

1 **How does water yield respond to mountain pine beetle infestation in a
2 semiarid forest?**

3 Jianning Ren^{1,3}, Jennifer Adam¹, Jeffrey A. Hicke², Erin Hanan³, Naomi Tague⁴, Mingliang Liu¹,
4 Crystal Kolden⁵, John T. Abatzoglou⁵

5

6 ¹ Department of Civil & Environmental Engineering, Washington State University, 99163,
7 Pullman, USA

8 ² Department of Geography, University of Idaho, 83844, Moscow, USA

9 ³ Department of Natural Resources and Environmental Sciences, University of Nevada, 89501,
10 Reno, USA

11 ⁴ Bren School of Environmental Science & Management, University of California, 93106, Santa
12 Barbara, USA

13 ⁵ Management of Complex Systems, University of California, 95344, Merced, USA

14

15 *Corresponding to Correspondence*: Jennifer Adam (jcadam@wsu.edu)

16

17

18

19

20 **Key points:**

21 • Mountain pine beetle (MPB)-caused tree mortality increases water yield in most
22 wet years, and ~~a-decrease~~~~decreases~~ in water yield mainly happens in dry years; therefore,
23 interannual climate variability is an important driver of water yield response to beetle-
24 caused tree mortality.

25 • A long-term (multi-decade) aridity index is a reliable indicator of water yield
26 response to MPBs: in a dry year, decreases in water yield occur mainly in “water-limited”
27 areas and the level of vegetation mortality ~~levels have~~ only has minor effects; in wetter
28 areas, decreases in water yield only occur at low vegetation mortality levels.

29 • Generally, in a dry year, low to medium MPB-caused vegetation mortality
30 decreases water yield, and high mortality increases water yield; this response to mortality
31 level is nonlinear and varies by location and year.

32

33

34 **Graphical abstract**

35

36

37 **Abstract**

38 Mountain pine beetle (MPB) outbreaks in the western United States result in widespread tree
 39 mortality, transforming forest structure within watersheds. While there is evidence that these

40 changes can alter the timing and quantity of streamflow, there is substantial variation in both the
41 magnitude and direction of hydrologic responses, and the climatic and environmental
42 mechanisms driving this variation are not well understood. Herein, we coupled an eco-
43 hydrologic model (RHESSys) with a beetle effects model and applied it to a semiarid watershed,
44 Trail Creek, in the Bigwood River basin in central Idaho, USA, to evaluateexamine how varying
45 degrees of beetle-caused tree mortality influence water yield. Simulation results show that water
46 yield during the first 15 years after beetle outbreak is controlled by interactions among
47 interannual climate variability, the extent of vegetation mortality, and long-term aridity. During
48 wet years, water yield after beetle outbreak increasessd with greater tree mortality; this was
49 driven by mortality-caused decreases in evapotranspiration. During dry years, water yield
50 decreasessd at low to medium mortality but increasessd at high mortality. The mortality threshold
51 for the direction of change iswas location-specific. The change in water yield also variessd
52 spatially along aridity gradients during dry years. In relatively wetter areas of the Trail Creek
53 basin, post-outbreak water yield switches from a decrease to decreased at low mortality (driven
54 by an increase in ground evaporation) and increased when vegetation mortality iswas greater
55 than 40 percent. (driven by a decrease in canopy evaporation and transpiration). In contrast, in
56 more water-limited areas on the other hand, water yield typically decreasessd after beetle
57 outbreaks, regardless of mortality level. Results (although the driving mechanisms varied). Our
58 findings highlight the complexity and variability of hydrologic responses and suggest that long-
59 term (i.e., multi-decadal mean) aridity can be a useful indicator for the direction of water yield
60 changes after disturbance.

61 **1 Introduction**

62 In recent decades, mountain pine beetle (MPB) outbreaks in the Western U.S. and Canada have
63 killed billions of coniferous trees (Bentz et al. 2010). Coniferous forests can provide essential
64 ecosystem services, including water supply for local communities (Anderegg et al. 2013).
65 Therefore, it is essential to understand how ecosystems and watersheds respond to beetle
66 outbreaks and to identify the dominant processes that drive these responses (Bennett et al. 2018).
67 A growing number of studies have qualitatively examined hydrologic responses to beetle
68 outbreaks and disturbance; however, these studies have produced conflicting results (Adams et
69 al. 2012; Goeking and Tarboton 2020). While some studies show increases in water yield
70 following beetle outbreak (e.g., Bethlahmy 1974; Potts 1984; Livneh et al. 2015), many others
71 show no change or even decreases (e.g., Guardiola-Claramonte et al. 2011; Biederman et al.
72 2014; Slinski et al. 2016). To determine which mechanisms control change in water yield
73 following beetle outbreak, more quantitative approaches are needed.

74 Water yield is often thought to increase after vegetation is killed or removed by
75 disturbances such as fire, thinning, and harvesting (Hubbart 2007; Robles et al. 2014; Chen et al.
76 2014; Buma and Livneh 2017; Wine et al. 2018). In the Rocky Mountain West, beetle outbreaks
77 have increased water yield through multiple mechanisms. First, defoliation/needle loss can
78 reduce plant transpiration, canopy evaporation, and canopy snow sublimation losses to the
79 atmosphere (Montesi et al. 2004). Snow sublimation is an important process in snow-dominated
80 forest systems. Beetle-caused decreases in total sublimation can increase water yield, especially
81 since canopy sublimation is more sensitive to disturbances than ground snow sublimation (Frank
82 et al. 2019). Increased canopy openings can also enable snow accumulation and allow more

83 radiation to reach the ground surface, resulting in earlier and larger peak snowmelt events, which
84 can in turn reduce soil moisture and therefore decrease summer evapotranspiration (ET).

85 Several studies have documented decreases in water yield following disturbances (e.g.,
86 mortality, fire, beetle outbreaks; Biederman et al. 2014; Bart et al. 2016; Slinski et al. 2016;
87 Goeking and Tarboton 2020). For example, in the southwestern U.S., beetle outbreaks have
88 decreased streamflow by opening forest canopies and increasing radiation to the understory and
89 at the ground surface, which leads to increases in understory vegetation transpiration (Guardiola-
90 Claramonte et al. 2011), soil evaporation, and therefore increases total ET (Bennett et al. 2018).
91 Tree- mortality or removal can reduce streamflow because surviving trees and/or understory
92 vegetation compensates by using more water (Tague et al. 2019).

93 In a review of 78 studies, Goeking and Tarboton (2020) concluded that the decrease in
94 water yield after tree-mortality mainly happens in semiarid regions. Previous studies also provide
95 rule-of-thumb thresholds above which water yield will increase: at least 20 percent loss of
96 vegetation cover and mean precipitation of 500 mm/year (Adams et al. 2012). However, many
97 watersheds in the western U.S. experience high interannual climate variability (Fyfe et al. 2017),
98 and local environmental gradients (e.g., long-term aridity gradients) may strongly influence
99 vegetation and hydrologic responses to disturbances, including such as beetle outbreaks, making
100 predictions such rules-of-thumb difficult to apply in practice (Winkler et al. 2014). Given the
101 possibility of either increases or decreases in water yield following beetle outbreaks, modeling
102 approaches are crucial for identifying the specific mechanisms that control these responses.

103 TheOur overarching goal of this study is was to identify mechanisms driving the direction
104 of change in annual water yield after beetle outbreaks in semi-arid regions (note that in the

105 following text, “water yield” refers to mean~~s~~ annual water yield). The~~To~~ we ~~asked~~ the ~~specific~~ questions ~~address~~ this ~~goal~~:

107 • **Q1:** What is the role of **interannual climate variability** in water yield response?

108 • **Q2:** What is the role of **mortality level** in water yield response?

109 • **Q3:** How does **long-term aridity** (defined as temporally averaged potential
110 evapotranspiration relative to precipitation ~~for a period of 38 years~~) modify these responses,
111 and how do responses vary spatially within a watershed along aridity gradients?

112 We hypothesized~~d~~ that multiple ecohydrologic processes (e.g., snow accumulation and melt,
113 evaporation, transpiration, drainage, and a range of forest structural and functional responses to
114 beetles) could interactively influence how water yield responds to beetle outbreaks—however, in
115 certain locations one or more processes may dominate. In addition, the dominant ecohydrologic
116 processes may vary over space and time due to interannual climate variability (i.e.,
117 precipitation), vegetation mortality, and long-term aridity. In Section 2, we present a conceptual
118 framework for identifying and depicting dominant hydrological processes through which forests
119 respond to beetle infestation. We used~~d~~ this framework to interpret the modeling results. In
120 Section 3, we describe our mechanistic modeling approach, i.e., using the Regional Hydro-
121 Ecological Simulation System (RHESSys), which can prescribe a range of vegetation mortality
122 levels, capture the effects of landscape heterogeneity and the role of lateral soil moisture
123 redistribution, and project ecosystem carbon and nitrogen dynamics, including post-disturbance
124 plant recovery. In Sections 4 and 5, we then present modeling results that explore how multiple
125 mechanisms influence water yield responses. This study can help inform management in beetle-
126 affected watersheds by providing a tool for identifying locations that should be prioritized for
127 mitigating flooding and erosion risk under different climate conditions.

128 **2 Conceptual framework**

129 2.1 Vegetation response to beetle outbreaks

130 Mountain pine beetles (MPB) introduce blue stain fungi into the xylem of attacked trees, which
131 reduces water transport in plants and eventually shuts it off (Paine et al. 1997). During outbreaks,
132 MPBs prefer to attack and kill larger host trees that have greater resources (e.g., carbon), while
133 smaller diameter host trees and non-host vegetation (including the understory) remain unaffected
134 (Edburg et al. 2012). After MBP outbreak, trees ~~mainly go through experience~~ three phases (i.e.,
135 red, gray, and old) over time (Hicke et al. 2012). During the red phase, the trees' needles turn
136 red. During the gray phase, there are no needles in the canopy. During old phase, killed trees
137 have fallen, and understory vegetation and new seedlings experience rapid growth (Hicke et al.
138 2012; Mikkelsen et al. 2013).

139 2.2 Hydrologic response to beetle outbreaks

140 Figure 1 describes the main processes that alter evapotranspiration to either decrease or increase
141 water yield, depending on which processes dominate (Adams et al. 2012; Goeking and Tarboton
142 2020). During the red and gray phases, needles fall to the ground, and there is lower leaf area
143 index (LAI) and a more open canopy (Hicke et al. 2012). ~~This can reduce plant~~During these
144 phases, changes in canopy cover can interact with hydroclimatic conditions across a watershed to
145 alter transpiration of and evaporation in a variety of ways.

