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Abstract. The streamflows of the Yellow River (YR) is strongly affected by human activities like irrigation and dam operation.
Many attribution studies focused on the long-term trends of streamflows, yet the contributions of these anthropogenic factors
to streamflow fluctuations have not been well quantified with fully mechanistic models. This study aims to 1) demonstrate
whether the mechanistic global land surface model ORCHIDEE is able to simulate the streamflows of this complex rivers with
human activities using a generic parameterization for human activities, and 2) preliminarily quantify the roles of irrigation and
dam operation in monthly streamflow fluctuations of the YR from 1982 to 2014 with a newly developed irrigation module,
and an offline dam operation model. Validations with observed streamflows near the outlet of the YR demonstrated that model
performances improved notably with incrementally considering irrigation (mean square error [MSE] decreased by 56.9%)
and dam operation (MSE decreased by another 30.5%). Irrigation withdrawals were found to substantially reduce the river
streamflows by approximately 242.8 +-27.8 x 108 m3.yr~! in line with independent census data (231.4 £ 31.6 x 10 m3.yr—1).
Dam operation does not change the mean streamflows in our model, but it impacts streamflow seasonality, more than the
seasonal change of precipitation. By only considering generic operation schemes, our dam model is able to reproduce the
water storage changes of the two large reservoirs Long YangXia and LiuJiaXia (correlation coefficient of ~0.9). Moreover, other
commonly neglected factors, such as the large operation contribution from multiple medium/small reservoirs, the dominance

of large irrigation districts for streamflows (e.g., the Hetao Plateau), and special management policies during extreme years, are



highlighted in this study. Related processes should be integrated in models to better project future YR water resources under

climate change and optimize adaption strategies.
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1 Introduction

More than 60% of all rivers in the world are disturbed by human activities (Grill et al., 2019) contributing altogether to
approximately 63% of surface water withdrawal (Hanasaki et al., 2018). River water is used for agriculture, industry, drinking
water supply, and electricity generation (Hanasaki et al., 2018; Wada et al., 2014), these usages being influenced by direct
anthropogenic drivers and by climate change (Haddeland et al., 2014; Piao et al., 2007, 2010; Yin et al., 2020; Zhou et al.,
2020). In order to meet the fast-growing water demand in populated areas and to control floods (Wada et al., 2014) reservoirs
have been built up for regulating the temporal distribution of river water (Biemans et al., 2011; Hanasaki et al., 2006) leading
to a massive perturbation of the seasonality and year-to-year variations of streamflows. In the mid-northern latitudes regions
where a decrease of rainfall is observed historically and projected by climate models (Intergovernmental Panel on Climate
Change, 2014), water scarcity will be further exacerbated by the growth of water demand (Hanasaki et al., 2013) and by
the occurrence of more frequent extreme droughts (Seneviratne et al., 2014; Sherwood and Fu, 2014; Zscheischler et al.,
2018). Thus, adapting river management is a crucial question for sustainable development, which requires comprehensive
understanding of the impacts of human activities on river flow dynamics particularly in regions under high water stress (Liu
et al., 2017; Wada et al., 2016).

The Yellow River (YR) is the second longest river in China. It flows across arid, semi-arid, and semi-humid regions, and the
catchment contains intensive agricultural zones and has a population of 107 million inhabitants (Piao et al., 2010). With 2.6%
of total water resources in China, the Yellow River Basin (YRB) irrigates 9.7% of the croplands (http://www.yrcc.gov.cn).
Underground water resources are used in the YRB, but they only accounts for 10.3% of total water resources, outlining the
importance of streamflow water for regional water use. A special feature of the YRB is the huge spatio-temporal variation of
its water balance. Precipitation concentrates in the flooding season (from July to October) which concentrates ~60% of the
annual discharge, whereas the dry season (from March to June) represents only ~10-20%. Numerous dams have been built up
to regulate the streamflows intra- and inter-annually in order to control floods and alleviate water scarcity (Liu et al., 2015;
Zhuo et al., 2019). The YRB streamflows are thus highly controlled by human water withdrawals and dam operations, making
it difficult to separate the impacts of human and natural factors on the variability and trends.

