
Reply to Referee #1

Z. Yin on behalf of all co-authors

1 “This paper presents a modeling study of the effects of irrigation and dams
on streamflow changes in the Yellow River Basin. There are many similar
attribution studies in the literature looking at various influencing factors in
the study region. Authors argue that streamflow fluctuations are not well
examined in previous studies. But I am not convinced that this attempt
would lead to a significant advance in this field.”
A: Thank you very much for your comments. It is true that many attribution studies
have been performed in the Yellow River Basin (YRB). But different from them, there
are three main advantages is this study.
First, novel crop module and China’s Plant Functional Types (PFT) map were used in
this work. Accurate crop simulation is a precondition of reasonable irrigation estimation.
Some previous studies do not have crop simulations and need observed or satellite-based
data (e.g., Leaf Areas Index and fraction of photosynthetically active radiation absorbed
by green vegetation) to drive their irrigation simulations. Although some Global Hy-
drological Models and Global Land Surface Models (GHMs and GLSMs) did develop
their crop modules, the crop functions, which are always based on C3 grass generics
parameterizations, are too coarse to simulation varied crop types and phenology over
China. The lack of physical-processes based crop dynamic simulations of previous stud-
ies has been discussed (Page 4, Line 72–79) as:“ Many model studies are able to provide
reliable estimation of river discharges but related physical processes are not fully rep-
resented. For instance, some model studies require extra observed data as inputs (e.g.,
leaf area index (LAI), evapotranspiration, etc). Moreover, many biophysical processes
(e.g., photosynthesis, LAI dynamics, crop phenology), which tightly couple with evap-
otranspiration, surface energy balances, and irrigation demands, are rarely considered
in Global Hydrological Models (GHM). These missing processes are not important for
hydrological studies using historical data and short-term forecast. However, they are
probably non-negligible for long-term projections (Duethmann et al., 2020), especially
in regions where ecosystems react strongly to climate change through the hydrological
cycle (de Boer et al., 2012; Lian et al., 2020; Zhu et al., 2016).” The novel crop module
in ORCHIDEE is able to simulate most physical processes throughout the whole crop
growth period (Wang, 2016), It has specific parameterizations for wheat, maize and rice,
which are the three main staple crops in China, which have been calibrated based on cen-
sus data (Wang et al., 2017). The advantages of the novel crop module of ORCHIDEE
has been introduced in the manuscript (Page 4, Line 84–86) as:“By developing a new
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crop-irrigation module in ORCHIDEE (Wang et al., 2016; Wang, 2016; Wu et al., 2016;
Yin et al., 2020), we were able to provide precise estimation of crop phenology, yield
and irrigation amount at both local and national scales (Wang et al., 2017; Yin et al.,
2020).” Moreover, the novel China’s PFT map has been developed including the frac-
tions of wheat, maize, and rice based on 1:1 million vegetation map and provincial scale
census data from the National Bureau of Statistics. For the first time, the irrigation
consumption is estimated based on varied phenology of different crop types in different
regions. The introduction of the performances of ORCHIDEE-simulated irrigation as
been added (Page 4, Line 86 – Page 5, Line 90) as:“More importantly, ORCHIDEE-
estimated irrigation accounts for potential ecological and hydrological impacts (e.g.,
physiological response of plants to climate change and short term drought episodes on
soil hydrology) with respect to other land surface models and global hydrological models.
In a study focusing on China (Yin et al., 2020), ORCHIDEE estimated irrigation with-
drawal coincided well with census data (provincial-based spatial correlations are ˜0.68),
and successfully explained the decline of total water storage in the YRB.” And the novel
China’s PFT map has been revised (Page 9, Line 210–214) as:“A 0.5◦ map with 15 dif-
ferent Plant Functional Types (PFTs) containing crop sowing area information for the
three PFTs corresponding to the modeled crop (wheat, maize, and rice) is used, based
on 1:1 million vegetation map and provincial scale census data of China. Crop planting
dates for wheat, maize, and rice are derived from spatial interpolation of phenological
observations from Chinese Meteorological Administration (Wang et al., 2017).”
Second, we simulate river discharges and dam operations in the YRB and validate them
on a recent time period. Some global studies simulated the Yellow River with irrigation
and dam operations. But the period of most simulations starts from 1960s or 1970s,
when a high proportion of discharges was less affected by dams. In this study, we fo-
cus on the period when huge reservoirs (LongYangXia in 1986 and XiaoLangDi in 1999)
started regulation. We underlined this point in the revision (Page 4, Line 64–71) as: “Al-
though large uncertainties among model simulations are addressed (Haddeland et al.,
2014; Liu et al., 2019), rare studies focus on the YRB to demonstrate where the errors
of simulations from due to lack of data. Moreover, the validation periods of many mod-
elling studies started from 1960˜1970 to 2000˜2010 (Haddeland et al., 2014; Hanasaki
et al., 2018; Liu et al., 2019; Tang et al., 2008; Wada et al., 2016) whereas several large
reservoirs started regulation much later (e.g., LongYangXia in 1986 and XiaoLangDi
in 1999). Such high proportions of observed streamflows rarely affected by reservoirs
(≥ 40%) probably cannot guarantee the abilities of models in simulating reservoir oper-
ations being correctly evaluated. Thus it is crucial to zoom in the reservoir-dominated
period of the YRB to demonstrate the impacts of reservoirs on flow fluctuations under
validation by observed dam operations.” More importantly, we are the first to show the
simulated water storage change of reservoirs and to validate it with observations from
literature. The correlation coefficient of simulated and observed water storage change
of LiuJiaXia and LongYangXia is over 0.9 (Fig. 6), suggesting that the dam model is
able to reproduce dam operations under climate variations. This achievement has been
highlighted in the abstract (Page 1, Line 12–15) as:“Inclusion of dam operation dramat-
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ically reduced the MSE of simulated discharge by ≥ 48.4% compared to the simulation
only considering irrigation, and increased the predictability of water storage changes of
the LongYangXia and LiuJiaXia reservoirs (correlation coefficient of ˜0.9).”
Third, detailed diagnosis of anthropogenic factors in the YRB. Many global studies ad-
mit the complexity in simulating the streamflows of the YRB (Haddeland et al., 2014;
Hanasaki et al., 2018; Wada et al., 2014, 2016). However, rare studies demonstrate where
the mismatches from, and whether any key factor or mechanism is missing in the model.
Through reviewing literature and reports, we demonstrated several possible important
factors (mechanisms) missed in current simulations in the YRB, which are not well rep-
resented in GHMs and GLSMs as well. Details are discussed in our reply to Comment
3.