146 Canopy mortality can reduce transpiration rates in infected trees, though in water-limited
147 environments, remaining trees may compensate to some extent by increasing transpiration ~~in~~
148 ~~water limited environments~~ (Adams et al. 2012, Tague et al. 2019). ~~A more~~More open ~~canopy~~
149 ~~intercepts~~canopies (i.e., following tree mortality) ~~intercept~~ less precipitation ~~than closed~~
150 canopies, reducing ~~evaporation from the~~ canopy evaporation but potentially increasing it from

151 soil and litter layers (Montesi et al. 2004; Sextstone et al. 2018). Meanwhile, ~~an~~ open canopy ~~yies~~
152 can also increase the proportion of snow falling to the ground and, therefore, increase snowpack
153 accumulation. With more solar radiation reaching the ground, earlier and larger peak snowmelt
154 can also occur (Bennett et al. 2018). Generally, earlier snowmelt increases water for spring
155 streamflow and decreases water for summertime ET (Pomeroy et al. 2012). However, once snags
156 fall, reductions in longwave radiation can actually lead to later snowmelt (Lundquist et al. 2013).
157 ~~The~~An open canopy ~~and, combined with~~ less competition for resources, such as solar radiation
158 and nutrients, can also promote understory vegetation growth, which may increase understory
159 transpiration ~~-(~~Biederman et al. 2014; Tague et al. 2019). In some riparian corridors, the
160 regreening of surviving vegetation and the compensatory response of remaining tissues could
161 diminish the reduction in ET caused by foliage fall, leading to no significant water yield response
162 to beetle-caused mortality (Snyder et al. 2012; Nagler et al. 2018).~~Whether~~ Therefore, whether
163 water yield increases or decreases ~~will~~following beetle outbreak ultimately dependss on ~~the~~
164 ~~balance of how~~ these processes ~~that can alter transpiration and evaporation in different~~
165 waysinteract.

166

167 Finally, ~~interannual~~Interannual variability in climate (e.g., dry versus wet years) can affect
168 ~~forests' hydrological responses~~how hydrologic processes interact in forested watersheds
169 (Winkler et al. 2014; Goeking and Tarboton 2020). For instance, during wet years, remaining
170 plants are not water-limited, and reductions in plant transpiration due to beetle-caused mortality
171 dominate ~~over~~ increases in soil evaporation or remaining plant transpiration, resulting in a higher
172 water yield.~~-~~ In contrast, during dry years, plants are already under water stress and decreases in
173 plant transpiration caused by tree mortality may be compensated by increasing soil evaporation
174 and transpiration by remaining trees or understory vegetation, leading to declines in water yield.
175 Moreover, these responses are also affected by land cover types (e.g., young ~~versus~~ old ~~pinetrees~~,
176 different tree species, etc.), which is not currently well documented (Perry and Jones 2017;
177 Morillas et al. 2017).

178 2.3 Review of modeling approaches

179 Many models, ranging from empirical and lumped to physically-based and fully-distributed,
180 have been used to study hydrologic responses to disturbances. Goeking and Tarboton (2020)
181 argue that only physically-based and fully-distributed models can capture how disturbances alter
182 water yield because they represent fine-scale spatial heterogeneity and physical process that vary
183 over space and time. Despite their advantages, ~~many~~ process-based models, such as the coupled
184 CLM-ParFlow model (Mikkelsen et al. 2013; Penn et al. 2016), the Distributed Hydrology Soil
185 Vegetation Model (Livneh et al. 2015; Sun et al. 2018), and the Variable Infiltration Capacity
186 Model (Bennett et al. 2018) also have some limitations. For example, 1) they may assume
187 constant LAI after disturbances and static vegetation growth (e.g., VIC and DHSVM), 2) they
188 may not include lateral flow to redistribute soil moisture (VIC), and 3) in some cases, the
189 approach to represent the effects of beetle outbreaks may be too simplified (e.g., changing only

190 LAI and conductance without considering two-way beetle-vegetation interactions in post-
191 disturbance biogeochemical and water cycling e.g., as in CLM-ParFlow). Thus, improving
192 current fully distributed process-based models to capture the coupled dynamics between
193 hydrology and vegetation at multiple scales is a critical step for projecting how beetle outbreaks
194 will affect water yield in semiarid systems (Goeking and Tarboton 2020). Here we use
195 [RHESSys7.1RHESSys – Beetle model](#), which captures these processes.

196 **3 Model, data, and simulation experiment design**

197 3.1 Study area

198 Our study [watershed is focused on the Trail Creek watershed](#), which is located in Blaine County
199 between the Sawtooth National Forest and the Salmon-Challis National Forest (43.44N,
200 114.19W; Fig. 2). It is a 167-km² sub-catchment in the south part of Big Wood River basin, and
201 is within the wildland-urban interface where residents are vulnerable to the flood and debris
202 flows caused by forest disturbances (Skinner 2013). Trail Creek has frequently experienced
203 beetle outbreaks, notably in 2004 and 2009, when beetles killed 7 and 19 km² of trees,
204 respectively (Berner et al. 2017).

205 Trail Creek has cold, wet winters and warm, dry summers; mean annual precipitation is
206 approximately 978 mm [with, 60% of which falls as](#) snow (Frenzel 1989). The soil is mostly
207 permeable coarse alluvium (Smith 1960). [Vegetation is clustered into two major groups along](#)
208 [the elevation which ranges](#)[Elevations range](#) from 1760 to 3478 m: [sagebrush, riparian species,](#)
209 [Along this elevation gradient, there are also strong vegetation](#) and [grasslands in lower to](#)
210 [middle aridity gradients \(Fig. 3\). The northern \(higher elevation-areas\) portion of the basin is](#)
211 [mesic](#) and [covered principally by evergreen forest, containing](#) Douglas-fir (*Pseudotsuga*

212 *menziesii*), lodgepole pine (*Pinus contorta* var. *latifolia*), subalpine fir (*Abies lasiocarpa*), and
213 mixed shrub and herbaceous vegetation ~~in middle to higher elevations (Buhidar 2002)~~.

214 ~~A strong upper to lower vegetation and long term aridity gradient exists for Trail Creek~~
215 ~~(Fig. 3). The northern (higher elevation) portion of the basin is mesic and covered principally by~~
216 ~~evergreen forest; the. The~~ southern (lower elevation) portion is xeric and covered by shrubs,
217 grasses, and mixed herbaceous species~~-, including sagebrush, riparian species, and grasslands~~
218 (Buhidar 2002).

219 In total, Trail creek contains 72 sub-basins and two of them (e.g., Fig. 3, sub-basin 412 and
220 416) are urban areas. ~~If When~~ we classify~~ied~~ this basin into different zones according to an aridity
221 index, i.e., the ratio of 38-year average annual potential evapotranspiration (PET) to precipitation
222 (P) (Section 3.4), ~~there is atwo~~ distinct ~~gradient hydrologic-vegetation cover types emerged~~: the
223 northern and high elevation area is balanced (i.e., PET/P between 0.8 and 2) and evergreen tree
224 coverage is more than 50%; the southern part is water-limited (i.e., PET/P > 2) and evergreen
225 tree coverage is less than 30% (Figs. 2 and 3).

226 3.2 Model descriptions

227 3.2.1 Ecohydrologic model

228 The Regional Hydro-ecologic Simulation System (RHESSys~~;~~ Tague and Band 2004) is a
229 mechanistic model designed to simulate the effects of climate and land use change on ecosystem
230 carbon and nitrogen cycling and hydrology. RHESSys fully couples hydrological processes
231 (including streamflow, lateral flow, ET, and soil moisture, etc.), plant growth and vegetation
232 dynamics (including photosynthesis, maintenance respiration, and mortality, etc.), and soil
233 biogeochemical cycling (including soil organic matter decomposition, mineralization,
234 nitrification, denitrification, and leaching, etc.). It has been widely tested and applied in several

235 mountainous watersheds in western North America, including many in the Pacific and Inland
236 Northwest (e.g., Tague and Band 2004; Garcia and Tague 2015; Hanan et al. 2017; [Hanan et al.](#)
237 2018; [2021](#); Lin et al. 2019; Son and Tague 2019).

238 RHESSys represents a watershed using a hierarchical set of spatial units, including patches,
239 zones, sub-basins, and the full basin, to simulate various hydrologic and biogeochemical
240 processes occurring ~~in~~ at these ~~multiple~~ scales (Tague and Band 2004). The patch is the finest
241 spatial scale at which vertical soil moisture and soil biogeochemistry are simulated. In every
242 patch, there are multiple canopy strata layers to simulate the biogeochemical processes related to
243 plant growth and nutrient uptake. Meteorological forcing inputs (e.g., temperature, precipitation,
244 humidity, wind speed, and solar radiation) are handled at the zone level, and spatially
245 interpolated and downscaled for each patch based on elevation, slope, and aspect. Sub-basins are
246 closed drainage areas entering both sides of a single stream reach (the water budget is closed in
247 sub-basins). The largest spatial unit is the basin, which aggregates the streamflow from sub-
248 basins (Tague and Band 2004; Hanan et al. 2018). In RHESSys, streamflow is the sum of
249 overland flow and baseflow, and we consider streamflow as the **water yield** of each sub-basin.

250 RHESSys models vertical and lateral hydrologic fluxes, including canopy interception,
251 plant transpiration, canopy evaporation/sublimation, snow accumulation, snowmelt and
252 sublimation, soil evaporation, soil infiltration, and subsurface drainage. Canopy interception is
253 based on the water-holding capacity of vegetation, which is also a function of plant area index
254 (PAI). Both the canopy evaporation and transpiration are modeled using the standard Penman-
255 Monteith equation (Monteith 1965). Snow accumulation is calculated from incoming
256 precipitation and is assumed to fall evenly across each zone. Snowmelt is based on a quasi-
257 energy budget approach accounting for radiation input, sensible and latent heat fluxes, and

258 advection. Soil evaporation is constrained by both energy and atmospheric drivers, as well as a
259 maximum exfiltration rate, which is controlled by soil moisture (Tague and Band 2004). Vertical
260 drainage and lateral flow ~~is are~~ a function of topography and soil hydraulic conductivity, which
261 decays exponentially with depth (Tague and Band 2004; Hanan et al. [2018](#)). [Supplementary](#)
262 [material section S1 contains a more detailed synopsis of the soil hydrologic model. 2018](#)

263 Vegetation carbon and nitrogen dynamics are calculated separately for each canopy layer
264 within each patch, while soil and litter carbon and nitrogen cycling are simulated at the patch
265 level. Photosynthesis is calculated based on the Farquhar model ~~considering, which considers~~ the
266 limitations of nitrogen, light, stomatal conductance (~~which is~~ influenced by soil water
267 availability), vapor pressure deficit, atmospheric CO₂ concentration, radiation, and air
268 temperature (Farquhar and von Caemmerer 1982; Tague and Band 2004). Maintenance
269 respiration is based on Ryan (1991), which computes respiration as a function of nitrogen
270 concentration and air temperature. Growth respiration is calculated as a fixed ratio of new carbon
271 allocation for each vegetation component (Ryan 1991; Tague and Band 2004). Net
272 photosynthesis is allocated to leaves, stems, and roots at daily steps based on the Dickinson
273 partitioning method, which varies with each plant development stage (Dickinson et al. 1998).
274 LAI is estimated from leaf carbon and specific leaf area for each vegetation type. The soil and
275 litter carbon and nitrogen cycling (heterotrophic respiration, mineralization, nitrification, and
276 denitrification, etc.) are modified from the BIOME_BGC and CENTURY-NGAS models (White
277 and Running 1994; Parton et al. 1996; Tague and Band 2004). A detailed description of
278 RHESSys model algorithms can be found in Tague and Band (2004).

