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Abstract. This study evaluates the ability of different gridded rainfall datasets to plausibly represent the spatiotemporal 10 

patterns of multiple hydrological processes (i.e. streamflow, actual evaporation, soil moisture and terrestrial water storage) for 

large-scale hydrological modelling in the predominantly semi-arid Volta River Basin (VRB) in West Africa. Seventeen 

precipitation products based on satellite data (TAMSAT, CHIRPS, ARC, RFE, MSWEP, GSMaP, PERSIANN-CDR, 

CMORPH-CRT, TRMM 3B42, TRMM 3B42RT) and on reanalysis (JRA-55, EWEMBI, WFDEI-GPCC, WFDEI-CRU, 

MERRA-2, PGF and ERA5) are compared as input for the fully distributed mesoscale Hydrologic Model (mHM). To assess 15 

the model sensitivity to meteorological forcing during rainfall partitioning into evaporation and runoff, six different 

temperature reanalysis datasets are used in combination with the precipitation datasets, which results in evaluating 102 

combinations of rainfall-temperature input data. The model is recalibrated for each of the 102 input combinations, and the 

model responses are evaluated by using in-situ streamflow data and satellite remote sensing datasets from GLEAM 

evaporation, ESA CCI soil moisture, and GRACE terrestrial water storage. A bias-insensitive metric is used to assess the 20 

impact of meteorological forcing on the simulation of the spatial patterns of hydrological processes. The results of the process-

based evaluation show that the rainfall datasets have contrasting performances across the four climatic zones present in the 

VRB, suggesting that, in general, basin-wide hydrological model performance might be misleading and invalid for a smaller 

spatial domain. No single rainfall or temperature dataset consistently ranks first in reproducing the spatiotemporal variability 

of all hydrological processes. A dataset that is best in reproducing the temporal dynamics is not necessarily the best for the 25 

spatial patterns. In addition, the results suggest that there is more uncertainty in representing the spatial patterns of hydrological 

processes than their temporal dynamics. Finally, some region-tailored datasets outperform the global datasets, thereby stressing 

the necessity and importance of regional evaluation studies for satellite and reanalysis meteorological datasets. 
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1 Introduction 

Our understanding of environmental systems is underpinned by observational data whose unavailability and uncertainties 

hinder research and operational applications. Among other factors, atmospheric data quality is of prime importance for the 

reliability of hydro-meteorological and climatological studies (Ledesma and Futter, 2017;Zandler et al., 2019). Precipitation 35 

is one of the major components of the water cycle, which has led to numerous initiatives on understanding its generation, and 

estimating its amount and variability on Earth (Maidment et al., 2015;Cui et al., 2019). In hydrological modelling (Singh, 

2018;Beven, 2019), precipitation is the most important driver variable that determines the spatiotemporal variability of other 

hydrological fluxes and state variables (Thiemig et al., 2013;Bárdossy and Das, 2008). 

With the development of distributed hydrological models that facilitate large-scale predictions (Clark et al., 2017;Fatichi et 40 

al., 2016;Ocio et al., 2019), there is a growing need to inform and evaluate those models with distributed observational datasets 

to improve spatiotemporal process representation (Baroni et al., 2019;Paniconi and Putti, 2015;Hrachowitz and Clark, 2017). 

A key challenge is the spatiotemporal intermittency of precipitation, which is a major challenge for its measurement and its 

spatial interpolation (Tauro et al., 2018;Acharya et al., 2019;Bárdossy and Pegram, 2013;Wagner et al., 2012a) , especially in 

regions with particular features such as complex topography, convection-driven precipitation or snowfall occurrence. A 45 

comprehensive description of precipitation measurement techniques can be found in previous studies (e.g. Tapiador et al., 

2012;Stephens and Kummerow, 2007;Kidd and Huffman, 2011). The drawbacks of in-situ measurements of precipitation 

include limited and uneven areal coverage, deficiencies in instruments and costly maintenance (Kidd et al., 2017;Awange et 

al., 2019;Harrison et al., 2019), and have led to the advent of precipitation estimation from space (Barret and Martin, 1981). 

Precipitation estimates from space are spatially homogeneous and cover inaccessible regions with uninterrupted records over 50 

time (Beck et al., 2019b;Funk et al., 2015). 

The advent of satellite-based rainfall products (SRPs) has opened up new avenues for water resources monitoring and 

prediction, especially in data sparse regions (Serrat‐Capdevila et al., 2014;Sheffield et al., 2018;Hrachowitz et al., 2013). 

Although, the use of SRPs in hydrology is increasing (Xu et al., 2014;Chen and Wang, 2018), they have not been fully adopted 

for operational purposes yet (Ciabatta et al., 2016;Kidd and Levizzani, 2011). The limited uptake of SRPs in hydrology is due 55 

to measurement bias, inadequate spatiotemporal resolutions (e.g. for extreme event simulation) and shortness of the records 

for some applications (e.g., climate change impact assessments), and the skepticism of some potential users with regard to the 

data quality (Marra et al., 2019). In the past decades, a large number of SRPs have been developed with different objectives, 

spatial and temporal resolutions, input sources, algorithms and acquisition methods (Ciabatta et al., 2018;Ashouri et al., 

2015;Brocca et al., 2019). Several studies provide a review of SRPs (e.g. Maidment et al., 2014;Sun et al., 2018;Maggioni et 60 

al., 2016;Le Coz and van de Giesen, 2019). 

In addition to SRPs, there are also atmospheric retrospective analysis (or reanalysis) datasets of precipitation. A reanalysis 

system is composed of a forecast model and a data assimilation scheme that integrates spatiotemporal observations of 

meteorological variables (i.e. temperature, humidity, wind and pressure) to generate gridded atmospheric data (Lorenz and 
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Kunstmann, 2012;Schröder et al., 2018). Precipitation is one of the reanalysis model-generated fields that generally has more 65 

uncertainties than the meteorological state fields (Roca et al., 2019). Reanalysis datasets are often used in hydrological 

modelling (Tang et al., 2019;Duan et al., 2019;Gründemann et al., 2018), and sometimes they are preferred over SRPs because 

of their usually long-term records suitable for climate change studies, and because of their higher performance in predictable 

large-scale stratiform systems (Seyyedi et al., 2015;Potter et al., 2018). 

Despite the progress in satellite instruments, which has led to substantial advances in improving precipitation estimates 70 

(Sorooshian et al., 2011;Tang et al., 2019), there are known inconsistencies among the available SRPs (Sun et al., 

2018;Tapiador et al., 2017). SRPs are subject to inherent errors originating mainly from precipitation retrieval instruments and 

algorithms, sampling frequency, and inadequate representation of cloud physics in some regions (Laiti et al., 2018;Alazzy et 

al., 2017;Romilly and Gebremichael, 2011). While on the one hand SRPs are subject to systematic biases, reanalysis products 

on the other hand have uncertainties resulting from their model forcing parameters, low spatial resolution with poor 75 

representation of sub-grid processes, and the model physics (Bosilovich et al., 2008;Laiti et al., 2018). Uncertainty 

quantification both in SRPs and reanalysis data is subject to intense research (e.g. Maggioni et al., 2016;Gebremichael, 

2010;Awange et al., 2016;Westerberg and Birkel, 2015). The errors quantification of SRPs and reanalysis products is usually 

done by comparing them with in-situ measurements (e.g. Dembélé and Zwart, 2016;Thiemig et al., 2012;Beck et al., 

2019a;Caroletti et al., 2019;Satgé et al., 2020), or by assessing their reliability as forcing for hydrological models 80 

(e.g.Duethmann et al., 2013;Pan et al., 2010;Nkiaka et al., 2017). Other evaluation approaches include triple collocation, which 

is a technique that estimates the variance of unknown errors of three independent variables without a reference or observed 

variable (e.g. Massari et al., 2017;Alemohammad et al., 2015;McColl et al., 2014;Roebeling et al., 2012). Compared to the 

ground-truthing approach, the hydrological evaluation approach has received limited attention (Camici et al., 2018;Poméon et 

al., 2017). 85 

In rainfall-runoff modelling (Wagener et al., 2004;Beven, 2011), the non-linearity of hydrological processes (Blöschl and 

Zehe, 2005;Clark et al., 2009) can reduce or amplify the errors in the used input rainfall data and result in a satisfactory or 

poor representation of the hydrological responses (Maggioni and Massari, 2018;Nijssen, 2004). Consequently, the hydrological 

model can give a good representation of a hydrological state or flux variable for the wrong reasons (cf. Kirchner, 2006), thereby 

potentially leading to unfortunate consequences for water resources management (Zambrano-Bigiarini et al., 2017). When 90 

testing models as hypotheses (Beven, 2018;Pfister and Kirchner, 2017), type I errors (i.e. false positive model acceptability; 

Beven, 2010) should be avoided to ensure a high predictive skill of the model and its correctness for good decision-making. 

