not specifically tailored to water resources 
management). Running simulation experiments of the system operation, as done in this study, 
can shed more light on the value of different forecast products. 

While we found a weak correlationrelationship between forecast skill and value, we found that 
forecast value is more strongly likedlinked to hydrological conditions (Figure 6).Figure 6). As 
expected, a forecast-based RTOS system is particularly useful in dry years, where we find most 
of the gains with respect to the benchmark operation (Figure 7).Figure 6). This is consistent 
with previous studies for water supply system, e.g. Turner et al., 2017. An interesting finding in 
In our system is that the value of forecast-basedcase study, RTOS seems correlated to the 
Initial conditions (total storage value) of the system. Given that this initial condition is known 
at the beginning of the pumped-storage season, in practice this indicator could be used to 
decide whether to use the forecast-based RTOS approach in the coming months or not. In fact, 
using the RTOS has a cost in that downloading seasonal weather forecasts, transforming them 
into hydrological forecasts and bias correcting, running optimisation, etc. takes time. So, water 
managers may choose to use RTOS only in thoseimprove resource availability but also reduce 
pumping costs because, in the dryer years where they expect it will lead to considerable 
improvements of system performance, storage levels are more likely to cross the rule curve 
and trigger pumping in the benchmark operation. 

Similarly, inIn light of the pre-processing costs of seasonal weather forecasts, it is interesting to 
discuss whether their use is justified with respect to a possibly simpler-to-use product such as 
ESP. While weather forecast centres are increasingly reducing the pre-processing costs by 
facilitating access to their seasonal weather forecast datasets, bias correction still needs a 
considerable level of expertise. This is not only because the necessary tools are currently not 
provided but also because we first need the knowledge to decide whether applying bias 
correction is appropriate for the specific case study. Further, once deciding that it is 
appropriate, we then need to select and understand the most adequate bias-correction 
method. In this study, we found ESP to be a ‘hard-to-beat’ reference not only in terms of 
skillsskill (as previously found by others, e.g. (Harrigan et al., 2018)) but also in terms of 
forecast value (Figure 4). In fact, the use of DSP-corr delivers higher energy savings with 
respect to ESP (without compromising the resource availability) at least in the most relevant 
operating priority scenario (the rap scenario, see Figure 7).Figure 6). However, whether these 
cost-savings are large enough to justify the use of DSP-corr, or whether water managers may 
fall back on using simpler ESP, it is difficult to argue and remain an open question with the 
simulations results available so far.  

One point where our results instead point to a univocal and clear conclusion is in the 
importance of explicitly considering forecast uncertainty (Figure 5).Figure 5). In fact, RTOS 



outperforms the current operation when using ensemble forecasts, but it does not if 
uncertainty is removed and the ensemble mean is used within a deterministic optimisation 
approach.system is optimised against the ensemble mean. In this case, in fact, DSP-corr 
improves energy savings but it decreases the resource availability under all operational priority 
scenario. This is in line with previous results obtained using short-term forecasts for flood 
control (Ficchì et al., 2016), who found that consideration of forecast uncertainty could largely 
compensate the loss in value caused by forecast errors),, hydropower generation (Boucher et 
al., 2012) and multi-purpose systems (Yao and Georgakakos, 2001). It is also consistent with 
previous results by Anghileri et al. (2016), who did not find significant value in seasonal 
forecasts while using a deterministic optimisation approach (they did not explore the use of 
ensemble though).  

Finally, we tried to investigate whether we could evaluate the effect of the ensemble size on 
the value of the uncertain forecasts. We found that in our case study we could reduce the 
number of forecast members down to about 10 (from the original size of 25) with limited 
impact on the forecast value (Figure 5). This is important for practice because by reducing the 
number of forecast members one can reduce the computation time of the RTOS. While we 
cannot say if such ‘optimal’ ensemble size would apply to other systems too, we would suggest 
that future studies could look at how the quality of the uncertainty characterisation impacts on 
the forecast value, and whether a ‘minimum representation of uncertainty’ exists that ensures 
the most effective use of forecasts for water resource management. 