Numerous studies documented the effects of anthropogenic factors on streamflows and water resources in the YRB by statis-
tical approaches (e.g., Liu and Zhang (2002); Jin et al. (2017); Miao et al. (2011); Wang et al. (2006, 2018); Zhuo et al. (2019)).
To further elucidate the mechanisms, physical-based land surface hydrology models including natural and anthropogenic fac-
tors are required. Many previous model studies only considered natural processes and YRB simulations were evaluated against
naturalized streamflows (Liu et al., 2020; Xi et al., 2018; Yuan et al., 2018; Zhang and Yuan, 2020). YRB modeling studies
simulating real streamflows and comparing their values to observed streamflows are scarce, the most important being from
Jia et al. (2006); Tang et al. (2008). Yet, Jia et al. (2006) prescribed census irrigation and dam operation data as input of
their model. Tang et al. (2008) included irrigation as a mechanism in their DBH model and investigated the long-term trends of
streamflows, but they described the irrigation demand simply from satellite leaf area data, so that crop plant water requirements

and phenology were not represented by physical laws. Several global hydrological models (GHMs) simulated both irrigation
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and dam operation processes, and were applied for future projection of water resources regionally (Liu et al., 2019) or globally
(Hanasaki et al., 2018; Wada et al., 2014, 2016). Those global GHM studies acknowledged the complex situation of the YRB
where models’ performances are limited, but none has focused on the sources of error or potential overlooked mechanisms in
this catchment.

To model present water resources in the YRB and make future projections, not only natural mechanisms, but also anthro-
pogenic ones must be represented in a model. If a key mechanism is missing in a model, a calibration of its parameters to
match observations can compensate for structural biases and projections may be erroneous. For example, the HBV model
(Hydrologiska Byrans Vattenbalansavdelning) was well-calibrated with different approaches in 156 catchments in Austria but
failed in predicting streamflow changes due to climate warming (Duethmann et al., 2020). One of the key reasons being that
the response of vegetation to climate change was missing in the model. In this study, we integrate two key anthropogenic
processes (irrigation and dam operation) in the land surface model ORCHIDEE (ORganizing Carbon and Hydrology in Dy-
namic EcosystEms) which has a mechanistic description of plant-climate and soil water availability interactions and of river
streamflows. Through a set of simulations with generic parameter values, we aim to preliminarily diagnose how irrigation and
dam operation improve the simulations of observed YRB streamflows. After making sure we understand the impact of adding
these two new and crucial processes, the model will be calibrated against a suite of observations so that it can be applied for
future projections.

Using a standard version of ORCHIDEE without irrigation nor dams, Xi et al. (2018) performed simulations with a 0.1°
hypo-resolution atmospheric forcing over China (Chen et al., 2011). They attributed the trends of several river streamflows to
natural drivers from increased CO; and climate change and to land use change. Lacking irrigation and other human removals,
their simulated results were higher than the observed streamflows for the YRB. By developing a crop module in ORCHIDEE
(Wang et al., 2016; Wang, 2016; Wu et al., 2016), ORCHIDEE were able to provide precise estimation of crop physiology,
phenology, and yield at both local and national scales as well as other site-based crop models (e.g., EPICs (Folberth et al.,
2012; Izaurralde et al., 2006; Liu et al., 2007, 2016; Williams, 1995), CGMS-WOFOST (de Wit and van Diepen, 2008),
APSIM (Elliott et al., 2014; Keating et al., 2003), and DSSAT (Jones et al., 2003)) and land surface models (e.g., CLM-CROP
(Drewniak et al., 2013), LPJ-GUESS (Smith et al., 2001; Lindeskog et al., 2013), LPJmL (Waha et al., 2012; Bondeau et al.,
2007), and PEGASUS (Deryng et al., 2011, 2014) ) (Wang et al., 2017; Miiller et al., 2017). ORCHIDEE-estimated irrigation
accounts for potential ecological and hydrological impacts (e.g., physiological response of plants to climate change and short
term drought episodes on soil hydrology) with respect to other land surface models (LSMs) and GHMs (Hanasaki et al., 2008;
Leng et al., 2015; Thiery et al., 2017; Nazemi and Wheater, 2015; Voisin et al., 2013). In a study focusing on China (Yin et al.,
2020), ORCHIDEE was able to simulate irrigation withdrawals across China and to evaluate them against census data with a
provincial-based spatial correlations of ~0.68. It successfully explained the decline of total water storage in the YRB. In this
study, we add a simple module describing the dam operations to further improve the model over the YRB.

