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Our responses are in blue and proposed manuscript revisions underlined. 

General comment 

This manuscript presents a Bayesian modeling approach to understanding factors affecting 
temporal variability in stream water quality. Overall, I think the manuscript is well written and 
will become a worthwhile contribution to the hydrological community after moderate revisions. 
Below I provide some comments to the author, which I hope can help improve the manuscript.  

The authors acknowledge the referee’s positive comment and the recognition of contribution 
of this study. The constructive comments will help us improve our manuscript after revision. 
We provide detailed responses to your comments and our proposed manuscript revisions in the 
subsequent sections. 

Specific comment 

1. The authors have made it explicit that the current work follows previous study investigating 
water quality variability in the same region (Liu et al., 2018). There are also other publications 
from these authors, e.g., Guo et al., 2019, 2020. The discussion section seems not provide much 
comparison or synthesis of the results from these different but related studies, which appears 
to be a missed opportunity. I am aware some of these studies focused on temporal patterns 
and some on temporal patterns. It can potentially become a nice addition to the manuscript 
and a contribution to the community if the authors can provide some reflection on what 
different modeling techniques they have used and what new insights on water‐quality patterns 
they have learned from those techniques.  

The authors agree with the reviewer and we will incorporate this suggestion. The innovations 
that this study brings compared to previous studies: 1) Queensland is more event dominated, 
thus we used event‐based water quality data, compared to our previous studies which used 
monthly water quality data in Victoria; and 2) different modelling methods are used in this 
study ‐ we used a model averaging approach, rather than a universal modelling framework, 
which is a more robust approach to understanding the key factors, since the effect of key 
factors are derived from multiple models.  

To address this comment, we will provide more synthesis of the results from this paper, 
comparing with previous water quality modelling studies. This includes:  



1) we will highlight the position of the current study to the broader water quality modelling 
community in Introduction. The focus of this part is to demonstrate different modelling 
approaches (e.g. simple regression models and process‐based hydrological models) (Bartley et 
al., 2012; Hirsch et al., 2010; Khan et al., 2020; McCloskey et al., 2021), and how these 
approaches address the spatial and temporal patterns of water quality (Barrientos et al., 2018; 
Hrachowitz et al., 2016; Kaman et al., 2016; Varanka et al., 2015).  

2) we will provide more discussion that specifically compare this study to our previous papers 
(Guo et al., 2020; Guo et al., 2019) in Sect.4.2 (Predicting temporal variations in water quality).  

2. The authors have analyzed nine water quality constituents. While I do appreciate the amount 
of efforts the authors invested in data analysis and modeling, I wonder if it helps everyone stay 
focused if the authors were more selective on the constituents. Since a key message from this 
work is on the different drives of particulate and dissolved constituents, it may be sufficient to 
select two constituents from each category, as opposed to showing data and results for all nine 
constituents.  

The authors appreciate this suggestion. While it might help the reader more focused when only 
selected constituents were included in this paper, we would like to keep all nine constituents in 
the revised manuscript. The reasons that support this decision include:  

1) There is a large number of constituents that have been monitored in the GBR water quality 
monitoring program, but we have reduced the number of constituents for those that have 
similar patterns. For example, we only retained TSS among TSS, total nitrogen (TN) and total 
phosphorus (TP). 

2) Our analyses are on 9 constituents that are of great concern to the coral reef ecosystem 
(McCloskey et al., 2017), and could provide a useful comprehensive picture on the overall water 
quality status and its key temporal drivers. We only consider the ‘real parameter’ that can be 
directed measured (expect NOx). This helps to understand full sediment and nutrient budgets 
exported to the GBR lagoon. 

To resolve this comment, in the revised manuscript, the following proposed changes will be 
made: 

1) We will highlight the reason why we select these nine constituents in Introduction.   

2) We have already been selective on presenting results, focusing on TSS, NOx and FRP i.e. one 
constituent per category. We will explain in the paper that the results have been simplified and 
explain our constituent selection rationale in Sect. 3.1 (Key drivers of temporal variability in 
water quality). In addition, a number of the graphs are already only done for three constituents 
(e.g., Figures 5 to 8), and we will simplify other figures and tables (e.g., Figure 9 and Table 4) to 
reflect our focus. 



3. Of the two clusters of sites (Figure 2), Cluster 1 sites are quite concentrated, whereas Cluster 
2 sites are much more scattered. Also, there seems to be more sites in cluster 2 than cluster 1. I 
noted that the Bayesian modeling framework was applied to the two clusters independently, I 
wonder if any of these two aspects (geographical proximity and number of sites) could 
potentially affect your models and comparison of results between the two clusters. In addition, 
have you considered developing a single Bayesian model on all sites with the cluster assignment 
has an explanatory variable? 

Thank you for this comment. The clustering results are based on our previous multivariate 
analysis on the spatial pattern of water quality in the same study area (Liu et al., 2018). We 
found that distinctive features of the two clusters and their geographic/hydroclimatic 
differences are responsible for the separation of two clusters of sites. For instance, small wet 
areas (Cluster 1) near the coast where topography (orography) plays an important role in 
rainfall generation.  Such geographic features also lead to more dispersed sites in the drier area 
(Cluster 2).  

Furthermore, there are good conceptual reasons for keeping the clusters separate. Based on Liu 
et al. (2018), results from clustering analyses on spatial patterns of water quality and catchment 
characteristics were highly correlated, and the two clusters had quite different key explanatory 
variables. If we put all the sites into the same analysis and just included cluster identity as a 
random intercept (or even random slope for each explanatory variable) it would skew the 
choice of explanatory variables for both clusters away from the set achieved in the analysis as it 
stands. We would end up with same key factors identified for two different clusters, which 
provides limited information on specific management focuses on two contrasting sets of 
catchments. 