From the UK water industry perspective, we hope our results will motivate a move away from 
the deterministic (worst-case scenario) approach that often prevails when using models to 
support short-term decisions, and a shift towards more explicit consideration of model 
uncertainties. Such a move would also align with the advocated use of “risk-based” 
approaches for long-term planning (Hall et al., 2012, Turner et al., 2016, UKWIR, 2016a, 
UKWIR, 2016b), which have indeed been adopted by water companies in the preparation of 
their Water Resource Management Plans (SouthernWater, 2018, UnitedUtilities, 2019). The 
results presented here, and in the above cited studies, suggest that greater consideration of 
uncertainty and trade-offs would also be beneficial in short-term production planning. Last, we 
tried to investigate whether we could evaluate the effect of the ensemble size on the value of 
the uncertain forecasts. We found that in our case study we could reduce the number of 
forecast members down to about 10 (from the original size of 25) with limited impact on the 
forecast value (Figure 5). This is important for practice because by reducing the number of 
forecast members one can reduce the computation time of the RTOS. While we cannot say if 
such ‘optimal’ ensemble size would apply to other systems too, we would suggest that future 
studies could look at how the quality of the uncertainty characterisation impacts on the 
forecast value, and whether a ‘minimum representation of uncertainty’ exists that ensures the 
most effective use of forecasts for water resource management. 

4.1 Limitations and perspective for future research and implementation 
Our study is subject to a range of limitations that should be kept in mind when evaluating our 
results. First, the current (and future) skill of seasonal meteorological forecasts varies spatially 
across the UK depending on the influence of climate teleconnections and particularly the NAO. 
Given that our case study is located in the WestSouth-west of the UK, where the NAO 
influence has been found to be stronger than in the East (Svensson et al., 2015), our simulated 
benefits of using DSP seasonal forecasts may be particularly optimistic. Second, the general 
validity of the results is limited by the relatively short period (2005-2016) that was available for 



historical simulations, and which may be insufficient to fully characterise the variability of 
hydrological conditions and hence accurately estimate the system’s performances (see for 
example discussion in Dobson et al. (2019)). Hence, we aim at continuing the evaluation of the 
RTOS over time as new seasonal forecasts and observations become available. Another 
limitation of evaluation of the RTOS is that we used the observed water demand, hence 
implicitly assuming that operators know in advance the demand values for the entire season 
with full certainty. 

Future studies should extend the testing of the RTOS over a longer time horizon and evaluate 
the influence of errors in forecasting water demand. To improve our understanding of the 
forecast skill-value relationship and the benefits of bias correction it would also be interesting 
to test the sensitivity of our results to the use of different skill scores and bias correction 
methods. The results of this study and in particular the higher DSP forecast skills than ESP for 1 
or 2-month lead times, suggest that combining DSP for the first two months and ESP for the 
rest of the forecast horizon may be way worthwhile to explore in the future studies. 

The Python code developed to: generate the seasonal inflow forecasts, from weather 
forecasts; to optimise the system operation and; to visualise the pre-evaluation Pareto front 
(with its uncertainty), has been implemented in a set of interactive Jupyter Notebooks, which 
we have now transferred to the water company in charge of the pumped-storage decisions. 
The general code and Jupyter Notebooks for application of our methodology to other reservoir 
systems are available as part of the open-source toolkit iRONS 
(https://github.com/AndresPenuela/iRONS). This toolkit aims at addressing some of the 
problems identified in the literature for the implementation of forecast informed reservoir 
operation systems, by providing better “packaging” (Goulter, 1992) of model results and their 
uncertainties, enabling the interactive involvement of decision makers (Goulter, 1992) and 
creating a standard and formal methodology (Labadie, 2004) to support model-informed 
decisions. Besides supporting the specific decision-making problem faced by the water 
company involved in this study, through this collaboration we aim at evaluating more broadly 
the effectiveness ofhow effective our toolkit is to promote knowledge transfer from the 
research to the professional community and how easily the toolkit can be adapted for different 
purposes. Through the use of the toolkit, we also hope to gain a better understanding of how 
decision-makers view forecast uncertainty, of the institutional constraints limiting the use and 
implementation of this information (Rayner et al., 2005) and of the most effective ways in 
which forecast uncertainty and simulated system robustness can be represented. 