279 3.2.2 Beetle effects model
280 Edburg et al. (2012) designed and developed a model of MPB effects on carbon and nitrogen
281 dynamics for integration with the Community Land Model Version 4 (CLM4) (Lawrence et al.
282 2011, Fig. 4). Here we integrated this beetle effects model into RHESSys (Fig. 4). Beetles attack
283 trees mainly during late summer, and needles will turn from green to red at the beginning of the
284 following summer. We simplify this process with prescribed tree mortality on September 1 to
285 represent a-beetle outbreak ~~of the current~~for a given year. The advantage of this integration is
286 that RHESSys accounts for the lateral connectivity in water and nitrogen fluxes among patches
287 which is not represented in CLM4 (Fan et al. 2019). ~~Differences in our~~Our approach ~~compared~~
288 ~~to~~differs from other hydrological models of beetle effects (e.g., VIC, CLM-ParFlow, and
289 DHSVM) ~~include~~because it includes dynamic changes in plant carbon and nitrogen cycling
290 caused by beetle attack, plant recovery, and their effects on hydrological responses. Previous
291 studies of hydrologic effects of beetle outbreaks have mainly focused on consequences of
292 changes in LAI and stomatal resistance during each phase of ~~beetle outbreak~~mortality but have
293 missed feedbacks between carbon and nitrogen dynamics, vegetation recovery, and hydrology
294 (Mikkelsen et al. 2013; Livneh et al. 2015; Penn et al. 2016; Sun et al. 2018; Bennett et al.
295 2018).

296 To better represent the effects of beetle-caused tree mortality, we added a snag pool
297 (standing dead tree stems) and a dead foliage pool (representing the red needle phase) in
298 RHESSys (Fig. 4). All leaf biomass (including carbon and nitrogen) become part of dead foliage
299 pools. After one year (~~Hicke et al. 2012; Edburg et al. 2011~~), the dead foliage is transferred to
300 litter pools at an exponential rate with a half-life of two years (~~Hicke et al. 2012; Edburg et al.~~
301 2011; 2012). Similarly, stem carbon and nitrogen are moved to the snag pool immediately after

302 outbreak. After five years (Edburg et al. 2012), carbon and nitrogen in snags begin to move into
303 the coarse woody debris (CWD) pool at an exponential decay rate with a half-life of ten years
304 (Edburg et al. 2011; 2012). After outbreak, the coarse root pools that are killed move to the
305 CWD and fine root pools move to litter pools. To simplify, we assume a uniform mortality level
306 for all evergreen patches across landscape. Due to the limitation of land cover data, we cannot
307 separate pine and fir in these evergreen patches. However, this will not affect the interpretation
308 of our results because we analyze them based on mortality level and evergreen vegetation
309 coverage rather than different species.

310 In the integrated model, the reduction of leaf carbon and nitrogen after beetle outbreak can
311 directly decrease LAI and canopy height, which consequently affects energy (i.e., longwave
312 radiation and the interception of shortwave radiation) and hydrologic (i.e., transpiration and
313 canopy interception) fluxes. ~~We calculate~~The model calculates two types of LAI: ***Live LAI*** (i.e.,
314 only live leaf is included), and ***Total LAI*** (i.e., both live and dead leaves are included). ~~The~~
315 ~~calculation of plant~~Plant transpiration is ~~based on a function of~~Live LAI, while ~~the calculation of~~
316 other canopy properties, including interception and canopy evaporation, is ~~based on a function of~~
317 *Total LAI*. The calculation of canopy height includes ~~the~~living stems and the snag pool.

318 3.3 Input data

319 We used the US Geologic Survey (USGS) National Elevation Dataset (NED) at 10 m resolution
320 to calculate the topographic properties of Trail Creek, including elevation, slope, aspect, basin
321 boundaries, sub-basins, and patches. Using NED, we delineated 16705 100-m resolution patches
322 within 72 sub-basins. We used the National Land Cover Database (NLCD) to identify five
323 vegetation and land cover types, i.e., evergreen, grass/herbaceous, shrub, deciduous, and urban
324 (Homer et al. 2015). We determined soil properties for each patch using the POLARIS database

325 (probabilistic remapping of SSURGO; Chaney et al. 2016). Parameters for soil and vegetation
326 were based on previous research and literature (White et al. 2000; Law et al. 2003; Ackerly
327 2004; Berner and Law 2016; Hanan et al. 2016; [2021](#)).

328 Climate inputs for this study, including maximum and minimum temperatures,
329 precipitation, relative humidity, radiation, and wind speed, were acquired from gridMET for
330 years from 1980 to 2018. GridMET provides daily high-resolution (1/24 degree or ~4 km)
331 gridded meteorological data (Abatzoglou 2013). It is a blended climate dataset that combines the
332 temporal attributes of gauge-based precipitation data from NLDAS-2 (Mitchell et al. 2004) with
333 the spatial attributes of gridded climate data from PRISM (Daly et al. 1994).

334 3.4 Simulation experiments

335 To quantify how water yield responds to beetle-caused mortality, we ~~designed the following~~
336 ~~simulation experiment. We~~ prescribed a beetle outbreak in September 1989, where the mortality
337 level (%) ~~is was~~ applied to all evergreen patches for each sub-basin. After beetle outbreak, red
338 needles ~~stay remained~~ on the trees for one year before they ~~start~~began to fall (transferred to the litter
339 pool) at an exponential rate with a half-life of two years. The snag pools ~~stay in the remained as~~
340 standing trees for five years and then ~~start~~began to fall and ~~are~~were added to the CWD pool which
341 decays at an exponential rate with a half-life of ten years.

342 To address Q1 (i.e., the role of interannual variability), we compared water yield responses
343 during a dry water year, 1994 (i.e., five years after beetle outbreak with an annual precipitation
344 of 611 mm), to responses during a wet year, 1995 (i.e., six years after beetle outbreak with an
345 annual precipitation of 1394 mm). This enabled us to estimate the role of interannual climate
346 variability in driving changes in water yield following beetle attack. The dry year ~~are~~was
347 selected ~~based on from~~ years that ~~haved~~ precipitation below the 15th percentile ~~across 38 years~~ of

348 annual precipitation data (from 1979 to 1980 to 2017; Searcy 1959; see Fig. S1). During these
349 early period after beetle outbreak (e.g., 1994 and 1995) the forest ~~is experiencing~~ experienced
350 large changes in vegetation canopy cover, plant transpiration, and soil moisture. We chose these
351 two successive years because ~~they have almost similar~~ their canopy and vegetation status were
352 similar in terms of fallen dead foliage and residual vegetation regrowth, which makes this
353 comparison reasonable. However, it is possible that antecedent climate conditions may affect the
354 following year's response. For example, soil moisture can be depleted during a drought year,
355 affecting initial conditions the following year. Moreover, under drought conditions, less reactive
356 nitrogen is taken up by the plants or leaching is reduced, so more nitrogen will be left for the
357 following year. Therefore, the difference in water yield responses between 1994 and 1995 might
358 be affected by not only by climate variations but also initial hydrologic and biogeochemical
359 ~~conditions in the hydrology and the biogeochemistry~~. To consider the time lag effect (antecedent
360 conditions affecting the current year's response), we also analyzed other dry and wet years.

361 To address Q2 (i.e., the role of vegetation mortality), we prescribed a range of
362 ~~infestation~~ beetle-caused mortality levels (i.e., from 10% to 60% by a step of 10% in terms of a
363 reduction in carbon, uniformly applied to all evergreen patches for each sub-basin~~s~~) and a
364 control run (no mortality). This enabled us to quantify ~~the response of forests in~~ how forest water
365 yield responded to the level of vegetation mortality level (for each sub-basin **vegetation**
366 **mortality is evergreen mortality** multiplied by evergreen coverage of that basin). The
367 differences in water yield between each mortality level and the control run represent the effects
368 of beetle kill: a positive value means that mortality increased water yield, and vice versa.

369 We quantified the water budget for each sub-basin to examine which hydrological
370 processes contribute to the water yield responses: water yield (Q), precipitation (P), canopy

371 evaporation (E_{canopy} , canopy evaporation and snow sublimation), transpiration (T), ground
 372 evaporation (E_{ground} , includes bare soil evaporation, pond evaporation, and litter evaporation),
 373 snow sublimation (Sublim, ground), soil storage change ($\frac{dS_{\text{soil}}}{dt}$), litter storage change
 374 ($\frac{dS_{\text{litter}}}{dt}$), snowpack storage change ($\frac{dS_{\text{snowpack}}}{dt}$) and canopy storage change

375 ($\frac{dS_{\text{canopy}}}{dt}$). We summarized these rate variables at an annual time step.

376 The storage components include soil, litter, and canopy. According to Eq. (1), if the storage
 377 increases, water yield decreases.

378
$$Q = P - E_{\text{canopy}} - E_{\text{ground}} - \text{Sublim} - \frac{d(S_{\text{soil}} + S_{\text{litter}} + S_{\text{canopy}} + S_{\text{snowpack}})}{dt} \quad (1)$$

379
$$T - \frac{d(S_{\text{soil}} + S_{\text{litter}} + S_{\text{canopy}} + S_{\text{snowpack}})}{dt} \quad (1)$$

380 Q: Water yield (mm/year)

381 P: Precipitation (mm/year)

382 E_{canopy} : Canopy evaporation (including canopy snow sublimation, mm/year)

383 E_{ground} : Ground evaporation includes bare soil evaporation, pond evaporation, and litter
 384 evaporation (mm/year)

385 T: Transpiration (mm/year)

386 Sublim: Ground snow sublimation (mm/year)

387 dS_{soil}/dt : Change in soil water storage calculated at yearly interval (mm/year)

388 dS_{litter}/dt : Change in litter water storage calculated at yearly interval (mm/year)

389 $\frac{dS_{canopy}}{dt}$: Change in canopy water storage calculated at yearly interval (mm/year)

390 $\frac{dS_{snowpack}}{dt}$: change in snowpack water storage calculated at yearly interval (mm/year)

391 Calculating water balance differences between different mortality scenarios and control

392 scenario results in Eq. (2): (2) (Note that precipitation is a model input and is unaffected by
393 mortality and so $\Delta P = 0$).

394
$$\Delta Q = \Delta E_{canopy} + \Delta E_{ground} + \Delta Sublim + \Delta T +$$

395
$$\Delta \left(\frac{d(S_{soil} + S_{litter} + S_{canopy} + S_{snowpack})}{dt} \right) \quad (2)$$

396 To address Q3 (i.e., the role of long-term aridity), we calculated thea long-term aridity
397 index (PET/P, Fig. 3) across the basin and analyzed the relationship between long-term aridity
398 index and hydrologic response. As mentioned earlier, the long-term aridity index is defined as
399 the ratio of mean annual potential ET (PET) to annual precipitation (P), averaged over 38 years
400 (water year 1980-2018) of historical meteorological data. Based on the long-term aridity index,
401 we classified our sub-basins into three types (i.e., water-limited, balanced, energy-limited;
402 McVicar et al. 2012; Table 1).

403

404 **4 Results**

405 4.1 Simulated vegetation response to beetle outbreak at basin-scale

406 4.1.1 Vegetation response to beetle outbreaks

407 Figure 5 shows the basin-scale vegetation response after beetle outbreak in 1989. *Live LAI*
408 dropped immediately after beetle outbreak, then gradually recovered to pre-outbreak levels

409 during following years (Fig. 5a). *Total LAI* (i.e., including dead foliage) ~~showed a slight increase~~
410 slightly increased during the first ten years after beetle outbreak (1990 – 2000), which ~~is~~was due
411 to the retention of dead leaves in the canopy and the simultaneous growth of residual
412 (unaffected) overstory and understory vegetation (Fig. 5b). The dead foliage pool (Fig. 5c)
413 remained in place for one year and then began to fall to ground (converted to litter) exponentially
414 with a half-life of two years, and the snag pool (Fig. 5d) remained in place for five years and
415 then began to fall to ground (converted to CWD) exponentially with a half-life of ten years.
416 These behaviors of the dead foliage and snag pools are similar to Edburg et al. (2012), which
417 demonstrates that the integrated model is simulating expected vegetation dynamics following
418 beetle outbreak.

