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Abstract. Sensitivity analysis methods have recently received much attention for identifying important uncertainty sources 

(or uncertain inputs) and improving model calibrations and predictions for hydrological models. However, it is still 15 

challenging to apply the quantitative and comprehensive global sensitivity analysis method to complex large-scale process-

based hydrological models (PBHMs) because of its variant uncertainty sources and high computational cost. Therefore, a 

global sensitivity analysis method that is capable of simultaneously analyzing multiple uncertainty sources of PBHMs and 

providing quantitative sensitivity analysis results is still lacking. In an effort to develop a new tool for overcoming these 

weaknesses, we improved the hierarchical sensitivity analysis method by defining a new set of sensitivity indices for 20 

subdivided parameters. A new binning method and Latin hypercube sampling (LHS) were implemented for estimating these 

new sensitivity indices. For test and demonstration purposes, this improved global sensitivity analysis method was 

implemented to quantify three different uncertainty sources (parameters, models, and climate scenarios) of a three-

dimensional, large-scale and process-based hydrologic model (PAWS) with an application case in an ~9,000 km2 Amazon 

catchment. The importance of different uncertainty sources was quantified by sensitivity indices for two hydrologic outputs 25 

of interest: evapotranspiration (ET) and groundwater contribution to streamflow (QG). The results show that the parameters, 

especially the vadose zone parameters, are the most important uncertainty contributors for both outputs. In addition, the 

influence of climate scenarios on ET predictions is also important. Furthermore, the thickness of the aquifers is important for 

QG predictions, especially in main stream areas. These sensitivity analysis results provide useful information for modelers, 

and our method is mathematically rigorous and can be applied to other large-scale hydrological models. 30 
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1 Introduction 

The rapidly increasing computing power in recent years has accelerated the innovation of hydrological models, and more 

complex hydrological processes have been included in new models, which are capable of simulating large-scale problems 

(Freeze and Harlan, 1969; Singh and Woolhiser, 2002). PBHMs are complex hydrological models that link the 

characteristics of a river basin with hydrological processes (Refsgaard and Knudsen, 1996; Maxwell et al., 2014). The 35 

functions of PBHMs include both evaluation of the watershed response to future climate scenarios and simulation of the 

basin-to-continental scale ecosystem energy balance, biogeochemistry, and ecological functioning (Vertessy et al., 1993; 

Parkin et al., 1996; Bixio et al., 2002; Oogathoo et al., 2011; Weill et al., 2011; Shen et al., 2013; Maxwell et al., 2014; Riley 

and Shen, 2014). Specific to the hydrological process, PBHMs are capable of simulating the surface water processes of ET, 

overland flow, channel runoff, and so on (Beven, 2002). For subsurface water, PBHMs can simulate complex hydrological 40 

processes in the soil, such as root extraction, infiltration, soil evaporation, and groundwater discharge and recharge in the 

vadose zone, by solving the Richards equation (Maxwell et al., 2014). However, these complex processes and governing 

equations embedded in the PBHMs inevitably induce large uncertainties in the modeling predictions (Neuman, 2003; Rojas 

et al., 2010; Lu et al., 2012; Shen et al., 2014; Razavi and Gupta, 2015, 2016; Qiu et al., 2019). How to efficiently decrease 

these large uncertainties becomes an essential problem for modelers. Sensitivity analysis aims to identify the most influential 45 

sources of uncertainty and is therefore an important tool (Saltelli and Sobol, 1995; Saltelli et al., 2000, 2010; Song et al., 

2015). The sensitivity analysis results assist modelers and managers in focusing on observing and calibrating the uncertain 

inputs that have the greatest influences on model outputs. Thus, the sensitivity analysis process saves resources (e.g., funding 

and manpower) used for calibration and significantly improves the efficiency of reducing the uncertainty of PBHM 

predictions. 50 

In general, sensitivity analysis methods can be divided into local and global categories. The main limitation of the local 

sensitivity analysis is that its results are only valid for a small range of parameter values (Gedeon and Mallants, 2012; King 

and Perera, 2013; Wainwright et al., 2014; Dai and Ye, 2015). Compared with the local method, global sensitivity analysis 

can provide sensitivity estimates for the entire range of uncertain parameter values (Saltelli et al., 2000, 2010; Razavi and 

Gupta, 2015, 2016). Because of this advantage, global sensitivity analysis has gained popularity in recent modeling works 55 

despite its high computational cost (Hamby, 1994; van Griensven et al., 2006; Sulis et al., 2011; Baroni and Tarantola, 2014). 

Common global sensitivity analysis methods include screening methods, regression-based methods, variance-based methods, 

meta-model methods (Song et al., 2013), and information-entropy-based methods (Zeng et al., 2012). Among the different 

global sensitivity analysis methods, the variance-based method has been widely accepted and used because of its ability to 

accurately quantify the importance of uncertain parameters while considering their interactions (Saltelli and Sobol, 1995; 60 

Zhang et al., 2013; Dai and Ye, 2015). 

To date, considerable research has been conducted to reduce the uncertainties in hydrological models by using local or 

global sensitivity analysis methods (e.g., Nijssen et al., 2001; Chávarri et al., 2013; de Paiva et al., 2013). However, 
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conducting a comprehensive global sensitivity analysis, especially variance-based sensitivity analysis on PBHMs, remains a 

challenge, and there are two main obstacles. The first obstacle is the high computational cost rising from two sources: the 65 

high complexity of the model itself and the method requirement of variance-based global sensitivity analysis. A PBHM 

usually has a very large number of parameters and multiple high-order nonlinear governing equations. These facts combined 

with a large-scale model domain cause the running of a PBHM itself to be very computationally expensive. For the 

sensitivity analysis method, compared with the local sensitivity analysis, which can only provide results valid in a certain 

range of parameter values (e.g., the derivative of the model prediction with respect to parameter A at a certain value point 70 

can be a measurement of A’s local sensitivity at this point), the global sensitivity analysis is more comprehensive because its 

results are valid for the whole range of parameter values. To achieve this goal, the methods of global sensitivity analysis are 

all relatively computationally expensive, especially for the variance-based method, which uses complex sampling techniques, 

and its computational cost grows exponentially with the number of parameters (Saltelli et al., 2000, 2010). Therefore, the 

implementation of a global sensitivity analysis for a PBHM leads to an extremely high computational cost considering that 75 

we have to run a large number of simulations for a complex PBHM using different parameter samples. 

The second obstacle of implementing the global sensitivity analysis method in PBHMs is the variant uncertainty sources 

included in the model. Conventional global sensitivity analysis generally considers only uncertainty from model parameters 

and ignores other important hydrological model uncertainties. However, for PBHMs, uncertainties usually arise from three 

different sources, including parametric uncertainty, model structural uncertainty (induced through multiple different 80 

plausible conceptual or mathematical models), and scenario uncertainty (caused by alternative unpredictable future climate 

conditions) (Ye et al., 2005; Makler-Pick et al., 2011; Neumann, 2012; Dai and Ye, 2015; Song et al., 2015; Dai et al., 2017a, 

2017b; Zeng et al., 2018; Pan et al., 2020). To overcome these two obstacles, Dai et al. (2017a) developed a new hierarchical 

sensitivity analysis method that integrates the variance-based method and hierarchical uncertainty framework. By combining 

uncertain inputs based on their characteristics and dependencies, hierarchical sensitivity analysis can quantify the sensitivity 85 

of different sources of uncertainty involved in hydrological models (e.g., parameters, models, and climate scenarios) and 

dramatically reduce the computational cost. However, the original hierarchical sensitivity analysis method is limited to 

considering parameters as a whole, and the sensitivity indices of different parameters cannot be defined or estimated. This 

simple strategy may be adequate for a groundwater modeling case, but it cannot provide detailed information for a PBHM 

that includes multiple hydrological processes. 90 

This research presents a new tool of the improved hierarchical sensitivity analysis method and demonstrates its 

implementation to a pilot example for comprehensive global sensitivity analysis of large-scale PBHMs. A new set of 

subdivided parametric sensitivity indices was defined to quantify the importance of a physical process involving only partial 

model parameters. A new binning method was implemented with the Latin hypercube sampling (LHS) method to estimate 

these subdivided parameter sensitivity indices. The LHS method also makes the assessment of hierarchical sensitivity 95 

analysis for large-scale PBHMs more computationally affordable compared with the original Monte Carlo method. This new 
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and flexible hierarchical sensitivity analysis method provides modelers with the novel capability of analyzing sensitivity 

from the physical process viewpoint and estimating accurate importance for further subdivided parameter groups. 