2 “1. The main drawback of this modeling study lies in the coarse reso-
lution of the simulations. The hydrological modeling community has ad-
vanced significantly towards hypo-resolution simulations, especially at the
river basin scale. Here, authors conduct the simulations at a spatial reso-
lution of 0.5◦×0.5◦ in the river basin, using global-scale products for model
inputs and validations. I believe authors should utilize local data for config-
uring their model in this specific river basin, given the availability of various
high-resolution meteorological forcing data in China and ET products as
well.”
A: To pursue accurate river discharge simulations, many hydrological models used high
resolution atmospheric forcing (like 10 km) as driver. However, different from their ob-
jective for short-term flood prediction, our aim is to understand the mechanisms and
discover missing mechanisms of how human activities affect the discharge fluctuations in
the YRB, for which high resolution forcing is not necessary. In fact, our previous study
(Xi et al., 2018) utilized 0.1◦ forcing (Chen et al., 2011) to attribute different factors
to the trends of streamflows over China, which showed large overestimation of Yellow
River annual discharge. Thus, the crucial questions, which are our objectives as well, are
whether irrigation can explain the discharge overestimation in Xi et al. (2018) and what
is the impact of dam operations on the river streamflow. Obviously, increasing spatial
resolution is not helpful to interpret the mismatch. We agree with the referee’s comments
that high-resolution forcing is compulsory for accurate simulations. But before that, all
important mechanisms should be implemented in the model. In the revised introduction,
we introduced our previous study using high resolution forcings and emphasised that the
crucial problem is mechanism missing (Page 4, Line 80–84) as:“In our previous study,
Xi et al. (2018) utilized 0.1◦ hypo-resolution atmospheric forcing of China (Chen et al.,
2011) to drive the land surface model ORCHIDEE (ORganizing Carbon and Hydrology
in Dynamic EcosystEms) in aim to attribute the trends of main China’s river stream-
flows to several natural and anthropogenic factors. Due to lack of representation of crop
and irrigation processes, simulated results are consistent to the naturalized streamflows
of the YR, however much higher than the observations...”
In fact, the GSWP3 forcing has been corrected by a suite of ground-based observa-
tions (http://hydro.iis.u-tokyo.ac.jp/GSWP3/exp1.html#boundary-conditions).