419 4.1.2 Time series of hydrologic response to beetle outbreak

420 Figure 6 shows the changes in simulated water fluxes and soil moisture over the basin after
421 beetle outbreak with various evergreen mortality levels. During the first 15 years after beetle
422 outbreak, scenarios where the evergreen mortality level was larger than zero had higher basin-
423 scale water yield than the control scenario (where the evergreen mortality level was zero). This
424 was especially true during wet years; however, there was no significant increase during dry years
425 (i.e., 1992, 1994, 2001, and 2004; Fig. 6a). The year-to-year soil storage fluxes responded
426 strongly in the first two years after beetle outbreak, then stabilized to the pre-outbreak condition
427 (Fig. 6b). Note that year-to-year soil storage change is not the same as soil water storage. After
428 beetle outbreak, the soil ~~can hold~~held some portion of the water that ~~was not being up~~ taken up
429 by ~~the~~ plants, but ~~it this~~ was ~~conf~~strained by the soil water holding capacity. This phenomenon
430 indicates that the soil has some resilience to vegetation change.

431 Beetle outbreaks reduced transpiration during wet years but did not have significant effects
432 in dry years (Fig. 6c). This ~~isoccurred~~ because transpiration in dry years was water-limited and
433 ~~so~~ was ~~therefore~~ much lower than the potential rate (more water ~~iswas~~ partitioned to evaporation;
434 ~~similar to~~ Biederman et al. 2014). Thus, killing more trees had little effect on stand scale
435 transpiration because remaining trees ~~utilizedused~~ any water released by the dead trees in dry
436 years. On the other hand, plant transpiration in wet years was close to the potential rate;
437 therefore, decreases in canopy cover reduced transpiration. ~~The simulation results did not show~~
438 ~~any~~ ~~There was no~~ apparent effect ~~on snowmelt after of~~ beetle outbreak ~~on snowmelt~~.

439 Snow sublimation played an essential role in driving the evaporation responses we
440 observed. In the Trail Creek watershed, snow sublimation accounted for around 50% of total
441 evaporation (not shown in the figure), and around 60% came from the canopy. Canopy
442 sublimation accounted for an even larger proportion of total sublimation during high snow years
443 (Fig. S7 d and Fig. S1). These results are similar to other western US forests where 50 to 60% of
444 total sublimation has been found to come from canopy sublimation, which is more sensitive to
445 beetle kill than ground snow sublimation (Molotch et al. 2007; Frank et al. 2019). We also found
446 that during the first three years after beetle outbreak, when dead foliage was still on the canopy,
447 canopy sublimation increases by approximately 6% due to an increase in *Total LAI* as new
448 needles grew and dead foliage remained on the canopy. This increased canopy snow interception
449 and subsequent sublimation (Fig. 5). However, when the dead foliage fell to the ground and
450 snags began to fall, the canopy sublimation decreased by approximately 10% for the most severe
451 mortality scenario (60% evergreen mortality) compared to the no-outbreak scenario. This
452 occurred because canopy *Total LAI* decreased and there was less canopy interception (Fig. 5).

453 Ground snow sublimation was less sensitive to beetle-kill (Fig. S7b). In the first three years after
454 beetle-kill (at 60% mortality), ground snow sublimation increased by approximately 7.5% due to
455 an increase of aerodynamic conductance caused by higher understory canopy height. However,
456 from 1993 to 2002, there was no obvious changes in ground snow sublimation after beetle
457 outbreak. When all dead foliage and more than 50% of snags fell to the ground, ground snow
458 sublimation decreased because snowmelt increased as the canopy opened (Fig. 5 and Fig. S7b).
459 In general, for the 60% mortality scenario, the ground snow sublimation first increased by
460 approximately 5% when dead foliage is still on the trees, then decreased by approximately 6%
461 when the canopy is open.

462 The evaporation response was opposite in dry and wet years: evaporation increased in dry
463 years, while it decreased in wet years (Fig. 6d). This phenomenon is caused by tradeoffs and
464 interactions among multiple processes, as will be explained in more detail in the next section.

465 4.2 The role of spatial heterogeneity in water yield response

466 4.2.1 Spatial patterns of hydrologic response along long-term aridity gradient

467 4.2.1.1 Evaporation

468 Beetle outbreak had opposite effects on evaporation between a dry year and a wet year
469 (Fig. 7). In the dry year, most sub-basins experienced higher evaporation for beetle outbreak
470 scenarios than in the control scenario (Fig. 7a). This was the cumulative consequence of
471 decreased canopy evaporation and increased ground (soil, litter, pond) evaporation due to
472 decreases in LAI (caused by mortality). In the dry year, the latter effect (i.e., increased ground
473 evaporation) dominated over the former ~~effect so that, leading to an~~ overall ~~consequence was~~
474 ~~increased increase in~~ evaporation. When the vegetation mortality level (calculated as *the*
475 *percentage of evergreen patches in a sub-basin multiplied by the mortality level of evergreen*

476 *caused by beetles*) was higher than 20%, a few sub-basins in the balanced (more mesic) area
477 ~~showed some experienced a decrease in evaporation~~, indicating that the effects of decreasing
478 canopy evaporation ~~exceeded outstripped~~ the effects of increasing ground evaporation. In the wet
479 year, most of the sub-basins located in the balanced area ~~showed (where canopy evaporation~~
480 ~~decreases dominated) experienced~~ decreases in evaporation, ~~and~~. This decrease responded
481 ~~linearly to the decreasing trend showed linear relationship with level of~~ vegetation mortality ~~level~~
482 ~~(where canopy evaporation decreases are dominant, (Fig. 7b)~~. However, sub-basins located in
483 much drier regions (aridity >3.5) had relatively ~~insignificant minimal~~ responses to ~~the level of~~
484 vegetation mortality levels and some of them even had slight increases in evaporation (where
485 ground evaporation increases are dominant due to drier long-term climate and ~~less pine coverage~~
486 ~~resulted in~~ lower canopy mortality ~~resulted from less evergreen coverage~~).

487 4.2.1.2 Transpiration

488 Beetle outbreak decreased transpiration in both dry and wet years, and with higher mortality
489 levels the decrease became larger (Fig. 8). However, during the dry year, the water-limited area
490 ~~showed experienced~~ less change than the balanced area; some sub-basins even showed slight
491 increases. This increase in the water-limited part of the basin occurred because after beetles kill
492 some overstory evergreen trees, the living trees and understory plants together can exhibit higher
493 transpiration rates in dry years (Tsamir et al. 2019). In the wet year, when most canopies reach
494 potential transpiration rates (less competition for water), beetle outbreaks can reduce
495 transpiration rates by decreasing *Live LAI*.

496 4.2.1.3 Total ET

497 ~~Figure 9 depicts the spatial pattern of changes in total ET (i.e., evaporation and transpiration)~~
498 ~~after beetle outbreak.~~ In a dry year, the balanced and water-limited areas ~~showed~~had opposite
499 responses to mortality: the balanced area ~~showed~~experienced a decrease in ET and the water-
500 limited area ~~showed~~experienced a slight increase. (Fig. 9). In the balanced area, larger ET
501 decreases occurred with higher mortality levels. However, increases in ET in water-limited
502 regions were less sensitive to vegetation mortality level, ~~and even for high vegetation when~~
503 mortality ~~levels was high~~ ($>40\%$), ET still increased (Fig. 9a). During the wet year, most sub-
504 basins experienced decreasing ET after beetle outbreak and the magnitude was larger with higher
505 vegetation mortality. The different responses of ET were driven by different hydrologic
506 responses (transpiration, ground evaporation, and canopy evaporation) competing with each
507 other; this competition was influenced by climate conditions, mortality level, and spatial
508 heterogeneity in long-term aridity.

509 4.2.1.4 Water yield

510 In the dry year (1994), beetle-caused vegetation mortality affected water yield (Fig. 10), but the
511 responses differed between the balanced and water-limited areas. For the **balanced area**, most
512 sub-basins showed slight decreases in water yield after beetle outbreak and no significant
513 differences among low vegetation mortality level ($\leq 40\%$, Fig. 10a). However, with increased
514 mortality ~~levels~~, more sub-basins showed increases in water yield, particularly with vegetation
515 mortality higher than 40% (Fig. 10a). Moreover, the vegetation mortality threshold that changed
516 the direction of water yield response was altered by long-term aridity, e.g., it was 40% for aridity
517 2.0 but 20% for aridity 1.0. For the **water-limited area**, water yield decreased and was
518 independent from mortality level (Fig. 10a). In the wet year (1995), the water yield in most sub-
519 basins increased after beetle outbreak, and the balanced area increased more significantly than

520 the water-limited area. Furthermore, ~~for~~ in the balanced area, higher mortality levels caused
521 larger increases in water yield which responded more linearly (Fig. 10b). In summary, for a wet
522 year, increases in water yield occurred for most sub-basins, driven by a decrease in ET.
523 However, during dry years, the water yield and ET responses were spatially heterogeneous, and
524 the competing changes in evaporation and transpiration changed the direction and magnitude of
525 ET and thus water yield response. The competing effect among different hydrologic fluxes for a
526 dry year is explored in more detail in the next section.

527 4.2.2 Water budgets to understand decreasing water yield in the dry year
528 We analyzed the fluxes in greater detail in a dry year (1994) to understand the response of
529 hydrologic fluxes and resulting water yield. Based on Eq. (2), we identified four hydrological
530 fluxes that can potentially affect water yield: canopy evaporation (canopy evaporation and
531 canopy snow sublimation), ground evaporation (bare soil evaporation, ground snow sublimation,
532 litter evaporation, pond evaporation), plant transpiration, and year-to-year storage change (soil,
533 canopy, litter, snowpack). These three storage terms (canopy, litter, snowpack) were considered
534 together with soil storage since their contribution was minor in comparison with other fluxes.
535 Figure 11 summarized different combinations of these four dominate processes during the dry
536 year (1994) based on their directions (increase or decrease in water yield) after beetle outbreak.
537 In total, fourteen combinations of changes in these fluxes (referred to as “response types”) were
538 found. Five of them resulted in an increase in water yield, and the others resulted in a decrease.

539 Water yield responses caused by the competition of different hydrologic fluxes showed
540 different patterns across the aridity gradient (Figs. 3&10). For the balanced area (upper part of
541 the basin), with low evergreen mortality ($\leq 30\%$), the major response types were D1 and D2, in
542 which the increase in ground evaporation dominated over the decrease in transpiration and

543 canopy evaporation (Fig. 11a, b, and c). However, with higher evergreen mortality ($>30\%$), the
544 major response type became W2, where the increase in ground evaporation did not exceed the
545 decrease in canopy evaporation and transpiration (Fig. 11e, f, and g). This indicates that, in a dry
546 year, when more evergreen stands are killed, the increase in ground evaporation reaches a limit
547 while transpiration and canopy evaporation continue to decrease with decreasing LAI. The
548 increase in ground evaporation was triggered either by decreased *Total LAI* and open canopy,
549 which allowed more solar radiation penetration to the ground for evaporation (Fig. S5c), or less
550 transpiration from plants, which left more water available to evaporate (Fig. 8a). The decrease in
551 plant transpiration and canopy evaporation was driven by a lower *Live LAI* and a lower *Total
552 LAI*, respectively (Fig. S5 a&c and Fig. 8a).