5. Conclusions 
This work assessed the potential of using a real-time optimization system informed by 
seasonal forecasts to improve reservoir operation in a UK water supply system. While the 
specific results are only valid for the studied system, they enable us to draw some more 
general conclusions. First, we found that the use of seasonal forecasts can improve the 
efficiency of reservoir operation, but only if the forecast uncertainty is explicitly considered 
(e.g. via ensemble forecast).. Uncertainty is characterised here by a forecast ensemble, and we 
found that the performance improvement is maintained also when the forecast ensemble size 
is reduced up to a certain limit. Second, while dynamical streamflow predictions (DSP) 
generated by numerical weather predictions provided the highest value in our case study 
(under a scenario that prioritise water availability over pumping costs), still ensemble 
streamflow predictions (ESP), which are more easily derived from observed meteorological 
conditions in previous years, remain a hard-to-beat reference in terms of both skill and value. 



Third, the relationship between the forecast skill and its value for decision-making is complex 
and strongly affected by the decision maker priorities and the hydrological conditions in each 
specific year. It must be noted that in practice the decision-making priorities are not solely 
related to the selection of a specific Pareto-optimal solution, but also the methodology in the 
first place by the methodology, i.e. the “risk” taken in using something other than the worst-
case scenario approach and in applying bias correction of the meteorological forcing or not. 
We also hope that thisthe study will contribute to show that seasonal forecasts can deliver 
benefits to inform operational decisions even if their skill is low; and stimulate further research 
towards better understanding the skill-value relationship, and in finding ways to extract value 
from forecasts in support of water resourceresources management. 

 

Data availability. The reservoir system data used are property of Wessex Water and as such 
cannot be shared by the authors. ECMWF data are available under a range of licences. For 
more information please visit http://www.ecmwf.int., for more information please visit 
http://www.ecmwf.int. A generic version of the code used for implementing the RTOS 
methodology is available at https://github.com/AndresPenuela/iRONS. 
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Figure 1 Diagram of the methodology used in this study to generate operational decisions using a 
Real-time optimisation system (RTOS) (left) and to evaluate its performances  (right). In the 
evaluation step, the RTOS is nested into a closed loop simulation where at every time step historical 
data (weather, inflows and demand), along with the operational decisions suggested by the RTOS, 
are used to move to the next step by updating the initial hydrological conditions and reservoir storage. 



 

 

 

Figure 2 A schematic of the reservoir system investigated in this study to test the Real-time 
optimization systems.  I is Reservoir inflows from natural catchments are denoted by I, S1 and S2 
are the two reservoir inflow, S reservoir nodenodes, u denote controlled inflows/releases, R river is 
the river from/to which reservoir S1 can abstract and release, and D humanis a demand node. The 
system is a two-reservoir system where S1 both supports downstream abstraction during low river 
(R) flows and use pumped releases to complement gravity releases from S2 in supplying D. The 
system has the possibility of pumping water into S1 from Nov to Apr. 



 

 



 

 

Figure 3 Skill of the hydrological forecast ensemble (inflow to reservoir S1) during the pumping licence window 
(1 Nov - 1 Apr) measured by the CRPSS (a) and the mean error (b) for different lead times. from 1 Nov.  Red 
lines represent the skill without bias correction of the non-bias corrected meteorological forcing (ECMWF 
seasonal forecast,forecasts), blue lines represent the skill after bias correction. The solid lineSolid lines 
represents the meanaverage skill over the period 2005-2016, while circles, crosses and triangles represent the 
skill in 3 particularly dry winters. (Nov-Apr). CRPSS = 1 represents the perfect forecast and CRPSS = 0 the no 
skill threshold with respect to the benchmark (ESP).     