A simple dam operation model is developed and firstly coupled to ORCHIDEE to simulate the real streamflows in this study.
Similar to other GHMSs and LSMs, our dam operation model is based on generic operation principles due to lack of related

data. Recent dam models are developed from different perspectives, such as agent-based model River Wave (Humphries et al.,
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2014), basin-specific model Colorado River Simulation System (Bureau of Reclamation, 2012), and the original dam module in
the Variable Infiltration Capacity (VIC) model (Lohmann et al., 1998). However, the representation of dam operations in many
global hydrological studies (e.g., Droppers et al. (2020); Haddeland et al. (2006, 2014); Hanasaki et al. (2018); Zhao et al.
(2016); Yassin et al. (2019); Wada et al. (2014, 2016)) are based on the ideas of Hanasaki et al. (2006). They categorized dams
based on their regulation purposes (irrigation and non-irrigation). Irrigation-oriented rules adjust the dam retention to meet
the irrigation demand downstream, while non-irrigation-oriented rules buffer floods and thus dampen the variability (Hanasaki
et al., 2006). However, the water release target of a dam in the model of Hanasaki et al. (2006) is fixed at the beginning of
the year and cannot adjust interactively to large intra- and inter-annual climate variations, which is a key feature of the YRB.
To overcome this limitation, we propose a new dam operation model based on a targeted operation plan, constrained by the
regulation capacity of a dam and historical simulated streamflows, with flexibility to adjust to climate variation. The effects
of dams on streamflows could then be studied with ORCHIDEE and isolated from the effect of climate factors and irrigation
demands. Different from classical approaches separating the YRB into an upper, middle, and lower streams (Tang et al., 2008;
Zhuo et al., 2019), we here further divide both the upper and middle streams into sub-catchments based on the locations of five
key gauging stations (Fig. 1). This approach splits regions with and without big dams (or large irrigation areas) in the upper
and middle streams, which simplifies the assessment of the roles of irrigation and damming on streamflows.

In this study, ORCHIDEE with the novel crop-irrigation module (Wang, 2016; Yin et al., 2020) and the new dam operation
model was applied in the YRB from 1982 to 2014 in order to: 1) demonstrate whether ORCHIDEE and the dam model, with
generic parameterizations, are able to improve the simulation of streamflow fluctuations; and 2) attempt to separate the effect of
irrigation and dams on the fluctuations of monthly streamflows. We first describe ORCHIDEE model and our new dam model
in Section 2.1. Then we present the algorithm used for estimating sub-catchment water balances in Section 2.2, followed by the
input and evaluation datasets, the simulation protocol, and metrics for evaluation in Sections 2.3 to 2.5. Results are presented

in Section 3 and limitations are discussed in Section 4.

2 Methodology
2.1 ORCHIDEE land surface model used in this study
2.1.1 Irrigation and crop modules

ORCHIDEE is a physical process-based land surface model that integrates hydrological cycle, surface energy balances, carbon
cycle, and vegetation dynamics by two main modules. The SECHIBA (surface-vegetation-atmosphere transfer scheme) module
simulates the dynamics of water cycle, energy fluxes, and photosynthesis at 0.5 hour time interval, which are used by the
STOMATE (Saclay Toulouse Orsay Model for the Analysis of Terrestrial Ecosystems) to estimate vegetation and soil carbon
cycle at daily time step. The ORCHIDEE used in this study is a special version with newly developed crop and irrigation module

(Wang et al., 2017; Wu et al., 2016; Yin et al., 2020). The crop module includes specific parameterizations for wheat, maize,
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and rice, calibrated over China by observations (Wang, 2016; Wang et al., 2017). It is able to simulate crop carbon allocation,
different phenological stages as well as related managements (e.g., planting date, rotation, multi-cropping, irrigation, etc).