The process-based adaptive watershed simulator (PAWS) model was first developed in Shen and Phanikumar (2010); the 

PAWS is capable of simulating large catchments and long-term frames by efficiently coupling surface and subsurface 100 

hydrological processes. Coupling the PAWS with the CLM (Community Land Model) can enable the model to describe 

vegetation respiration and evapotranspiration in a physics-based manner (Shen et al., 2014; Niu et al., 2017). The model has 

been applied extensively in many watersheds, e.g., the large-scale watersheds in Michigan, U.S. (Shen et al., 2013, 2014, 

2016; Niu et al., 2014, 2017; Ji et al., 2015; Qiu et al., 2019) and the watershed in the Amazon basin (Niu et al., 2017), and 

the model has presented good performances in these watersheds. The PAWS can also estimate multiple key variables of 105 

hydrological states and fluxes at different spatiotemporal scales. The high efficiency, great performance, and complex 

variables all make PAWS an excellent model choice for PBHMs to evaluate and demonstrate the sensitivity analysis method. 

The PAWS model with the new hierarchical sensitivity analysis method was implemented in a study area of the ~9,000 km2 

Amazon catchment located in northern Manaus, Brazil, for the purposes of evaluation and demonstration. Three different 

types of uncertainty sources (climate scenario, model, and parameters) were all included in this test case. The parameters 110 

were further divided into three groups (vadose zone parameters, groundwater parameters, and overland flow parameter) to 

investigate the detailed importance information of the model parameters through the new subdivided parameter sensitivity 

indices. By developing the new hierarchical sensitivity analysis method and implementing it in this test case, we aim to (1) 

provide a new tool and pilot example of comprehensive global sensitivity analysis for the PBHMs; (2) identify the most 

important uncertainty sources for modeling hydrological processes in the Amazon; and (3) investigate the possible patterns 115 

for sensitivity analysis results of PBHMs. 

We introduce the study area and the numerical model in Section 2.1. Sections 2.2 and 2.3 present the improved hierarchical 

sensitivity analysis method and its algorithms in detail. Then, we describe the generation of uncertainty sources based on the 

study site information in Section 2.4. We present and discuss the results in Section 3. Finally, Section 4 summarizes the key 

findings of this research. 120 

2 Materials and methods 

2.1 Study site and numerical model 

The study site is located in northern Manaus, Brazil (Fig. 1), and the site has a drainage area of ~9,000 km2. Within the 

central Amazon, the watershed is mostly covered by tropical forest, with ~12% cropland and ~5% wetland (based on CLM 

land surface data; Niu et al. (2017)). With the relatively high elevation (90 – 210 m) of the upper landscape and relatively 125 

low elevation (45 – 55 m) of the swampy valleys, a dense drainage network formed in the region. The watershed has 4 rivers: 

the Urubu, Preto da Eva, Tarumã-açu, and Tarumã-mirim Rivers. The average precipitation in this region has large seasonal 

variability. December to May is the wet season, and June to November is the dry season. 
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The modeling tool used in this study is the PAWS model (Shen and Phanikumar, 2010; Shen et al., 2014; Niu et al., 2017). 

The main reason for choosing the PAWS as the pilot example of PBHMs is that compared with other PBHMs, the PAWS is 130 

a comprehensive and representative large-scale hydrological model that can be applied to large catchments and long-term 

frames by efficiently coupling both surface and subsurface hydrological processes (Shen and Phanikumar, 2010). The 

complexity and parameter dimensionality of the PAWS are high enough to test and demonstrate our new global sensitivity 

analysis method. Furthermore, the PAWS was previously applied to the studied watershed, and it was capable of simulating 

multiple key variables of hydrological states and fluxes at different spatiotemporal scales and presented good model 135 

performance validated by various ground and satellite observation data (Niu et al., 2017). This previous model application 

provides a solid basis for our uncertainty identification and sensitivity analysis study. 

The details of the numerical implementation and the governing equations of the PAWS can be found in Appendix A. Briefly, 

four flow domains are simulated in the PAWS, including the stream channel, overland flow, vadose zone, and saturated 

groundwater. The structured grid-based finite-volume method is the main numerical scheme applied to discretize the 140 

governing equations of the various hydrologic components. The PAWS also simulates two land surface subdomains, i.e., 

infiltration and evaporation, which are depicted in the ponding subdomain, while overland flow occurs in the surface flow 

subdomain. The PAWS considers the horizontal interaction of both surface runoff and groundwater flow between model 

grids, which represents the actual hydrological processes and is often ignored by other regional and global hydrologic 

models. The 1-D diffusive wave equation is solved to simulate channel flow, and the 2-D version is used for overland flow. 145 

The leakance concept is the concept applied to explicitly simulate the exchange between the channel and groundwater. The 

PAWS has been coupled with the CLM (Shen et al., 2014), which calculates the surface energy balance and soil and plant 

carbon and nitrogen cycles. Canopy interception and ET demand (both transpiration and soil evaporation) are also computed 

in the CLM at each time step. 

For the numerical model case in this study, a 1 km × 1 km grid is used for horizontal discretization, resulting in 118 × 122 150 

grid cells for the study site. In this model, 20 vertical layers are defined to discretize the vadose zone, and for the fully 

saturated groundwater, there are two layers: the unconfined aquifer at the top and the confined aquifer at the bottom. In this 

study, the 90 m resolution NASA Shuttle Radar Topography Mission (SRTM) (U.S. Geological Survey; http://eros.usgs.gov) 

data are applied as DEM input, but for the channel network and watershed boundary delineation, the Advanced Spaceborne 

Thermal Emission and Reflection Radiometer (ASTER) provides the 30 m resolution Global Digital Elevation Model 155 

Version 2 (GDEM V2). CLM land surface data are applied as land use and land cover (LULC) inputs. Details regarding 

these data can be found in Niu et al. (2017). More information on the governing equations of the PAWS can be found in 

Shen and Phanikumar (2010) and Niu et al. (2014). 

2.2 Hierarchical sensitivity analysis method with subdivided parametric sensitivity 

The essential concept of the hierarchical sensitivity analysis method involves categorizing and quantifying different complex 160 

uncertainties of certain model systems while considering their dependence relationships. Different uncertainty sources (or 

http://eros.usgs.gov/
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uncertain inputs) are placed in different layers of a hierarchical uncertainty framework, which is then integrated with the 

variance-based global sensitivity analysis method to form a new set of sensitivity indices to accurately quantify the 

importance of different uncertainty sources. 

In this study, climate scenarios, different aquifer thicknesses, and parameters are treated as random uncertain inputs, and 165 

they represent the climate scenario uncertainty, model uncertainty, and parameter uncertainty, respectively. Notably, the 

thicknesses of aquifers here represent the model uncertainty because the different thicknesses of distinct types of aquifers 

lead to different conceptual hydrological models, and a similar concept (different thicknesses were used for two underground 

geological formations) for the model uncertainty was used in previous work (Dai et al., 2017a). Six model parameters are 

included in this test case, and they are divided into three groups. The first group includes vadose zone parameters (PRVDZ): 170 

soil saturated hydraulic conductivity, Ks (m day-1), the van Genuchten equation parameters α (m-1) and N (unitless) (van 

Genuchten, 1980). The second group is composed of groundwater parameters (PRGW): unconfined aquifer hydraulic 

conductivity, K1 (m day-1), and confined aquifer hydraulic conductivity, K2 (m day-1). The third group is the overland flow 

parameter (PROVN): the length of the flow path for runoff contribution to the overland flow domain, L (m). Here, we consider 

the van Genuchten parameters α and N because the correlation between α and N can largely affect the soil water release and 175 

infiltration processes in the vadose zone (Pan et al., 2011). In the hierarchical uncertainty framework, all these uncertainties 

are placed into the proper levels based on their dependence relationships. The climate scenario uncertainty is at the top layer, 

and the model uncertainty and parameter uncertainty are at the middle and bottom layers, respectively (Fig. 2), which is 

because the CS are the driving forces of the hydrological model system, and multiple models can be built under a single 

scenario. Similar to the model and parameters, each model can contain a different set of parameters (Meyer et al., 2007). 180 

According to the hierarchical sensitivity analysis method, the partial variances contributed by the climate scenario 

uncertainty, model uncertainty, and parameter uncertainty can be expressed as Eqs. (1)-(3), respectively (see Appendix B for 

more details). 

