
1 
 

Supplement of  1 

How does water yield respond to mountain pine beetle infestation in a 2 

semiarid forest? 3 

Jianning Ren et al. 4 

Corresponding to: Jennifer Adam (jcadam@wsu.edu) 5 

 6 

 7 

 8 

Figure S1. The annual streamflow and precipitation for Trail Creek. The red line is the 15th 9 
quantile of flow duration curves. Years with streamflow below the red line is water deficit years 10 
(dry years).  11 
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Figure S2. Relationship among long-term aridity, vegetation mortality level and Differences in 14 
water yield for 2-12 years after beetle outbreak (except for 2000). 15 
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1 Model parameterization 17 

1.1 Model initialization 18 

We initialized soil carbon and nitrogen pools using a traditional spin up to steady state approach 19 

(no changes in decadal average soil carbon and nitrogen stocks). Then we applied a target driven 20 

method (Hanan et al. 2018) to initialize vegetation carbon and nitrogen stores. This method 21 

allows vegetation to grow to target values based on remote sensing data, which enables us to 22 

initialize mixed-age, disturbance-prone landscapes, while still providing mechanistic stability 23 

and accounting for local resource limitation (e.g. local climate, nutrients, and groundwater 24 

availability) (Hanan et al. 2018). For Trail Creek, we set our targets using LAI, which we 25 

calculated using Landsat-5 TM reflectance data with a resolution of 30 meters. We chose the 26 

clearest available growing-season scene closest to the streamflow calibration start date of 10 27 

November 2010; the selected scene (Path 40, Row 30) was acquired on 02 August 2010. We 28 

calculated the Normalized Difference Vegetation Index (NDVI) from TM images using Eq. (1). 29 

ܫܸܦܰ                                               ൌ 	 ఘಿೃି	ఘೃ
ఘಿೃା	ఘೃ

                                     (1) 30 

In this equation, ߩேூோ is the reflectance in the near-infrared part of electromagnetic spectrum and 31 

 ோ is the reflectance in the red part (Hanan et al. 2018). The NDVI is used to estimate LAI by a 32ߩ

generalized NDVI-LAI model developed by Baret et al. (1989) as following Eq. (2).  33 

ܫܣܮ ൌ 	െ ଵ


	ൈ ln	ሺ ேூಮିேூ

ேூಮିேூ್ೌೖ
ሻ                                   (2) 34 

Here, k represents the extinction of solar radiation through a canopy. ܰܫܸܦஶ	is the maximum 35 

  is the background NDVI (i.e., pixels without vegetation) for 36ܫܸܦܰ of the region, and ܫܸܦܰ

each vegetation region. We get k value from  Smith et al. (1991) for mixed pine and from White 37 



4 
 

et al. (2000) for other vegetation types (Hanan et al. 2018). The other parameters are calculated 38 

for each vegetation in each image (Table S1) 39 

Table S1. Normalized difference vegetation index – leaf area index (NDVI – LAI) model 40 
parameters for different vegetation types in Trail Creek. 41 
k is the extinction of solar radiation through a canopy, ܰܫܸܦஶ is maximum NDVI observed in 42 
different vegetation types, and ܰܫܸܦ is the background NDVI (not considering vegetation) 43 
for different vegetation types.  44 
 45 

Vegetation k ܰܫܸܦஶ ܰܫܸܦ 

Pine 0.42 0.66 0.01 

Deciduous 0.54 0.67 0.17 

Grass 0.48 0.73 0.01 

Shrub 0.55 0.71 0.06 

 46 
 47 
1.2 Model calibration and evaluation 48 

We calibrated the coupled model against observed streamflow, which is from USGS gauge no. 49 

13137500. Six subsurface soil parameters were calibrated: saturated hydraulic conductivity 50 

(Ksat), the decay of Ksat with depth (m), pore size index (b), air-entry pressure (φae), bypass flow 51 

to deeper groundwater storage (gw1), and deep groundwater drainage rates to stream (gw2). To 52 

account for the spatial variability of precipitation within each gridMET 4-km grid cell, we also 53 

calibrated a parameter that is used for interpolating grid-scale precipitation along elevation 54 

gradients. We selected the best parameter set by comparing observed and modeled streamflow 55 

using a multi-objective function, which includes daily Nash-Sutcliffe efficiency metric (NSE; 56 

Nash and Sutcliffe 1970), Monthly NSE, percent error (PerErr) in annual flow estimates, and 57 