553 The decrease in water yield in the water-limited area (i.e., the lower part of the basin) was
554 driven by different differences in how competing hydrologic flux competitions in responses
555 interacted under different levels of mortality levels. When evergreen stand mortality level was
556 low ($<=30\%$), the response types were D5 and D7, in which the increase in ground and canopy
557 evaporation dominated over the decrease of transpiration (Fig. 11a, b, and c). However, with
558 high evergreen stand mortality ($>30\%$), the response types became D1 and D2 (Fig. 11e, f, and
559 g), in which the canopy evaporation changed from an increase to a decrease that was driven by a
560 decrease in *Total LAI* (Fig. S5c). When mortality was low, the increases in growth from residual
561 plants and understory outstripped the litter fall of dead foliage; thus, *Total LAI* increased, and
562 vice versa when mortality was high.

563 **5 Discussion**

564 5.1 Role of interannual climate variability

565 During the first 15 years after beetle attack, various hydrologic processes opposed and/or
566 reinforced one another to either increase or decrease water yield: a decrease in *Live LAI* can
567 reduce transpiration, while a decrease in *Total LAI* can enhance ground evaporation but diminish
568 canopy evaporation (Montesi et al. 2004; Tsamir et al. 2019). Interannual climate variability
569 ~~playeds~~ an important role in determining which of these competing effects dominate and,
570 therefore, drove the direction of water yield response to beetle outbreak (Winkler et al. 2014;
571 Goeking and Tarboton 2020). Our results show that mainly decreases in water yield occurred in
572 dry years, while ~~increases occurred~~ in wet years-water yield increases. During a wet year, we
573 found that plant ET ~~ean reach~~reached its potential so that ~~any~~ reductions in actual plant ET ~~will~~
574 ~~dominated~~dominated over ~~any~~ increases in ground evaporation, resulting in a net increase in water
575 yield. During a dry year, the relative dominance of these competing effects had greater spatial
576 heterogeneity because the water stress status of the plants varied across the basin (as explained in
577 Sect 4.2.2; Fig. 11).

578 However, the responses we observed in the dry year (1994) and in the wet year (1995) were
579 also affected by the previous year's climate (mainly precipitation) and its effects on hydrologic
580 and biogeochemical processes, which set the initial conditions for the dry and wet year (e.g., soil
581 moisture, nitrogen availability, etc.). Therefore, we also analyzed other water years during the
582 first ten years after beetle outbreak to examine whether our findings for dry and wet years follow
583 a general pattern and to what extent they are influenced by antecedent conditions. Results
584 indicate that our findings are robust throughout the study time period. For example, water yield

585 generally decreased during dry years (1992, 1994, and 2001, see Figs. S1 and S2) and always
586 increased during wet years (1993 and from 1995 to 2000, see Fig. S1 and S2).

587 Adams et al. (2012) provide a threshold of precipitation under which water yield increases
588 after disturbances: at least 500 mm/year (~~Gecking and Tarboton 2020~~). The average annual
589 precipitation over this study basin ~~is was~~ 600-900 mm in dry years, and higher than 900 mm in
590 wet years. Recent field ~~work observation~~observations also ~~find suggest that~~ annual climate
591 variability can affect the magnitude of evapotranspiration fluxes that ~~have potential to~~ change the
592 water yield direction (Biedermeier et al. 2014). Our results corroborate these earlier studies by
593 revealing that there are precipitation thresholds above which tree removal increases water yield
594 (Figs. 10, S1 and S2).

595 5.2 Role of vegetation mortality

596 Vegetation mortality is another important factor that influences water yield response. We
597 found that during the wet year, beetle outbreak increased water yield across the basin and the
598 magnitude of these increases grew linearly with the level of vegetation mortality (Fig. 10b). In
599 the dry year, however, the response of water yield to the level of vegetation mortality was more
600 complicated because mortality level influenced not only the magnitude of change but also the
601 direction (Fig. 10a). These opposing results (due to mortality level) mainly occurred in the
602 “balanced” northern part of the basin, where the competing effects of mortality (i.e., increases in
603 ground evaporation versus decreases in transpiration) are more balanced (Fig. 11). The level of
604 vegetation mortality played a less significant role in changing water yield in the southern “water-
605 limited” area. Vegetation mortality level determined the magnitudes of *Live LAI*, *Total LAI*,
606 transpiration, canopy evaporation, and ground evaporation in such a way that it governed the
607 direction of change in both ET and water yield. Thus, when vegetation mortality level was higher

608 than 40%, its effect of decreasing transpiration became the dominant process and its effect of
609 increasing soil evaporation became minor (Fig. 11 f&and g; Guardiola-Claramonte et al. 2011).

610 Besides the precipitation threshold of at least 500 mm/year, Adams et al. (2012) also

611 estimate that when at least 20% of vegetation cover is removed, water yield can increase.

612 According to previous analysis (Sect 4.1), for a dry year, water yield increases when more than

613 40% of vegetation is removed (Fig. 10a). Our model simulations indicate similar mortality

614 thresholds exist for driving water yield increases during the dry year, however, we did not find

615 evidence that such a threshold exists during wet years. These differences between dry and wet

616 years suggest that the effects of mortality on water yield depend on climate variability.

617 ~~Other~~Similarly, other studies ~~corroborate this finding by demonstrating~~demonstrate that the

618 relationship between mortality level and water yield response is complicated and nonlinear

619 (Moore and Wondzell 2005).

620 5.3 Role of long-term aridity index (PET/P)

621 Long-term aridity indices can be used to predict where water yield will decrease after

622 disturbance. We found that water yield always increased in a wet year, irrespective of the

623 climatic aridity index (Fig. 10a). For dry years, long-term aridity index ~~became~~was important in

624 driving the direction of water yield responses to beetle outbreak. In areas that ~~are~~were less water-

625 limited (balanced areas), the direction of water-yield responses to beetle outbreak in a dry year

626 was mixed and depended on mortality level. For water-limited areas, in a dry year, water yield

627 showed a more consistent decrease ~~trend~~, and it was also less affected by mortality level. These

628 results agree with previous studies finding that water yield decreases largely happen in semiarid

629 areas (Guardiola-Claramonte et al. 2011; Biederman et al. 2014).

630 The decrease in water yield for water-limited area can be driven by increases in canopy
631 evaporation or transpiration, which were different in the hydrologically-balanced area (driven by
632 increase of ground evaporation). There, the increase in canopy evaporation was due to an
633 increase in $t_{\text{Total LAI}}$ which is a combined effect of delayed decay of dead foliage and fast
634 growth of residual and understory plants (Fig. 11d type D5, -D7, D8 & D9; Fig. S5). The
635 surviving and understory plants in the water-limited ~~area can~~ also ~~haved~~ higher transpiration
636 rates after mortality (Fig. 11d type D6 and Fig. 8). Similarly, in field studies, Tsamir et al. (2019)
637 found an increase in photosynthesis and transpiration after thinning in a semi-arid forest. These
638 findings illustrate that in addition to top-down climate variability, the long-term aridity index
639 (which also varies with bottom-up drivers such as vegetation and local topography) can be
640 another useful indicator of how water yield will respond to disturbances.

641 **5.4 Uncertainties**

642 ~~While our findings revealed how topoclimatic gradients influenced water yield responses to~~
643 ~~beetle infestation, some uncertainties remain. For one, we used uniform mortality levels for all~~
644 ~~patches across the watershed rather than location and vegetation-specific mortality levels. In~~
645 ~~addition to evaporation and transpiration, snow sublimation can also influence the direction of~~
646 ~~hydrologic responses. Similar to other process-based snow models, we found that once dead~~
647 ~~foliage fell to the ground, canopy sublimation decreased (e.g., Sexstone et al. 2018; Koeniger et~~
648 ~~al. 2008), which in turn increased water yield relative to the period when dead needles remained~~
649 ~~on the trees (Fig. 5 and Fig. S7). In water-limited regions, the decrease in canopy sublimation~~
650 ~~was much smaller than in the balanced regions because there were smaller changes in Total LAI~~
651 ~~(Fig. S5 c and d). However, immediately after beetle outbreak (e.g., 1990 – 19992), we found~~
652 ~~that canopy sublimation increased in both regions due to an increase in Total LAI (Fig. S7). This~~

653 finding is supported by observational studies showing that canopy sublimation can increase with
654 increasing leaf area (Koeniger et al. 2008).

655 We also found that ground/snowpack sublimation decreased when all dead foliage fell to
656 the ground because snowmelt increased with the opening of the canopy. However, this finding
657 differs from other studies that suggest snowpack sublimation can increase with a more open
658 canopy (Biederman et al. 2014; Harpold et al. 2014). The latter can occur because open canopies
659 may allow more snow to reach ground, which can increase sublimation. However, in our study,
660 faster snowmelt appeared to dominate over increases in ground sublimation. These contrasts
661 between our research and previous studies illustrate a sophisticated balance between canopy-
662 atmosphere-environmental processes that must be accounted for when studying the sublimation
663 response to disturbances (Edburg et al. 2012; Frank et al. 2019). Although RHESSys is a
664 powerful tool for representing these complex interactions, some process representations warrant
665 further analysis. For example, RHESSys currently ignores the effects of litter on ground albedo
666 and snowmelt (Lundquist et al. 2013), which could affect Actual ET and PET rates, and therefore
667 the long-term aridity index.

668 5.4 Uncertainties and recommendations for future research

669 We found the long-term (38-year) aridity index for our study region was a key driver
670 influencing hydrologic responses to beetle outbreaks. While this trend is likely to continue in the
671 future as climate change intensifies aridity in the western US (Livneh and Badger 2020), the
672 classification of water-limited/balanced region based on 38-year aridity index may change. Thus,
673 projecting how responses will change under future aridity scenarios requires further modeling
674 research. We used historical 38-years (1980-2018) data to calculate the aridity index (PET/P).
675 This method can be extended to project future responses to beetle outbreaks by using future

676 climate data from generalized circulation models (GCMs) to drive the process-based,
677 ecohydrologic-beetle effects model. Another consideration, however, is that as aridity continues
678 to increase, vegetation may shift from evergreen to more drought-tolerant shrub or grass species.
679 This would in turn alter beetle outbreak patterns and the corresponding water yield responses
680 (Abatzoglou and Kolden 2013; Bart et al. 2016). However, this process is not well understood
681 and is not currently represented in our modeling framework. A key uncertainty in predicting
682 future beetle effects is how vegetation will respond to climate change.