( ) ( )|CS NM|CS PR|NM, CSCS Δ NM, CSV V E E=

 

(1) 

( ) ( )|CS NM|CS PR|NM, CSST Δ NM, CSV E V E=

 

(2) 185 

( ) ( )|CS NM|CS PR|NM, CSPR Δ NM, CSV E E V=

 

(3) 

where ∆ is the model output, CS represents the set of alternative climate scenarios, NM represents the multiple plausible 

models with different aquifer thicknesses, and PR  represents the multiple parameter sets under a certain model. The 

notations of NM|CS and PR|NM, CS indicate the hierarchical relationships that models are conditioned on climate scenarios 

and parameters are conditioned on models and climate scenarios. The term ∆|NM, CS indicates that the output is calculated 190 

using the parameter sets that are conditioned on climate scenarios and models. 
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The sensitivity indices for the climate scenarios SCS , models SNM , and parameters SPR  are expressed as Eqs. (4)-(6), 

following the hierarchical sensitivity analysis method: 

( )

( )

( )

( )

|CS NM|CS PR|NM, CS

CS

Δ NM, CS CS

Δ Δ

V E E V
S

V V
= = , (4) 

( )

( )

( )

( )

|CS NM|CS PR|NM, CS

NM

Δ NM, CS NM

Δ Δ

E V E V
S

V V
= = , (5) 195 

( )

( )

( )

( )

|CS NM|CS PR|NM, CS

PR

Δ NM, CS PR

Δ Δ

E E V V
S

V V
= = . (6) 

where V(∆) is the total variance in the model output (Eq. (B5)). The above equations are directly derived based on the 

hierarchical sensitivity analysis method. Notably, the parameter sensitivity index in Eq. (6) includes the influence of all 

parameters. However, to explore the detailed parameter sensitivity, the total parameter uncertainty is further decomposed 

into three components, representing the uncertainties contributed from vadose zone parameters (PRVDZ), groundwater 200 

parameters (PRGW) and the overland flow parameter (PROVN). Using the variance decomposition method (Eq. (B1)), the 

partial variance in the parameters can be further decomposed as follows: 

( ) ( )

( )( )

( )( )
VDZ ~VDZ VDZ

VDZ ~VDZ VDZ

VDZ GW OVN VDZ

VDZ

VDZ

|

|

|

|

CS NM|CS PR|NM, CS

PR |NM, CS PR |PR , NM, CS

CS NM|CS

PR |NM, CS PR |PR , NM, CS

CS NM|CS PR |NM, CS PR , PR |PR , NM, CS

PR Δ NM, CS

Δ PR , NM, CS

Δ PR , NM, CS

Δ P

V E E V

V E
E E

E V

E E V E

=

 +
 =
 
 

= ( )

( )
VDZ GW OVN VDZ

VDZ

VDZ|CS NM|CS PR |NM, CS PR , PR |PR , NM, CS

R , NM, CS

Δ PR , NM, CSE E E V+

. (7) 

where the notation PR~VDZ refers to other uncertain parameters excluding vadose zone parameters, which are groundwater 

parameters and the overland flow parameter. The first term of Eq. (7) on the right-hand side is the partial variance 205 

contributed by PRVDZ, and the second term represents the partial variance in the other parameters, which are groundwater 

parameters and the overland flow parameter. Note that Eq. (7) is decomposed based on the vadose zone parameters; when 

we decompose the partial variance in parameters based on the groundwater parameters or the overland flow parameter, the 

partial variance in the parameters can be further decomposed as Eqs. (8) and (9): 
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( ) ( )

( )( )

( )( )
GW GW GW

GW GW GW

GW VDZ OVN GW

GW

GW

GW

|

|

|

|

CS NM|CS PR|NM, CS

PR |NM, CS PR |PR , NM, CS

CS NM|CS

PR |NM, CS PR |PR , NM, CS

CS NM|CS PR |NM, CS PR , PR |PR , NM, CS

PR Δ NM, CS

Δ PR , NM, CS

Δ PR , NM, CS

Δ PR , NM, 

V E E V

V E
E E

E V

E E V E

=

 +
 =
 
 

= ( )

( )
GW VDZ OVN GW GW|CS NM|CS PR |NM, CS PR , PR |PR , NM, CS

CS

Δ PR , NM, CSE E E V+

, (8) 210 

( ) ( )

( )( )

( )( )
OVN OVN OVN

OVN OVN OVN

OVN VDZ GW OVN

OVN

OVN

|

|

|

|

CS NM|CS PR|NM, CS

PR |NM, CS PR |PR , NM, CS

CS NM|CS

PR |NM, CS PR |PR , NM, CS

CS NM|CS PR |NM, CS PR , PR |PR , NM, CS

PR Δ NM, CS

Δ PR , NM, CS

Δ PR , NM, CS

Δ P

V E E V

V E
E E

E V

E E V E

=

 +
 =
 
 

= ( )

( )
OVN VDZ GW OVN

OVN

OVN|CS NM|CS PR |NM, CS PR , PR |PR , NM, CS

R , NM, CS

Δ PR , NM, CSE E E V+

. (9) 

The first terms in Eqs. (8) and (9) represent the partial variances contributed by the groundwater and overland flow 

parameters, respectively. Then, we can define a new set of subdivided parameter sensitivity indices for the PRVDZ, PRGW and 

PROVN following the first-order sensitivity index definition (Eq. (B2)): 

( )

( )

( )

( )
VDZ GW OVN VDZ

VDZ

VDZ VDZ
|CS NM|CS PR |NM, CS PR , PR |PR , NM, CS

PR

Δ PR , NM, CS PR

Δ Δ

E E V E V
S

V V
= = , (10) 215 

( )

( )

( )

( )
GW VDZ OVN GW

GW

GW GW
|CS NM|CS PR |NM, CS PR , PR |PR , NM, CS

PR

Δ PR , NM, CS PR

Δ Δ

E E V E V
S

V V
= = , (11) 

( )

( )

( )

( )
OVN VDZ GW OVN

OVN

OVN OVN
|CS NM|CS PR |NM, CS PR , PR |PR , NM, CS

PR

Δ PR , NM CS PR

Δ Δ

E E V E V
S

V V
= = . (12) 

2.3 Sensitivity index estimation using the LHS and binning method 

The hierarchical sensitivity analysis method proposed by Dai et al. (2017a) was sampled using the conventional Monte Carlo 

random sampling method, which is computationally expensive for the sensitivity analysis of large-scale PBHMs. In this 220 

study, the different parameters were simultaneously sampled by the LHS method (Zhang and Pinder, 2003; Kanso et al., 

2006). Compared with the conventional Monte Carlo method, the LHS method can guarantee space-filling and 

noncollapsing of parameter samples (Grosso et al., 2009; Crombecq et al., 2011; Husslage et al., 2011; Damblin et al., 2013; 

Ba et al., 2015; Qian, 2012), which means that the sampling points can be evenly distributed throughout the sampling region 

and that there are no two sampling points with the same value. Thus, LHS is a sampling method with higher sampling 225 

efficiency (Helton and Davis, 2003). The convergence rate of the conventional Monte Carlo method is O(N-1/2), where N is 
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the sample size (Caflisch, 1998). However, for a system where the parameters are simply distributed (e.g., uniformly 

distributed), the convergence rate of LHS can reach O(N-3) (Iman and Conover, 1980). The LHS method has been one 

popular sampling technique used to reduce computational cost. 

For the function ( )Y f= X , the input vector X consists of k parameters (i.e., ( )1 2, , , kX X XX = ). By using the LHS 230 

method, the range of iX , 1,2, ,i k= can be divided into n nonoverlapping intervals with equal probabilities. The n values 

obtained from 1X  are randomly paired with n values obtained from 2X ; these n paired values are then combined with those 

n values from 3X . We repeat this process until the new n k  sample matrix A is developed. This sample matrix A can be 

used to calculate the sensitivity index for the model output. More details regarding LHS are described in previous studies 

(McKay et al., 1979; Owen, 1998; Helton and Davis, 2003). 235 

Using the variance definition, the partial variance in V(PR) can be first expressed as follows: 

( ) ( )

( ) ( )( )( )22

|

| |

CS NM|CS PR|NM, CS

CS NM|CS PR|NM, CS PR|NM, CS

PR Δ NM, CS

           Δ NM, CS Δ NM, CS

V E E V

E E E E

=

= −
 (13) 

After applying the formula of expectation and the LHS method, the terms V(PR), V(NM) and V(CS) can be expressed as 

follows: 

( ) ( ) ( )( )( )

( ) ( )

( ) ( )

22

2

2

1 1

2

2

1 1

| |

1 1
| , | ,

1 1
| , | ,

CS NM|CS PR|NM, CS PR|ST, CS

CS NM|CS

PR Δ NM, CS Δ NM, CS

           

           

n n

j k l j k l

j j

n n

j k l j k ll k
j j

V E E E E

E E PR NM CS PR NM CS
n n

PR NM CS PR NM CS P
n n

= =

= =

= −

  
 =  −  
   

  
 =  −  
   

 

    ( ) ( )|k l lNM CS P CS

, (14) 240 

( ) ( )

( )

( )

( ) ( )

2

1

2

1

|

1
| , ( | )

1
| , |

CS NM|CS PR|NM, CSNM Δ NM, CS

            

n

j k l k lk
j

ll
n

j k l k lk
j

V E V E

PR NM CS P NM CS
n

P CS

PR NM CS P NM CS
n

=

=

=

  
  − 
  

=  
   

     
   

 



 

, (15) 
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( ) ( )

( ) ( ) ( )

( ) ( ) ( )

2

1

2

1

Δ |

1
           | | ,

1
           | | ,

CS NM| CS PR|NM, CSCS NM, CS

n

l k l k j k ll
j

n

l k l k j k ll k
j

V V E E

P CS P NM CS PR NM CS
n

P CS P NM CS PR NM CS
n

=

=

=

  
=    

  

  
−    

  

 

  

, (16) 

where n and j represent the total sample number of LHS and the index of LHS samples, respectively, ( )|k lP NM CS  

represents the prior weight of model kNM under climate scenario lCS with ( )| 1k l

k

P NM CS = and ( )lP CS is the prior 

weights of different CS satisfying ( ) 1l

l

P CS = . The values of the weights for alternative models or CS could be selected 245 

using prior knowledge or objective criteria, e.g., posterior probabilities of the Bayesian theorem (Neumann, 2012; Schöniger 

et al., 2014). 