This sheds light on the importance of assessing the reliability of hydrological predictions generated with the use of SRPs and 

reanalysis products (Behrangi et al., 2011;Kuczera et al., 2010). In this context, knowing the adequacy and coherence of 

meteorological data in reproducing hydrological processes is a prerequisite to data selection for water resources management 95 

(Casse et al., 2015;Laiti et al., 2018). 

In the context of hydrological evaluation of precipitation datasets, some limitations can be identified in previous studies. Some 

studies only evaluate a small number of precipitation datasets or do not consider reanalysis products (e.g. Bitew and 
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Gebremichael, 2011;Ma et al., 2018;Liu et al., 2017;Bhattacharya et al., 2019). Usually, the influence of temperature datasets 

in combination with rainfall datasets is not tested (e.g. Satgé et al., 2019;Camici et al., 2018;Casse et al., 2015;Qi et al., 100 

2016;Zhang et al., 2019), with the exception of a few studies (e.g. Laiti et al., 2018;Lauri et al., 2014), despite the importance 

of this interaction for evaporation simulation. Most studies evaluate a single hydrological state or flux variable, generally 

streamflow (e.g. Poméon et al., 2017;Seyyedi et al., 2015;Shayeghi et al., 2020;Li et al., 2012b), or soil moisture (e.g. Brocca 

et al., 2013). Some studies use lumped or semi-distributed models, therefore averaging the rainfall amount on large areas (e.g. 

Duan et al., 2019;Tang et al., 2019;Tobin and Bennett, 2014;Gosset et al., 2013;Shawul and Chakma, 2020), which reduces 105 

the bias effect that could occur at the pixel level with a fully distributed model. Often, the model is not recalibrated for each 

precipitation dataset (e.g. Voisin et al., 2008;Su et al., 2008;Li et al., 2012a;Tramblay et al., 2016), which is, however, a 

prerequisite for reliable input field assessment (Stisen et al., 2012). Moreover, some studies perform a global-scale analysis 

and ignore regionally tailored products (e.g. Beck et al., 2017b;Mazzoleni et al., 2019;Fekete et al., 2004), which can 

outperform global products (e.g. Thiemig et al., 2013). Finally, to the best of our knowledge, no study evaluated the 110 

simultaneous impact of various precipitation and temperature datasets on the spatial patterns of several hydrological processes 

(i.e. soil moisture and evaporation).  

In light of the above, we propose to study the adequacy of different combinations of 17 precipitation datasets (10 SRPs and 7 

reanalysis products) and 6 temperature datasets from reanalysis, when used as forcing data for a fully distributed hydrological 

model, in reproducing the spatiotemporal variability of multiple hydrological processes (i.e. streamflow, actual evaporation, 115 

soil moisture, and terrestrial water storage). In total, 102 rainfall-temperature input data combinations are tested with the 

mesoscale Hydrologic Model (mHM) by recalibrating the model for each of the input data combinations. The experiment is 

carried out in the poorly gauged and predominantly semi-arid Volta River Basin (VRB) located in West Africa, over the period 

2003-2012. It is noteworthy that the goal of this study is not to estimate the intrinsic quality of the meteorological forcing (i.e. 

precipitation and temperature) but rather to understand the impact of the propagation of associated uncertainties on the 120 

simulation of hydrological processes (Bhuiyan et al., 2019;Falck et al., 2015;Marthews et al., 2020). 

The VRB case study is particularly interesting from both scientific and societal perspectives. On the one hand, precipitation 

modelling in tropical monsoon climates is a challenging task due to strong seasonality and diurnal variations of rainfall (Turner 

et al., 2011;Pfeifroth et al., 2016;Cook and Vizy, 2019), and due to isolated convection systems in semi-arid regions (Taylor 

et al., 2017;Mathon et al., 2002;Parker and Diop-Kane, 2017). On the other hand, open access and good quality datasets are 125 

needed for water resources management in West Africa (Roudier et al., 2014;Serdeczny et al., 2017;Di Baldassarre et al., 

2010;Dinku, 2019). The following research questions are addressed: 

1) What is the impact of different gridded rainfall and temperature datasets on the simulation of hydrological fluxes and 

state variables? 

2) How important is the choice of meteorological datasets for the representation of spatial patterns versus temporal 130 

dynamics? 
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Overall, the objective of this work aligns with the efforts in solving the current scientific challenges in hydrology (i.e. 

uncertainty in large-scale measurements and data, spatial heterogeneity and modelling methods; Blöschl et al., 2019;Wilby, 

2019). Moreover, a growing interest in using satellite remote sensing data in hydrological modelling is expected (McCabe et 

al., 2017;Peters-Lidard et al., 2017;Wilkinson et al., 2016). Therefore, knowing the suitability of the input data for hydrological 135 

modelling is a prerequisite for reliable spatiotemporal predictions, as the goal is to increase model performance with minimum 

uncertainty (Beven, 2016;McMillan et al., 2018;Savenije, 2009). 

2 Methodology 

2.1 Overview of the modelling experiment 

The adequacy of the rainfall and temperature datasets to plausibly reproduce various hydrological processes is tested with all 140 

the 102 possible combinations of 17 rainfall and 6 temperature datasets used as meteorological forcing (see section 2.2). 

Different temperature datasets are used to allow flexibility in rainfall partitioning into evaporation and runoff because 

temperature is a key variable for the calculation of potential evaporation (Kirchner and Allen, 2020;Zheng et al., 2019;Van 

Stan et al., 2020). The hydrological model is recalibrated for each of the 102 combinations of rainfall-temperature datasets 

(Figure 1).  145 

 

Figure 1. Flowchart of the methodology used to evaluate the suitability of meteorological datasets in reproducing plausible 
hydrological processes. 

The differences in the performance of model outputs are assumed to result from the propagation of the input data uncertainty 

through the model simulations (Nikolopoulos et al., 2010;Fallah and Orth, 2020). In case of uncertainties resulting from the 150 

hydrological model structure, these uncertainties can be assumed to remain consistent for all the input datasets and therefore 
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it should not hinder the interpretation of the results, because only the parameters change during model calibration and not the 

model structure (Raimonet et al., 2017). 

 

2.2 Meteorological datasets 155 

This study evaluates 17 rainfall products composed of 10 satellite-based products: TAMSAT, CHIRPS, ARC, RFE, MSWEP, 

GSMaP, PERSIANN-CDR, CMORPH-CRT, TRMM 3B42 and TRMM 3B42RT; and 7 reanalysis products: JRA-55, 

EWEMBI, WFDEI-GPCC, WFDEI-CRU, MERRA-2, PGF and ERA5 (Table 1). Widely used global and Africa-tailored 

datasets were selected based on their availability in the period for which streamflow data is available for the hydrological 

modelling (2000-2012). For SRPs having multiple versions, the gauge-corrected version was selected to avoid the known 160 

systematic biases found in the SRPs as compared to ground measurements (Jiang and Wang, 2019;Pellarin et al., 2020). The 

selected rainfall datasets include single and multi-sensor, with various merged and gauge-corrected products obtained from 

rain gauges, microwave sensors on low Earth orbits and infrared sensors on geostationary satellites (Maggioni and Massari, 

2018;Thiemig et al., 2013;Golian et al., 2019). Moreover, six different datasets of air temperature (at 2 m above ground) are 

used for the calculation of potential evaporation and they are obtained from the reanalysis products: JRA-55, EWEMBI, 165 

WFDEI, MERRA-2, PGF and ERA5. 

