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Responses to Comments on “A Bayesian approach to understanding the key factors 

influencing temporal variability in stream water quality: a case study in the Great Barrier 

Reef catchments” (Referee #1) 
Anonymous Referee #1 Received and published on 10 Feb 2021. 

Our responses are in blue and changes in the revised manuscript underlined. 

General comment 

This manuscript presents a Bayesian modeling approach to understanding factors affecting temporal 
variability in stream water quality. Overall, I think the manuscript is well written and will become a 
worthwhile contribution to the hydrological community after moderate revisions. Below I provide 
some comments to the author, which I hope can help improve the manuscript.  

The authors acknowledge the referee’s positive comment and the recognition of contribution of this 
study. The constructive comments will help us improve our manuscript after revision. We provide 
detailed responses to your comments and changes in the revised manuscript in the subsequent 
sections. 

Specific comment 

1. The authors have made it explicit that the current work follows previous study investigating water 
quality variability in the same region (Liu et al., 2018). There are also other publications from these 
authors, e.g., Guo et al., 2019, 2020. The discussion section seems not provide much comparison or 
synthesis of the results from these different but related studies, which appears to be a missed 
opportunity. I am aware some of these studies focused on temporal patterns and some on temporal 
patterns. It can potentially become a nice addition to the manuscript and a contribution to the 
community if the authors can provide some reflection on what different modeling techniques they 
have used and what new insights on water-quality patterns they have learned from those techniques.  

The authors agree with the reviewer and we will incorporate this suggestion. The innovations that this 
study brings compared to previous studies: 1) Queensland is more event dominated, thus we used 
event-based water quality data, compared to our previous studies which used monthly water quality 
data in Victoria; and 2) different modelling methods are used in this study - we used a model averaging 
approach, rather than a single-model approach, which is a more robust approach to understanding the 
key factors, since the effect of key factors are derived from multiple models.  

To address this comment, we have provided more synthesis of the results from this paper, comparing 
with previous water quality modelling studies. This includes:  

1) we have highlighted the position of the current study to the broader water quality modelling 
community in Introduction: 
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Line 59: “Process-based and statistical modelling approaches have been widely used to investigate 
water quality temporal dynamics in response to changes in the abovementioned environmental factors 
(Fu et al., 2019; Wellen et al., 2015). Process-based water quality models use complex mass-balance 
structures, describing the water quality source, mobilisation and transport processes (Abbott et al., 
1986; Merritt et al., 2003). They are typically based on hydrological and biogeochemical processes that 
can affect the generation and transport of pollutants into receiving waters. These models (e.g., Soil and 
Water Assessment Tool – SWAT, and Source Catchments) have been applied to assess the impact of 
land use management and climate on sediment and pollutant concentrations (Arnold et al., 2005; 
Francesconi et al., 2016; Qi et al., 2018), optimise water management and delivery for agriculture, 
industry and environmental uses (Ly et al., 2019), and estimate pollutant generation, loss and transport 
processes (Jayakrishnan et al., 2005; McCloskey et al., 2021). However, the complexity of process-
based models results in intensive data and calibration requirements, and large-scale application has 
been limited (Abbaspour et al., 2015; Arnold et al., 2005). These models may also have large 
uncertainties in the interpretability of the parameters and their characterization of the effects of 
specific processes (Wade et al., 2002), such as denitrification in streams (Filoso et al., 2004).” 

Line 72: “On the other hand, statistical water quality models have a relatively simple mathematical 
structure, an ability to quantify predictive uncertainty (Kasiviswanathan et al., 2013; Srivastav et al., 
2007) and low requirement for a priori information on distinct processes (Afed Ullah et al., 2018; 
Letcher et al., 2002; Mainali et al., 2019; Schwarz et al., 2006). However, existing statistical water 
quality modelling studies have limitations.” 

Line 85: “This study attempted to address these knowledge gaps in statistical water quality models, 
taking advantage of event-based water quality monitoring data from the Great Barrier Reef (GBR) 
catchments in northern Australia, where land-derived pollutants have posed threats to ecosystem of 
the GBR lagoon (Brodie et al., 2012; McKergow et al., 2005b; Waterhouse et al., 2017). We address the 
limitations in statistical water quality models by using: 1) Bayesian hierarchical modelling was used to 
investigate water quality temporal variation, whichallowed the prediction of water quality in multiple 
catchments, as well as simultaneously quantifying parameter uncertainty (Gelman et al., 2013; Rode et 
al., 2010; Webb et al., 2009); and 2) Bayesian model averaging (BMA) approaches were used to identify 
the relative importance of the different environmental factors and provide multi-model weighted 
predictions, which have been shown to better quantify the uncertainty arising from model selection 
(Höge et al., 2019; Raftery et al., 1997; Wang et al., 2012).” 