To calculate the subdivided parametric sensitivity indices, i.e., the sensitivity indices for vadose zone parameters, 

groundwater parameters, and overland flow parameter, a binning method was implemented in this study. This binning 

method was designed to estimate the partial variance terms of subdivided parameter groups with paired LHS samples of 250 

parameters. Using the sensitivity index of vadose zone parameters as an example, the range of vadose zone parameters was 

divided into multiple equal bins, and the partial variance term ( )
VDZ GW OVN VDZ VDZ|V EPR |NM, CS PR , PR |PR , NM, CS Δ PR , NM, CS  was 

approximated by ( )
VDZ GW OVN VDZ

VDZ|bin bin

binV E
PR |NM, CS PR , PR |PR , NM, CS

Δ PR , NM, CS  using the model outputs calculated by those 

parameter sample pairs that contain vadose zone parameters in the same bin (noted as VDZ

binPR ). Then, the partial variance 

term in Eq. (10) can be computed as follows: 255 

( )

( )

( )( )

VDZ GW OVN VDZ

VDZ GW OVN VDZ

bin bin
VDZ GW OVN VDZ

bin
VDZ

VDZ

VDZ

2
bin

VDZ

|

|

|

bin bin

bin

V E

V

E E

E

E=

=

−

PR |NM, CS PR , PR |PR , NM, CS

PR |NM, CS PR , PR |PR , NM, CS

PR |NM, CS PR , PR |PR , NM, CS

PR |NM, CS

Δ PR , NM, CS

Δ PR , NM, CS

Δ PR , NM, CS

( )( )( )bin
GW OVN VDZ

2
bin

VDZ|E
PR , PR |PR , NM, CS

Δ PR , NM, CS

 (17) 

The subscript PRVDZ
bin |NM, CS represents the vadose zone parameters in the same bins under the fixed model and fixed 

climate scenario. The subscript PRGW, PROVN|PRVDZ
bin , NM, CS  represents the change in the combination of PRGW and 

PROVN sets belonging to a specific PRVDZ bin under a fixed model and fixed climate scenario. The term ∆|PRVDZ
bin , NM, CS 

represents the output under the fixed vadose zone parameter, subsurface stratigraphy model, and climate scenario. 260 

𝑃(PRVDZ
bin |NM, CS) refers to the weights of different bins for PRVDZ under the fixed model and fixed climate scenario. 
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The procedures for calculating the subdivided parametric sensitivity indices for PRVDZ using the combined LHS and binning 

methods are listed as follows: (1) simulate ∆ for all CS, models, and parameter realizations, (2) divide the PRVDZ realizations 

into bins, and (3) calculate EPRGW, PROVN|PRVDZ, NM, CS(∆|PRVDZ, NM, CS)  by replacing it with 

E
PRGW, PROVN|PRVDZ

bin
, NM, CS

(∆|PRVDZ
bin , NM, CS). After E

PRGW, PROVN|PRVDZ
bin

, NM, CS
(∆|PRVDZ

bin , NM, CS) is calculated for each 265 

bin of PRVDZ, the partial variance for PRVDZ, i.e., the molecule of Eq. (10) can be expressed as follows: 
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 (18) 

where the symbol U refers to the number of combinations of PRGW and PROVN in bin PRVDZ
𝑏𝑖𝑛𝑤 , i.e., the size of the parameter 

set in bin PRVDZ
𝑏𝑖𝑛𝑤 , and the symbol u is the index for these combinations. w represents the index for the bins of vadose zone 

parameters, and W is the total number of bins. After applying the LHS sampling method and the same binning method, the 270 

partial variance for PRGW and PROVN can be estimated as follows: 
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, (19) 
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 (20) 

The binning method is a rigorously derived mathematical technique designed to separate and estimate the partial variances 

contributed from different parameters of one LHS method sampled parameter set. Because the mathematical equations are 275 

general and rigorous, this method can be applied to any modeling case with LHS parameter samplings. However, when the 

samplings for different parameters are totally random and unrelated, such as the conventional Monte Carlo simulation, the 
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binning method is not applicable. Using LHS and the binning method, the number of realizations is reduced to the size of the 

parameter sets obtained from the LHS method. Thus, the computation cost for estimating the subdivided parametric indices 

can be highly reduced. Dai et al. (2017b) confirmed a similar accuracy of 36,000,000 Monte Carlo realization results with 280 

16,000 realizations when applying only the binning method for a synthetic example. The combination of the LHS method 

with the binning method makes it computationally affordable to analyze the detailed parametric sensitivity for such a large-

scale, complex hydrologic model. 

2.4 The generation of uncertain inputs 

For the CS, we generated six typical and alternative scenarios based on NASA’s Tropical Measuring Mission (TRMM) data 285 

(http://trmm.gsfc.nasa.gov/) and the default CLM CRU-NCEP (CRUNCEP) dataset (Piao et al., 2012) from 1998 to 2013. 

We considered five climate variables: daily precipitation, temperature, solar radiation, humidity, and wind speed. The 

precipitation data were obtained from the TRMM, while the temperature, solar radiation, humidity and wind speed data are 

based on the CRUNCEP because the model fails to capture the peak stream discharges using the CRUNCEP rainfall data 

(Niu et al., 2017). We first divided the annual climate dataset into dry and wet seasons according to the precipitation values 290 

(six months for each season). Then, we sorted the wet and dry seasons according to their total precipitation values during the 

whole season. Next, we divided these wet and dry seasons into three different groups representing six climate scenarios from 

wet to dry (Fig. 3). The mean and standard deviation of the values of the different climate variables (e.g., precipitation, 

maximum temperature) for each group were calculated using the daily data (Table 1). Finally, we generated random daily 

weather data for each climate scenario based on these mean and standard deviation data using a normal distribution. The 295 

mean and standard deviation for each climate scenario’s daily data are listed in Table 1, and Fig. 3 displays a box plot of the 

precipitation data for the six climate scenarios (CS1, CS2, CS3, CS4, CS5, CS6). 

Table 1. Statistical information for the daily data for the six CS. Here, μ represents the mean value and σ represents the standard 

deviation. 

 Wet season Dry season 

climate 

scenarios 
CS1 CS2 CS3 CS4 CS5 CS6 

precipitation 

(μ [mm], σ) 

(10.96, 2.78) (9.49, 2.8) (7.87, 2.91) (4.84, 1.81) (3.99, 1.62) (3.38, 1.35) 

maximum 

temperature 

(μ [℃], σ) 

(29.33, 0.66) (29.94, 0.60) (30.03, 0.62) (30.80, 0.65) (30.80, 1.03) (31.50, 1.04) 
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minimum 

temperature 

(μ [℃], σ) 

(25.13, 0.54) (25.63, 0.55) (25.74, 0.48) (25,59, 0.77) (25.47, 0.81) (26.02, 0.82) 

radiation 

intensity 

(μ [MJ m-2], σ) 

(3973.5, 

129.6) 

(3975.1, 

122.9) 

(3982.4, 

113.6) 

(4285.5, 

199.1) 

(4299.5, 

195.6) 

(4312.1, 

215.8) 

relative 

humidity 

(μ [unitless], σ) 

(0.0188, 

4.65e-4) 

(0.0191, 

3.54e-4) 

(0.0192, 

4.72e-4) 

(0.0186, 

5.44e-4) 

(0.0185, 

5.76e-4) 

(0.0188, 

5.75e-4) 

average wind 

speed 

(μ [m s-1], σ) 

(0.595, 

0.122) 

(0.648, 

0.141) 

(0.642, 

0.148) 

(0.549, 

0.073) 

(0.518, 

0.061) 

(0.552, 

0.081) 

For the model uncertainty, the research of Brunke et al. (2016) shows that the shallow bedrock depth or deep bedrock depth 300 

has a great influence on surface runoff and base flow in CLM. Therefore, in this study, we will consider the effects of 

different aquifer models. Niu et al. (2017) simulated an unconfined aquifer with 100 m depth and 200 m thickness for the 

confined aquifer. Considering that (1) the stratification of the soil and aquifer is relatively stable, and the thickness does not 

change much (do Rosário et al., 2016), (2) there is a lack of actual measurements in this area to determine the stratification 

of unconfined aquifers and confined aquifers, and (3) according to Pelletier et al. (2016), the thickness of the unconfined 305 

aquifer in the central Amazon is larger than 50 m, and the depth of the bedrock is very deep, as three aquifer models 

involving different thicknesses of the unconfined and confined aquifers were generated to investigate the sensitivity of the 

model outputs to aquifer thickness. These three aquifer models involving different thicknesses of the unconfined and 

confined aquifers are (1) 100 m and 200 m (NM1), (2) 50 m and 250 m (NM2), and (3) 250 m and 50 m (NM3), respectively. 