683 Another key uncertainty is how beetle attacks will change in the future. We used uniform
684 mortality levels for all patches across the watershed and focused our analyses on potential beetle
685 effects. However, in reality beetles usually attack older trees first (Edburg et al. 2011). Thus,
686 incorporating a more mechanistic understanding of beetle attack patterns with our beetle effects
687 model could enable us to simulate more realistic outbreak scenarios moving forward. Another
688 ~~source of uncertainty came from the model treatment of litter pools. In the current~~
689 ~~implementation, we ignored the effects of litter on ground albedo and snowmelt (Lundquist et al.~~
690 ~~2013), which could have an effect on rates of AET and PET and therefore our calculated long-~~
691 ~~term aridity index. Also, because we~~We also focused on water yield responses during the first 15
692 years after beetle outbreak, ~~we may have missed some of the~~ in a watershed that contained
693 balanced or water-limited sub-basins. Future research should analyze long-term effects (e.g.,
694 after the ecosystem ~~has begun~~begins to recover) on forest hydrology. ~~Future research should~~
695 ~~integrate the short term and long term effects and interactions among beetle outbreak, vegetation~~
696 ~~dynamics, and hydrology. Since Trail Creek is either “balanced” or “water limited” in terms of~~
697 ~~aridity, other “~~and also investigate wetter, energy-limited” regions ~~could also be investigated.~~

698 **6 Conclusion**

699 We tested a coupled ecohydrologic and beetle effects model in a semi-arid basin in
700 southern Idaho to examine how watershed hydrology responds to beetle outbreak and how
701 interannual climatic variability, vegetation mortality, and long-term aridity influence these
702 responses. Simulation results indicate that each factor can play a discrete role in driving
703 hydrological processes (e.g., the direction and magnitude of changes in plant transpiration,
704 canopy and soil evaporation, soil and litter moisture, snow sublimation, etc.). These combined
705 effects determine the overall water budget and water yield of the basin. While interannual
706 climate variability is the key factor driving the direction of change in water yield, vegetation
707 mortality levels and long-term aridity modify water yield responses.

708 In dry years, the water yield of most sub-basins slightly decreased after beetle outbreak
709 when vegetation mortality ~~level~~ was lower than 40%; while during wet years it increased in most
710 sub-basins ~~it increased~~. Our results show that long-term aridity index is a reliable indicator of the
711 water yield decreases that occur during dry years due to the fact that there is a consistent
712 decrease in water yield in the most water-limited portion of the basin. Generally, the effects of
713 vegetation mortality on water yield during dry years is less uniform and depends on local ~~long-~~
714 ~~term~~ aridity ~~conditions~~. During wet years, on the other hand, mortality typically causes increases
715 in water yield. This illustrates that together interannual climate variability and mortality can have
716 a stronger effect on the direction of water yield response in water-limited regions than
717 interannual climate variability alone. Future studies to predict water yield response to
718 disturbance should consider the interactions of these factors and capture the fluctuations of
719 competing water fluxes and storage change that control overall water budget and water yield.

720 Using our novel RHESSys-beetle effects modeling framework, we demonstrate that the
721 direction of hydrologic response is a function of multiple factors (e.g., interannual climate
722 variability, vegetation mortality level, and long-term aridity) and that these results do not
723 necessarily *conflict* with each other but are representative of different conditions. The
724 mechanisms behind these changes compete with each other resulting in a water yield increases or
725 decreases (Fig. 1). Contradictory findings in previous studies may result from differing mortality
726 levels (~~disturbance severity~~),² or differences in aridity, ~~and consequently, because~~ the emergent
727 drivers that dominate water yield responses differ. Disentangling these drivers is difficult or
728 impossible using a purely empirical approach where it can be challenging or cost-prohibitive to
729 experiment under a broad range of controlled conditions. Distributed process-based models on
730 the other hand, provide a useful tool for examining these dynamics.

731 ~~Findings from this~~² This study can assist water supply stakeholders in risk management in
732 beetle outbreak locations. For example, during wet years, more attention might be focused on
733 ~~“balanced”~~ areas, i.e., wet regions, for flooding and erosion risks after beetle outbreaks since
734 these regions may experience large increase in runoff due to decreases in plant transpiration and
735 increases in soil moisture. During the dry years, attention might need to shift to “water-limited”
736 areas for managing wildfire risk since these regions will experience elevated ET and lower soil
737 and litter moisture. Because multiple factors interact to influence hydrological processes after
738 beetle outbreak, water and forests management must respond to spatial and temporal variations
739 in climate, aridity, and vegetation mortality levels.

740

741 **Code and data availability**

742 The coupled RHESSys model code is available online at:

743 <https://github.com/renjianning/RHESSys/releases/tag/7.1.1>

744 [Sys/tree/historical_fire](#)

745 The data used in this study are available at:

746 https://osf.io/tsu9z/?view_only=72bfa7b376ad40c59278312f49b03a69

747 **Author contributions**

748 JR, JA and JAH conceived of study. JR designed study with support from JA, JAH and EH. JR
749 and EH developed RHESSys code for coupling beetle effect model and parallelizing model runs
750 with help from JA, JAH, NT, ML, CK, and JTA. JR performed model simulations and developed
751 figures with help from all authors. ML and JTA generated downscaled meteorological data. JR
752 wrote manuscript with input from all authors.

753 **Competing interests**

754 The authors declare that they have no conflict of interest.

755 **Acknowledgments**

756 This project is supported by National Science Foundation of United States under award numberS

757 DMS-1520873 [and DEB-1916658](#).

758

References

760 [Abatzoglou, John T. 2013. "Development of Gridded Surface Meteorological Data for](#)
 761 [Ecological Applications and Modelling." *International Journal of Climatology* 33 \(1\):](#)
 762 [121–31. <https://doi.org/10.1002/joc.3413>.](#)

763 [Abatzoglou, John T., and Crystal A. Kolden. 2011. "Climate Change in Western US Deserts:](#)
 764 [Potential for Increased Wildfire and Invasive Annual Grasses." *Rangeland Ecology &*](#)
 765 [Management](#) 64 (5): 471–78. <https://doi.org/10.2111/REM-D-09-00151.1>

766 Ackerly, David D. 2004. "Adaptation, Niche Conservatism, and Convergence: Comparative
 767 Studies of Leaf Evolution in the California Chaparral." *The American Naturalist* 163 (5):
 768 654–71. <https://doi.org/10.1086/383062>.

769 Adams, Henry D., Charles H. Luce, David D. Breshears, Craig D. Allen, Markus Weiler, V.
 770 Cody Hale, Alistair M. S. Smith, and Travis E. Huxman. 2012. "Ecohydrological
 771 Consequences of Drought- and Infestation- Triggered Tree Die-off: Insights and
 772 Hypotheses." *Ecohydrology* 5 (2): 145–59. <https://doi.org/10.1002/eco.233>.

773 Anderegg, William R. L., Jeffrey M. Kane, and Leander D. L. Anderegg. 2013. "Consequences
 774 of Widespread Tree Mortality Triggered by Drought and Temperature Stress." *Nature*
 775 *Climate Change* 3 (1): 30–36. <https://doi.org/10.1038/nclimate1635>.

776 Baret, F., A. Olioso, J. L. Luciani, J. F. Hanocq, and J. C. Monterrot. 1989. "Estimation à partir
 777 de mesures de réflectance spectrale du rayonnement photosynthétiquement actif absorbé
 778 par une culture de blé." *Agronomie* 9 (9): 885–95. <https://doi.org/10.1051/agro:19890906>.

779 Bart, Ryan R., Christina L. Tague, and Max A. Moritz. 2016. "Effect of Tree-to-Shrub Type
 780 Conversion in Lower Montane Forests of the Sierra Nevada (USA) on Streamflow."
 781 Edited by Julia A. Jones. *PLOS ONE* 11 (8): e0161805.
<https://doi.org/10.1371/journal.pone.0161805>.

782 Bennett, Katrina E., Theodore J. Bohn, Kurt Solander, Nathan G. McDowell, Chonggang Xu,
 783 Enrique Vivoni, and Richard S. Middleton. 2018. "Climate-Driven Disturbances in the
 784 San Juan River Sub-Basin of the Colorado River." *Hydrology and Earth System Sciences*
 785 22 (1): 709–25. <https://doi.org/10.5194/hess-22-709-2018>.

786 Bentz, Barbara J., Jacques Régnière, Christopher J Fettig, E. Matthew Hansen, Jane L. Hayes,
 787 Jeffrey A. Hicke, Rick G. Kelsey, Jose F. Negrón, and Steven J. Seybold. 2010. "Climate
 788 Change and Bark Beetles of the Western United States and Canada: Direct and Indirect
 789 Effects." *BioScience* 60 (8): 602–13. <https://doi.org/10.1525/bio.2010.60.8.6>.

790 BERNER, L. T., B. E. LAW, A. J. MEDDENS, and J. A. HICKE. 2017. "Tree Mortality from
 791 Fires and Bark Beetles at 1-Km Resolution, Western USA, 2003-2012." Collection. Tree
 792 Mortality from Fires and Bark Beetles at 1-Km Resolution, Western USA, 2003-2012.
 793 2017. <https://doi.org/10.3334/ornldaac/1512>.

794 Berner, Logan T., and Beverly E. Law. 2016. "Plant Traits, Productivity, Biomass and Soil
 795 Properties from Forest Sites in the Pacific Northwest, 1999–2014." *Scientific Data* 3 (1):
 796 1–14. <https://doi.org/10.1038/sdata.2016.2>.

797 Bethlahmy, Nedavia. 1974. "More Streamflow after a Bark Beetle Epidemic." *Journal of*
 798 *Hydrology* 23 (3): 185–89. [https://doi.org/10.1016/0022-1694\(74\)90001-8](https://doi.org/10.1016/0022-1694(74)90001-8).

799 Biederman, J. A., A. A. Harpold, D. J. Gochis, B. E. Ewers, D. E. Reed, S. A. Papuga, and P. D.
 800 Brooks. 2014. "Increased Evaporation Following Widespread Tree Mortality Limits
 801 Streamflow Response." *Water Resources Research* 50 (7): 5395–5409.
 802 <https://doi.org/10.1002/2013WR014994>.

803

804 [Biederman, J. A., A. A. Harpold, D. J. Gochis, B. E. Ewers, D. E. Reed, S. A. Papuga, and P. D.](#)
805 [Brooks. 2014. "Increased Evaporation Following Widespread Tree Mortality Limits](#)
806 [Streamflow Response."](#) *Water Resources Research* 50 (7): 5395–5409.
807 <https://doi.org/10.1002/2013WR014994>.

808 Buhidar, Balthasar. 2002. "The Big Wood River Watershed Management Plan."
809 https://www.deq.idaho.gov/media/450316-water_data_reports_surface_water_tmdlbig_wood_river_big_wood_entire.pdf.

810 Buma, Brian, and Ben Livneh. 2017. "Key Landscape and Biotic Indicators of Watersheds
811 Sensitivity to Forest Disturbance Identified Using Remote Sensing and Historical
812 Hydrography Data." *Environmental Research Letters* 12 (7): 074028.
813 <https://doi.org/10.1088/1748-9326/aa7091>.

814 Chaney, Nathaniel W., Eric F. Wood, Alexander B. McBratney, Jonathan W. Hempel, Travis W.
815 Nauman, Colby W. Brungard, and Nathan P. Odgers. 2016. "POLARIS: A 30-Meter
816 Probabilistic Soil Series Map of the Contiguous United States." *Geoderma* 274 (July):
817 54–67. <https://doi.org/10.1016/j.geoderma.2016.03.025>.

818 Chen, Fei, Guo Zhang, Michael Barlage, Ying Zhang, Jeffrey A. Hicke, Arjan Meddens,
819 Guangsheng Zhou, William J. Massman, and John Frank. 2014. "An Observational and
820 Modeling Study of Impacts of Bark Beetle–Caused Tree Mortality on Surface Energy and
821 Hydrological Cycles." *Journal of Hydrometeorology* 16 (2): 744–61.
822 <https://doi.org/10.1175/JHM-D-14-0059.1>.

823 Daly, Christopher, Ronald P. Neilson, and Donald L. Phillips. 1994. "A Statistical-Topographic
824 Model for Mapping Climatological Precipitation over Mountainous Terrain." *Journal of*
825 *Applied Meteorology* 33 (2): 140–58. [https://doi.org/10.1175/1520-0450\(1994\)033<0140:ASTMFM>2.0.CO;2](https://doi.org/10.1175/1520-0450(1994)033<0140:ASTMFM>2.0.CO;2).