 

2) we have provided more discussion that specifically compares this study to our previous papers (Guo 
et al., 2020; Guo et al., 2019) in Sect.4.2 (Predicting temporal variations in water quality): 

Line 483: “The modelling performance in this study was generally higher than our previous studies (i.e., 
Guo et al. (2019) and Guo et al. (2020)). This improved performance can be attributed to: 

(1) difference in water quality monitoring data  



3 
 

Rivers in Queensland are more event dominated, thus we used event-based water quality data, 
compared to our previous studies which used monthly water quality data in Victoria. The uncertainty in 
event-based water quality samples have less impact on modelling performance because we considered 
the variability in streamflow when developing EMCs in this study (Chen et al., 2017; Lessels et al., 2015; 
Letcher et al., 2002). 

(2) difference in modelling methods 

Here, we used a model averaging approach that considered model predictions from multiple candidate 
models, rather than a single-model approach that was used in our previous studies (Guo et al. 2019, 
2020). This approach is a more robust approach to providing predictions because the predictions 
consider the model selection uncertainty (Höge et al., 2019; Raftery et al., 1997).” 

2. The authors have analyzed nine water quality constituents. While I do appreciate the amount of 
efforts the authors invested in data analysis and modeling, I wonder if it helps everyone stay focused if 
the authors were more selective on the constituents. Since a key message from this work is on the 
different drives of particulate and dissolved constituents, it may be sufficient to select two constituents 
from each category, as opposed to showing data and results for all nine constituents.  

The authors appreciate this suggestion. While it might help the reader more focused when only 
selected constituents were included in this paper, we would like to keep all nine constituents in the 
revised manuscript. Our analyses are on the nine constituents that are of great concern to the coral 
reef ecosystem (McCloskey et al., 2017), and could provide a useful comprehensive picture on the 
overall water quality status and its key temporal drivers. We have also constrained the variables to 
only the ‘real parameter’ that can be directed measured (expect for NOx). This helps to understand full 
sediment and nutrient loads being exported to the GBR lagoon. 

To resolve this comment, in the revised manuscript, the following changes have been made: 

1) We have highlighted the reason why we select these nine constituents in Introduction.   

Line 93: “We targeted nine common water quality indicators, including sediments, nutrients and 
salinity. This is a subset of the constituents that have been monitored in the GBR water quality 
monitoring program. Our analyses are conducted on constituents that are of great concern to the coral 
reef ecosystem (McCloskey et al., 2017), and could provide a useful comprehensive picture on the 
overall water quality status. Finally, we have constrained the variables to only the ‘real parameter’ that 
can be directed measured (with the exception of NOX), which helps to understand full sediment and 
nutrient loads being exported to the GBR lagoon.” 

2) We have already been selective on presenting results, focusing on TSS, NOx and FRP i.e. one 
constituent per category. We have explained in the paper that the results have been simplified and 
explain our constituent selection rationale in Sect. 3.1 Key drivers of temporal variability in water 
quality.  
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Line 320: “Results from here on will focus mainly on TSS, NOX and FRP, due to their impacts on the 
marine receiving environment. Results for the other six constituents are in Appendix. 

In addition, a number of the graphs are already only done for three constituents (e.g., Figs. 5 to 8), and 
we have moved Fig. 9 and Table 4 to Appendix (as Fig. B10 and Table C5) to reflect our focus. 

3. Of the two clusters of sites (Fig. 2), Cluster 1 sites are quite concentrated, whereas Cluster 2 sites are 
much more scattered. Also, there seems to be more sites in cluster 2 than cluster 1. I noted that the 
Bayesian modeling framework was applied to the two clusters independently, I wonder if any of these 
two aspects (geographical proximity and number of sites) could potentially affect your models and 
comparison of results between the two clusters. In addition, have you considered developing a single 
Bayesian model on all sites with the cluster assignment has an explanatory variable? 