These three models represent the situations of (i) similar thickness of the unconfined and confined aquifer, medium bedrock 310 

depth, (ii) thick confined aquifer, low bedrock depth, and (iii) thick unconfined aquifer, large bedrock depth. 

The six different model parameters were sampled by LHS within the feasible range (Table 2), and 600 samples of the 

parameter set were generated. The reasons for using 600 parameter samples in this study are because, first, based on the 

experiences of previous research cases (Emery et al., 2016; Dai et al., 2019), 600 is an adequate parameter sample size for 

this research considering the model domain and number of uncertain parameters; and second, considering the computational 315 

cost, 600 parameter samples are an appropriate sample size for this study. By combining model uncertainty and climate 

scenario uncertainty, there are 600 × 3 × 6 = 10,800 simulations in total. The pure simulation time without analyzing data is 

already very time consuming even when using the best high-performance computing (HPC) platform we have. 
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Table 2. Six chosen parameters to be included in parameter uncertainty 

Group Parameter Unit Description Allowable Range 

vadose zone 

(PRVDZ) 

Ks m day-1 soil saturated hydraulic conductivity 0.0-10.0 

α m-1 Van Genuchten parameter 0.1-4.0 

N  Van Genuchten parameter 1.03-5.0 

groundwater 

(PRGW) 

K1 m day-1 unconfined aquifer hydraulic conductivity 0.0-60.0 

K2 m day-1 confined aquifer hydraulic conductivity 0.0-10.0 

overland flow 

(PROVN) 
L m 

length of flow path for runoff contribution to the 

overland flow domain 
20.0-700.0 

According to the study of Cuartas et al. (2012), the clay content in the northwestern part of Manaus is very high (65-90%). 320 

Considering the difference in regional soil texture (Fisher et al., 2008; Teixeira et al., 2014), the allowable range of soil 

saturated conductivity Ks selected in this study is between 0-10 m day-1. The ranges of unconfined aquifer conductivity, K1, 

and confined aquifer conductivity, K2, are chosen as 0-10 m day-1 and 0-60 m day-1, respectively. The results of the model 

calibration in Niu et al. (2017), which are related to the characteristics of the soil and groundwater layers in the watershed 

(Oleson et al., 2008; Christoffersen et al., 2014), are used to define the mean values of distributions used for these uncertain 325 

parameters. The soil saturated conductivity, Ks, unconfined aquifer conductivity, K1, and confined aquifer conductivity, K2, 

were assumed to follow lognormal distributions (log-N (1.6094, 0.42142), log-N (3.4012, 0.42142), and log-N (1.6094, 

0.42142), respectively). The remaining three parameters (α, N, and L) were assumed to follow a uniform distribution: U (0.1, 

4), U (1.03, 5), and U (20, 700). The allowable ranges of these six parameters are listed in Table 2. 

From Section 3.1 to Section 3.4, we assumed that the different scenarios have equal probability. Moreover, three models 330 

under each climate scenario were also assumed to have equal weights, i.e., P(CSl) = 1/6, and 𝑃(NMk|CSl) = 1/3. However, 

the weights for models and scenarios may affect the output results. We investigated the variability in the results to the 

changing weights for NM1, CS1 (the wettest climate scenario), and CS6 (the driest climate scenario) in Section 3.5. This 

experiment is helpful for improving our understanding of sensitivity analysis results. 

3 Results and discussion 335 

3.1 Model predictions 

As mentioned in the above section, the total number of PAWS+CLM simulations considering all possible combinations of 

the three uncertain factors is 6×3×600=10,800, which represents six climate scenarios, three model conceptualizations of 
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aquifer thickness, and 600 sampled parameter sets. We used the parallel computing technique for running these simulations 

through the HPC platform (13 cores of Xeon 2.8G CPU). The average time spent on a single simulation was 2.8 minutes, 340 

and a total of 10,800 simulations were run for 3 weeks. The simulation time for all the simulations was six months (180 days, 

4320 hours), which is the length of the dry or wet season in the central Amazon region. The results given by the PAWS were 

represented in two forms: (1) space-accumulative output values over the whole grid at each time step and (2) time-

accumulative output values over the whole simulated period for each grid. In this study, the time step is one hour. Figure 4 

depicts the space-accumulative model predictions for the two outputs of interest, ET and QG, using different inputs of 345 

scenarios, models, and parameter sets. All prediction results are grouped into 24 groups based on local time, which represent 

1:00 to 24:00 throughout the day (Fig. 4). Each box in Fig. 4 describes the prediction results estimated using all the 

combinations of 600 parameter sets, three models and six CS at the same local times. Figure 4(a) shows that the ET 

predictions throughout a day have a time-varying pattern, and their values are significantly larger during the daytime and 

smaller at night. This pattern coincides with the physical fact that sunlight leads to higher temperature and more plant 350 

transpiration. The uncertainty of ET predictions during the daytime is also larger than that during the night. Figure 4(b) 

shows that the predictions of QG have no significant time-varying pattern throughout the day. However, the prediction results 

of ET and QG both demonstrate great variability or uncertainty for each time group. Further quantitative sensitivity analysis 

is necessary to identify the most important sources of uncertainty for these predictions. 

3.2 Sensitivity indices for evapotranspiration 355 

First, we calculated the sensitivity indices for the space-accumulative ET over the whole watershed at all time steps using 

Eqs. (4)-(6). Figure 5(a) shows the sensitivity indices for the whole simulation period of 4320 time steps. All the sensitivity 

indices fluctuate strongly with time, except for the sensitivity indices of the models. The sensitivity indices for the models 

(SNM) are always close to zero at every time step, indicating that aquifer thickness has little influence on space-accumulative 

ET. Figure 5(b)-(g) plot the sensitivity indices across six periods, exhibiting the details at each time step. Every period lasts 360 

for three days. The patterns of the sensitivity indices have a daily cycle, but specific values of the sensitivity indices at the 

same wall-clock time on different days are distinguished. Figure 5 indicates that the sensitivity to various factors is strongly 

time dependent. Notably, at 12:00-13:00, the CS are always the most important factors affecting the sensitivity of ET (Fig. 

5(b)-(g)), which may be because ET is directly influenced by solar radiation values, and the radiation forcing used in this 

study reaches its maximum value at approximately 12:00. Therefore, the CS dominate the uncertainties at 12:00-13:00. 365 

Another finding is that at 24:00-1:00, the sensitivity indices for the parameters (SPR) show absolute dominance, but the 

sensitivity indices for the climate scenarios (SCS ) are decreased. A possible explanation for this result might be that 

precipitation and radiation forcing all decrease to zero during this period, leading to a decrease in the sensitivity indices for 

the climate scenarios (SCS). In contrast, the importance of parameters is greatly increased. Six time points (simulation times 

= 1428 hours, 1440 hours, 2868 hours, 2880 hours, 4308 hours, and 4320 hours) were chosen as examples to show the 370 

specific sensitivity indices (Fig. 6). Simulation times of 1428 hours, 2868 hours, and 4320 hours belonged to different days, 
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but all corresponded to 12:00 local time. At these time points, the climate scenario uncertainty (SCS) is the most important 

contributor to the total ET prediction uncertainty, accounting for 54-77% of the total uncertainty, and parameters (SPR) 

contribute the second most to uncertainty. However, at different time points (1440 hours, 2880 hours, and 4320 hours, 

corresponding to 24:00 local time), the parameters are the dominant uncertainty contributor, with SPR ranging from 89 to 375 

92%. 