 

Table 1. Meteorological datasets with used spatial resolution; the table presents the characteristics of the datasets used in this study, 
although different spatial and temporal resolutions can be available from the data providers. G: gauge, S: satellite, R: reanalysis, 
NP: near-present. 170 

Datasets Name/ website 
Data 
sources 

Spatial 
coverage 

Spatial 
resolution 

Temporal 
coverage 

Temporal 
resolution 

References 

TAMSAT 
v3.0 

Tropical Applications of 
Meteorology using SATellite 
(TAMSAT), African Rainfall 
Climatology and Time-series 
(TARCAT) 
https://www.tamsat.org.uk/data
/archive  

S, G 
Africa 
38°N – 36°S, 
19°W – 52°E 

0.0375° 1983-NP daily 

Maidment et 
al. (2017), 
Tarnavsky et 
al. (2014), 
Maidment et 
al. (2014) 
 

CHIRPS 
v2.0 

Climate Hazards group 
InfraRed Precipitation with 
Stations (CHIRPS) V2.0 
http://chg.ucsb.edu/data/chirps/  

S, G, R 
Land 
50° N/S,  
180° E/W 

0.05° 1981-NP daily 
Funk et al. 
(2015)  

ARC v2.0 

Africa Rainfall Estimate 
Climatology (ARC 2.0) 
https://www.cpc.ncep.noaa.gov
/products/international/data.sht
ml  

S, G 
Africa 
40°N – 40°S, 
20°W – 55°E 

0.1° 1983-NP daily 
Novella and 
Thiaw (2013) 

RFE v2.0 

Climate Prediction Center 
(CPC) African Rainfall 
Estimate (RFE) 
https://www.cpc.ncep.noaa.gov
/products/international/data.sht
ml  

S, G 
Africa 
40°N – 40°S, 
20°W – 55°E 

0.1° 2001-NP daily 

Xie and 
Arkin (1996), 
Herman et al. 
(1997) 
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MSWEP 

v2.2 

Multi-Source Weighted-
Ensemble Precipitation 
(MSWEP) V2.2 
http://www.gloh2o.org/ 

S, G, R Global 0.1° 1979-NP 3-hourly 
Beck et al. 
(2017a) 

GSMaP-std 
v6 

Global Satellite Mapping of 
Precipitation (GSMaP) Moving 
Vector with Kalman (MVK) 
Standard V6 
https://sharaku.eorc.jaxa.jp/GS
MaP/ 

R, G 
60◦ N/S,  
180° E/W 

0.1° 2001-2013 daily 
Ushio et al. 
(2009), Ushio 
et al. (2019) 

PERSIANN-
CDR v1r1 

Precipitation Estimation from 
Remotely Sensed Information 
using Artificial Neural 
Networks (PERSIANN) 
Climate Data Record (CDR) 
V1R1 
http://chrsdata.eng.uci.edu/ 

S, G 
60◦ N/S, 
180° E/W 

0.25° 1983-2016 
6-hourly 
(daily) 

Ashouri et al. 
(2015) 

CMORPH-
CRT v1.0 

Climate Prediction Center 
(CPC) MORPHing technique 
(CMORPH) bias corrected 
(CRT) V1.0 
www.cpc.ncep.noaa.gov  

S, G 
60◦ N/S, 
180° E/W 

0.25° 1998-2015 daily 
Joyce et al. 
(2004), Xie et 
al. (2017) 

TRMM 
3B42 v7 

TRMM Multi-satellite 
Precipitation Analysis (TMPA) 
3B42 V7 
https://mirador.gsfc.nasa.gov/  

S, G 
50◦ N/S, 
180° E/W 

0.25° 2000-2017 3-hourly 
Huffman et 
al. (2007) 

TRMM 
3B42 RT v7 

TRMM Multi-satellite 
Precipitation Analysis (TMPA) 
3B42 Real Time V7 
https://mirador.gsfc.nasa.gov/  

S 
50◦ N/S, 
180° E/W 

0.25° 2000-NP 3-hourly 
Huffman et 
al. (2007) 

WFDEI-
CRU 

WATCH Forcing Data ERA-
Interim (WFDEI) corrected 
using Climatic Research Unit 
(CRU) dataset www.eu-
watch.org 

R, G Global 0.5° 1979-2018 3-hourly 
Weedon et al. 
(2014) 

WFDEI-
GPCC 

WATCH Forcing Data ERA-
Interim (WFDEI) corrected 
using Global Precipitation 
Climatology Centre (GPCC) 
dataset 
ftp://rfdata:forceDATA@ftp.ii
asa.ac.at/  

R, G Global 0.5° 1979-2016 3-hourly 
Weedon et al. 
(2014) 

PGF v3 

Princeton University global 
meteorological forcing (PGF) 
http://hydrology.princeton.edu/
data/pgf/ 

R, G Global 0.25° 1948-2012 3-hourly 
Sheffield et 
al. (2006) 

ERA5 

European Centre for Medium-
range Weather Forecasts 
ReAnalysis 5 (ERA5) hourly 
data on single levels 
https://cds.climate.copernicus.e
u/  

R Global 0.25° 1979-NP hourly 
Hersbach et 
al. (2018) 

MERRA-2 
Modern-Era Retrospective 
Analysis for Research and 
Applications 2 (rainfall: 

S, G, R Global 
0.625° x 
0.5° 

1980-NP hourly 
Gelaro et al. 
(2017), 
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M2T1NXFLX_V5.12.4; 
temperature: 
M2SDNXSLV_V5.12.4) 
https://disc.gsfc.nasa.gov/datas
ets/ 

Reichle et al. 
(2017) 

EWEMBI 
v1.1 

EartH2Observe, WFDEI and 
ERA-Interim data Merged and 
Bias-corrected for ISIMIP 
(EWEMBI) 
http://doi.org/10.5880/pik.2016
.004  

R, G Global 0.5° 1976-2013 daily Lange (2016) 

JRA-55 

Japanese 55 year ReAnalysis 
(JRA-55); rainfall: 
fcst_phy2m125; temperature: 
anl_surf125 
https://jra.kishou.go.jp/JRA-
55/index_en.html  

R Global 1.25° 1959-NP 3-hourly 
Kobayashi et 
al. (2015) 

  
 

2.3 Modelling datasets 

In addition to the meteorological datasets (Table 1), an ensemble of datasets is required for the set-up and the calibration and 

evaluation of the hydrological model (Table 2). The streamflow datasets obtained from different organizations (see 175 

acknowledgements) were pre-processed (i.e. gap-filling and quality control) in the work of Dembélé et al. (2019).  

 

Table 2. Modelling datasets. ESA CCI SM: European Space Agency Climate Change Initiative Soil Moisture; GIMMS: Global 
Inventory Modelling and Mapping Studies; GLEAM: Global Land Evaporation Amsterdam Model; GLiM: Global Lithological 
Map; GMTED: Global Multi-resolution Terrain Elevation Data; GRACE: Gravity Recovery and Climate Experiment; WFDEI: 180 
WATCH Forcing Data methodology applied to ERA-Interim data. 

Variables Products 
Spatial 

resolution 
Temporal 
resolution 

References 

Morphological data     

Terrain characteristics 
(elevation, slope, aspect, flow 
direction and flow 
accumulation) 

GMTED 
2010 

225 m 
(0.0021°)  

static 
Danielson and Gesch (2011) 
https://topotools.cr.usgs.gov/  

Soil properties (horizon depth, 
bulk density, sand and clay 
content,) 

SoilGrids 
250 m 

(0.0023°) 
static 

Hengl et al. (2017)   
https://www.isric.org/explore/soilgrids 

Geology 
GLiM 
v1.0 

0.5° static 
Hartmann and Moosdorf (2012) 
https://doi.pangaea.de/10.1594/PANGAEA.788537  

Land use land cover 
Globcover 

2009 
300 m 

(0.0028°)  
static 

Bontemps et al. (2011) 
http://due.esrin.esa.int/page_globcover.php  
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Phenology (leaf area index) GIMMS 
8 km 

(0.0833°) 
bimonthly 

Tucker et al. (2005), Zhu et al. (2013) 
http://cliveg.bu.edu/modismisr/lai3g-fpar3g.html  

Model calibration/evaluation     

Streamflow - point daily Multiple organizations (see acknowledgements) 

Terrestrial water storage 

anomaly (St) 

GRACE 
TellUS 

v5.0 
1° monthly 

Tapley et al. (2004), Landerer and Swenson (2012) 
https://grace.jpl.nasa.gov/ 

Surface soil moisture (Su) 
ESA CCI 
SM v4.2 

0.25° daily 
Dorigo et al. (2017) 
https://www.esa-soilmoisture-cci.org/  

Actual evaporation (Ea) 
GLEAM 

v3.2a 
0.25° daily 

Martens et al. (2017), Miralles et al. (2011) 
https://www.gleam.eu/  

 

Multiple satellite datasets are used to evaluate the modelled hydrological fluxes and state variables. For the evaluation of the 

modelled water storages, the GRACE-derived terrestrial water storage (St) anomaly data release RL05 (Landerer and Swenson, 

2012;Swenson, 2012) is used. The ensemble mean of different products from three processing centers (i.e. Jet Propulsion 185 

Laboratory, Center for Space Research at University of Texas, and Geoforschungs Zentrum Potsdam) is preferred because it 

is more effective in reducing noise in the Earth’s gravity signal as compared to the individual products (Sakumura et al., 2014). 