Thank you for this comment. The clustering decisions are based on our previous multivariate analysis 
on the spatial pattern of water quality in the same study area (Liu et al., 2018). We found that 
distinctive features of the two clusters and their geographic/hydroclimatic differences are responsible 
for the separation of two clusters of sites. For instance, small wet areas (Cluster 1) near the coast 
where topography (orography) plays an important role in rainfall generation.  Such geographic 
differences also lead to more dispersed sites in the drier area (Cluster 2). However, geographical 
proximity and number of sites do not affect the model results and comparison of the results between 
the two clusters. This is because we are not making claims that there are always variables that will be 
important in such catchments. Such that, our modelling method is universal, but our results are not. 

Furthermore, there are good conceptual reasons for keeping the clusters separate. Based on Liu et al. 
(2018), results from clustering analyses on spatial patterns of water quality and catchment 
characteristics were highly correlated, and the two clusters had quite different key explanatory 
variables. If we put all the sites into the same analysis and just included cluster identity as a random 
intercept (or even random slope for each explanatory variable), it would make it more difficult to 
identify a universal set of key explanatory variables that represent both clusters. We would end up 
with same key factors identified for two different clusters, which provides limited information on 
specific management focuses on two contrasting sets of catchments. 

To address this comment, we have further clarified the reasons behind applying Bayesian model 
averaging on two different cluster separately in Sect. 2 Materials and methods: 

Line 118: “We found that differences in geographic/hydroclimatic catchment characteristics (Fig. 2 [b], 
[c] and [d]) are the key factors that distinguish the two clusters of sites (e.g., small wet areas (Cluster 1) 
near the coast where topography (orography) plays an important role in rainfall generation) (Liu et al. 
2018).  Such geographic differences also lead to more dispersed sites in the drier area (Cluster 2).” 

Line 219: “There are strong practical merits in handling the clusters separately. Previous results from 
clustering analyses on spatial patterns of water quality and catchment characteristics were highly 
correlated, and that the two clusters had quite different key explanatory variables (Liu et al. 2018). If 
all the sites were pooled into the same analysis it would make it more difficult to identify a universal 
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set of key explanatory variables that represent both clusters and likely increase the uncertainty of the 
coefficients too. The analysis would identify the same key factors identified for the two different 
clusters. It is important to consider and model these clusters separately so that we can better inform 
how water quality can be managed in these separate environmental conditions.” 

 

4. Line 35: In addition to sources, mobilization, and delivery, “transformation” should be included.  

We have incorporated this in the revised manuscript as follows: 

Line 33: “These spatial and temporal variations are the result of complex interactions between three 
key pollutant processes in catchments, namely, sources (e.g., atmospheric deposition or anthropogenic 
inputs), mobilisation (e.g., detachment from the sources), delivery (e.g., transport from sources to 
receiving waters) and transformation (e.g., biogeochemical processes) (Granger et al., 2010; Harris, 
2001; Lintern et al., 2018a).” 

 

5. Section 2.2.3: The authors have quantified the correlation between explanatory variables (Figure 
B1). Have you considered excluding some variables based on the correlations? If any two variables are 
highly correlated, it may be wise to keep just one of them in the models. 

We have examined the correlation among all explanatory variables, and there are several pairs of 
predictors that are highly correlated (e.g., pre-event NDVI and event NDVI with Spearman’s ρ = 0.97). 
However, it does not necessarily mean they will have similar posterior inclusion probability from BMA 
(e.g., 1.00 and 0.34 for pre-event NDVI and event NDVI, respectively, for DON in Cluster 2). The BMA 
can handle the collinearity with shrinking the posterior distribution of the one of the correlated 
predictors towards zero (Posch et al., 2020). This shrinkage effect leads to a lower posterior probability 
of a more complex model that includes correlated variables, because each extra predictor dilutes the 
prior density of the existing predictor that it correlates with. Such more complex model is unlikely to be 
selected, unless the loss in posterior probability can be outweighed by the gain in achieving a higher 
likelihood (Daoud, 2017; Hinne et al., 2020; Kruschke, 2014). 