We also calculated the sensitivity indices for every grid cell within the model domain using the time-accumulative ET 

predictions over all simulation periods (4320 hours). Figure 7 shows the spatial variability in the sensitivity indices for the 

temporal mean ET predictions. The maps demonstrate that for most grids, parameters are the most important uncertainty 

contributor to ET predictions (SPR>0.50), and CS are the second most important contributor to uncertainty. However, for 380 

stream grid cells, the importance of aquifer thicknesses increases. Therefore, the parameters and aquifer thicknesses are both 

important. Here, aquifer thicknesses refer to the average aquifer thickness for the whole watershed. The increase in the 

model sensitivity indices indicates that the structure of the aquifer significantly affects the baseflow and then influences the 

river evaporation predictions. Figure 7 shows that the parameter uncertainty within the overall watershed is important for ET, 

and for river evaporation, the aquifer thicknesses are also important. 385 

3.3 Sensitivity indices for groundwater contribution to streamflow 

Groundwater has been demonstrated to be crucial for soil moisture in the Amazon region by previous research) (Miguez-

Macho and Fan, 2012b). Meanwhile, it also exerts a significant buffering effect on maintaining evapotranspiration during 

dry seasons (Miguez-Macho and Fan, 2012a; Pokhrel et al., 2014). The model PAWS uses the output of QG to quantify the 

variation in groundwater volumes and measure the interaction process between groundwater and rivers. It is essential to 390 

implement the sensitivity analysis to investigate which factor is most influential on this groundwater exchange process. The 

same sensitivity analysis procedures were also conducted for the model predictions of QG. 

Figure 8(a) shows the sensitivity indices for the whole simulation period of 4320 time steps for QG predictions. This figure 

indicates that regardless of the time steps, parameters are always the dominant contributor to the total QG prediction 

uncertainty. This result may be explained by the fact that soil parameters strongly affect the soil water redistribution process, 395 

including infiltration into groundwater. We selected the same period as Fig. 5(b)-(g) to display the more detailed results for 

QG predictions in Fig. 8(b)-(g). As shown in these figures, the sensitivity indices of the models (SNM) and climate scenarios 

(SCS) reach peak values at approximately 1:00. In terms of SCS, this may be because the exchange between groundwater and 

river flow occurs hours later than the rainfall process, and the amount of water during the exchange process always reaches 

its peak at night, at approximately 1:00. The SNM might be because the thickness of aquifers will greatly influence the water 400 

redistribution process in the aquifer. Another pattern demonstrated in Fig. 8 is that the values of SCS generally increase with 

time. This trend may be caused by the seasonality effect of CS or the long-term cumulative influence of CS on the 

groundwater flow. 
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Because groundwater exchange with stream flow occurs only at grid cells along the streams, the sensitivity indices only have 

valid values in those stream grid cells (Fig. 9). Our results indicate that considering most grid cells, the parameters are the 405 

most important contributor to the uncertainty of time-accumulative QG predictions, and the second most important factor is 

aquifer thickness. However, if we divide the grid cells into groundwater and stem river grid cells based on their location 

relative to the river and aquifer type, the sensitivity analysis results are totally different in these two types of grid cells. The 

model parameter uncertainty is usually the most important in stem river grid cells; in contrast, the aquifer thicknesses 

contribute the largest portion of the uncertainty in groundwater grid cells. This pattern of results may be caused by the 410 

unconfined aquifer and river being unconnected in the stem river grid cells, and there is an unsaturated zone between two of 

them. Therefore, the soil parameters affect QG predictions in stem river grid cells. Moreover, the groundwater table is 

relatively high, and the groundwater is directly connected with rivers in the groundwater grid cells. Thus, the aquifer 

thicknesses are more important under this condition. 

3.4 Sensitivity indices for subdivided parameters 415 

Based on the sensitivity analysis for ET and QG predictions, the results show that parameters are important uncertain inputs 

for both the space-accumulative and time-accumulative uncertainties. In this study, we used Eqs. (10)-(12) to further 

calculate the subdivided parametric sensitivity indices, which can provide a more detailed sensitivity analysis for model 

simulation. Through this investigation, the parametric sensitivity was subdivided into three groups: (1) the sensitivity for 

vadose zone parameters (SPRVDZ
), (2) the sensitivity for groundwater parameters (SPRGW

), and (3) the sensitivity for the 420 

overland flow parameter (SPROVN
). Using the binning method, we calculated the space-accumulative and time-accumulative 

subdivided parametric sensitivity indices for ET and QG. We plotted frequency histograms of the subdivided parametric 

sensitivity indices over 4320 hours in Fig. 10. 

Figure 10(a) depicts the results for ET. The value of SPRVDZ
 is concentrated in the range of 0.1-0.9, and SPRGW

 is concentrated 

in the range of 0.003-0.032. The value of SPROVN
 is so small that the influence of the overland flow parameter can be ignored. 425 

This indicates that vadose zone parameters (PRVDZ) dominate the total parametric uncertainties for ET. Figure 10(b) shows 

the frequency histogram of space-accumulative subdivided parametric sensitivity results for QG. SPRVDZ
 is still concentrated 

in the larger number range (0.2-0.53), and the value of SPRGW
 changes from 0.04 to 0.3. The number of SPROVN

 is also the 

lowest, indicating that the overland flow parameter has little effect on QG. The order of importance of the uncertain inputs is 

the same for both ET and QG predictions. However, it is significantly different from ET in that although PRGW is the second 430 

most important parameter group, the value of SPRGW
 in the QG results is an order of magnitude higher than that in the ET 

results. In the QG results, the range of SPRGW
 is concentrated in the range of 0.05-0.2, while in the ET results, the value of 

SPRGW
 is concentrated in the range of 0.003-0.032. 

We plotted the time-accumulative subdivided parametric sensitivity indices for ET in Fig. 11(a) and for QG in Fig. 11(b). 

Considering ET as our output, for most grids, the vadose zone parameters are the most important contributor to parametric 435 
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uncertainties. Compared with that on other grids, the influence of groundwater parameters on the river grids is more 

significant (Fig. 11(a)). For the QG results, the vadose zone parameters generally dominate the parametric sensitivities for 

most grids (Fig. 11(b)). However, if considering different types of grid cells, we find that the vadose zone parameters mainly 

affect the stem river grid cells and have a relatively small influence on the groundwater grid cells. This pattern coincides 

with our hypotheses that there is an unsaturated zone between the stem rivers and groundwater. More detailed sensitivity 440 

indices for all six parameters are demonstrated in Appendix C. 

3.5 Effects of prior weights on sensitivity indices 

In this section, we changed the prior weights of the CS and numerical models to investigate their influences on the space-

accumulative sensitivity indices. Because the number of space-accumulative results for ET and QG is too large to be well 

exhibited, we chose one time step (4308 hours, 12:00 wall-clock time) to show the trend. We randomly changed the values 445 

of the weights for NM1 (the thickness of the unconfined aquifer is 50 m and that of the confined aquifer is 250 m), CS1 (the 

wettest climate scenario), and CS6 (the driest climate scenario) to between 0 and 1. If the weight for NM1, CS1, or CS6 is p, 

then the weight of the remaining climate scenarios or models will be assumed to be (1-p)/n, where n is the number of the 

remaining climate scenarios or models. Figure 12(a) indicates that when we consider ET as our output, with the increase in 

the prior weight of NM1, the uncertainty of the CS will decrease to 50%, while the uncertainty of the parameters will increase 450 

to 50%. Both parameters and CS have important effects on ET. Different from the results for ET, with the increase in the 

prior weights of NM1, the sensitivity index of the numerical models for QG decreases to 0 (because only one model exists 

under this condition), and the scenario uncertainty changes only slightly. Moreover, the uncertainty of parameters always 

dominates the total uncertainty for QG (Fig. 12(b)) regardless of the prior weight value. In general, the different prior weight 

values for the numerical models only slightly change the sensitivity analysis results. 455 

Figure 12(c)-(f) exhibit the influences of prior weights for the wettest and driest CS on ET. These figures first demonstrate 

that changing the values of the prior weights of CS1 and CS6 has larger impacts on ET predictions than on QG predictions. 

This pattern coincides with the fact that the parameter uncertainty dominates the total predictive uncertainty of QG and that 

the scenario uncertainty is relatively small. Therefore, the selection of prior weight values for the scenarios does not have a 

significant effect on the sensitivity analysis results for the QG predictions, and the parameter sensitivity index is always the 460 

largest (Fig. 12(d) and (f)). For the sensitivity analysis results pertaining to ET predictions, changing the values of the 

weights for CS1 and CS6 has different effects. The sensitivity index values of the climate scenarios for ET predictions 

monotonically decrease, while the importance of parameters continues to increase as the prior weight of CS1 is larger than 

40%, which reflects that when the probability of extreme humid seasons in the Amazon is greater than 40%, the importance 

of parameters takes precedence over the importance of climate scenarios for ET. However, the value of SCS  for ET 465 

predictions first increases when the prior weight of CS6 approaches 10% and then decreases after the prior weight of CS6 

approaches 90%, and SPR shows the opposite trend (Fig. 12(e)). This shows that when the probability of occurrence of 
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extreme dry seasons is between 10% and 90%, the climate scenario is always the most important uncertain input unless the 

occurrence probability of the extreme dry season is greater than 90%. 