3



For instance, its precipitation assimilates with the GPCC (Global Climatology Centre)
precipitation dataset that includes numerous gauges intensively distributed over China
(Fig. R1, Becker et al. (2013)). Long-term (1982–2014) in-situ ET measurements (eddy
covariance) that are still rare over China, particularly in the YRB (Chen et al., 2014; Lian
et al., 2018). Although uncertainties exist in global ET products, they are able to reflect
monthly ET magnitude and inter-annual variations (Pan et al., 2020). Nevertheless, our
previous study (Yin et al., 2018) validated ORCHIDEE-simulated soil moisture (which
indirectly reflects ET dynamics) over China by in-situ measurements, which shows a
good agreement (median correlation coefficient 0.53 and RMSE 0.07 m3.m−3).

Figure R1: The map of 67,200 gauging stations used for the GPCC precipitation data
production (from Becker et al. (2013)).

3 “2. Extensive calibrations should be performed before using the model
for quantifying the anthropogenic impacts. Authors argue that streamflow
fluctuations have not been well examined in previous studies. but in figure
5-6, the model shows rather poor performance in simulating the seasonality
and the peak streamflow, even with consideration of irrigation and dams.”
A: We agree that model calibration is necessary before utilization for scientific research.
Previous studies demonstrate that our model performs well in simulating soil moisture
dynamics (Yin et al., 2018), naturalized river streamflows (Table S1 in Xi et al. (2018)),
leaf area index (Section S2 in Xi et al. (2018)), amount and trend of irrigation with-
drawals (Yin et al., 2020), trends of total water storage (Section 3.4 in Yin et al. (2020)),
and ET (Table S1 in online supplement) over China and in the YRB. In the revision
we discussed (Page 15, Line 413–418) as:“Although mismatches exist in the simulated
discharges, they are unlikely caused by the false representations of physical laws or un-
suitable parameterization in our model, because other simulated hydrological variables
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coincide well with observations in the YRB (e.g., soil moisture dynamics (Yin et al.,
2018), naturalized river streamflows (Table S1 in Xi et al. (2018)), leaf area index (Sec-
tion S2 in Xi et al. (2018)), amount and trend of irrigation withdrawals (Yin et al., 2020),
trends of total water storage (Section 3.4 in Yin et al. (2020)), and ET (Table S1)).”
However, we cannot fully agree that our model performances are poor in simulating
streamflow fluctuations based on Figure 5–6. First, after considering irrigation and
dams, the bias of annual discharge and seasonality is substantially reduced (SB and
SDSD reduce dramatically in Fig. 7a). Second, our study provides the comparison of
simulated and observed water storage change of the LongYangXia and LiuJiaXia reser-
voirs for the first time. The correlation coefficient is 0.9, which, in our opinion, is
quite good given the lack of information of the operation rules. Third, although natural
discharge simulations with NSE=0.9 in a small sub-basin of the Yellow River is cited
in our study, the NSE of them is incomparable to that of our simulations to conclude
that our simulations are poor. A simple proof is given in our reply to the comment
13 from the second referee. In the revised abstract, we underlined that the simulation
performances gradually increase with including irrigation and dam operations (Page 1,
Line 6–8) as: “Validations with observed discharge near the outlet of the YR demon-
strated that model performances improved notably with gradually considering irrigation
(mean square error [MSE] decreased 56.9%) and dam regulations (MSE decreased 30.5%
further).”
It is true that mismatches still exist between simulations and observations. However,
how to treat these mismatches depends on your goal. If the model services for short- or
mid-term streamflow prediction, it is necessary to calibrate the parameters in the model
to make the simulated streamflows fit the observations as well as possible regardless
the detailed physical processes and other linked variables (e.g., surface energy balances,
carbon cycles, vegetation dynamics, etc). However, such approach is probably not con-
ducive to fundamental model improvements in terms of projecting streamflow variations
under climate change, because some important missing mechanisms may be obscured by
extensive calibrations. For instance, a study highlighted by HESS currently questioned
why some well-calibrated models cannot perform well in forecasting river discharges un-
der climate change (Duethmann et al., 2020). Through zooming in to a catchment in
Austria, they revealed “the importance of considering interrelations between changes in
climate, vegetation and hydrology for hydrological modelling in a transient climate.”
On the other hand, which is our case, if the model is used to demonstrate interactive
mechanisms among climate, water resources, and human activities, these mismatches
should be well investigated rather than be directly calibrated. For instance, we find