The surface soil moisture (Su) data representing the first soil layer (i.e. 2-5 cm depth) is obtained from ESA CCI (Dorigo et al., 

2017) using the combination of both active and passive microwave products (Gruber et al., 2017;Wagner et al., 2012b). Actual 

evaporation (Ea) data is obtained from the GLEAM land surface model that aggregates components of terrestrial evaporation 190 

based on the fraction of land cover types per grid cell (Martens et al., 2017). A full description of the datasets is accessible 

through the references and web links provided in Table 1 and Table 2. 

 

2.4 Study Area 

The transboundary Volta River Basin (VRB) covers approximately 415,600 km2 (Figure 2) shared among six countries of 195 

West Africa (i.e. Burkina Faso, Ghana, Togo, Mali, Benin and Côte d’Ivoire). The relief is predominantly flat with 95% of the 

basin below 400 m a.s.l (De Condappa and Lemoalle, 2009). The Volta River flows over 1,850 km with a drainage system 

composed of four sub-basins known as Black Volta (152,800 km2), White Volta (113,400 km2), Oti (74,500 km2),  and Lower 

Volta (74,900 km2). Before reaching the Atlantic Ocean at the Gulf of Guinea, the Volta River transits in the Lake Volta (area: 

8,502 km2; volume: 148 km3) formed by the Akosombo dam (7.94 106 m3) (Williams et al., 2016;Dembélé et al., 2020). The 200 

dominant land cover is savannah composed of grassland interspersed with shrubs and trees over 75% of the basin area, followed 

by cropland (13%), forest (9%), water bodies (2%) and bare land and settlements (1%). Climate in West Africa is unique and 

complex (Berthou et al., 2019;Bichet and Diedhiou, 2018;Nicholson et al., 2018a). The seasonal and latitudinal oscillation of 

the Inter-Tropical Convergence Zone (ITCZ) is the predominant rainfall generation mechanism in West Africa (Biasutti, 2019), 

thereby depicting a south-north gradient of increasing aridity in the VRB. The ITCZ is a narrow belt of clouds associated with 205 
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intense convective activity resulting from the near-surface convergence of warm and moist trade winds (Schneider et al., 

2014;Dezfuli, 2017). The warm northeasterly Harmattan winds emanate from the Sahara and the moist southwest monsoon 

winds originate in the Atlantic ocean (Nicholson, 2013;Vizy and Cook, 2018). Rainfall in West Africa is characterized by its 

interannual and multidecadal variability (Biasutti et al., 2018;Thorncroft et al., 2011;Nicholson et al., 2018b). Four eco-

climatic zones (i.e. Sahelian, Sudano-Sahelian, Sudanian and Guinean; Table 3) are commonly identified based on the average 210 

annual precipitation and agricultural features (FAO/GIEWS, 1998;Mul et al., 2015). The aridity index in Table 3 is derived 

from the global aridity index database (Trabucco and Zomer, 2018). The maps of spatial patterns of rainfall and temperature 

in the VRB for different datasets are shown in Appendix A1 and Appendix A2. The climatology of rainfall and temperature 

per climatic zones are provided in the Supporting Information (SI, Figures S3-S6). 

 215 

Figure 2. Physical and hydroclimatic characteristics of the Volta River basin. 

 

Table 3. Characteristics of the four eco-climatic zones in the Volta River basin. The mean and range ([min-max]) values are given 
for the Aridity Index (AI). 

Eco-climatic zones Climate class AI (-) 

Sahel Savanna Arid 0.16 [0.12-0.20] 

Sudano-Sahelian Semi-arid 0.29 [0.16-0.43] 

Sudanian Savanna Semi-arid/ Dry sub-humid 0.47 [0.33-0.98] 

Guinean Savanna Dry sub-humid/ Humid 0.70 [0.49-1.22] 

 220 
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2.5 Hydrological Model Setup 

The fully distributed mesoscale Hydrologic Model (mHM, version 5.9; Samaniego et al., 2010;Kumar et al., 2013) is used in 

this study. It is a conceptual model that simulates dominant hydrological processes (e.g. evaporation, soil moisture, subsurface 

storage, and discharge) per grid cell in the modelling domain. The Muskingum-Cunge method (Cunge, 1969) is used for 

routing the total grid-generated runoff using a multiscale routing model (Thober et al., 2019). A multiscale parameter 225 

regionalization technique (MPR; Samaniego et al., 2017) is used to account for sub-grid variability of the basin physical 

characteristics (e.g. soil texture, topography and land cover). For this study, 36 global parameters are determined through 

model calibration (Table S18 in the Supporting Information). 

In this study, the Hargreaves and Samani method (Hargreaves and Samani, 1985), solely based on air temperature data, is used 

to calculate the reference evaporation (Eref). Potential evaporation (Ep) is calculated by adjusting Eref to vegetation cover (Allen 230 

et al., 1998;Birhanu et al., 2019). A dynamical scaling function (FDS) (cf. Demirel et al., 2018) is used to account for vegetation-

climate interactions (Bai et al., 2018;Jiao et al., 2017). Ep is formulated as follows: 

 𝐸୮ = 𝐹ୈୗ ∙ 𝐸୰ୣ୤, with (1) 

 𝐹ୈୗ = 𝑎 + 𝑏൫1 − 𝑒(௖∙ூైఽ)൯ (2) 

where ILA represents the leaf area index, a is the intercept term, b represents the vegetation dependent component, and c 

describes the degree of nonlinearity in the ILA dependency. The coefficients a, b, and c are determined during model calibration. 

Actual evaporation (i.e. all evaporative fluxes including transpiration, Ea) depends on plant water availability, i.e. on  root 235 

distribution in the subsurface and soil moisture availability (Feddes et al., 1976); this is emulated in mHM by computing Ea as  

a fraction of Ep at different soil layers. A multi-layer infiltration capacity approach is used to calculate soil moisture based on 

a three-layer soil scheme (5 cm, 30 cm and 100 cm depths). As no snow occurs in the VRB, terrestrial water storage is 

calculated per grid cell by summing up the surface water storage on impervious areas and all subsurface water storage (i.e. 

reservoirs generating soil moisture, baseflow and interflow). The model is run at a daily time step with a spatial discretization 240 

of 0.25° (~28 km at the equator). 

The modelling experiment covers the period 2000-2012 with 3-year model warm-up period (2000-2002), 6 years for model 

calibration (2003-2008) and 4 years for model evaluation (2009-2012). The model is calibrated and evaluated with the available 

daily in-situ streamflow datasets from 11 locations (Figure 2a), while the evaluation with satellite datasets of evaporation, soil 

moisture and terrestrial water storage is done at a monthly time step to avoid the impact of mismatches in the daily data retrieval 245 

periods among the satellite data sources. 