826 Dickinson, Robert E., Muhammad Shaikh, Ross Bryant, and Lisa Graumlich. 1998. "Interactive
827 Canopies for a Climate Model." *Journal of Climate* 11 (11): 2823–36.
828 [https://doi.org/10.1175/1520-0442\(1998\)011<2823:ICFACM>2.0.CO;2](https://doi.org/10.1175/1520-0442(1998)011<2823:ICFACM>2.0.CO;2).

829 Edburg, Steven L., Jeffrey A. Hicke, Paul D. Brooks, Elise G. Pendall, Brent E. Ewers, Urszula
830 Norton, David Gochis, Ethan D. Gutmann, and Arjan JH Meddens. 2012. "Cascading
831 Impacts of Bark Beetle-Caused Tree Mortality on Coupled Biogeophysical and
832 Biogeochemical Processes." *Frontiers in Ecology and the Environment* 10 (8): 416–24.
833 <https://doi.org/10.1890/110173>.

834 Edburg, Steven L., Jeffrey A. Hicke, David M. Lawrence, and Peter E. Thornton. 2011.
835 "Simulating Coupled Carbon and Nitrogen Dynamics Following Mountain Pine Beetle
836 Outbreaks in the Western United States." *Journal of Geophysical Research: Biogeosciences* 116 (G4): G04033. <https://doi.org/10.1029/2011JG001786>.

837 Fan, Y., M. Clark, D. M. Lawrence, S. Swenson, L. E. Band, S. L. Brantley, P. D. Brooks, et al.
838 2019. "Hillslope Hydrology in Global Change Research and Earth System Modeling."
839 *Water Resources Research* 0 (0). <https://doi.org/10.1029/2018WR023903>.

840 Farquhar, G. D., and S. von Caemmerer. 1982. "Modelling of Photosynthetic Response to
841 Environmental Conditions." In *Physiological Plant Ecology II: Water Relations and*
842 *Carbon Assimilation*, edited by O. L. Lange, P. S. Nobel, C. B. Osmond, and H. Ziegler,
843 549–87. *Encyclopedia of Plant Physiology*. Berlin, Heidelberg: Springer.
844 https://doi.org/10.1007/978-3-642-68150-9_17.

848 [Frank, John M., William J. Massman, Brent E. Ewers, and David G. Williams. 2019. “Bayesian](#)
849 [Analyses of 17 Winters of Water Vapor Fluxes Show Bark Beetles Reduce Sublimation.”](#)
850 [Water Resources Research 55 \(2\): 1598–1623. https://doi.org/10.1029/2018WR023054.](#)

851 Frenzel, Steven A. 1989. “Water Resources of the Upper Big Wood River Basin, Idaho.” US
852 Geological Survey. <https://idwr.idaho.gov/files/legal/CMR50/CMR50-1989-Water-Resources-of-the-Upper-Big-Wood-River-Basin-Idaho.pdf>.

854 Fyfe, John C., Chris Derksen, Lawrence Mudryk, Gregory M. Flato, Benjamin D. Santer, Neil C.
855 Swart, Noah P. Molotch, et al. 2017. “Large Near-Term Projected Snowpack Loss over
856 the Western United States.” *Nature Communications* 8 (1): 14996.
857 <https://doi.org/10.1038/ncomms14996>.

858 Garcia, E. S., and C. L. Tague. 2015. “Subsurface Storage Capacity Influences Climate–
859 Evapotranspiration Interactions in Three Western United States Catchments.” *Hydrology and Earth System Sciences* 19 (12): 4845–58. <https://doi.org/10.5194/hess-19-4845-2015>.

861 Goeking, Sara A., and David G. Tarboton. 2020. “Forests and Water Yield: A Synthesis of
862 Disturbance Effects on Streamflow and Snowpack in Western Coniferous Forests.”
863 *Journal of Forestry* 118 (2): 172–92. <https://doi.org/10.1093/jofore/fvz069>.

864 Guardiola-Claramonte, M., Peter A. Troch, David D. Breshears, Travis E. Huxman, Matthew B.
865 Switanek, Matej Durcik, and Neil S. Cobb. 2011. “Decreased Streamflow in Semi-Arid
866 Basins Following Drought-Induced Tree Die-off: A Counter-Intuitive and Indirect
867 Climate Impact on Hydrology.” *Journal of Hydrology* 406 (3): 225–33.
868 <https://doi.org/10.1016/j.jhydrol.2011.06.017>.

869 Hanan, Erin J., Carla M. D’Antonio, Dar A. Roberts, and Joshua P. Schimel. 2016. “Factors
870 Regulating Nitrogen Retention During the Early Stages of Recovery from Fire in Coastal
871 Chaparral Ecosystems.” *Ecosystems* 19 (5): 910–26. <https://doi.org/10.1007/s10021-016-9975-0>.

873 Hanan, Erin J., Christina Tague, Janet Choate, Mingliang Liu, Crystal Kolden, and Jennifer
874 Adam. 2018. “Accounting for Disturbance History in Models: Using Remote Sensing to
875 Constrain Carbon and Nitrogen Pool Spin-Up.” *Ecological Applications: A Publication of the Ecological Society of America* 28 (5): 1197–1214.
877 <https://doi.org/10.1002/eap.1718>.

878 Hanan, Erin J., Christina (Naomi) Tague, and Joshua P. Schimel. 2017. “Nitrogen Cycling and
879 Export in California Chaparral: The Role of Climate in Shaping Ecosystem Responses to
880 Fire.” *Ecological Monographs* 87 (1): 76–90.
881 <https://doi.org/10.1002/ecm.1234>.

882 Hanan, Erin J., Jiaming Ren, Christina L. Tague, Crystal A. Kolden, John T. Abatzoglou, Ryan
883 R. Bart, Maureen C. Kennedy, Mingliang Liu, and Jennifer C. Adam. 2021. “How
884 Climate Change and Fire Exclusion Drive Wildfire Regimes at Actionable Scales.”
885 *Environmental Research Letters* 16 (2): 024051. <https://doi.org/10.1088/1748-9326/abd78e>.

887 Harpold, Adrian A., Joel A. Biederman, Katherine Condon, Manuel Merino, Yoganand
888 Korgaonkar, Tongchao Nan, Lindsey L. Sloat, Morgan Ross, and Paul D. Brooks. 2014.
889 “Changes in Snow Accumulation and Ablation Following the Las Conchas Forest Fire,
890 New Mexico, USA: CHANGES IN SNOW FOLLOWING FIRE.” *Ecohydrology* 7 (2):
891 440–52. <https://doi.org/10.1002/eco.1363>.

892 Hicke, Jeffrey A., Morris C. Johnson, Jane L. Hayes, and Haiganoush K. Preisler. 2012. "Effects
893 of Bark Beetle-Caused Tree Mortality on Wildfire." *Forest Ecology and Management*
894 271 (May): 81–90. <https://doi.org/10.1016/j.foreco.2012.02.005>.

895 Homer, Collin G., Jon Dewitz, Limin Yang, Suming Jin, Patrick Danielson, George Z. Xian,
896 John Coulston, Nathaniel Herold, James Wickham, and Kevin Megown. 2015.
897 "Completion of the 2011 National Land Cover Database for the Conterminous United
898 States – Representing a Decade of Land Cover Change Information." *Photogrammetric
899 Engineering and Remote Sensing* 81: 345354.

900 Hubbart, Jason A. 2007. "Timber Harvest Impacts on Water Yield in the Continental/Maritime
901 Hydroclimatic Region of the United States," 12.

902 Koeniger, Paul, Jason Hubbart, Timothy Link, and John Marshall. 2008. "Isotopic Variation of
903 Snowcover and Streamflow in Response to Changes in Canopy Structure in a Snow-
904 Dominated Mountain Catchment." *Hydrological Processes* 22 (February): 557–66.

905 Law, B. E., O. J. Sun, J. Campbell, S. Van Tuyl, and P. E. Thornton. 2003. "Changes in Carbon
906 Storage and Fluxes in a Chronosequence of Ponderosa Pine." *Global Change Biology* 9
907 (4): 510–24. <https://doi.org/10.1046/j.1365-2486.2003.00624.x>.

908 Lawrence, David M., Keith W. Oleson, Mark G. Flanner, Peter E. Thornton, Sean C. Swenson,
909 Peter J. Lawrence, Xubin Zeng, et al. 2011. "Parameterization Improvements and
910 Functional and Structural Advances in Version 4 of the Community Land Model."
911 *Journal of Advances in Modeling Earth Systems* 3 (1).
912 <https://doi.org/10.1029/2011MS00045>.

913 Lin, Laurence, Lawrence E. Band, James M. Vose, Taehee Hwang, Chelcy Ford Miniati, and
914 Paul V. Bolstad. 2019. "Ecosystem Processes at the Watershed Scale: Influence of
915 Flowpath Patterns of Canopy Ecophysiology on Emergent Catchment Water and Carbon
916 Cycling." *Ecohydrology* 0 (0): e2093. <https://doi.org/10.1002/eco.2093>.

917 Livneh, Ben, and Andrew M. Badger. 2020. "Drought Less Predictable under Declining Future
918 Snowpack." *Nature Climate Change* 10 (5): 452–58. 922 Outbreak and Dust-on-Snow in the Colorado Rocky Mountains." *Journal of Hydrology*
923 523 (April): 196–210. <https://doi.org/10.1016/j.jhydrol.2015.01.039>.

924 Lundquist, Jessica D., Susan E. Dickerson-Lange, James A. Lutz, and Nicoleta C. Cristea. 2013.
925 "Lower Forest Density Enhances Snow Retention in Regions with Warmer Winters: A
926 Global Framework Developed from Plot-Scale Observations and Modeling." *Water
927 Resources Research* 49 (10): 6356–70. <https://doi.org/10.1002/wrcr.20504>.

928 Lundquist, Jessica D., Paul J. Neiman, Brooks Martner, Allen B. White, Daniel J. Gottas, and F.
929 Martin Ralph. 2008. "Rain versus Snow in the Sierra Nevada, California: Comparing
930 Doppler Profiling Radar and Surface Observations of Melting Level." *Journal of
931 Hydrometeorology* 9 (2): 194–211. <https://doi.org/10.1175/2007JHM853.1>.

932 McVicar, Tim R., Michael L. Roderick, Randall J. Donohue, Ling Tao Li, Thomas G. Van Niel,
933 Axel Thomas, Jürgen Grieser, et al. 2012. "Global Review and Synthesis of Trends in
934 Observed Terrestrial Near-Surface Wind Speeds: Implications for Evaporation." *Journal of
935 Hydrology* 416–417 (January): 182–205. <https://doi.org/10.1016/j.jhydrol.2011.10.024>.

936 Meddens, Arjan, Jeffrey A Hicke, and Charles A Ferguson. 2012. "Spatiotemporal Patterns of
937 Observed Bark Beetle-Caused Tree Mortality in British Columbia and the Western

United States." *Ecological Applications: A Publication of the Ecological Society of America* 22 (October): 1876–91. <https://doi.org/10.2307/41723101>.

Mikkelsen, K. M., R. M. Maxwell, I. Ferguson, J. D. Stednick, J. E. McCray, and J. O. Sharp. 2013. "Mountain Pine Beetle Infestation Impacts: Modeling Water and Energy Budgets at the Hill-Slope Scale." *Ecohydrology* 6 (1): 64–72. <https://doi.org/10.1002/eco.278>.