that our model underestimates the annual discharge at LanZhou in the period 2000–
2002 (Fig. 3b), during which Q̂IR was almost negatively correlated to the Qobs (Fig. 5a).
From China Water Resources Bulletin (2000-2002, http://www.mwr.gov.cn/sj/tjgb/
szygb/), we find that to avoid discharge cutoff (Q < 1 m3.s−1) irrigation and hydropower
are strictly restricted. It suggests that integrated catchment management plays an im-
portant role in river flow variation, especially for extreme years. Obviously, models are
not able to reproduce this special reaction by over calibration, if the related mechanisms
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are missing.
Moreover, from these mismatches, we also reveal other possible missing factors and mech-
anisms: 1) the Hetao Plateau withdraws 50×108 m3 water from the Yellow River, which
is neglected in most models because there is no large dam but multiple small reservoirs
and complicated channel networks. It may lead to the overestimation of peakflows in
Fig. 5; 2) The souring sediment is a special operation target of the XiaoLangDi dam,
which release water one month ahead resulting in the delay of simulated water storage
change (right panel of Fig. 6). All in all, as the famous statistician George Box said,
“All models are wrong, but some are useful” (Box, G. E. P. 1976), if the “wrong” thing
in the simulation can help us to discover important missing mechanisms rather than
cover them by over calibration, I think the work is “useful”. The discussion here are
summarized in Sect. 4 of the revised manuscript (Page 14, Line 398 – Page 15, Line 426)
as:“...However, when considering the impacts of irrigation and dams, the NSE values
of simulations are much worse. For instance, the simulation considering anthropogenic
effects from Hanasaki et al. (2018) had lower NSE than the simulation with only nat-
ural processes. Similarly, Wada et al. (2014) showed NSE decrease after considering
anthropogenic factors in the YRB. These NSE decreases were interpreted due to the
complexity of the YRB under the impacts of human activities and climate variation.
However, the NSE of naturalized discharges is incomparable to the NSE of regulated
discharges. Even if the model can perfectly simulate the reservoir operations, the NSE
of naturalized discharges is certainly larger than that of regulated discharges from the
same model, if you accept the assumption that reservoir operations reduce the variation
of river streamflows (a simple proof is available in Sect. A in the online supplement). In
fact, our simulated patterns are very similar with a set of simulations by GHMs (Fig. S2
from Liu et al. (2019)). By gradually considering anthropogenic factors (irrigation and
dam operations), the performances of our simulations increase dramatically according
to all the three metrics.”
“Intensive calibrations or using a suite of observed inputs can allow catchment-scale stud-
ies to provide high-accurate simulated discharges for short-term flood forecast. However,
the parameterizations are not generic for broad application in other catchments that lack
information in particular (Nash and Sutcliffe, 1970). Moreover, insensitive calibrations
are not helpful to reveal important mechanisms missed in the model. Without these
crucial mechanisms, models hardly to extrapolate their knowledge to predict extreme
events and future flood characters under climate change (Duethmann et al., 2020). Un-
like them, one aim of our modelling study is to demonstrate interactive mechanisms
in a physical-based land surface model. Although mismatches exist in the simulated
discharges, they are unlikely caused by the false representations of physical laws or
unsuitable parameterization in our model, because other simulated hydrological vari-
ables coincide well with observations in the YRB (e.g., soil moisture dynamics (Yin
et al., 2018), naturalized river streamflows (Table S1 in Xi et al. (2018)), leaf area in-
dex (Section S2 in Xi et al. (2018)), amount and trend of irrigation withdrawals (Yin
et al., 2020), trends of total water storage (Section 3.4 in Yin et al. (2020)), and ET
(Table S1)). On the contrary, these mismatches draw our attention to some key mech-
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anisms overlooked in most models. For instance, our model underestimates the annual
discharge at LanZhou in the period 2000–2002 (Fig. 3b), during which Q̂IR was almost
negatively correlated to the Qobs (Fig. 5a). From China Water Resources Bulletin (2000–
2002, http://www.mwr.gov.cn/sj/tjgb/szygb/), we find that to avoid discharge cut-
off (Q < 1 m3.s−1) irrigation and hydropower are strictly restricted throughout the
droughts. It suggests that integrated catchment management plays an important role in
river flow variation, especially for extreme years. Obviously, models are not able to re-
produce this special reaction by over calibration, if the related mechanisms are missing.
All in all, mismatches may be useful if they can help us to discover important mecha-
nisms missed before (Duethmann et al., 2020; Scanlon et al., 2018), which is crucial to
improve the robustness of a model for future projection.”