Furthermore, Freckleton (2011) highlighted that when applying the model averaging approach, it is not 
safe to simply exclude correlated variables without due consideration of their likely independent 
effects. In our case, the high correlation among predictors mainly comes from time lag effects between 
predictors (e.g., pre-event, event and post-event). The relative importance of these predictors provides 
strong management indication for future water quality management strategies. Therefore, we have 
not removed any correlated predictors in this analysis.  

To resolve this comment, we have revised our manuscript as follows: 



6 
 

Line 209: “Some of the variables are proxies for the same process, and thus some paired predictors are 
highly correlated (e.g., pre-event NDVI and event NDVI with Spearman’s ρ = 0.97). Freckleton (2011) 
highlighted that when applying the model averaging approach, it is not safe to simply exclude 
correlated variables without due consideration of their likely independent effects. In our case, the high 
correlation among predictors mainly comes from time lag effects between predictors (e.g., pre-event, 
event and post-event). The relative importance of these predictors provides strong management 
indication for future water quality management strategies. Therefore, we have not removed any 
correlated predictors in this analysis. It is likely that different model structures result in similar 
predictive performance (discussed in the analysis of the results, i.e., Sect. 3.1).” 

Line 307: “It is also worth noting that strong correlations between predictors does not necessary mean 
that the posterior inclusion probability of these factors is similar (e.g., 1.00 and 0.34 for pre-event NDVI 
and event NDVI, respectively, for DON in Cluster 2). The BMA can handle the collinearity with shrinking 
the posterior distribution of inclusion probability of one of the correlated variables towards zero 
(Nakagawa et al., 2011; Posch et al., 2020; Walker, 2019). This shrinkage effect leads to a lower 
posterior probability of a more complex model that includes correlated variables, because each extra 
predictor dilutes the prior density of the existing predictor that it correlates with. Such more complex 
model is unlikely to be selected, unless the loss in posterior probability can be outweighed by the gain 
in achieving a higher likelihood (Daoud, 2017; Hinne et al., 2020; Kruschke, 2014).” 

6. BMA model coefficients plots (Figure 5 and other related figures in the SM): I found it difficult to 
compare the patterns across clusters or among constituents because the variables are not displayed in 
the same order in these panels.  

Thank you for this comment. We have incorporated this in the revised manuscript (e.g., reordered the 
predictors of Figs 5, B3 and B4 to make sure they follow the same order). We have also removed the 
description of ‘The order of predictors on the y-axis was ranked based on the posterior inclusion 
probability’ from the captions of these figures. Please see Fig. 5 below as an example. 
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Figure 5: Comparison of BMA model coefficients and cumulative model probabilities (only the first 100 models ranked according to the 
highest probability are shown) between Cluster 1 (“wet” - left) and Cluster 2 (“dry” - right) sites for [a] TSS, [b] NOX and [c] FRP. Each 
column in the heatmap represents the one specific model (ranked from highest model probability from left to right) and the width of the 
column is normalised by the posterior model probability (i.e., the widest columns indicate models with the largest increase in probability 
compared to the next most probable model). The colour indicates the direction of the coefficients: red = negative; blue = positive. The 
coefficient value was averaged across the posterior median value of the site-specific coefficient within each cluster (effect size, θn,j, in 
Equation 6); the definition of the abbreviations of each predictor on the y-axis are in Table 3. 
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7. Predictive model performance (Section 3.2 and Table 4): The NSE values are not high, some are very 
low. This seems to limit the utility of the proposed Bayesian approach, which the authors should 
discuss and defend against. 

We agree with the referee that the NSE values are not high, but based on the recommended 
performance measures from Moriasi et al. (2015), model performance is satisfactory (Table 1), 
especially for the Cluster 2 models. We agree that the model performance for DOP in Cluster 1 is very 
poor, and we have provided detailed discussion of this in Lines 471 to 481 in Sect. 4.2 Predicting 
temporal variations in water quality. Therefore, we did not rely on any results for DOP in Cluster 1 
when analyzing the results. 

Table C7. Performance statistics for nine constituents for the modelled and observed temporal variability, according to 
Moriasi et al. (2015). 