 

 

 

Figure 4 Post-evaluation Pareto fronts representing the average system performance improvement (over period 
2005-2016) of the real-time optimization system during the pumping licence window (1 Nov - 1 Apr) with respect 
to the benchmark (black diamond), using four forecast products: non-corrected forecast ensemble (DSP), bias 
corrected forecast ensemble (DSP-corr), ensemble streamflow prediction (ESP) and perfect forecast. For each 
of the four forecast products, five decision makingscenarios of operational priorities are represented depending 
on the dominant priority from 100% priority to maximize resource availability (top left) to 100% priority to 
maximize cost savings (bottom right):: resource availability only (rao; in blue), resource availability prioritised 
(rap; in green), balanced (bal; in grey), pumping savings prioritised (psp; in green) and pumping savings only 



(pso; in red).  For visualization purposes, the coloured circles group points under the same operational priority 
scenario and the dashed lines link points using the same forecast product. The pumping energy cost is calculated 
as the sum of the energy costs associated to pumped inflows and pumped releases and the resource availability 
as the mean storage volume in both reservoirs (S1 and S2) at the end of the optimisation period. The annotation 
is the corresponding operational priority scenario for each pointBoth objective values are rescaled with respect 
to the performances of the benchmark operation. 

 

 

 

Figure 5 Post-evaluation Pareto fronts representing the average system performance (over period 2005-2016) of 
the real-time optimization system during the pumping licence window (1 Nov - 1 Apr) with respect to the 
benchmark (black diamond), using bias corrected forecast deterministicensemble (DSP-corr deterministic)) 



with different ensemble size, and bias correctedthe mean of the forecast ensemble (DSP-corr) with different 
ensemble size. deterministic). For practical purposes, only the “resource availability prioritised” scenario (rap) 
is represented for the DSP-corr. The annotation is the corresponding operational priority for each point. The 
annotation numbers arerefer to the number of ensemble members considered. The perfect forecast for rap is 
also represented for reference purposessize. 



 

 



 

Figure 6 Bias corrected forecast ensemble (DSP-corr) for the “resource availability prioritised” scenario - 
correlation between Increase of resource availability and a) CRPSS, b) mean error, c) initial storage (1 Nov), d) 
total inflows (1 Nov – 1 Apr) and e) hydrological conditions (initial storage + total inflows) and between Pumping 
energy cost savings and f) CRPSS, g) mean error, h) initial storage (1 Nov), i) total inflows (1 Nov – 1 Apr) and 
j) hydrological conditions (initial storage + total inflows). Each point represents a year. Correlation and its 
significance are quantified by the Spearman coefficient and the p-value, respectively. 



 

 

Figure 7 Year-by-year a) Total observed inflows (1 Nov - 1 Apr), Initial reservoir storage (1 Nov) and 
Hydrological conditions (Total observed inflows + Initial storage) (right hand y-axis)); forecast skills of the 
meteorological forcing: b) CRPSS and c) Mean error; d) Increase of resource availability (left hand y-axis) and 
be) Pumping energy cost savings of the real operation system informed by: the dynamical streamflow prediction 
(DSP), the bias corrected dynamical streamflow prediction (DSP-corr) and the ensemble streamflow prediction 
(ESP) for the “resource availability prioritised” (rap) scenario. Please note that ESP is not shown in b) as it is 
the CRPSS benchmark. 

 

 

 

 

 

 

 

 

 

 

 

Supplementary material 
Details of the reservoirReservoir system model 
We use weekly resolution to simulate the system and its operation for both the benchmark 
and the real-time optimization system (RTOS) approaches. For each reservoir (S1 and S2), the 
volume of stored water (s(t+1)) is equal to the previous week’s storage (s(t)) plus natural and 
controlled inflows minus releases, evaporation and spills. The mass balance equations are: 



S1: 𝑠௧ାଵ = 𝑠௧ + ൫𝐼ௌଵ,௧ + 𝑢ோ,ௌଵ,௧൯ − ൫𝑢ௌଵ,,௧ + 𝑢ௌଵ,ோ,௧ + 𝑒𝑣𝑎𝑝௧ + 𝑠𝑝𝑖𝑙𝑙௧ + 𝑒𝑛𝑣௧൯ 

S2: 𝑠௧ାଵ = 𝑠௧ + ൫𝐼ௌଶ,௧൯ − ൫𝑢ௌଶ,,௧ + 𝑒𝑣𝑎𝑝௧ + 𝑠𝑝𝑖𝑙𝑙௧ + 𝑒𝑛𝑣௧൯ 

Spills are calculated by imposing the hard constraint that the storage at next time-step should 
never exceed the reservoir capacity, hence they are either equal to zero or to the excess 
volume generated by the storage plus inflows minus outflows: 