Irrigation amount is simulated in the land surface model ORCHIDEE (Wang, 2016; Wang et al., 2017) as the minimum
between crop water requirements and water supply. The crop water requirements are defined according to the choice of an
irrigation technique, namely minimizing soil moisture stress for flooding technique, sustaining plant potential evapotranspira-
tion for dripping technique, and maintaining the water level above the soil surface during specific months for paddy irrigation
technique. Each crop is grown on a specific soil column (in each model grid-cell) where the water and energy budgets are in-
dependently resolved. The water resources in the hydrological routing scheme are from three water reservoirs: 1) a streamflow
component; 2) a fast reservoir with surface runoff; and 3) a slow reservoir with deep drainage, used in this order for defining
the priorities of water use for irrigation. As long-distance water transfer is not modeled, streams only supply water to the crops
growing in the grid-cell they cross, according to the river routing scheme of the ORCHIDEE model (Ngo-Duc et al., 2007).
Without dams, irrigation can be underestimated where dams stores water to supply the crop demand. Transfer from reservoirs,
lakes or local ponds to adjacent cells are not considered, which should further lead to an underestimation of the irrigation
supply, dependent on the cell size. Details of the coupled crop-irrigation module of ORCHIDEE are described in Yin et al.
(2020).

2.1.2 New dam operation model

To account for the impacts of dam regulation on streamflow (Q)) seasonality, we developed a dynamic dam water storage
module based on only two generic rules: reducing flood peaks and guaranteeing baseflow. This model depends on simulated
inflows and is thus independent from irrigation demands. It has been developed for the main reservoirs of the YRB (e.g.,
the LongYangXia, LiuJiaXia, and XiaoLangDi in Fig. 1). Different from Biemans et al. (2011); Hanasaki et al. (2006), we
primarily consider the ability of reservoirs in regulating river flow seasonality. This means that the targeted baseflow and flood
control of our dam model are not fixed proportions of the mean annual streamflow, but depends on the regulation capacity
of the reservoir (Ci,y). Firstly, similar to Voisin et al. (2013), a multi-year averaged monthly streamflow () is calculated
based on ORCHIDEE simulations. To include the potential impacts of recent climate change on dam operation, here we only
consider the latest past 10-year simulations, as:
JEN

1 B
Qui= D @ (1
J

Here Qs ; [m®.s7!] is a multi-year averaged monthly streamflow of month 4; j is a year index; N is number of year accounted;
For a upcoming year j, we only use the historical simulations (maximum latest ten years) to calculate ().

Secondly, we evaluate the targeted water storage change AW, and monthly streamflow @), considering the regulation capacity
of each reservoir. As shown in Fig. S1, one year can be divided into two periods by comparing Qs with Q. The longest
continuous period of months with Qs > Q; is the recharging season for reservoirs, and the rest is the releasing season. The

amount of water stored during the recharging season (blue region in Fig. S1) is determined by Chy,x and is used during the
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releasing season (red regions in Fig. S1). The values of AW, and @ can be estimated by:

Cmax

k= HllIl( iERecharge 7kmax)7 (2)

« Z Qs,i
AVVt,i =« [k' (Qs,i - Qs) + Qs] > 3
Qui = Qsi — AW, i /a. 4)

Here k [-], varying between 0 and ky,,x (=0.7), indicates the ability of reservoir in disturbing streamflow seasonality. It is a ratio
of the maximum regulation capacity of the reservoir Cpax [10® m?] over the streamflow amount throughout the recharging
season. « (0.0263) converts monthly streamflow to water volume. Assuming that the water storage of the reservoir reaches
Chax at the end of the recharging season, we can calculate targeted water storage W, by using AW,.

Finally, the variation of the actual water storage of the reservoir AW is a decision regarding actual monthly streamflow,

current water storage, @y, AW, and W,. During the releasing season, AW is calculated as:

o, (5AW) if Wi < Weis (52)

Wi
A= AW - [(Wi+ AW) - (W + AW, if Wi > Wi; and AW, > AW, ; (5b)
AVVt,i _ (Wl — VVt,z) if Wz > I/Vt’i and AWZ S AVVM (SC)

Here AWZ- = aQ; — (aQ.; — AW, ;). It is the expected release amount to make river streamflows equal to the targeted stream-
flows after reservoir regulation. If current water storage is less than the targeted value (the case of Eq. 5a), the AW; is calculated
by the W; with a proportion of AW, ; over W, ;. If the current storage is more than the targeted value (the cases of Eq. 5b and
5c), the reservoir can release more water based on a balance between the targeted water storage change AW, ; and the tar-
geted water storage at the next time step W, ; (represented by AW;). Note that all water storage change variables are negative
throughout the releasing season.