4 “3. In the irrigation scheme, irrigation water requirement is met only by
the available stream water. How is the water availability defined? How does
the model perform in simulating irrigation water use, compared to census
data?”
A: Thanks. It should be “available water resources”, which has been corrected in the
revised version. The available water resources include three water reservoirs in OR-
CHIDEE: 1) stream reservoir (streamflow); 2) fast reservoir (surface runoff); and 3)
slow reservoir (deep drainage). Detailed introduction has been added in Section 2.1.1
(Page 6, Line 123–125) as:“The water resources in ORCHIDEE account for three water
reservoirs: 1) the stream reservoir indicates streamflows; 2) the fast reservoir indicates
surface runoff; and 3) the slow reservoir indicates total deep drainage, the order of which
indicates the priorities of water reservoirs considered for irrigation. As long-distance wa-
ter transfer is not taken into account, streams only supply water to the crops growing in
the grid-cell they cross, according to the river routing scheme of the ORCHIDEE model
(Ngo-Duc et al., 2007).”
The irrigation module has been introduced and validated in Yin et al. (2020), which
shows a good agreement of spatial distribution with census data. In Section 1 (Page 4,
Line 88 – Page 5, Line 90) we added:“In a study focusing on China (Yin et al., 2020),
ORCHIDEE estimated irrigation withdrawal coincided well with census data (provincial-
based spatial correlations are ≈0.68), and successfully explained the decline of total water
storage in the YRB.”

5 “4. In the abstract, ‘Irrigation is found to be the dominant factor leading
to 63.7% reduction of the annual discharges’. Is streamflow reduction caused
by anthropogenic factors only? How about the effects of changing climate?
Authors need to show the relative contribution of each factor (including
irrigation) to streamflow changes in the abstract and conclusion sections.”
A: As industry and urban water consumptions are not taken into account in this study,
we turn to report the amount of irrigation consumption instead of percentage of annual
discharge. It is revised (Page 1, Line 9–10) as: “Irrigation is found to substantially
reduce the river streamflow by consuming approximately 242.8 ± 27.8 × 108 m3.yr−1

in line with the census data (231.4 ± 31.6 × 108 m3.yr−1).” The stream reduction here
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means the difference between mean annual natural discharge and mean annual observed
discharge due to irrigation (call it R1), not the impact of irrigation on the long-term
decreasing trend of observed discharge (call it R2, if significant trend exists).
The streamflow reduction (R1) is mainly caused by anthropogenic factors (e.g., water
consumption, reservoir surface evaporation, etc). However, the trend of streamflow
reduction (R2) is not only caused by anthropogenic factors. Indeed, climate change is the
primary driver of trends of the Yellow River streamflows, which has been demonstrated
in our previous attribution study including climate change, CO2 rise, land use change,
and human activities (Xi et al., 2018). As this study concentrates on possible impacts of
simulating anthropogenic factors on R1, we did not perform the similar analysis shown in
Xi et al. (2018). Nevertheless, we demonstrate that climate change, at least the change
of precipitation, has little effect on the change of streamflow seasonality (Section. 3.2
and Figure S4). We mentioned this finding in the introduction (Page 1 Line 11–12):
“Our analysis revealed that the dam regulation, rather than the change of precipitation,
was the primary driver altering streamflow seasonality.”
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Reply to Referee #2

Z. Yin on behalf of all co-authors

1 “The study ‘Irrigation, damming, and streamflow fluctuations of the Yel-
low River’ by Yin et al. provides an overview of the water budget in the
Yellow River basin, by considering irrigation and dam regulations. In this
study, the authors developed a simple dam model coupled with ORCHIDEE
to represent the major flow regulations in the river basin. The topic fits the
scope of HESS, However, as a scientific manuscript, a clearly defined science
question is missing in this study. What is your major contribution to the hy-
drology community as the concept of modeling dam regulation is not new?”
A: Thank you very much for your comments. There are two objectives of this study.
First, with newly developed crop and irrigation module, the land surface model OR-
CHIDEE must be evaluated whether it is able to simulate the discharge of complex
rivers with a generic parameterization and to explain the mismatch of simulated dis-
charge of the Yellow River in our previous study (Xi et al., 2018). Moreover, the dam
operation model should be evaluated before integrated into ORCHIDEE.
Second, we aim to quantify the impacts of irrigation and dam operations on the monthly
discharge fluctuations of the Yellow River, which is not well demonstrated in previous
studies. In the revised manuscript (Page 1, Line 3–6) we underlined:“This study aims to
1) demonstrate whether the global land surface model ORCHIDEE is able to simulate
the streamflows of complex rivers with human activities using a generic parameteriza-
tion, and 2) quantify the respective roles of irrigation and artificial reservoirs in monthly
streamflow fluctuations of the Yellow River from 1982 to 2014 by using ORCHIDEE
with a newly developed irrigation module, and an offline dam operation model.” And in
the introduction (Page 5, Line 100–101):“1) demonstrate whether ORCHIDEE and the
dam model, with generic parameterizations, are able to reproduce streamflow fluctua-
tions of the YR with human perturbations;...” In comparison to previous studies, there
are several advantages in our work. Details are discussed in our reply to comment 1 of
Referee #1.