Pearson's Correlation Coefficient (r values larger than 0.5 are considered to be a good fit). NSE 58 

is used to compare the model fit to peak flows and it ranges from -∞ to 1, where 1 means perfect 59 
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fit and below zero means that the mean of the observation is more accurate than the simulated 60 

value. PerErr is used to compare differences between modeled and observed streamflow 61 

volumes.  62 

In addition to evaluating calibrations on streamflow, we also compared basin-scale simulated ET 63 

with the Moderate Resolution Imaging Spectroradiometer (MODIS) based global data product 64 

(Zhao et al.  2006; Mu et al. 2007; Zhang et al. 2009; Mu et al.  2011), and compared simulated 65 

snowpack with Snow Telemetry data (SNOTEL, NRCS). These additional assessments are used 66 

to determine whether good streamflow fits are for the right reasons (i.e., the important processes 67 

are captured by the model). Seven years (2011 – 2017) of streamflow data, 15 years (1991-2015) 68 

of SNOTEL data (Lost-Wood Divide station), and 13 years (2003 – 2015) of MODIS ET data 69 

are used for this calibration and evaluation process (without special notification, we are using 70 

“water year”). As to the streamflow dataset, the first five water years are used for calibration and 71 

the last two years are used for evaluation.   72 

2 Model parameterization results 73 

2.1 Model initialization result 74 

By using the target driving method, RHESSys successfully captured LAI heterogeneity across 75 

the landscape during initialization process. As shown in Figure S3 a and b, the initialized LAI 76 

matches well with remote sensing product, though some patches may slightly overshot because 77 

of the way RHESSys allocates carbon to LAI seasonally; while some other patches, mostly at the 78 

top of mountains and being covered by rock or snow, are initialized with near-zero LAI but 79 

remote sensing products shows some higher values. The median of simulated LAI is 3.6% higher 80 

than median of remotes sensing product. Overall, the simulated LAI for model initialization is in 81 

a reasonable range.   82 
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 83 

Figure S3. Vegetation initialization results. We calculated LAI from a remote sensing image and 84 
use it as the target to initialize vegetation carbon and nitrogen for trail creek. (a) is LAI 85 
initialized from RHESSys model using the target-driven method (Hanan et al. 2018). (b) is the 86 
target LAI calculated from remote sensing data (LANDSAT 5). (c) is a comparison of the density 87 
distributions of LAI for the remote sensing and model initialized, dashed line is the mean of two 88 
LAI distributions. (d) is the scatter plot of remote sensing LAI and initialized LAI 89 

 90 

2.2 Model calibration and evaluation results  91 

In general, the model performs satisfactorily in simulating streamflow, with slightly better 92 

performance during the calibration period than during the evaluation period (Fig. S4  and Table 93 

S2). The model can capture the seasonality of streamflow, i.e., matching peak, recession, and 94 

low flow periods. However, in some water years (e.g., 2015-2016), the timing of simulated peak 95 

flows show large bias since the model generates earlier streamflow (Fig. S4  and Table S2). This 96 
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is likely because RHESSys uses air temperatures to partition precipitation into rain and snow and 97 

when it is near freezing, the partition errors might be large (Lundquist et al. 2008). This 98 

limitation can cause poor simulation of streamflow and ET in those years, but the influence and 99 

bias for modeling long-term ecohydrological fluxes are likely small (Bart et al. 2016). To further 100 

test the RHESSys performance on snow accumulation, we compare the simulated snow water 101 

equivalent (SWE) with SNOTEL data for the water years 1990-2015. The daily NSE is 0.93 and 102 

PerError is -14%, which is in acceptable range due to this being a patch-level comparison and 103 

not a basin-scale aggregation (which generally leads to higher model performance estimation). 104 

We also compare simulated ET with MODIS ET for water years 2002-2017 and they show 105 

similarities in annual mean and standard deviations, i.e. 725±62 mm/year and 702± mm/year 106 

from the simulation and MODIS, respectively. In summary, model performance on streamflow is 107 

roughly consistent for calibration and evaluation periods; the model also does a reasonably good 108 

job in estimating long-term average of SWE and ET. 109 
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 110 

Figure S4. Model calibration and evaluation in streamflow. (a) is result during calibration 111 
period (i.e., 2011 to 2015), and (b) is results during evaluation period (i.e., 2016-2017). 112 