S1: 𝑠𝑝𝑖𝑙𝑙௧ = 𝑚𝑎𝑥൫𝑠௧ + ൫𝐼ௌଵ,௧ + 𝑢ோ,ௌଵ,௧൯ − ൫𝑢ௌଵ,,௧ + 𝑢ௌଵ,ோ,௧ + 𝑒𝑣𝑎𝑝௧ + 𝑒𝑛𝑣௧൯ − 𝑠௫, 0൯ 

S2: 𝑠𝑝𝑖𝑙𝑙௧ = 𝑚𝑎𝑥൫𝑠௧ + ൫𝐼ௌଵ,௧൯ − ൫𝑢ௌଶ,,௧ + 𝑒𝑣𝑎𝑝௧ + 𝑒𝑛𝑣௧൯ − 𝑠௫, 0൯ 

where smax the reservoir storage capacity in MLm3. Controlled inflows and outflows (u) are 
limited by the real-world system capacity. Besides, pumped inflows are limited such that flow 
downstream of R willdoes not drop below a legal constraining value, unless using water 
released from S1. Evaporation fluxes (evap) are computed as the product of the reservoir 
surface area by the potential evaporation rate. Environmental compensation flows (env) are 
given by prescribed values that are kept constant over the year. 

DetailsFormulation of the optimization problem 
Both the release scheduling of the benchmark approach and the release and pumped inflow 
scheduling of the real-time optimization system (RTOS) approach are optimized using the 
NSGA2 genetic optimization algorithm included in the Platypus Python package 
(https://platypus.readthedocs.io/). The In the RTOS, the optimization decision variables are 
both the weekly reservoir releases (uS1,D and uS2,D) for both reservoir operation approaches and 
the weekly pumped inflows (uS1,R) for the RTOS approach); in the benchmark operation, the 
decision variables are the reservoir releases only. , while the pumped inflows are calculated 
according to the control curve. We assume that the future water demand is perfectly known in 
advance, and equal to the sum of the observed releases from S1 (uS1,D) and S2 (uS2,D) for the 
period of study. Unless physically unfeasible, the sum of reservoir releases (uS1,D + uS2,D) is 
always forced to meet such demand. 

ForWhen simulating the benchmark approach the reservoir S1 operation rule curve, and not 
the optimizer, defines, according to the storage level and date, when pumped inflows (uR,S1) 
are triggered. The , the optimization decision variables are the weekly reservoir releases (uS1,D 
and uS2,D). As an optimization constraint, the storage volume is constrained to achieve 
maximum storage for both reservoirs (S1 and S2) is set to be maximum by the end of the 
pumping license period window (1 April) and the). The (single) optimisation objective is to 
minimize the sum of the energy costs for pumped release (uS1,D) energy costs:and pumped 
storage (uR,S1): 

 𝑐ோ,ௌଵ

்

௧ୀ

𝑢ோ,ௌଵ,௧ +  𝑐௦ଵ,

்

௧ୀ

𝑢ௌଵ,,௧ 

where c is the pumping energy cost per ML and T is the lead time in weeks.  

For the RTOS approach, the optimization decision variables are the weekly reservoir releases 
(uS1,D and uS2,D) and the weekly pumped inflows (uS1,R) and the optimization objective is to 
minimize the following objective functionsobjectives to be minimized are two: 

1) Sum of the pumping energy costs (same equation as above) 



1)2) Average of the difference between the storagereservoir capacity and storage volume by 
1 April forin the two reservoirs (S1 and S2): 

(𝑠ௌଵ,௫ − 𝑠ௌଵ,்) + (𝑠ௌଶ,௫ − 𝑠ௌଶ,்)

2
 

where s is the reservoir storage volume in ML and smax the reservoir storage capacity in 
ML. 

2) Sum of the pumping energy costs (only applied on the multi-objective optimization of 
the RTOS approach): 
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where c is the pumping energy cost per ML and T the lead time in weeks. 
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where smax is the reservoir storage capacity in m3, s is the reservoir storage volume in 
m3, T is the final week of the optimisation period, and M the total number of ensemble 
members. Notice that, as denoted by the subscript m, the final storage of S1 and S2 
will differ depending on the inflow forecast ensemble member that is used to force the 
simulation, even if the set of pumping and release decisions remain the same. Hence, 
at each iteration of the optimisation procedure, the same set of decisions is evaluated 
against each ensemble member and then the objective value is obtained by averaging 
across all the simulations (with the exception of the “deterministic” case presented in 
Sec. 3.2.2, where the ensemble forecast is replaced by the mean forecast and 
therefore averaging is not needed as only one simulation is run against any set of 
decisions).  