Constituent  Cluster one Cluster two 

TSS Indicative Satisfactory  

PN Satisfactory  Satisfactory  

NOX Satisfactory  Good  

NH4 Satisfactory  Indicative 

DON Satisfactory  Satisfactory  

FRP Satisfactory  Satisfactory  

DOP Indicative Good  

PP Satisfactory  Satisfactory  

EC Satisfactory  Satisfactory  

 

To address this comment, we have provide additional assessment of model performance based on the 
recommended performance measures from Moriasi et al. (2015) in Sect. 3.2 Predictive performance as 
follows: 

Line 369: “According to model performance criteria recommended by Moriasi et al. (2015), model 
performance is satisfactory (Table C7), especially for the Cluster 2 models. Generally, low NSE is 
acceptable for modelling nutrients and sediment compared to hydrology. It is also worth noting that, in 
contrast to the models developed here, most of the water quality models evaluated in Moriasi et al. 
(2015) are process-based models and focusing on individual catchments.” 

In addition, we have provided more discussion in Sect. 4.2 on the results of DOP in Cluster 1 as follows: 

Line 481: “Therefore, we did not infer any conclusions from the modelling results of DOP in Cluster 1 
due to the poor modelling performance.” 
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8. Line 415: Again, the effect is not only on transportation but also on transformation. Specifically, 
temperature is expected to affect the intensity of biological processes, e.g., denitrification.   

Thank you for this comment. We have incorporated this suggestion in the revised manuscript as 
follows:  

Line 456: “Temperature is one controlling factor that affects pollution transformation (Barnard et al., 
2005). For instance, temperature has a direct impact on the activity of microorganisms, which affects 
the intensity of biological processes such as denitrification (Wakelin et al., 2011).”  
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Responses to Comments on “A Bayesian approach to understanding the key factors influencing 

temporal variability in stream water quality: a case study in the Great Barrier Reef catchments” 

(Referee #2) 

Anonymous Referee #2 Received and published: 19 Feb 2021 

Our responses are in blue and changes in the revised manuscript underlined. 

General comment 

Liu et al. conducted an improved Bayesian approach to evaluate the temporal variability in stream 
water quality and the related key factors. This study aimed to: i) identify the key influencing factors, 
and ii) predict the temporal variation, taking advantages of multiple locations and multiple water 
quality monitoring data. In addition, authors divided the study sites into two clusters and analyzed 
separately, which might avoid potential uncertainty issues caused by a single model, and improve the 
scientific and reliability of the modelling results. 

This study is an interesting topic and generally well written. It contributes to our knowledge of both the 
further application of the developed Bayesian model framework and the understanding the temporal 
water quality variability in the Great Barrier Reef catchments. In general, this piece of work could be 
considered for publication after some unclear concerns were addressed. 

Thank you for your comprehensive review and recognition of the study contribution. The constructive 
comments will help us improve our manuscript after revision. We provide detailed responses to your 
comments and changes in the revised manuscript in the subsequent sections. 

Major comment 

1. Section 2.2.2   The authors gave a detailed process of data extraction and processing. Among them, 
it was noticed that “The start and end points of a specific event were determined by using a local 
minimum method that calculates the first derivative of the streamflow record (separated from 
baseflow)”. Basing on your data processing method, when can be identified as the start or end points? 
I think more details of the key standard or parameter maybe better for the readers to further 
understand your approach.  

Thank you for this comment. To clarify, for event delineation, we have used an automated approach 
developed by Tang et al. (2017) as a Matlab toolbox HydRun, which allowed us to extract runoff event 
on the baseflow-free hydrograph. This approach required a set of parameters (e.g., β filter coefficient, 
ReTh difference between two flows to set the local minima for event extraction). The delineation 
process is as illustrated in Fig. R1: once the local minimum T1 is found, the next local minimum T2 is 
considered as the first candidate end point. ReTh is used to filter out any false end point, which allows 
the flows at the start and end of an event can be different. This Matlab toolbox directly returns the 
start and end points of an event, avoid time-consuming and subjective inconsistent outcomes. These 
parameters are determined based on recommended values from literature (Garzon-Garcia et al., 2016; 
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Ladson et al., 2013; Zhang et al., 2017), as well as manual review of all event hydrographs to ensure 
overall consistency. 

 

Figure R1. An example of selecting the end point of a runoff event (Tang et al., 2017). 