 

2.6 Multisite model calibration on streamflow data 

A multisite calibration strategy is adopted by simultaneously constraining the model with the 11 streamflow (Q) gauging 

stations (Figure 2) to infer a unique parameter set for the whole basin. The multi-objective Kling-Gupta efficiency (EKG) (Kling 250 

et al., 2012) is used for the formulation of the objective function 𝛷ொ, which has to be minimized and is formulated as follows:  
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 𝛷୕ = 1 − ቂ
ଵ

௚
∑ 𝐸୏ୋ,୧൫𝑄୫୭ୢ,୧, 𝑄୭ୠୱ,୧൯

௚
௜ୀଵ ቃ, with (3) 

 𝐸୏ୋ = 1 − ඥ(𝑟୏ୋ − 1)ଶ + (𝛽୏ୋ − 1)ଶ + (𝛾୏ୋ − 1)ଶ (4) 

Where 𝑔 is the number of gauging stations, 𝑟KG is the Pearson correlation coefficient, 𝛽
KG

 is the bias term (i.e. the ratio of the 

means), and 𝛾
KG

 is the variability term (i.e. the ratio of the coefficients of variation) between the observed (Qobs) and modelled 

(Qmod) streamflow, with 𝜇 and 𝜎 representing the mean and the standard deviation. The EKG ranges from negative infinity to 

its optimal value that is unity. As a reference, EKG > -0.41 indicates that the model is better than the mean observed flow 255 

(Knoben et al., 2019). 𝛷୕ ranges from its optimal value that is 0 to positive infinity. 

The model is calibrated solely with Q data because it is the only available in-situ measurement, and to avoid potential trade-

offs of a multivariate calibration that would result in difficulties in identifying the source of variation in the model performance 

(i.e. input data vs. model parametrization). The parameter estimation is done with the dynamically dimensioned search 

algorithm (Tolson and Shoemaker, 2007) using 4,000 iterations for each of the 102 rainfall-temperature dataset combinations. 260 

 

2.7 Multivariable model evaluation with streamflow and satellite data 

In addition to Q, several non-commensurable and satellite-based variables are used for model evaluation (Table 2). The model 

performance for Q is evaluated with EKG. The bias-insensitive Pearson’s correlation coefficient (r) is used to assess the 

temporal dynamics of St, Su and Ea because the model is not calibrated on these variables, and their evaluation datasets are 265 

satellite-derived products that encompass uncertainties and can be biased. 

The spatial pattern representation of hydrological processes is assessed by using a bias-insensitive and multi-component metric 

developed by Dembélé et al. (2020). The proposed spatial pattern efficiency (ESP) metric is formulated similarly to the EKG 

(Equation 4) but it focuses only on the spatial pattern of variables rather than on their absolute values (like the SPAEF; Koch 

et al., 2018). ESP simultaneously assesses the dynamics, the spatial variability, and the locational matching of grid cells between 270 

the observed (Xobs) and modelled (Xmod) variables. Considering two variables Xobs and Xmod composed of n cells, ESP is defined 

as follows: 

 𝐸ୗ୔ = 1 − ඥ(𝑟ୱ − 1)ଶ + (𝛾 − 1)ଶ + (𝛼 − 1)ଶ, with (5) 

 𝑟ୱ = 1 −
଺ ∑ ௗ౟

మ೙
భ

௡(௡మିଵ)
,  (6) 

 𝛾 =

഑ౣ౥ౚ
ഋౣ౥ౚ
഑౥ౘ౩
ഋ౥ౘ౩

 and (7) 

 𝛼 = 1 − 𝐸ୖ୑ୗ൫𝑍ଡ଼ౣ౥ౚ
, 𝑍ଡ଼౥ౘ౩

൯ (8) 

where rs is the Spearman rank-order correlation coefficient with di the difference between the ranks of the ith cell of Xmod and 

Xobs. 𝛾 is the variability ratio (i.e. the ratio of the coefficients of variation) that assesses the similarity in the dispersion of the 

probability distributions of Xmod and Xobs, with 𝜇 and 𝜎 representing the mean and the standard deviation, and 𝛼 the spatial 275 
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location matching term calculated as the root mean squared error (ERMS) of the standardized values (z-scores, ZX) of Xmod and 

Xobs (Dembélé et al., 2020). ESP ranges from negative infinity to 1, which is its optimal value. ESP does not have an inherent 

benchmark, also like EKG (Knoben et al., 2019). For ESP = 0, the  ranks of the observed and modelled variables are moderately 

related (i.e. rs = 0.55), while no association among the ranks (i.e. rs = 0) results in ESP = -0.67 (cf. Supplementary Material of 

Dembélé et al., 2020). However, the main point of using ESP here is not to strictly conclude how well the modelled spatial 280 

patterns reproduce the observed patterns, otherwise a benchmark should be used (Schaefli and Gupta, 2007;Seibert et al., 

2018), but rather to determine if a modelled spatial pattern is better than another. The spatial pattern evaluation is completed 

for Su and Ea, while only the temporal dynamics of St are assessed due to the coarse spatial resolution of the GRACE data. 

 

The relative variation in model performance is assessed with the second-order coefficient of variation (V2) (Kvålseth, 2017). 285 

V2 is an alternative to the classic Pearson’s coefficient of variation (V), which has significant limitations that are 

comprehensively discussed by Kvålseth (2017). For all sample data x = (x1,…, xn) ∈ Rn, with R = (-∞, ∞), V2 is defined as 

follows: 

 𝑉ଶ = ቆ
𝑠ଶ

𝑠ଶ + 𝑥̅ଶ
ቇ

ଵ ଶ⁄

 (9) 

where s is the standard deviation and 𝑥̅ is the mean of x. V2 varies from 0 to 1 or 0% to 100%, and represents the distance 

between x and 𝑥̅ relative to the distance between x and the origin zero.  290 

 

3 Results 

The results are presented and discussed for the entire simulation period (2003-2012, i.e. combined calibration and evaluation 

periods) because reliable meteorological datasets are expected to produce a plausible representation of hydrological processes 

independently of the modelling period (Bisselink et al., 2016). Separated results are provided for the calibration and evaluation 295 

periods in the Supporting Information (SI). 

 

3.1 Model performance for streamflow 

For daily streamflow (Q), all input dataset combinations show a median EKG > 0.5, except those having JRA-55 as rainfall 

input (Figure 3); this can be justified by the coarse spatial resolution of that product. The ranking of the rainfall and temperature 300 

datasets based on the model performance for Q is provided in Appendix A3. The analysis of model performance for Q is done 

for the entire VRB and not per climatic zone due to the limited number of stations. As expected, the discrepancies in median 

EKG are more pronounced across rainfall datasets than across temperature datasets, as visible in the color-coded ranking of the 

products in Figure 3. For a given rainfall product, the ranking among all rainfall products hardly varies with different 

temperature products. The ranking of all the datasets for the model performance for Q is also summarized in Appendix A3. 305 

The overall stronger impact of the choice of the rainfall dataset on EKG of Q becomes also clear from the second-order 
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coefficient of variations (V2) of the median EKG (Table S1 in SI). For rainfall datasets, the V2 across temperature datasets varies 

between 0.5% for GSMaP-std and 4% for JRA-55, with an average V2 of 2%. For temperature datasets, the V2 of median EKG 

of Q across rainfall datasets varies between 10% for MERRA-2 and 12% for ERA5, with an average V2 of 11%. This result 

suggests that the choice of a rainfall dataset has a stronger impact on the EKG of Q than the choice of a temperature dataset.  310 

The analysis of the components of EKG (i.e. the Pearson correlation 𝑟KG, the bias 𝛽
KG

 and the variation 𝛾
KG

) reveals that, when 

choosing a rainfall dataset, there is more uncertainty in the bias of Q (V2 = 14%) than in its variability (V2 = 6%) and in its 

dynamics (V2 = 3%), which is in agreement with the work of Thiemig et al. (2013). Detailed results on the performance for Q 

(i.e. EKG, 𝑟KG, 𝛽
KG

 and 𝛾
KG

) and the ranking of the datasets with separate results for the calibration and evaluation periods are 

provided in the SI (Tables S1-S12, Figures S7-S11).  315 

 

Figure 3. Kling-Gupta efficiency (EKG) of daily streamflow (Q) over the simulation period (2003-2012) for 102 combinations of 17 
rainfall datasets (y-axis) and 6 temperature datasets (subplots on x-axis) used as inputs in the mHM model. Each boxplot has 22 
values representing the combined performance for the calibration and evaluation periods for 11 streamflow gauging stations. The 
boxplots are colored from the best (blue) to the worst performance (red) based on the median value. 320 
 

3.2 Model performance for terrestrial water storage 

The model performance for the temporal dynamics of monthly terrestrial water storage (St) compared to the GRACE product 

is shown in Figure 4 (see the SI for monthly time series, Figures S23-S27). The average Pearson correlation coefficient (r) of 

St for all datasets in the entire VRB is 0.80, with discrepancies across climatic zones. The driest and wettest climatic zones 325 

show the lowest performances, i.e. Sahelian (r = 0.67) and Guinean (r = 0.60) zones, compared to the intermediate climatic 
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zones, i.e. Sudano-Sahelian (r = 0.72) and Sudanian (r = 0.79) zones. Appendix A3 provides the ranking of all the 

meteorological datasets for the model performance for St. 