For both operation approaches the optimization consisted of 100,000 runs per iteration and, 
benchmark and RTOS, the population size for the multi-objective optimization of the RTOS 
approach was 20. 

 

Observational hydrological data 
Daily rainfall in the study area from 1981 to 2016 was derived from the UK Centre for Ecology 
and Hydrology (CEH) Gridded Estimates of Areal Rainfall (CEH-GEAR) dataset (Tanguy et al., 
2014) and daily temperature and PET data for the period was derived from the CEH Gridded 
CEH-CHESS dataset (Robinson et al., 2016, Robinson et al., 2017). CEH-GEAR is a gridded 1km 
product derived from the interpolation of observed rainfall across all daily and monthly rain 
gauges in the UK. CEH-CHESS is a gridded 1km product derived from the Met Office 40km 
gridded MORECS dataset (Hough and Jones, 1997). We used the HBV model forced by 
observed weather data to simulate a proxy of the daily observed inflows (Figure 7). The HBV 
model was previously calibrated against observed hydrographs from 1972 to 2003 in the 
Wimbleball catchment. For the Wimbleball catchment the average observed yearly inflow is 
24,462,227 m3/year with an interannual standard deviation equal to 4,340,594 m3/year. Given 
the lack of good calibration data for the Clatworthy catchment, we applied the Wimbleball 



parameter set to the Clatworthy catchment, given that they are adjacent to each-other. The 
averaged mean error from 1972 to 2004 of the Wimbleball calibrated inflow is 33,283 
m3/month (from 1 Nov to 1 Apr).  

 

Supplementary figures 

 

Figure 7 Cumulative inflows to the S1 reservoir  in the worst-case scenario (1975-1976) and in the 
three driest years (2005-2006, 2010-2011 and 2011-2012) of the period used for the simulation of the 
RTOS (2005-2016). Only data relative to the pumping licence window (Nov to Apr) are shown. 
Shaded areas show the weekly inflow distribution calculated on the period used for the forecast bias 
correction of the meteorological forcing and ESP generation (1981-2016). Notice that the three driest 
years are relatively close to the worst-case scenario. (1975-1976). 

 

 

 

Figure 9 Ensemble streamflow prediction (ESP) for the “resource availability only” scenario - correlation 
between Increase of resource availability and a) CRPSS, b) mean error, c) initial storage (1 Nov), d) total inflows 
(1 Nov – 1 Apr) and e) hydrological conditions (initial storage + total inflows) and between Pumping energy cost 
savings and f) CRPSS, g) mean error, h) initial storage (1 Nov), i) total inflows (1 Nov – 1 Apr) and j) hydrological 



conditions (initial storage + total inflows). Each point represents a year. Correlation and its significance are 
quantified by the Spearman coefficient and the p-value, respectively. 

 

 

Figure 10 Ensemble streamflow prediction (ESP) for the “resource availability prioritised” scenario - 
correlation between Increase of resource availability and a) CRPSS, b) mean error, c) initial storage (1 Nov), d) 
total inflows (1 Nov – 1 Apr) and e) hydrological conditions (initial storage + total inflows) and between Pumping 
energy cost savings and f) CRPSS, g) mean error, h) initial storage (1 Nov), i) total inflows (1 Nov – 1 Apr) and 
j) hydrological conditions (initial storage + total inflows). Each point represents a year. Correlation and its 
significance are quantified by the Spearman coefficient and the p-value, respectively. 

 

 

Figure 11 Ensemble streamflow prediction (ESP) for the “balanced” scenario - correlation between Increase of 
resource availability and a) CRPSS, b) mean error, c) initial storage (1 Nov), d) total inflows (1 Nov – 1 Apr) 



and e) hydrological conditions (initial storage + total inflows) and between Pumping energy cost savings and f) 
CRPSS, g) mean error, h) initial storage (1 Nov), i) total inflows (1 Nov – 1 Apr) and j) hydrological conditions 
(initial storage + total inflows). Each point represents a year. Correlation and its significance are quantified by 
the Spearman coefficient and the p-value, respectively. 