3.6 Discussion 470 

The results from this case study exhibit the importance of parameters, especially the vadose zone parameters, for ET and QG 

predictions. Furthermore, according to the space-accumulative results, the climate scenario is also an important uncertainty 

source for ET predictions, especially at 12:00. Meanwhile, the thickness of the aquifer has a nonignorable influence on the 

QG predictions on the groundwater grid cells. Moreover, according to the results of adjusting the climate scenario and model 

weights, the change in model (aquifer thickness) weights only has a small impact on the importance of different uncertainties. 475 

When the probability of occurrence of the extreme humid season is high, the importance of the parameters increases 

significantly. However, when the probability of occurrence of the extreme dry season is high, the main factors affecting ET 

predation are still the climate scenario unless the probability of occurrence of CS is greater than 90%. Although these 

patterns of sensitivity analysis results may not be universally correct, they can still provide useful insights for other modelers 

with similar cases and models. 480 

In addition to the specific results, we also have some new insights into the general patterns of sensitivity analysis for the 

PBHMs provided by this pilot case. For instance, first, the ranks of importance of uncertain inputs are totally different for 

different model outputs, e.g., CS have a large impact on ET predictions but a small impact on QG predictions. There is no one 

set of results that are valid for all different model outputs. Second, the sensitivity analysis results of ET and QG predictions 

show that the uncertainty has high temporal and spatial variability, which reflects that for very complex hydrological models, 485 

such as PBHMs, it is incorrect to generalize the sensitivity analysis results of a grid or a timestep to the entire watershed or 

the entire simulation cycle. Third, it is necessary to implement such a comprehensive global sensitivity analysis method that 

considers more than parametric uncertainty for the large-scale PBHMs since the sensitivity analysis results showed that other 

sources of uncertainty (e.g., climate scenario and model uncertainties) are essential as well for model predictions. Finally, 

evaluating the sensitivity of the parameters in detail is essential for PBHMs. For such a complex surface-subsurface coupling 490 

model, the new sensitivity analysis method can efficiently identify the uncertain inputs that have the greatest impact on the 

model outputs. This process can greatly improve our understanding of the complex model system and save time that is 

normally spent calibrating the model. 

4 Conclusions 

This research presented an improved hierarchical sensitivity analysis method for comprehensive global sensitivity analysis of 495 

large-scale complex PBHMs. Developed based on the previous hierarchical framework of Dai et al., (2017a), this new 

methodology can simultaneously consider various types of uncertainty sources and estimate the importance of different 

processes involved in the modeling work. A new set of sensitivity indices of subdivided parameters was defined to quantify 
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the importance of processes that only involve partial parameters. The highly efficient sampling algorithm of the LHS and 

binning method were implemented for the estimation of sensitivity indices to reduce computational cost. For evaluation and 500 

demonstration purposes, we implemented the new sensitivity analysis method into a real-world case of large-scale complex 

PBHM (PAWS), which was applied to a large Amazon catchment. Three common groups of uncertainty sources or uncertain 

inputs were considered in this study, including six CS, three plausible aquifer models, and six uncertain parameters (i.e., soil 

saturated conductivity, van Genuchten α and N, unconfined aquifer conductivity, confined aquifer conductivity, and the 

length of the flow path for runoff contribution to the overland flow domain). A new set of subdivided parametric sensitivity 505 

indices was defined for three groups of parameters (i.e., vadose zone, groundwater, and overland flow parameters). 

The sensitivity analysis results in this study first demonstrate the necessity of implementing such a comprehensive global 

sensitivity analysis for PBHMs because uncertainty sources other than parameters (e.g., CS and models) are also important 

for model predictions. Furthermore, the values of model weights have a small impact on the sensitivity analysis results, but 

the selections of weights for extreme CS may change the ranks of importance for uncertain inputs. Moreover, the sensitivity 510 

analysis results are both temporally and spatially dependent and have distinct patterns for different model outputs. Therefore, 

there is no single conclusion for all model outputs considering different times and locations. In general, the parameter 

uncertainty is important for both ET and QG predictions. Among all the parameters, the vadose zone parameters are the most 

important, and the parameter of overland flow is negligible. The CS are also important uncertainties for ET predictions, 

especially at 12:00. Along the river grid cells, the thickness of the aquifer has a significant influence on both ET and QG 515 

predictions. Although the patterns of sensitivity analysis results found in this study may not be universally valid, they can 

still provide useful insights for modelers with similar problems. For instance, we can suggest that when modelers apply 

sophisticated hydrological simulators, such as the PAWS, they should pay more attention to the values of weather variables 

at approximately 12:00 (the daily peak values) and focus more on estimating the thicknesses of groundwater aquifers near 

rivers and adjusting the vadose zone parameters. 520 

Through this pilot example of comprehensive global sensitivity analysis, this study proves that using the new improved 

hierarchical sensitivity analysis method is a computationally affordable and useful way to identify the most important 

uncertain inputs for large-scale complex PBHMs. The sensitivity analysis results can provide key information on uncertainty 

sources for modelers and greatly improve the model calibration and uncertainty analysis processes. The proposed method is 

mathematically rigorous and general and can be applied to extensive, large-scale hydrological or environmental models with 525 

different sources of uncertainty. 

Appendix A 

The governing equations of the PAWS are presented in detail in Shen and Phanikumar (2010) and Shen et al. (2013). Here, 

we will mainly introduce the equations describing the processes involved in this article. 
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In the PAWS, the soil moisture in the vadose zone is calculated according to the Richards equation. The vertical movement 530 

of fluid between saturated and unsaturated soil is calculated based on the mixed form of the Richards equation (Celia et al., 

1990; van Dam and Feddes, 2000): 

( ) ( ) ( )+1 +
h h

C h K h W h
t z z

     
=   

    
.  (A1) 

where h represents the soil water pressure head, z is the elevation (positive upward), K(h) represents the soil unsaturated 

conductivity and W(h) is the source or sink term, including the influence of evaporation, root extraction and lateral flow. The 535 

differential water capacity can be described as C(h)= ∂θ ∂h⁄ , where h is the soil pressure head and θ is the water content. The 

pressure head, h, is related to the unsaturated hydraulic conductivity, K(h). According to the Mualem-van Genuchten formula 

(Mualem, 1976; van Genuchten, 1980), the soil saturated hydraulic conductivity, Ks, van Genuchten α and N will influence 

the unsaturated conductivity, K(h): 
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where S is the relative saturation, θs is the saturated water content, θr is the residual water content, N is related to the pore-

size distribution, α indicates the reciprocal of air suction and λ is a parameter measuring pore connectivity. 

The aquifers in the PAWS are depicted as a series of 2-D layers (Shen et al., 2014). In each layer, the 2-D groundwater 

equation is used to describe the water movement: 545 

H H H
S T T R W Dp

t x x y y

         
= + + + −    

         
, (A4) 

where S is the storability; T is the transmissivity of the aquifer; T=Kb, where K is the aquifer conductivity and b is the 

saturated thickness of the aquifer; H is the aquifer hydraulic head; R is recharge or discharge; W is the source and sink term; 

and Dp is percolation into deeper aquifers. 

The PAWS applies one-dimensional diffusive wave equations to portray the channel flow model (Shen and Phanikumar, 550 

2010; Shen et al., 2014). After calculating the channel flow, the exchange between groundwater and channel flow (QG) is 

immediately computed. The calculation of QG is based on the leakance concept (Shen and Phanikumar, 2010): 
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where hr
*
 is the river level calculated from the channel flow model, Kr is the riverbed conductivity, Zb is the elevation of the 

riverbed, ∆Zb is the thickness of the riverbed and H∗ is the groundwater table. Note that H∗ can also be described as Eq. (A5). 555 

By solving these two equations together, we can obtain H∗ and hr
n+1

. Then, the value of QG can be calculated as follows 

(Shen and Phanikumar, 2010): 

( )1 *n

G r rQ w h h+= − , (A6) 

where w is the wetted perimeter. If the river width is greater than 10 m, w can be approximated as the river width. 

The PAWS retains its own flow scheme, but the surface processes use the CLM 4.0 model, which enables the simulation of 560 

detailed surface processes, such as surface heat flux, water vapor flux, surface radiation balance, crop growth, and plant 

photosynthesis. The calculation of ET demand is performed in the CLM model based on the climate data, and then, ET 

demand will be transferred to PAWS as a source term for the vadose zone. More details about the calculation of ET (both 

evaporation and transpiration information can be found in the technical note of CLM 4.0, 

http://www.cesm.ucar.edu/models/cesm1.1/clm/CLM4_Tech_Note.pdf). The coupling with the CLM makes the PAWS a 565 

more comprehensive and robust surface-subsurface hydrological model. 