During the recharging season, we can calculate the AW; as:

max (min (Wy; + AWy — Wi, aQ;) ,0) if Wi > Wi (6a)

e {min (AW i+ (Wi — Wi),aQi) if Wy <W,;. (6b)

If current water storage is larger than the targeted value (Eq. 6a), we will try to recharge a volume of water to make W;; =

Wi,i+1. If current water storage is less than the targeted value (Eq. 6b), we decide to recharge additional water volume besides
the AW, ;.

AW is then applied as a correction of simulated streamflows to generate actual monthly streamflows using the following

equation:

A 1
Qsim,i = Qsim,i - asz @)
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Here Qgim [m?.s~!] is the simulated regulated streamflows; Qqim [m?3.s~1] is the simulated monthly streamflows. Note that this
model is a simplified representation of dam management, because it ignores the direct coupling between water demand and
irrigation water supply from the cascade of upstream reservoirs. This approach implies that, with a regulated flow, demands
will be able to be satisfied and floods to be avoided without being more explicit. A complete coupling of demand, flood, and
reservoir management is difficult to implement in the land surface model in absence of data about the purpose and management
strategy of each dam, given different possibly conflicting demand of water for industry and drinking versus cropland irrigation.

Before performing the simulation, we estimate the maximum regulation capacity of each studied reservoir in each river
sub-catchment shown in Fig. 1. Table 1 lists collected information of the main reservoirs on the YR. Only large reservoirs like

LongYangXia (LYX), LiuJiaXia (LJX), and XiaoLangDi (XLD) are considered in our model because of their huge Ciax-
2.2 Sub-catchment diagnosis

Figure 1 shows the YRB and main gauging stations used in this study. To effectively use QQops for investigating impacts
of irrigation and dam regulations on the streamflows of different river sub-catchments, we divided the YRB into five sub-

catchments (R;, 7 € [1,5], Fig. 1) with an outlet at each gauging station. Thus we can evaluate the water balance in R; by:

=P —ET, +

ATWSz Qin,i - Qout,i
At A,

®)

Where At is time interval; ATWS; [mm] is change of total water storage in specific R;; P; [mm.At '] is precipitation in
R;; ET; [mm.A¢ '] is evapotranspiration in R;; A; [m?] is area of R;. Qin; and Qou; [m>.At~!] are inflow and outflow
respectively. In addition, ¢; = Qou,; — Qin,; indicates the contribution of R; to the river streamflows, that is the sub-catchment
streamflows. This term can be negative if local water supply (e.g., precipitation and groundwater) cannot meet water demand.

A conceptual figure of the water balance of a sub-catchment is shown at the top left of Fig. 1.
2.3 Evaluation datasets

Observed monthly streamflows (Qobs) from the gauging stations shown in Fig. 1 are used to evaluate the simulations. Sev-
eral precipitation (P) and evapotranspiration (ET) datasets were selected to evaluate the simulated water budgets in each
sub-catchment of the YRB. The 0.5° 3-hourly precipitation data from GSWP3 (Global Soil Wetness Project Phase 3) used as
model input is based on GPCC v6 (Global Precipitation Climatology Centre (Becker et al., 2013)) after bias correction with ob-
servations. The MSWEP (Multi-Source Weighted-Ensemble Precipitation) is a 0.25° 3-hourly P product integrating numerous
in-situ measurements, satellite observations, and meteorological reanalysis (Beck et al., 2017). Three ET datasets are chosen
for their potential ability to capture the effect of irrigation disturbance on ET (Yin et al., 2020) (noted as ETps). GLEAM v3.2a
(Global Land Evaporation Amsterdam Model, (Martens et al., 2017)) provides 0.25° daily ET estimations based on a two-soil
layer model in which the top soil moisture is constrained by the ESA CCI (European Space Agency Climate Change Initia-
tive) Soil Moisture observations. The FLUXCOM model (Jung et al., 2009) upscales ET data from a global network of eddy

covariance towers measurements into a global 0.5° monthly ET product. Since these towers do not cover irrigated systems, ET
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from irrigation simulated by the LPJml (Lund-Postam-Jena managed Land) is added to ET from non-irrigated systems. The
PKU ET product estimates 0.5° monthly ET by water balances at basin scale integrating FLUXNET observations to diagnose
sub-basin patterns by a Multiple Tree Ensemble approach (Zeng et al., 2014).