The rainfall datasets show different performances across climatic zones, with ARC showing the highest score for all the 

climatic zones except the Guinean zone, where CMORPH-CRT ranks first. The choice of the rainfall dataset leads to an 330 

average V2 of 15% for the r of St, while the average V2 is 5% for the choice of the temperature dataset. Detailed results are 

provided in the SI (Tables S13, Figures S12-S22). 

 

Figure 4. Pearson correlation coefficient (r) of modelled terrestrial water storage compared to GRACE data in four climatic zones 
in the Volta River basin over the simulation period (2003-2012) considering 102 combinations of rainfall (y-axis) and temperature 335 
datasets (subplots on x-axis) used as forcing for the hydrological model.  
 

3.3 Model performance for soil moisture 

Figure 5 shows the model performance for the temporal dynamics of monthly soil moisture (Su) compared to the ESA CCI 

product (see the SI for monthly time series, Figures S39-S43). The average r of Su for the entire VRB over all datasets is 0.93. 340 

The r of Su decreases from the drier to the wetter climatic zones: Sahelian (r = 0.94), Sudano-Sahelian (r = 0.94), Sudanian (r 

= 0.92) and Guinean (r = 0.86). The ranking of the meteorological datasets based on the model performance for Su is provided 

in Appendix A3. EWEMBI and WFDEI-GPCC show the highest performance in the Sahelian and Suadano-Sahelian zones 

respectively, while MERRA-2 shows the highest performance in the Sudanian and Guinean zones. The choice of the rainfall 

dataset leads to an average V2 of 4% for the temporal dynamics of Su, while the average V2 is 2% for the choice of the 345 

temperature dataset. 
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The spatial patterns of Su show considerable differences when using different combinations of rainfall and temperature input 

datasets, as illustrated in Figure 6 (see similar maps for all the meteorological datasets in the SI, Figures S44-S45). The south-

north gradient of increasing aridity is not similarly spread among the rainfall-temperature dataset combinations. More 

interestingly, west-east differences in the spatial patterns of Su can be observed. These differences in spatial pattern 350 

reproduction can also be seen in the spatial pattern efficiency metric (ESP) of Su for the 102 rainfall-temperature dataset 

combinations (Figure 7). The average ESP of Su in the VRB over all datasets is -0.11.  

 

 

Figure 5. Pearson correlation coefficient (r) of modelled soil moisture (Su) compared to ESA CCI data over the simulation period 355 
(2003-2012) considering 102 combinations of rainfall (y-axis) and temperature datasets (subplots on x-axis) used as forcing for the 
hydrological model. 
 

For the entire VRB, the choice of the rainfall dataset leads to an average variation of 61% for the ESP of Su, while the choice 

of the temperature dataset involves a variation of 45%. Lower impacts of data choices are observed in the climatic zones where 360 

the climate is homogeneous as compared to the entire VRB. The choice of a rainfall dataset is more critical for the ESP of Su in 

the driest and wettest climatic zones, i.e. Sahelian (ESP = -0.47, V2 = 25%) and Guinean (ESP = -0.40, V2 = 26%) zones, than 

the intermediate zones, i.e. Sudano-Sahelian (ESP = -0.37, V2 = 11%) and Sudanian (ESP = -0.39, V2 = 17%) zones. A smaller 

impact on the ESP of Su is observed for the choice of the temperature dataset: Sahelian (V2 = 8%), Guinean (V2 = 19%), Sudano-

Sahelian (V2 = 5%) and Sudanian (V2 = 9%) zones. Detailed results on the model performance for Su and the ranking of the 365 

datasets for the calibration and evaluation periods are provided in the SI (Tables S14-S15, Figures S28-S38). 
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Figure 6. Maps of long-term (2003-2012) average of annual soil moisture (Su) obtained with different forcing of rainfall (y-axis, blue 
font) and temperature (x-axis, red font) datasets. The values are normalized between 0 and 1 to emphasize spatial patterns and to 
use a unique color scale. 370 
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Figure 7. Spatial pattern efficiency (ESP) of soil moisture (Su) over the entire simulation period (2003-2012) for the Volta River basin 
(VRB) and its climatic zones, using different combinations of precipitation and temperature datasets used as input for hydrological 
modelling. Each boxplot has 120 values corresponding to the number of months. The boxplots are colored from the best (blue) to 375 
the worst performance (red) based on the median value. 

https://doi.org/10.5194/hess-2020-68
Preprint. Discussion started: 28 April 2020
c© Author(s) 2020. CC BY 4.0 License.



19 
 

3.4 Model performance for actual evaporation 

The model performance for the temporal dynamics of monthly actual evaporation (Ea) compared to the GLEAM product is 

shown in Figure 8 (see the SI for monthly time series, Figures S57-S61). The average r of Ea for the entire VRB over all 

datasets is 0.93. Similarly to Su, the r of Ea is higher is the driest climatic zones: Sahelian (r = 0.94), Sudano-Sahelian (r = 380 

0.94), Sudanian (r = 0.89) and Guinean (r = 0.81). However, the predictive skill of the model for the temporal dynamics of Ea 

is higher than its predictive skill for Ea in the wetter climatic zones. Appendix A3 shows the ranking of all the meteorological 

datasets for the model performance for Ea. The rainfall datasets show different performances across climatic zones, with the 

following best datasets: PERSIANN-CDR in the Sahelian zone, EWEMBI and WFDEI-GPCC in the Soudano-Sahelian zone, 

ARC in the Sudanian and Guinean zones. The choice of the rainfall dataset leads to an average V2 of 4% for the temporal 385 

dynamics of Ea, while the average V2 is 1.5% for the choice of the temperature dataset, which aligns with the findings of Jung 

et al. (2019).  

 

Figure 8. Pearson correlation coefficient (r) of modelled actual evaporation (Ea) compared to GLEAM data over the simulation 
period (2003-2012) considering 102 combinations of rainfall (y-axis) and temperature datasets (subplots on x-axis) used as forcing 390 
for the hydrological model. 
 

As for Su, the choice of input datasets has a considerable impact on the reproduction of the spatial patterns of Ea (Figure 9). 

Similar maps for all the meteorological datasets are provided in the SI (Figures S62-S63). It can be observed that different 

rainfall-temperature combinations used to force the model result in large discrepancies in the spatial pattern of Ea, especially 395 

in the southern region. The south-north gradient of increasing aridity with west-east differences is represented differently 
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among the rainfall-temperature dataset combinations (see e.g., the difference between the first two columns of the first row in 

Figure 9) 

 

Figure 9. Maps of long-term (2003-2012) average of annual actual evaporation (Ea) obtained with different forcing of rainfall (y-400 
axis, blue font) and temperature (x-axis, red font) datasets. The values are normalized between 0 and 1 to emphasize spatial patterns 
and to use a unique color scale. 

The ESP of Ea for the 102 rainfall-temperature dataset combinations in the VRB and the climatic zones is given in Figure 10. 