To address this comment, in the revised manuscript, we propose to: 

1) provide more details on our previous study on clustering of these catchments in Sect. 2.1 
(Study area), and that differences in geographic/hydroclimatic are key factors that 
distinguished the two clusters of sites. Thus, there are strong practical merits in handling the 
clusters separately based on the clear contrast between them. 

2) improve our description in Sect. 2.3 (Modelling: driver identification and water quality 
prediction using multi-model inference), to further clarify the reasons behind applying Bayesian 
model averaging on two different cluster separately.  

4. Line 35: In addition to sources, mobilization, and delivery, “transformation” should be 
included.  

Thank you for this comment. We will incorporate this suggestion in the revised manuscript. 



5. Section 2.2.3: The authors have quantified the correlation between explanatory variables 
(Figure B1). Have you considered excluding some variables based on the correlations? If any 
two variables are highly correlated, it may be wise to keep just one of them in the models. 

We have examined the correlation among all explanatory variables, and there are several pairs 
of variables that are highly correlated (e.g., pre‐event NDVI and event NDVI with Spearman’s ρ 
= 0.97). However, it does not necessarily mean they will have similar posterior inclusion 
probability from BMA (e.g., 1.00 and 0.34 for pre‐event NDVI and event NDVI, respectively, for 
DON in Cluster 2). The BMA can handle the collinearity with shrinking the posterior distribution 
of the correlated variable to near zero (Posch et al., 2020). This shrinkage effect leads to lower 
posterior probability of the more complex model (i.e., the model that includes correlated 
variables), because each extra parameter dilutes the prior density on the pre‐existing 
parameters. Thus, models that include more predictors will have a lower prior probability. 
Models with additional predictors will be favored only to the extent that their benefit in higher 
likelihood outweighs their cost in lower prior; however, including correlated variables does not 
increase the model predictive capacity (Daoud, 2017; Hinne et al., 2020; Kruschke, 2014). 

Furthermore, Freckleton (2011) highlighted that when applying model averaging approach, it is 
not safe to simply exclude correlated variables without due consideration of their likely 
independent effects. In our case, the high correlation among predictors mainly comes from 
time lag effects between predictors (e.g., pre‐event, event and post‐event). The relative 
importance of these predictors provides strong management indication for future water quality 
management strategies. Therefore, we would like to keep them all in this analysis.  

To resolve this comment, we propose that: 

1) highlight that some of the variables are proxies for the same process, and therefore they are 
closely related in Sect. 2.2.3 (Explanatory variables). We will pay attention to the collinearity 
issue in the analysis of the results. 

2) add more clarification in Sect. 3.1 (Key drivers of temporal variability in water quality), that 
strong correlation between predictors does not necessary mean that the posterior inclusion 
probability of these factors is similar. In addition, we will provide more discussion on how BMA 
address the collinearity issue in in Sect. 3.1. 

6. BMA model coefficients plots (Figure 5 and other related figures in the SM): I found it difficult 
to compare the patterns across clusters or among constituents because the variables are not 
displayed in the same order in these panels.  

Thank you for this comment. We will incorporate this suggestion in the revised manuscript 
(e.g., reorder the predictors of Figure 5 and other plots in SM to make sure they follow the 
same order). 



7. Predictive model performance (Section 3.2 and Table 4): The NSE values are not high, some 
are very low. This seems to limit the utility of the proposed Bayesian approach, which the 
authors should discuss and defend against. 

We agree with the referee that the NSE values are not high, but based on the recommended 
performance measures from Moriasi et al. (2015), most of the model performance is 
satisfactory (Table 1), especially for the Cluster 2 models. Generally, low NSE is acceptable for 
modelling nutrients and sediment compared to hydrology. It is also worth noting that most of 
water quality models evaluated in Moriasi et al. (2015) are physically‐based models (e.g. SWAT, 
HSPF, WARME), and focusing on individual catchments. However, we used a statistical 
modelling approached to predict multiple catchments and to identify key factors 
simultaneously. We agree that the model performance for DOP in Cluster 1 is very poor, and we 
have provided detailed discussion of this in Lines 428 to 438 in Sect. 4.2 (Predicting temporal 
variations in water quality). Therefore, we did not rely on any results for DOP in Cluster 1 when 
analyzing the results. 

Table 1 Performance statistics for nine constituents for the modelled and observed temporal variability, according 
to Moriasi et al. (2015). 

Constituent  Cluster one Cluster two 

TSS Indicative Satisfactory  

PN Satisfactory  Satisfactory  

NOX Satisfactory  Good  

NH4 Satisfactory  Indicative 

DON Satisfactory  Satisfactory  

FRP Satisfactory  Satisfactory  

DOP Indicative Good  

PP Satisfactory  Satisfactory  

EC Satisfactory  Satisfactory  

 

To address this comment, we propose to: 

1) provide additional assessment of model performance based on the recommended 
performance measures from Moriasi et al. (2015) in Sect. 4.2 (Predicting temporal variations in 
water quality). We will demonstrate that our predictive ability is comparable to other water 
quality models. 

2) provide more discussion in Sect. 4.2 that we are not inferring any conclusions from the 
modelling results for DOP in Cluster 1, due to the poor performance.  

 



8. Line 415: Again, the effect is not only on transportation but also on transformation. 
Specifically, temperature is expected to affect the intensity of biological processes, e.g., 
denitrification.   

Thank you for this comment. We will incorporate this suggestion in the revised manuscript. 
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