2 “Page 1, line 5, line 10: new → newly”
A: Corrected.

3 “Page 4, lines 7-8: Although it’s true that many dam model algorithms
in recent GHMs and LSMs are inherited from Hanasaki et al. (2006), it
is worth mentioning there are other types of dam/reservoir models such as
agent-based models (e.g. Riverwave), or basin-specific models (e.g. USBR
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Colorado River Simulation System).”
A: Thanks. We’ve added them in the short review of dam model development (Page
4, Line 58–61) as:“Although there are a set of dam models developed from different
perspectives, such as agent-based model River Wave (Humphries et al., 2014) and basin-
specific model Colorado River Simulation System (Bureau of Reclamation, 2012), the
dam module in many global hydrological studies are based on the work of Hanasaki et al.
(2006), which simulates dam operations based on different...”

4 “Page 4, line 23: Remove ‘real’ before observations. Are there ‘unreal’
observations?”
A: Sorry for the confusion. It has been removed.

5 “Page 4, lines 29-30: I’m not convinced that the new dam model ‘does not
require any prior information from observation’. In my opinion, observed
information include the data or parameters measured/collected from the
real world. In this case, the location, storage capacity, geometry of the dam
and reservoir, etc. They are all ‘observations’. So, I feel this sentence (and
the one in the abstract) is a bit overselling the model and needs to be further
clarified.”
A: True. The dam model does require information like regulation capacity, location, and
the year when regulation started. This part has been removed in the revision.

6 “Section 2.1.1: Could you add some more background about ORCHIDEE
before introducing ORCHIDEE-CROP? What’s the relationship between
these two? Is ORCHIDEE-CROP an offline crop model taking ORCHIDEE
output as input, or it’s an updated ORCHIDEE with an online crop model,
or it’s a regional model only focuses on China?”
A: ORCHIDEE-CROP is a special branch of ORCHIDEE with an online crop model,
which will be merged with the trunk version after extensive evaluation. It has been
applied widely in current research. To avoid this confusion, we removed ORCHIDEE-
CROP in the revision. A short introduction of ORCHIDEE and this special version has
been added in the revision (Page 5, Line 109–117) as:“ORCHIDEE is a physical process-
based land surface model that integrates hydrological cycle, surface energy balances,
carbon cycle, and vegetation dynamics by two main modules. The SECHIBA (surface-
vegetation-atmosphere transfer scheme) module simulates the dynamics of water cycle,
energy fluxes, and photosynthesis at half-hourly time interval, which are used by the
STOMATE (Saclay Toulouse Orsay Model for the Analysis of Terrestrial Ecosystems)
to estimate vegetation and soil carbon cycle at daily time step. The ORCHIDEE used in
this study is a special version with newly developed crop and irrigation module (Wang
et al., 2017; Wu et al., 2016; Yin et al., 2020). The novel crop module includes specific pa-
rameterizations for three main staple crops: wheat, maize, and rice, which are calibrated
over China by observations (Wang, 2016; Wang et al., 2017). It is able to simulate crop
carbon allocation, different phenological stages as well as related managements (e.g.,
planting date, rotation, multi-cropping, irrigation, etc).”
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7 “Section 2.1.2: This scheme concept is quite similar to Voisin et al. (2013).
Considering citing the work.”
A: Thanks. It has been cited in the introduction of the dam model framework (Page 6,
Line 138–139) as:“Firstly, similar to Voisin et al. (2013), multi-year averaged monthly
discharge (Qs) is calculated based on simulations...”