The average ESP of Ea in the VRB over all datasets is 0.07, which is higher than for Su (ESP = -0.11). The choice of the rainfall 

dataset for the VRB affects the ESP of Ea on average by 93%, while the choice of the temperature dataset involves a variation 405 

33%. However, lower impacts of data choices are observed in the climatic zones. The choice of rainfall dataset is more critical 

for the ESP of Ea in the driest and wettest climatic zones, i.e. Sahelian (ESP = -0.99, V2 = 49%) and Guinean (ESP = -0.79, V2 = 

37%) zones, than the intermediate zones, i.e. Sudano-Sahelian (ESP = -0.35, V2 = 36%) and Sudanian (ESP = -0.42, V2 = 49%) 

zones. A smaller impact on the ESP of Ea is observed for the choice of the temperature dataset: Sahelian (V2 = 21%), Guinean 

(V2 = 10%), Sudano-Sahelian (V2 = 17%) and Sudanian (V2 = 21%) zones. Detailed results on the model performance for Ea 410 

and the ranking of the datasets for the calibration and evaluation periods are provided in the SI (Tables S16-S17, Figures S46-

S56). 
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Figure 10. Spatial pattern efficiency (ESP) of actual evaporation (Ea) over the entire simulation period (2003-2012) for the Volta 
River basin (VRB) and its climatic zones, using different combinations of precipitation and temperature datasets used as input for 415 
hydrological modelling. Each boxplot has 120 values corresponding to the number of months. The boxplots are colored from the 
best (blue) to the worst performance (red) based on the median value. 
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4 Discussions 

This study builds upon and expands existing research studies on the evaluation of meteorological datasets in several ways:  

(i) The evaluation of the spatial patterns of multiple hydrological processes (i.e. streamflow, actual evaporation, soil 420 

moisture, and terrestrial water storage) in addition to the more classically evaluated temporal dynamic. 

(ii) The evaluation of a high number of both satellite-based and reanalysis rainfall datasets considered in combination with 

different temperature datasets.  

(iii) The assessment of the model performance across four considerably different climatic zones from semi-arid to sub-

humid. 425 

The overall outcome of this analysis is the ranking of all the meteorological datasets based on their ability to simulate various 

hydrological processes across different climatic zones in the VRB (Appendix A3). It is worth noting that the overall ranking 

shows which product is best or worst at simulating a given hydrological flux or state variable. However, the ranking does not 

systematically tell whether a dataset is good or bad. Only the skill scores can be used to draw a judgement on the adequacy of 

a given dataset to produce plausible model outputs. 430 

The results show that there is no single rainfall dataset outperforming the others in reproducing all hydrological processes 

across different climatic zones. These findings align with previous studies in the sense that there is no rainfall dataset that is 

the best everywhere (Beck et al., 2017b;Sylla et al., 2013). For datasets providing both rainfall and temperature data, the 

combination of the two variables as model input is not necessarily the best option for obtaining the highest performance in 

modelling a given hydrological state or flux variable. The best rainfall-temperature combinations for the spatiotemporal 435 

representation of each hydrological flux and state variable are provided in the SI (Figure S7).  

The results can be considered valid for West Africa and regions with similar hydroclimatic and physical features. A wider 

generalization of the findings should be done with caution and after repeating similar evaluation studies in other places. 

Nevertheless, the key message is that: “there is no rainfall dataset of all hydrological processes” and “the best rainfall dataset 

for temporal dynamics might not be the best for spatial patterns”. 440 

Despite the efforts to produce a comprehensive evaluation of the meteorological datasets, the results obtained might be subject 

to uncertainties related to the potential model structural deficiencies as well as errors in the observational datasets used for the 

model evaluation (McMillan et al., 2010;Renard et al., 2010;Gupta and Govindaraju, 2019). The distribution of the final model 

parameters (Figures S65-S66) highlights the possibility of obtaining equally good model performances for different parameter 

sets (i.e. equifinality), which can be a justification for model recalibration. A detailed analysis of parameter variability as a 445 

function of input data is beyond the scope of the current study, but could build the basis of future research, namely to identify 

data errors by analyzing parameter patterns (e.g. rooting depth), and resolve potential structural deficiencies of the mHM 

model. However, the mHM is chosen because of its adequacy for the experiment of this study (for model selection, see Addor 

and Melsen, 2019). The structure of mHM allows the representation of seamless spatial patterns of hydrological processes 

through the MPR scheme (Samaniego et al., 2017). In addition, mHM facilitates parameter regionalization and is therefore 450 
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convenient for large-scale modelling, and it harnesses the full potential of the forcing datasets as it is a fully distributed model 

that has performed well in previous studies including those in the VRB (e.g. Poméon et al., 2018;Dembélé et al., 2020). 

Regarding the model evaluation, the comparison between the observed and modelled hydrological processes is done only on 

their temporal dynamics and spatial patterns using bias-insensitive metrics, except for streamflow, which limits the potential 

impact of satellite data uncertainty.  455 

The model is calibrated only on Q data despite the known limitations of the Q-only calibration (Demirel et al., 2018). However, 

regarding the goal of this study, that was the best option to obtain the impact of various meteorological forcing datasets on the 

plausibility of hydrological processes. As no rainfall dataset ranks first in simulating all the hydrological processes, this study 

confirms that model calibration on multiple variables is a way forward in improving the overall representation of the 

hydrological system and increasing the predictive skill of hydrological models (Dembélé et al., 2020;Dembélé et al., in review). 460 

The domain-wide calibration strategy adopted in this study generates a unique parameter set for the simulation of multiple 

hydrological processes across several catchments with different hydroclimatic features, which has the consequence of having 

local differences in model performance. However, domain-wide calibration has proved to perform similarly to domain-split 

calibration in previous studies (Mizukami et al., 2017), and it was ideal for this study because of the interest in simulating 

seamless spatial patterns, which might have not been possible with separately simulated portions of the basin. Moreover, the 465 

main goal of this study is to assess the adequacy of the meteorological datasets for large-scale hydrological modelling, knowing 

that these datasets usually have a coarse spatial resolution with pixels often averaged over regions with strong sub-grid 

variability. 

Finally, the importance of regional evaluation is emphasized by this study because some region-tailored datasets (e.g. 

TAMSAT and ARC) which are not included in global scale studies (e.g. Beck et al., 2017b;Mazzoleni et al., 2019;Essou et 470 

al., 2016) outperform global datasets. The decision to use a given dataset is not only motivated by the availability or the 

accuracy of the data, but also by data accessibility (i.e. storage platforms, openness, format, pre-processing requirement, etc). 

The findings of this study provide further awareness for the data users and improvement avenues for data producers in their 

quest of the most accurate products. 

5 Conclusion 475 

This modelling study evaluates the ability of multiple combinations of rainfall-temperature datasets to reproduce plausible 

hydrological processes and patterns. The experiment is done in the Volta River basin with the fully distributed mesoscale 

Hydrologic Model (mHM) over a 10-year period (2003-2012), using 17 rainfall and 6 temperature datasets from satellite and 

reanalysis sources. The spatial and temporal representation of streamflow, terrestrial water storage, soil moisture and actual 

evaporation are evaluated using in-situ and satellite remote sensing observational datasets. The key findings are: 480 
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- No rainfall dataset consistently outperforms all the others in reproducing the highest model performance for all 

hydrological processes, and the best dataset for the temporal dynamics is not necessarily the best for the spatial 

patterns. 

- Rainfall datasets have a higher impact on the spatiotemporal representation of hydrological processes than 

temperature datasets, but the later have a higher influence on the spatial patterns of soil moisture. 485 

- The large-scale performance for the meteorological datasets is not always valid for sub-regions in the same basin. 

The findings of this study give a critical insight of the performance for several meteorological datasets in the challenging 

hydroclimatic environment of West Africa. They are expected to foster further research initiatives in improving the gridded 

meteorological datasets and further draw users’ attention on the contrasting performances of these datasets in modelling 

hydrological fluxes and state variables. Efforts should be devoted in reporting on the impact of data uncertainties on process 490 

representation in hydrological modelling, especially when model outputs are used for decision-making.  

Future studies can test the transferability of the model’s global parameters across different input datasets, i.e. how reliable a 

parameter set obtained with a given input dataset is for running the same model with a different input dataset. The answer to 

this research question will shed light on the necessity of model recalibration when using different meteorological forcing. 