 

 

Figure 12 Ensemble streamflow prediction (ESP) for the “pumping savings prioritised” scenario - correlation 
between Increase of resource availability and a) CRPSS, b) mean error, c) initial storage (1 Nov), d) total inflows 
(1 Nov – 1 Apr) and e) hydrological conditions (initial storage + total inflows) and between Pumping energy cost 
savings and f) CRPSS, g) mean error, h) initial storage (1 Nov), i) total inflows (1 Nov – 1 Apr) and j) hydrological 
conditions (initial storage + total inflows). Each point represents a year. Correlation and its significance are 
quantified by the Spearman coefficient and the p-value, respectively. 



 

 

Figure 13 Ensemble streamflow prediction (ESP) for the “pumping savings only” scenario - correlation between 
Increase of resource availability and a) CRPSS, b) mean error, c) initial storage (1 Nov), d) total inflows (1 Nov 
– 1 Apr) and e) hydrological conditions (initial storage + total inflows) and between Pumping energy cost savings 
and f) CRPSS, g) mean error, h) initial storage (1 Nov), i) total inflows (1 Nov – 1 Apr) and j) hydrological 
conditions (initial storage + total inflows). Each point represents a year. Correlation and its significance are 
quantified by the Spearman coefficient and the p-value, respectively. 

 

 

Figure 14 Bias corrected forecast ensemble (DSP-corr) for the “resource availability only” scenario - correlation 
between Increase of resource availability and a) CRPSS, b) mean error, c) initial storage (1 Nov), d) total inflows 
(1 Nov – 1 Apr) and e) hydrological conditions (initial storage + total inflows) and between Pumping energy cost 
savings and f) CRPSS, g) mean error, h) initial storage (1 Nov), i) total inflows (1 Nov – 1 Apr) and j) hydrological 



conditions (initial storage + total inflows). Each point represents a year. Correlation and its significance are 
quantified by the Spearman coefficient and the p-value, respectively. 

 

 

Figure 15 Bias corrected forecast ensemble (DSP-corr) for the “balanced” scenario - correlation between 
Increase of resource availability and a) CRPSS, b) mean error, c) initial storage (1 Nov), d) total inflows (1 Nov 
– 1 Apr) and e) hydrological conditions (initial storage + total inflows) and between Pumping energy cost savings 
and f) CRPSS, g) mean error, h) initial storage (1 Nov), i) total inflows (1 Nov – 1 Apr) and j) hydrological 
conditions (initial storage + total inflows). Each point represents a year. Correlation and its significance are 
quantified by the Spearman coefficient and the p-value, respectively. 

 

 

Figure 16 Bias corrected forecast ensemble (DSP-corr) for the “pumping savings prioritised” scenario - 
correlation between Increase of resource availability and a) CRPSS, b) mean error, c) initial storage (1 Nov), d) 



total inflows (1 Nov – 1 Apr) and e) hydrological conditions (initial storage + total inflows) and between Pumping 
energy cost savings and f) CRPSS, g) mean error, h) initial storage (1 Nov), i) total inflows (1 Nov – 1 Apr) and 
j) hydrological conditions (initial storage + total inflows). Each point represents a year. Correlation and its 
significance are quantified by the Spearman coefficient and the p-value, respectively. 

 

 

Figure 17 Bias corrected forecast ensemble (DSP-corr) for the “pumping savings only” scenario - correlation 
between Increase of resource availability and a) CRPSS, b) mean error, c) initial storage (1 Nov), d) total inflows 
(1 Nov – 1 Apr) and e) hydrological conditions (initial storage + total inflows) and between Pumping energy cost 
savings and f) CRPSS, g) mean error, h) initial storage (1 Nov), i) total inflows (1 Nov – 1 Apr) and j) hydrological 
conditions (initial storage + total inflows). Each point represents a year. Correlation and its significance are 
quantified by the Spearman coefficient and the p-value, respectively. 

 

 