8 “Section 2.1.2: Essentially the dam model is trying to flatten the hydro-
graph. Any support from the observation that all dams follow this generic
rule? I understand sometimes it’s hard to obtain the actual operation rules
from the dam operators, but given this is a basin scale analysis (not global),
some level of ‘fact-checking’ needs to be included to reflect the local reality.”
A: The functions of main artificial reservoirs in the YRB has been collected from the Yel-
low River Conservancy Commission of the Ministry of Water Resources (http://www.
yrcc.gov.cn/hhyl/sngc/), and has been added in Table 1 in the revised manuscript.
The information confirms that flood control (‘C’ in Table 1), irrigation (‘I’), and water
supply (‘W’) are primary targets of these reservoirs, which, in principle, would flatten
the hydrograph (seems impossible to release water for water supply and irrigation during
flooding season, or reduce the discharge during the dry season).

9 “Page 8, line 22: Since NI and IR are major simulation experiments per-
formed in this study, it is necessary to include more descriptions about the
irrigation scheme in Section 2.1.1. For example, how does the irrigation de-
mand be evaluated, at what time step? How does the irrigation water be
applied, at what time step? I’m assuming different PFTs are associated with
different irrigation methods (e.g. drip, sprinkler, or flood)? How does the
return flow be treated in the model? How does the groundwater be rep-
resented in the model? If no groundwater pumping is represented in the
model, the level of uncertainty needs to be evaluated and discussed for the
study basin.”
A: The irrigation demand is checked every half an hour. If water stress excesses prede-
fined threshold, irrigation will be triggered. Due to lack of information about irrigation
techniques for specific crops, only surface irrigation is applied. If irrigated rate is larger
than the infiltration rate, surface runoff will occur, which however is almost forbidden
by constraining the irrigation rate. To give a precisely estimation of irrigation consump-
tion, the deep drainage of crop soil columns is turned off. Therefore, the irrigated water
can only be used for evapotranspiration. Note that soil water in natural vegetation soil
columns still can be lost by deep drainage, which forms the slow reservoir (shallow ground
water) that can be withdrawn for irrigation as well. The fossil ground water pumping is
not taken into account in our model. Firstly, the interactive mechanisms between shallow
and fossil ground water is now well known (Scanlon et al., 2018). Secondly, there is rare
data about the accessibility of deep fossil ground water. Nevertheless, in our previous
study (Yin et al., 2020), by using ORCHIDEE-estimated irrigation water withdrawal
and a proportion of surface water withdrawal versus ground water withdrawal derived
from census data, we successfully explained the trend of total water storage in the YRB
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(simulated trend is -5.4 mm.yr−1; GRACE based trend is -5.36 mm.yr−1).
We’ve improved the introductions of the irrigation module in Section 2.1.1 (Page 6, Line
123–127) as:“The water resources in ORCHIDEE account for three water reservoirs: 1)
the stream reservoir indicates streamflows; 2) the fast reservoir indicates surface runoff;
and 3) the slow reservoir indicates total deep drainage, the order of which indicates the
priorities of water reservoirs considered for irrigation. As long-distance water transfer is
not taken into account, streams only supply water to the crops growing in the grid-cell
they cross, according to the river routing scheme of the ORCHIDEE model (Ngo-Duc
et al., 2007).” and the simulation protocol in Section 2.4 (Page 9, Line 216–221) as:“In
IR, only surface irrigation is considered in this study (irrigated water is applied on the
cropland surface without interception by canopies), which only works during the crop
growth period. The soil water stress, a function of profiles of soil moisture and crop root
density (up to 2 m depth, (Yin et al., 2020)), is checked every half an hour. When it
is less than a target threshold (=1), irrigation will be triggered with amount equal to
the deficit of saturated and current soil moisture. To precisely estimate irrigation water
consumption (direct water loss from the surface water pool excluding return flow), the
deep drainage of the three crop soil columns is turned off in the IR simulation.”

10 “Page 10, line 5: I don’t understand why ETNI and ETIR had no significant
differences as I can see the discharge had significant decreases at some gauges
(Figure 3). I assume the reduced Q is due to the irrigation water withdrawal,
and then become additional ET through the irrigation, or it’s not the case
here?”
A: Here we compared the magnitudes of simulated ET and observed (or satellite-based)
ET, the differences between which is not significant (differences are smaller than the
variation of observed ET among different products). In fact, simulated ET coincides
well with the observations (Table S1). True. The ETIR is always higher than ETNI due
to the irrigation withdrawal, which also results in QIR < QNI.

11 “Page 10, line 9: In this equation, Ai is the total drainage area between
two gauges. Will it make more sense to use irrigated area instead of total
area? This way you can compare the relative level of irrigation for different
sub-regions?”
A: Thanks for your suggestion. The equation here corresponds to the Equation 8. Here
we provided sub-section-based water balance diagnosis. Although it is a good idea to
show irrigation intensity (by changing Ai to irrigated area), we should consider the water
balances in sub-sections, where precipitation and evapotranspiration – that are not only
occur on irrigated cropland – are taken into account as well. The spatial distribution of
irrigation intensity has been illustrated in our previous study (Yin et al., 2020).