Furthermore, the predictive skill of the model can be improved with a parameter sensitivity analysis to determine parameters 495 

that affect the spatiotemporal representation of each hydrological flux and state variable.  
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6 Appendix A: Figures 

 

A1. Mean annual rainfall totals over the period 2003-2012 for 17 rainfall datasets the Volta River basin 500 
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A2. Mean annual air temperature (average (a), maximum (b) and minimum (c)) over the period 2003-2012 for 6 temperature datasets 
in the Volta River basin 

 505 

 

Q St Su Ea Su Ea St Su Ea Su Ea St Su Ea Su Ea St Su Ea Su Ea St Su Ea Su Ea

TAMSAT v3.0 0.73 0.86 0.94 0.94 -0.04 0.21 0.69 0.93 0.93 -0.22 -1.21 0.78 0.94 0.95 -0.31 -0.29 0.86 0.93 0.92 -0.37 -0.22 0.74 0.90 0.81 -0.50 -0.61

CHIRPS v2.0 0.70 0.86 0.93 0.92 -0.11 0.18 0.67 0.92 0.96 -0.34 -1.60 0.74 0.92 0.92 -0.36 -0.24 0.82 0.92 0.88 -0.41 -0.36 0.71 0.89 0.82 -0.32 -0.82

ARC v2.0 0.68 0.91 0.93 0.97 -0.05 0.03 0.73 0.97 0.95 -0.48 -0.58 0.80 0.95 0.97 -0.33 -0.24 0.92 0.93 0.94 -0.34 -0.44 0.67 0.84 0.89 -0.42 -0.59

RFE v2.0 0.65 0.88 0.92 0.96 -0.07 0.10 0.71 0.97 0.95 -0.55 -0.49 0.78 0.94 0.98 -0.34 -0.22 0.89 0.91 0.94 -0.35 -0.35 0.65 0.83 0.89 -0.38 -0.67

MSWEP v2.2 0.66 0.72 0.92 0.94 0.00 0.26 0.58 0.94 0.96 -0.36 -1.90 0.68 0.94 0.95 -0.30 -0.32 0.73 0.91 0.90 -0.36 -0.19 0.49 0.82 0.86 -0.27 -0.53

GSMaP-std v6 0.71 0.84 0.94 0.95 -0.10 0.08 0.72 0.97 0.97 -0.58 -0.40 0.76 0.96 0.97 -0.37 -0.19 0.84 0.94 0.92 -0.36 -0.36 0.66 0.88 0.86 -0.37 -0.81

PERSIANN-CDR v1r1 0.68 0.80 0.96 0.94 -0.08 0.17 0.59 0.95 0.97 -0.41 -1.13 0.72 0.96 0.95 -0.36 -0.22 0.81 0.95 0.90 -0.35 -0.29 0.64 0.92 0.82 -0.45 -0.65

CMORPH-CRT v1.0 0.69 0.87 0.94 0.94 -0.11 -0.12 0.69 0.95 0.97 -0.55 -0.72 0.76 0.94 0.96 -0.38 -0.28 0.86 0.93 0.90 -0.35 -0.53 0.78 0.92 0.81 -0.29 -1.04

TRMM 3B42 v7 0.54 0.77 0.91 0.88 -0.16 -0.06 0.67 0.93 0.97 -0.60 -0.79 0.72 0.92 0.90 -0.37 -0.34 0.78 0.89 0.83 -0.45 -0.55 0.52 0.84 0.78 -0.28 -0.89

TRMM 3B42-RT v7 0.54 0.86 0.91 0.89 -0.30 -0.16 0.68 0.93 0.94 -0.61 -0.92 0.74 0.90 0.89 -0.40 -0.59 0.83 0.89 0.84 -0.49 -0.85 0.72 0.85 0.75 -0.38 -1.61

PGF v3 0.66 0.82 0.96 0.93 -0.08 0.16 0.69 0.95 0.90 -0.54 -0.61 0.73 0.97 0.97 -0.42 -0.33 0.82 0.95 0.89 -0.33 -0.15 0.72 0.90 0.76 -0.43 -0.58

ERA5 0.63 0.82 0.91 0.87 -0.20 -0.23 0.57 0.87 0.90 -0.40 -1.42 0.70 0.89 0.89 -0.40 -0.50 0.81 0.87 0.81 -0.50 -0.75 0.69 0.87 0.70 -0.33 -1.43

WFDEI-GPCC 0.64 0.75 0.96 0.95 -0.07 0.17 0.71 0.97 0.91 -0.52 -0.79 0.68 0.98 0.98 -0.38 -0.39 0.76 0.96 0.91 -0.36 -0.30 0.55 0.88 0.81 -0.50 -0.62

WFDEI-CRU 0.67 0.83 0.96 0.94 -0.09 0.14 0.72 0.97 0.93 -0.54 -0.69 0.73 0.97 0.98 -0.41 -0.36 0.83 0.95 0.91 -0.37 -0.20 0.70 0.90 0.79 -0.47 -0.59

EWEMBI v1.1 0.64 0.75 0.96 0.95 -0.07 0.17 0.71 0.97 0.91 -0.52 -0.79 0.68 0.98 0.98 -0.38 -0.39 0.76 0.96 0.91 -0.36 -0.30 0.55 0.88 0.81 -0.50 -0.62

MERRA-2 0.68 0.80 0.97 0.93 -0.11 0.20 0.56 0.93 0.96 -0.27 -2.00 0.71 0.97 0.95 -0.32 -0.48 0.81 0.97 0.90 -0.43 -0.45 0.61 0.93 0.81 -0.53 -0.60

JRA-55 0.45 0.38 0.83 0.84 -0.18 -0.18 0.66 0.90 0.91 -0.50 -0.73 0.56 0.89 0.87 -0.41 -0.55 0.38 0.84 0.80 -0.49 -0.83 -0.19 0.50 0.75 -0.40 -0.85

JRA-55 0.64 0.81 0.94 0.93 -0.12 0.07 0.68 0.95 0.93 -0.49 -0.84 0.73 0.95 0.95 -0.37 -0.33 0.82 0.93 0.89 -0.41 -0.39 0.61 0.87 0.80 -0.37 -0.77

MERRA-2 0.66 0.79 0.92 0.92 -0.10 0.07 0.66 0.94 0.94 -0.45 -1.14 0.71 0.93 0.94 -0.36 -0.37 0.78 0.91 0.89 -0.39 -0.44 0.59 0.85 0.81 -0.39 -0.76

EWEMBI 0.64 0.78 0.93 0.93 -0.10 0.06 0.66 0.94 0.94 -0.45 -0.96 0.71 0.94 0.94 -0.37 -0.33 0.78 0.92 0.89 -0.40 -0.42 0.59 0.86 0.80 -0.40 -0.81

WFDEI 0.64 0.78 0.93 0.93 -0.10 0.06 0.66 0.94 0.94 -0.45 -0.96 0.71 0.94 0.94 -0.37 -0.33 0.78 0.92 0.89 -0.40 -0.41 0.59 0.86 0.80 -0.40 -0.81

ERA5 0.64 0.81 0.94 0.93 -0.10 0.08 0.66 0.94 0.94 -0.48 -1.01 0.74 0.95 0.95 -0.37 -0.34 0.81 0.93 0.89 -0.37 -0.45 0.59 0.86 0.81 -0.40 -0.83

PGF v3 0.64 0.81 0.93 0.92 -0.12 0.06 0.67 0.94 0.94 -0.48 -1.01 0.73 0.94 0.94 -0.37 -0.38 0.81 0.92 0.89 -0.38 -0.39 0.62 0.85 0.81 -0.43 -0.78
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A3. Model performance for streamflow (Q), terrestrial water storage (St), soil moisture (Su) and actual evaporation (Ea) using various 
rainfall-temperature dataset combinations as model inputs. Each score for a given rainfall product represents the average over 
individual combinations with 6 temperature datasets, while the score is the average over combinations with 17 rainfall datasets for 
each temperature dataset. The skill scores of the temporal dynamics are obtained with the Kling-Gupta efficiency (EKG) for Q and 510 
the Pearson’s correlation coefficient (r) for St, Su and Ea. The spatial pattern efficiency (ESP) is used to assess the spatial 
representation of Su and Ea. The skill scores are ranked from the best (blue) to the worst (red). The results are shown for the four 
climatic zones in the Volta River basin (VRB) over the simulation period (2003-2012). 

 

Supplement. The supplement related to this article is available online at: to be provided by the journal 515 

 

Data availability. The meteorological and modelling datasets used in this study are freely available via the web links provided 

in Table 1 and Table 2. More information on satellite-based precipitation datasets can be found at http://ipwg.isac.cnr.it/. The 

modelling database is available at repository to be provided upon acceptance. 
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