To resolve this comment, in the revised manuscript, we have clarified the method we used to delineate 
flow events in Sect. 2.2.2 (Event mean concentration), provided the key specifications (i.e., 
parameters) for running the Hydrun toolbox, and an example hydrograph with start and end points in 
the Appendix: 

Line 148: “An automated hydrograph analysis tool – HydRun (Tang et al., 2017) was used to delineate 
runoff events. This approach allowed us to extract runoff event on the baseflow-free hydrograph, by 
specifying a set of parameters (e.g., β filter coefficient, ReTh difference between two flows to set the 
local minima for event extraction). This toolbox directly returned the start and end points of an event, 
thereby avoiding time-consuming and subjective inconsistent outcomes. The key parameters used for 
HydRun Toolbox are provided in Table C2 (Appendix C) and an example hydrograph output is provided 
in Fig. B1. These parameters are determined based on recommended values from literature (Garzon-
Garcia et al., 2016; Ladson et al., 2013; Zhang et al., 2017), as well as manual review of all event 
hydrographs to ensure overall consistency.” 

Table C2. Parameters for running the Hydrun toolbox 

Filter 
coefficient 

Pass for baseflow 
separation 

Peak discharge 
threshold 

Return 
ratio 

Smooth 
coefficient 

Minimum 
duration 

0.975 3 100 0.01 6 24 
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Figure B1. Delineation of runoff events and estimation of EMCs, based on the hydrograph for 105107A Normanby River at 

Kalpowar Crossing in the GBR catchments: (a) baseflow separation from continuous streamflow observations; (b) event 

identification and development of EMC, and 35 runoff events are identified with red dots representing either the start or end 

of a runoff event; and (c) A zoom in event #9 in 2008. 

2. The authors divided the site locations of the GBR catchments into two clusters (wet and dry), and 

modelled separately. The advantages of the subsequent result are obvious, i.e., pertinence, reliability 

and so on. However, whether the strong pertinence will reduce the universality of this approach and 

limit its universal application? And if it is necessary to add the model and discussion of all sites? 

Thank you for this comment. Application of the model based on two clusters does not limit the utility 

of the model. There are strong practical and conceptual reasons that we decide to model the two 

clusters of sites separately (i.e., we have provided detailed justifications in our reply to the Comment 

#3 from Referee #1). We aimed to identify the key factors affecting temporal variability in water 

quality for two different clusters of sites, but this method can be used anywhere, e.g., a single 

modelling framework for all sites.  By doing this, we are not making claims that there are always 

variables that will be important in such catchments. Therefore, our method is universal, but our results 

are not.   
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To address this comment, in the revised manuscript, we have provided more details on our previous 
study on clustering of these catchments in Sect. 2 Materials and methods: 

Line 118: “We found that differences in geographic/hydroclimatic catchment characteristics (Fig. 2 [b], 
[c] and [d]) are the key factors that distinguished the two clusters of sites (e.g., small wet areas (Cluster 
1) near the coast where topography (orography) plays an important role in rainfall generation) (Liu et 
al., 2018). Such geographic differences also lead to more dispersed sites in the drier area (Cluster 2). 

Line 219: “There are strong practical merits in handling the clusters separately. Previous results from 
clustering analyses on spatial patterns of water quality and catchment characteristics were highly 
correlated, and that the two clusters had quite different key explanatory variables (Liu et al., 2018). If 
all the sites were pooled into the same analysis, it would make it more difficult to identify a universal 
set of key explanatory variables that represent both clusters and likely increase the uncertainty of the 
coefficients too. The analysis would identify the same key factors identified for the two different 
clusters. It is important to consider and model these clusters separately so that we can better inform 
how water quality can be managed in these separate environmental conditions.” 

In addition, we have added more discussion in Sect. 4.2 Predicting temporal variations in water 
quality, to further clarify that applying our modelling approach to two clusters of sites does not limit 
the utility of the method: 

Line 500: “In addition, as discussed in Sect. 2.3, due to strong practical and conceptual reasons, our 
modelling framework was applied to two clusters of sites separately. However, this method can be 
used anywhere, e.g., a single modelling framework for all sites. Thus, we are not making claims that 
there are always variables that will be important in such catchments. Our method is universal, but our 
results are not.” 

3. The authors targeted nine common water quality indicators, including sediments, nutrients and 

salinity. But in the nutrients part, they only focused on N and P, without any constituents about Carbon 

studied. Why? Please explain it. 

Water quality parameters included in the Queensland Government’s Loads Monitoring Program (Sect. 