12 “Page 11, line 16: There are many negative spikes in Q̂IR time series in
Figure 5. This is unacceptable. I don’t think your model is doing the right
thing.”
A: Many thanks for your comment which allows us to find and correct an issue in our
dam modelling. Indeed, the water recharge of reservoirs was not constrained by inflows
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and that explains the negative spikes in Q̂IR time series. In the revision, we corrected
corresponding equations (Eq. 6) and re-performed the simulations and results.

13 “Figure7: Given it’s a regional study, I’m expecting better results than
this, especially when you mentioned some previous study reached NSE around
0.9 for natural flow in the very same basin. Theoretically speaking, the in-
clusion of irrigation and dam regulation would improve the performance, not
the opposite. I think more discussion about this issue is required. Also, how
confident are you about the numbers in the conclusion?”
A: The inclusion of irrigation and dam regulation would dramatically reduce the RMSE,
which has been shown in our result (MSE=RMSE2, Fig. 7a). However, it probably will
not lead to a higher NSE of regulated discharge than NSE of naturalized discharge. Here
is a simple proof.
Assuming that Ni is the time series of natural discharge and ∆Wi is water storage change
of a reservoir. Thus, the regulated discharge Ri can be calculated as:

Ri = Ni −∆Wi,

ri = ni −∆wi.
(1)

Where i is month index. Capital letters indicate observed variables; while lower case
letters indicate simulated variables. Then the NSE of regulated discharge (NSE1) can
be calculated as:

NSE1 = 1−

M∑
i=1

(Ri − ri)
2

M∑
i=1

(
Ri − R̄

)2

= 1−

M∑
i=1

[(Ni −∆Wi)− (ni −∆wi)]
2

M∑
i=1

(
Ri − R̄

)2 ,

(2)

where M is the length of the time series. Let’s assume that the model can give a perfect
simulation of water storage change of reservoir. Thus ∆wi = ∆Wi and NSE1 is,

NSE1 = 1−

M∑
i=1

(Ni − ni)
2

M∑
i=1

(
Ri − R̄

)2 . (3)

Note that the NSE of natural discharge (NSE2) is,

NSE2 = 1−

M∑
i=1

(Ni − ni)
2

M∑
i=1

(
Ni − N̄

)2 . (4)
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The difference between NSE1 and NSE2 is the variation of regulated and natural dis-
charge. As assuming that dam operations always reduce the variation of discharge, the
variation of Ni is smaller than Ri . Consequently, NSE2 is always less than NSE1. In sum-
mary, if reservoirs reduce the variation of river discharge, a model even with a perfect
dam module will always provide a smaller NSE (with regulated discharge as reference)
than that of the model without functions of dam operations (with natural discharge as
reference)! The conclusion is that it is not comparable of model (study) performances
with different references and that it is not adequate to evaluate dam parameterizations.
This proof has been added in the online supplement. And in Sect. 4 (Page 14, Line
401 – Page 15, Line 405) we discussed:“These NSE decreases were interpreted due to
the complexity of the YRB under the impacts of human activities and climate varia-
tion. However, the NSE of natural discharges is incomparable to the NSE of regulated
discharges. Even if the model can perfectly simulate the reservoir operations, the NSE
of natural discharges is certainly larger than that of regulated discharges from the same
model, if you accept the assumption that reservoir operations reduce the variation of
river streamflows (a simple proof is available in Sect. A in the online supplement).”

14 “Figure 7: NSE is good for evaluating high frequency flow data but might
not be a good metric for monthly time series, as it is more sensitive to the
peak values (Krause et al. 2005). Maybe that’s why your NSE is so bad. I
would suggest removing this metric.”
A: True. NSE is more sensitive to peak flows than base flows. It is ideal for short-term
flood prediction. However, for studies concentrating the resilience of human society to
water resources variation, how much base discharge that reservoirs are able to guarantee
will be more interesting, in the case of which NSE probably is not suitable. Moreover,
we recognize that it is unfair to compare NSEs of natural discharge to that of regulated
discharge (see our reply to Comment 13). In short, we agree with your suggestion and
removed the NSE in the revised manuscript. The evaluation is now performed using the
complementary criteria: KEG, MSE and index of agreement.
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