Appendix B 

For the model: ( ) ( )1,..., mf X f X X= = , where   is the model output and  1 ,..., mX X X=  is a group of uncertainty 

inputs, using the law of total variance, the total variance in   can be decomposed as follows (Dai et al., 2017a): 

( ) ( )( ) ( )( )
~ ~X XΔ Δ Δ

i i i iX i X iV V E X E V X= + , (B1) 570 

where the first term of partial variance on the right-hand side is the within-
iX  partial variance and represents the variance 

contribution by
iX  and X i

 represents all the inputs except 
iX . The second term on the right-hand side represents the 

variance contributed by the model inputs excluding 
iX  as well as the interactions of all the inputs. Based on the definition of 

the first-order sensitivity index (Saltelli and Sobol, 1995), 

~
( ( | ))

( )

Xi iX i

i

V E X
S

V


=


, (B2) 575 

The percentage of uncertainty contributed by input 
iX  can be accurately quantified. 

For the hierarchical framework in Fig. 2, the variance-based sensitivity analysis method enables decomposition of the total 

variance into individual contributors as follows: 

http://www.cesm.ucar.edu/models/cesm1.1/clm/CLM4_Tech_Note.pdf
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( ) ( )( ) ( )( )
( )( ) ( )( )

~ ~CS CSCS CS CS CS
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        Δ CS Δ CS
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V E E V

= +

= +
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The first term of partial variance on the right-hand side of this equation represents the variance caused by multiple CS. The 580 

second term on the right-hand side is the partial variance caused by other uncertain inputs and can be further decomposed as 

follows: 

( ) ( )( ) ( )( )NM, PR CS NM CS PR NM, CS NM CS PR NM, CS
Δ CS Δ NM, CS Δ NM, CSV V E E V= + , (B4) 

where the first partial variance term on the right-hand side of this equation represents the uncertainty contributed by multiple 

plausible models. The second term represents the within-model partial variance caused by the uncertain parameters. By 585 

substituting Eq. (B4) back into Eq. (B3), we can obtain the following equation: 
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= +

+

= ( ) ( ) ( )PR NM CSV V V+ +

. (B5) 

The three terms on the right-hand side of Eq. (B5) represent the partial variances contributed by the parameters, models and 

CS, respectively. The equation indicates that the total variance can be decomposed into the variances contributed by the 

alternative climate scenarios, CS, plausible numerical models, NM, and uncertain parameters, PR. Then, following the first-590 

order sensitivity index definition (Eq. (B2)), the hierarchical sensitivity analysis method defines the indices for PR, NM, and 

CS, respectively, as shown in Eqs. (4)-(6). 

Appendix C 

To conduct a more comprehensive analysis of all parameters and to compare the impact of two aquifers on QG, we estimated 

the sensitivity indices of the six parameters according to Eq. (C1). The difference between this equation and the previous 595 

ones is that Eq (C1) no longer groups the parameters, and it calculates the sensitivity indices individually for six parameters. 

( )

( )

( )
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~ |CS NM|CS |NM, CS | , NM, CS Δ , NM, CS

Δ Δ

E E V E V
S

V V

  



 
= = , (C1) 

In this equation, 𝜃 refers to one of the six parameters, i.e., Ks, α, N, K1, K2 and L. The subscript θ|NM, CS represents the 

change in one parameter under a fixed model and a climate scenario. The subscript ~θ|PRVDZ, NM, CS refers to the other 
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five uncertain parameter inputs excluding 𝜃  parameter. The term, ∆|θ, NM, CS  represents the output under the fixed θ , 600 

model, and climate scenario. 

The spatial distribution of the sensitivity indices of six parameters for QG is shown in Figure (C1). According to Figure (C1), 

the importance of the van Genuchten parameter, N, in the stem grid cells is significant. The conductivity of unconfined 

aquifer K1 has a certain impact on QG in most river grid cells. Additionally, it can also be seen from Figure (C1) that for most 

grids, the influence of K1 is greater than K2, which implies that the unconfined aquifer has a greater influence on baseflow. 605 
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Figure captions 830 

Figure 1. Two-dimensional map of the watershed used in this study, showing the elevation, channels and watershed boundary. The 

study area extends from 1°57′36″S to 2°56′0″S and 59°14′48″W to 60°20′0″W. 

Figure 2. The framework of the hierarchical sensitivity analysis developed for the PAWS and applied to the central Amazon basin. 

The three uncertainty source types are placed into the appropriate hierarchical level according to their dependence relationships. 

The left part of this figure shows the sources of these uncertainties, and the right side shows the abbreviations and the structural 835 
relationships among the various uncertainties. The number of CS in this study is six; the number of plausible numerical models 

under each climate scenario is three; and the number of parameter sets under each numerical model is 600. Notably, the 

parameter uncertainty sources are further divided into three parts: vadose zone parameters, groundwater parameters and the 

overland flow parameter. 

Figure 3. We identified six CS based on precipitation data for 1998-2013 from NASA’s TRMM data (http://trmm.gsfc.nasa.gov/). 840 
The first climate scenario (CS1) is the wettest one, and the sixth climate scenario (CS6) is the driest one. 

Figure 4. The spatial-accumulative outputs for evapotranspiration (ET) (a) and groundwater contribution to stream flow (QG) (b) 

at all time steps and considering all three uncertainties. Each time step is divided into different groups based on local time. 

Different groups represent different hours of the day. 

Figure 5. Estimated sensitivities for the spatially averaged evapotranspiration (ET) at whole time steps (a). We chose six periods at 845 
three-day intervals to display the sensitivity index values in detail. The bottom six figures exhibit the sensitivity index results for 

241-312 hours (b), 961-1032 hours (c), 1681-1752 hours (d), 2401-2472 hours (e), 3121-3192 hours (f), and 3841-3912 hours (g). SPR 

is the sensitivity index for parameters. SNM is the sensitivity index for models and represents the influence of aquifer thickness. The 

SCS is the sensitivity index for climate scenarios. The bottom x-axis of (b)-(g) represents the simulated time steps, and the upper x-

axis of (b)-(g) represents the local time. 850 

Figure 6. Estimated sensitivities for the spatially averaged evapotranspiration (ET) at 6 time points (simulation times = 1428 hours 

(Day 60, 12:00), 1440 hours (Day 60, 24:00), 2868 hours (Day 120, 12:00), 2880 hours (Day 120, 24:00), 4308 hours (Day 180, 12:00), 

and 4320 hours (Day 180, 24:00)). SPR is the sensitivity index for the parameters. SNM is the sensitivity index for the numerical 

models, and SCS is the sensitivity index for the climate scenarios. 

Figure 7. Maps of parametric (SPR), numerical model (SNM), and climate scenario (SCS) sensitivity index values for time-averaged 855 
evapotranspiration (ET) predictions. 

Figure 8. Estimated sensitivities for the spatially averaged groundwater contribution to stream flow (QG) at whole time steps (a). 

We chose six periods at three-day intervals to display the sensitivity index values in detail. The bottom six figures exhibit the 

sensitivity index results for 241-312 hours (b), 961-1032 hours (c), 1681-1752 hours (d), 2401-2472 hours (e), 3121-3192 hours (f), 

and 3841-3912 hours (g). SPR is the sensitivity index for parameters. SNM is the sensitivity index for models and represents the 860 
influence of aquifer thickness. The SCS is the sensitivity index for climate scenarios. The bottom x-axis of (b)-(g) represents the 

simulated time steps, and the upper x-axis of (b)-(g) represents the local time. 

Figure 9. Maps of parametric sensitivity indices (SPR), numerical model sensitivity indices (SNM), and climate scenario sensitivity 

indices (SCS) for the time-averaged groundwater contribution to stream flow (QG) predictions. 

Figure 10. Frequency histograms of subdivided parametric sensitivity indices for spatially averaged results over all 4320 time steps. 865 
The results for evapotranspiration (ET) as our output are depicted in (a), and the results for groundwater contribution to stream 

flow (QG) as our output are depicted in (b). PRVDZ represents the vadose zone parameters. PRGW represents the groundwater 

parameters. PROVN represents the overland flow parameter. 

Figure 11. Maps of vadose zone parameter sensitivity indices (SPRVDZ
), groundwater parameter sensitivity indices (SPRGW

) and 

overland flow parameter sensitivity indices (SPROVN
) for time-averaged evapotranspiration (ET) (a) and groundwater contribution 870 

to stream flow (QG) (b) predictions. 

http://trmm.gsfc.nasa.gov/
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Figure 12. Patterns of SPR , SNM , and SCS  for space-averaged evapotranspiration (ET) and space-averaged groundwater 

contribution to stream flow (QG) with changes in the prior weights of numerical model NM1, climate scenario CS1 and climate 

scenario CS6 at the time step of 4308 hours (at 12:00). 

Figure C1. Maps of six parameter sensitivity indices for groundwater contribution to stream flow (QG) predictions. 875 
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