2.1.1) are those that enter the Great Barrier Reef lagoon from inland catchments, and suspended 

solids, nutrients and pesticide are the focus of this program. Carbon from inland entering the GBR 

lagoon is not as harmful as sediments and nutrients for the coral reef ecosystem, thus carbon is not 

monitored. Whilst including carbon in our analyses would have been valuable, we could not include 

carbon in our analysis due to the lack of data. 

4. 2.2.2 again “The event-mean concentration (EMC) was then calculated for each event that had at 

least two samples on each of the rising and falling limbs of the hydrograph.” Table C2 showed the 

Number of EMCs for each constituent. So what is the approximate amount of data per event? Why you 

set two samples as the minimum limitation? whether two samples are too few? 
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Thanks for your comment. First, we would like to highlight that we set the minimum of two on both 

rising and falling limbs of the hydrograph, then we have minimum 4 samples per event. Second, in 

Bartley et al. (2012), they review water quality data in Australian catchments and a minimum of 3 

samples  over an event as threshold to calculate EMC (Tables 4 to 6, Bartley et al. (2012)). Therefore, 

our four samples per event is above the standard set by that review paper. In addition, we have 

calculated that, on average, there are 14 samples per event across the nine constituents (ranging from 

12 for DOP to 16 for EC), therefore our calculated EMCs are reliable.    

To address this comment, we have clarified the choice of four samples (2 on both rising and falling 

limbs) per event in Sect. 2.2.2 Event mean concentration, and provided a summary table (Table C3) 

that indicates number of samples per event for each constituent in the Appendix: 

Line 156: “Thus, for each EMC, a minimum of 4 samples was achieved, which is above the standard (3 

samples per event) set by Bartley et al. (2012). On average, there were 14 samples per event across the 

nine constituents (ranging from 12 for DOP to 16 for EC, Table C3). This ensured that the water quality 

dynamics over a runoff event were reasonably well-captured, and that the derived EMCs were 

reliable.” 

Table C3. Average number of samples per event for each constituent 

TSS PN NOX NH4 DON FRP DOP PP EC 

15 14 14 14 14 15 12 14 16 

 

5. I also noticed that you normalized the data of each event first and then calculate the Event mean 

concentration. If this process is necessary? 

Thank for your comment. We think the referee may have misunderstood our method. We normalized 

the EMC rather than the original water quality data. Normalization of the predictand (EMC) is 

necessary to facilitate the fitting process and fulfill the statistical assumption of our model; we use 

Bayesian linear regression with the response variable sampled from a normal distribution (Atkinson, 

2020; Castillo et al., 2015; Hoeting et al., 2002).  

To address this comment, we have revised our manuscript to clarify this in Sect. 2.2.2 Event mean 

concentration as follows: 

Line 169: “The derived EMCs (i.e., rather than the individual water quality samples) were Box-Cox 

transformed to improve the symmetry of the response variable (Box et al., 1964). The normalization of 

the predictand is necessary to facilitate the fitting process and fulfil the statistical assumption of our 

model. This is because we use a Bayesian linear regression with the response variable sampled from a 

normal distribution (Sect. 2.3.1.) (Atkinson, 2020; Castillo et al., 2015; Hoeting et al., 2002).” 
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Minor comments: 

6. Fig 1d  six_NRM regions. 

Thank you for this comment. We believe this comment is related to Fig. 2 rather than Fig. 1. We have 
revised the figure as below (updated Fig. 2 [d]). 

 

Figure 2: Spatial information of the GBR catchments in northeast of Australia: [a] site locations showing two groups based 

on clustering analysis of spatial variability in time-averaged water quality (Liu et al., 2018); [b] topographic elevation (250 m 

resolution) (Geoscience Australia, 2008); [c] annual average rainfall (Bureau of Meteorology, 2012), and [d] updated 

Köppen-Geiger climate zone classification (Peel et al., 2007). 

[a] [b]

[c] [d]

Legend

Six NRM regions

Equatorial

Monsoon

Tropical savanna

Warm semi-arid

Humid subtropical

Warm oceanic
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7. Table 1 Delete the comma at the end of the sentence in the item “Land use/land cover” of Cluster 2. 

Thank you for this comment. We have incorporated this in the revised manuscript (updated Table 1). 

8. L274 Delete the full name of “MCMC”, which has appeared in the line 261. 

Thank you for this comment. We have incorporated this in the revised manuscript (Line 285). 
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