2.4 Simulation protocol

The 0.5° half-hourly GSWP3 atmospheric forcing (Kim, 2017) was used to drive ORCHIDEE simulations. Yin et al. (2018)
used four atmospheric forcing to drive ORCHIDEE to simulate soil moisture dynamics over China and they found that the
GSWP3 provided the best performances, hence we chose this forcing for this sutdy. A 0.5° map with 15 different Plant
Functional Types (PFTs) containing crop sowing area information for the three PFTs corresponding to the modeled crop (wheat,
maize, and rice) is used, based on 1:1 million vegetation map and provincial scale census data of China. Crop planting dates
for wheat, maize, and rice are derived from spatial interpolation of phenological observations from Chinese Meteorological
Administration (Wang et al., 2017). Soil texture map is from Zobler (1986). Two simulation experiments were performed to
assess the impacts of irrigation on streamflows: 1) NI: no irrigation; 2) IR: irrigated by available water resources. In IR, only
surface irrigation is considered, that is water applied on the cropland soil without interception by canopies. The soil water
stress, a function of soil moisture and crop root density up to 2 m depth (Yin et al., 2020), is checked every half an hour. When
it is less than a target threshold, irrigation is triggered with amount equal to the difference between saturated and current soil
moisture. To precisely estimate irrigation water consumption (direct water loss from the surface water pool excluding return
flow), deep drainages of the three crop soil columns is turned off in the IR simulation. Simulations start from a 20-year spin-up
in 1982 to initialize the thermal and hydrological variables, then continued from 1982 to 2014. A validation against naturalized
streamflows is shown in Table S1.

The dam operation simulation starts from 1982 as an offline model applied to the simulated streamflows from the IR simula-
tion (Qr) as input. The initial values of W were set to half of the Cy,,x. Considering potential joint regulation of reservoirs, we
firstly estimate the total AW of all considered reservoirs by using Qr at HuaYuanKou (outlet of Ry, Fig. 1). Then we estimate
the AW of LYX and LJX reservoir by using Qr at LanZhou. The difference between these two AW is assumed to be the
AW of the XLD reservoir in-between. Offline simulated AW values are used to estimate regulated monthly streamflows (Qr)
as Eq. 7. As huge irrigation water withdrawals occur in R3 and R5 (YRCC, 1998-2014) the water recharge of reservoirs may
result in negative QIR at TouDaoGuai and LiJin. To avoid this numerical artifact due to the offline nature of our dam model,
we corrected all negative QIR to zero by assuming that the streamflows cannot further drop when all stream water is consumed

upstream. The impact of this corrections are accounted for at gauging stations downstream to ensure mass conversation.
2.5 Evaluation metrics

Three metrics are used to evaluate the performances of simulated monthly ). The mean-square error (MSE) evaluates the

magnitude of errors between simulation and observations. It can be decomposed into three components (Kobayashi and Salam,
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2000):

1 n
MSE = =Y *(8; — 0;)* = SB + SDSD + LCS. )
n i=1

Where S; and O; are simulated and observed values, respectively; n is the number of samples. SB (squared bias) is the bias
between simulated and observed values. In this study, SB represents the difference between simulated and observed multi-year
mean annual (). SDSD (the squared difference between standard deviation) relates to the mismatch of variation amplitudes
between simulated and measured values. It can reflect whether our simulation can capture the seasonality of Qq,s. LCS (the
lack of correlation weighted by the standard deviation) indicates the mismatch of fluctuation patterns between simulated and
observed values, which is equivalent to inter-annual variation of () in this study. The formulas of these three components and
detailed explanation can be found in Kobayashi and Salam (2000).
The index of agreement (d € [0,1]) is defined as the ratio of MSE and potential error. It is calculated as:

n 2
d=1— Zi:l (0i = Si) (10)

S, (18, =0 +10;,—0))*

d =1 indicates perfect fit, while d = 0 denotes poor agreement.