 113 
Table S2. Calibration and evaluation results for Trail Creek. NSE is Nash Sutcliff Efficiency and 114 
PerErr is total percent error, r is Pearson’s correlation Coefficient. NSE is used for comparison 115 
of model fit of peak flows, PerErr is used to compare the differences in streamflow volumes, and 116 
r is used as a criterion to select better fit, which we consider r larger than 0.5 is a good fit. 117 

 118 



9 
 

 Daily NSE Monthly NSE Percent error (%) 

Pearson’s 
correlation 
coefficient 
(r) 

Calibration 
period (2011-
2015) 

0.76 0.94 2.66 0.76 

Evaluation 
period 
(2016-2017) 

0.71 0.73 8.62 0.74 

 119 

3 Spatial result  120 

3.1 Live LAI and Total LAI 121 

Figure S5 shows the relationship among long-term aridity index (x-axis), vegetation mortality 122 

level (y-axis, for each sub-basin vegetation mortality is calculated as evergreen mortality 123 

multiplied by evergreen coverage of that sub-basin) and changes in LAI. Live LAI decreased 124 

after beetle outbreak and decreases were larger with increasing vegetation mortality (Fig. S5 125 

a&b). Similarly, Total LAI decreased after beetle outbreak (and with increasing mortality) but 126 

the magnitude of LAI decreases were smaller compare to Live LAI (Fig. S5 c&d). In the water-127 

limited region, Total LAI slightly increased after outbreak. The positive change in Total LAI 128 

occurred because, during the years of 1994 and 1995, some portion of dead foliage was still 129 

falling to the ground, while the living vegetation and understory canopy of some sub-basins grew 130 

faster than before due to less competition for resources, such as water, nitrogen, and solar 131 

radiation, so that Total LAI was higher than without beetle outbreak. From 1994 to 1995, some 132 

portion of dead foliage continued to fall to the ground, while the residual vegetation and 133 

understory continued to grow at higher rates (again, due to less competition for resources, such 134 

as water, nitrogen, and radiation). If increases in growth outstripped the rate of litterfall for dead 135 

foliage, there would be smaller Total LAI differences in 1994 as compared to 1995, and vice 136 
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versa. The Live LAI response after outbreak affects plant transpiration, and Total LAI affects 137 

evaporation.  138 

 139 

Figure S5. Relationship among long-term aridity, vegetation mortality, and differences in Leaf 140 
Area Index.  Differences are calculated as the normalized differences (%) of LAI between each 141 
evergreen mortality scenario and the control run for no beetle outbreak. Vegetation mortality for 142 
each sub-basin is calculated as the percentage of evergreen patches multiplied by the mortality 143 
level of evergreen caused by beetles. Long-term aridity is defined as temporally averaged (38 144 
years) potential evapotranspiration relative to precipitation. (a)  and (c) are for a dry year 145 
(1994, 5 years after beetle outbreak),(b) and (d) are for a wet year (1995, 6 years after beetle 146 
outbreak). (a) and (b) is Live LAI while (c) and (d) is Total LAI (i.e., LAI including dead foliage 147 
and live leaf on the canopy).  148 

 149 
 150 
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3.2 Spatial result: year-to-year soil storage change 151 

The effects of beetle outbreak on year-to-year soil storage change show a conversed spatial 152 

pattern during the dry year comparing with that during the wet year (Fig. S6). During a dry year, 153 

the balanced area charges water in soil storage, while the water-limited area loses water from soil 154 

storage. This spatial pattern matches well with effects of ET, which indicates that ET might be 155 

the primary driver of the change in soil moisture during dry years (Fig. 9a & Fig. S6a). During 156 

the wet year, the pattern conversed from that during the dry year: the balanced area shows 157 

decreases in soil moisture, while the water-limited area shows increases (Fig. S6b). Obviously, 158 

this pattern is different from that of ET (Fig. 9b & Fig. S6b). The balanced area, under high 159 

precipitation condition (i.e., wet year), experiences less ET causing the soil saturated much 160 

earlier than control scenario therefore, more precipitation will generate runoff. On the other 161 

hand, the water-limited area, under high precipitation conditions, experiences less ET meaning 162 

more precipitation will be stayed in the soil.  163 
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 164 

Figure S6.Relationship among long-term aridity, vegetation mortality level and Differences in 165 
year-to-year soil storage change for a dry year (1994, a) and wet year (1995, b). 166 
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