The modified Kling-Gupta Efficiency (mKGE € (—o0, 1]) is defined as the Euclidean distance of three independent criteria:
correlation coefficient 7, bias ratio 3, and variability ratio v (Gupta et al., 2009; Kling et al., 2012). It is an improved indicator
from the Nash-Sutcliffe Efficiency avoiding heterogeneous sensitivities to peak and low flows, which is crucial for this study
that is not only interested in simulating peak flows but also concentrates on base flows regulated by dams for human usage.

mKGE is calculated as,

mKGE=1—/(1-7)24+(1—-8)2+(1—7)2, (11)
Hs CVg

_bs. __ 12

/8 Lo Y CVO ) ( )

where 7 is the correlation coefficient between observed and simulated streamflows; x [m3.s~'] and CV [-] are the mean and

the coefficient of variation of @), respectively. These indicators are used for three comparisons: 1) Qn; and Qops; 2) Qr and
Qobs; 3) QIR and Qobs-

3 Results

3.1 Water budgets at sub-catchment scale

Figure 2 displays water budgets and trends in R; based on simulation and observations. Going from upstream to downstream,
precipitation in Pgswp3, which is consistent with Pyswgp, decreases from 543.6 mm.yr*1 (Rq) to 254.2 mm.yr*1 (R3), and

then rises again to 652.1 mm.yr‘1 (R5). The magnitudes of simulated ET (both ETxy and ETir) have no significant differences

10
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with ET,p aggregated over sub-catchments R; to R5. Grid cell-based validation shows high agreement between simulated and
observed ET across all sub-catchments. The lowest mean of correlation coefficients is 0.79 and the highest mean of relative
RMSE is 4.9% (Table S2). Except for Ry where cropland is rare, ETjg accounts for an amount representing more than 80%
of Pgswps in the YRB, with a maximum value of 96.5% in R3. The difference between ETjg and ETy; is due to the irrigation
process, which accounts for 9.1% and 8.2% of ETy; in R3 and Ry respectively as caused by the irrigation demand. The impact
of irrigation can be detected from sub-catchment streamflows (¢; = (Qour,; — Qin,i)/A:) as well. For instance, both gops and gir
are negative in R3 and R, suggesting that local surface water resources cannot meet water demand for irrigation. As irrigation
water transfers between grid cells are not represented in our simulations, the non-availability of water locally results in an
underestimation of the irrigation withdrawals, likely explaining why gir > gobs in R3 to Rj.

The trends of P and ET are positive but not significant in most R; during the period 1982-2014 (bottom panel of Fig. 2).
However, significant trends can be found in simulated and observed ¢ in some R;. The decrease of gops in R; is not captured by
the model, neither in gy nor gir. This underestimated decrease of river streamflows might be linked to decreased glacier melt
or increased non-irrigation human water withdrawals, which are ignored in our simulations. In Ry and R, the gqps trends are
determined by the joint effects of climate change (e.g., the P increase) and human water withdrawals. The trends of qr show

the same direction as that of gq,s. In R5 however ¢qs increased by 1.67 mm.yr’1

, which was not captured by our simulation
of gr. Besides the increase of P, another possible driver of increasing gons in R5 is a decrease of water withdrawal due to
the improvement of irrigation efficiency (Yin et al., 2020), which is not accounted in our simulations. Moreover, the water use
management may play an important role in the observed positive trends of gops as well, with the aim to increase the streamflows
at the downstream of the YR to avoid streamflow cutoff (Qqps < 1 m3.s™1) that occurred in 1990’s (Wang et al., 2006).
Irrigation not only influences annual streamflows in the YR, but also affects its intra-annual variation. In general, the dis-
charge yield Yy, defined by the sum of surface runoff and drainage, of all grid cells in NI should be higher than in IR because
our irrigation model can remove water from the stream reservoirs which is a fraction of drainage and runoff. However, our
simulations show that Yo 1 can be less than Y iz (Fig. S2) at the beginning of the monsoon season. This is because irrigation
keeps soil moisture higher than without irrigation in July in R4 and Rs (Fig. S2d and S2e), which in turn promotes Y because

the soil water holding capacity is lower and a larger fraction of P can go to runoff. This mechanism highlighted that irrigation

could enhance the heterogeneity of water temporal distribution and may reinforce floods after a dry season.
3.2 Comparison between observed and simulated Q

Figure 3 shows time series of annual streamflows and of the seasonality of monthly streamflows. Our simulations underestimate
Qobs at TangNaiHai in Ry likely because we miss glacier m