Mitchell, Kenneth E., Dag Lohmann, Paul R. Houser, Eric F. Wood, John C. Schaake, Alan Robock, Brian A. Cosgrove, et al. 2004. "The Multi-Institution North American Land Data Assimilation System (NLDAS): Utilizing Multiple GCIP Products and Partners in a Continental Distributed Hydrological Modeling System." In . <https://doi.org/10.1029/2003JD003823>.

Molotch, Noah P., Peter D. Blanken, Mark W. Williams, Andrew A. Turnipseed, Russell K. Monson, and Steven A. Margulis. 2007. "Estimating Sublimation of Intercepted and Sub-Canopy Snow Using Eddy Covariance Systems." *Hydrological Processes* 21 (12): 1567–75. <https://doi.org/10.1002/hyp.6719>.

Monteith, J. L. 1965. "Evaporation and Environment." *Symposia of the Society for Experimental Biology* 19: 205–34.

Montesi, James, Kelly Elder, R. A. Schmidt, and Robert E. Davis. 2004. "Sublimation of Intercepted Snow within a Subalpine Forest Canopy at Two Elevations." *Journal of Hydrometeorology* 5 (5): 763–73. [https://doi.org/10.1175/1525-7541\(2004\)005<0763:SOISWA>2.0.CO;2](https://doi.org/10.1175/1525-7541(2004)005<0763:SOISWA>2.0.CO;2).

Moore, R Dan, and S M Wondzell. 2005. "PHYSICAL HYDROLOGY AND THE EFFECTS OF FOREST HARVESTING IN THE PACIFIC NORTHWEST: A REVIEW," 22.

Morillas, L., R. E. Pangle, G. E. Maurer, W. T. Pockman, N. McDowell, C.-W. Huang, D. J. Kroscheck, et al. 2017. "Tree Mortality Decreases Water Availability and Ecosystem Resilience to Drought in Piñon-Juniper Woodlands in the Southwestern U.S." *Journal of Geophysical Research: Biogeosciences* 122 (12): 3343–61. <https://doi.org/10.1002/2017JG004095>.

Mu, Qiaozhen, Faith Ann Heinsch, Maosheng Zhao, and Steven W. Running. 2007. "Development of a Global Evapotranspiration Algorithm Based on MODIS and Global Meteorology Data." *Remote Sensing of Environment* 111 (4): 519–36. <https://doi.org/10.1016/j.rse.2007.04.015>.

Mu, Qiaozhen, Maosheng Zhao, and Steven W. Running. 2011. "Improvements to a MODIS Global Terrestrial Evapotranspiration Algorithm." *Remote Sensing of Environment* 115 (8): 1781–1800. <https://doi.org/10.1016/j.rse.2011.02.019>.

Nash, J. E., and J. V. Sutcliffe. 1970. "River Flow Forecasting through Conceptual Models Part I — A Discussion of Principles." *Journal of Hydrology* 10 (3): 282–90. [https://doi.org/10.1016/0022-1694\(70\)90255-6](https://doi.org/10.1016/0022-1694(70)90255-6).

NRCS. n.d. "SNOWTEL." https://www.wcc.nrcs.usda.gov/about/mon_automate.html.

Nagler, Pamela L., Uyen Nguyen, Heather L. Bateman, Christopher J. Jarchow, Edward P. Glenn, William J. Waugh, and Charles van Riper. 2018. "Northern Tamarisk Beetle (*Diorhabda Carinulata*) and Tamarisk (*Tamarix* Spp.) Interactions in the Colorado River Basin." *Restoration Ecology* 26 (2): 348–59. <https://doi.org/10.1111/rec.12575>.

Paine, T. D., K. F. Raffa, and T. C. Harrington. 1997. "Interactions Among Scolytid Bark Beetles, Their Associated Fungi, and Live Host Conifers." *Annual Review of Entomology* 42 (1): 179–206. <https://doi.org/10.1146/annurev.ento.42.1.179>.

983 Parton, W. J., A. R. Mosier, D. S. Ojima, D. W. Valentine, D. S. Schimel, K. Weier, and A. E.
984 Kulmala. 1996. "Generalized Model for N₂ and N₂O Production from Nitrification and
985 Denitrification." *Global Biogeochemical Cycles* 10 (3): 401–12.
986 <https://doi.org/10.1029/96GB01455>.

987 Penn, Colin A., Lindsay A. Bearup, Reed M. Maxwell, and David W. Clow. 2016. "Numerical
988 Experiments to Explain Multiscale Hydrological Responses to Mountain Pine Beetle Tree
989 Mortality in a Headwater Watershed." *Water Resources Research* 52 (4): 3143–61.
990 <https://doi.org/10.1002/2015WR018300>.

991 Perry, Timothy D., and Julia A. Jones. 2017. "Summer Streamflow Deficits from Regenerating
992 Douglas-Fir Forest in the Pacific Northwest, USA: Summer Streamflow Deficits from
993 Regenerating Douglas-Fir Forest." *Ecohydrology* 10 (2): e1790.
994 <https://doi.org/10.1002/eco.1790>.

995 Pomeroy, John, Xing Fang, and Chad Ellis. 2012. "Sensitivity of Snowmelt Hydrology in
996 Marmot Creek, Alberta, to Forest Cover Disturbance: SENSITIVITY OF SNOWMELT
997 HYDROLOGY TO FOREST DISTURBANCE." *Hydrological Processes* 26 (12): 1891–
998 1904. <https://doi.org/10.1002/hyp.9248>.

999 Potts, Donald F. 1984. "Hydrologic Impacts of a Large-Scale Mountain Pine Beetle
1000 (Dendroctonus Ponderosae Hopkins) Epidemic1." *JAWRA Journal of the American
1001 Water Resources Association* 20 (3): 373–77. <https://doi.org/10.1111/j.1752-1688.1984.tb04719.x>.

1003 Robles, Marcos D., Robert M. Marshall, Frances O'Donnell, Edward B. Smith, Jeanmarie A.
1004 Haney, and David F. Gori. 2014. "Effects of Climate Variability and Accelerated Forest
1005 Thinning on Watershed-Scale Runoff in Southwestern USA Ponderosa Pine Forests."
1006 *PLOS ONE* 9 (10): e111092. <https://doi.org/10.1371/journal.pone.0111092>.

1007 Ryan, Michael G. 1991. "Effects of Climate Change on Plant Respiration." *Ecological
1008 Applications* 1 (2): 157–67. <https://doi.org/10.2307/1941808>.

1009 Searcy, James Kincheon. 1959. "Flow-Duration Curves." Report 1542A. Water Supply Paper.
1010 USGS Publications Warehouse. <https://doi.org/10.3133/wsp1542A>.

1011 Sextone, Graham A., David W. Clow, Steven R. Fassnacht, Glen E. Liston, Christopher A.
1012 Hiemstra, John F. Knowles, and Colin A. Penn. 2018. "Snow Sublimation in Mountain
1013 Environments and Its Sensitivity to Forest Disturbance and Climate Warming." *Water
1014 Resources Research* 54 (2): 1191–1211. <https://doi.org/10.1002/2017WR021172>.

1015 Skinner, Kenneth D. 2013. "Post-Fire Debris-Flow Hazard Assessment of the Area Burned by
1016 the 2013 Beaver Creek Fire near Hailey, Central Idaho." USGS Numbered Series 2013–
1017 1273. Open-File Report. Reston, VA: U.S. Geological Survey.
1018 <http://pubs.er.usgs.gov/publication/ofr20131273>.

1019 Slinski, Kimberly M., Terri S. Hogue, Aaron T. Porter, and John E. McCray. 2016. "Recent Bark
1020 Beetle Outbreaks Have Little Impact on Streamflow in the Western United States."
1021 *Environmental Research Letters* 11 (7): 074010. <https://doi.org/10.1088/1748-9326/11/7/074010>.

1023 Smith, Frederick W., D. Arthur Sampson, and James N. Long. 1991. "Comparison of Leaf Area
1024 Index Estimates from Tree Allometrics and Measured Light Interception." *Forest Science*
1025 37 (6): 1682–88. <https://doi.org/10.1093/forestscience/37.6.1682>.

1026 Smith, Rex Onis. 1960. "Geohydrologic Evaluation of Streamflow Records in the Big Wood
1027 River Basin, Idaho." USGS Numbered Series 1479. Water Supply Paper. U.S. Govt.
1028 Print. Off., <http://pubs.er.usgs.gov/publication/wsp1479>.

1029 Son, Kyongho, and Christina Tague. 2019. "Hydrologic Responses to Climate Warming for a
1030 Snow-Dominated Watershed and a Transient Snow Watershed in the California Sierra." *Ecohydrology* 12 (1): e2053. <https://doi.org/10.1002/eco.2053>.

1031

1032 Sun, Ning, Mark Wigmosta, Tian Zhou, Jessica Lundquist, Susan Dickerson-Lange, and
1033 Nicoleta Cristea. 2018. "Evaluating the Functionality and Streamflow Impacts of
1034 Explicitly Modelling Forest–Snow Interactions and Canopy Gaps in a Distributed
1035 Hydrologic Model." *Hydrological Processes* 32 (13): 2128–40.
1036 <https://doi.org/10.1002/hyp.13150>.

1037 Snyder, Keirith A., Russell L. Scott, and Kenneth McGwire. 2012. "Multiple Year Effects of a
1038 Biological Control Agent (Diorhabda Carinulata) on Tamarix (Saltcedar) Ecosystem
1039 Exchanges of Carbon Dioxide and Water." *Agricultural and Forest Meteorology* 164
1040 (October): 161–69. <https://doi.org/10.1016/j.agrformet.2012.03.004>.

1041 Tague, C. L., and L. E. Band. 2004. "RHESSys: Regional Hydro-Ecologic Simulation System—
1042 An Object-Oriented Approach to Spatially Distributed Modeling of Carbon, Water, and
1043 Nutrient Cycling." *Earth Interactions* 8 (19): 1–42. [https://doi.org/10.1175/1087-3562\(2004\)8<1:RRHSSO>2.0.CO;2](https://doi.org/10.1175/1087-3562(2004)8<1:RRHSSO>2.0.CO;2).

1044

1045 Tague, Christina L., Max Moritz, and Erin Hanan. 2019. "The Changing Water Cycle: The Eco-
1046 Hydrologic Impacts of Forest Density Reduction in Mediterranean (Seasonally Dry)
1047 Regions." *Wiley Interdisciplinary Reviews: Water* 0 (0): e1350.
1048 <https://doi.org/10.1002/wat2.1350>.

1049 Tsamir, Mor, Sagi Gottlieb, Yakir Preisler, Eyal Rotenberg, Fyodor Tatarinov, Dan Yakir,
1050 Christina Tague, and Tamir Klein. 2019. "Stand Density Effects on Carbon and Water
1051 Fluxes in a Semi-Arid Forest, from Leaf to Stand-Scale." *Forest Ecology and*
1052 *Management* 453 (December): 117573. <https://doi.org/10.1016/j.foreco.2019.117573>.

1053 White, Joseph D., and Steven W. Running. 1994. "Testing Scale Dependent Assumptions in
1054 Regional Ecosystem Simulations." *Journal of Vegetation Science* 5 (5): 687–702.
1055 <https://doi.org/10.2307/3235883>.

1056 White, Michael A., Peter E. Thornton, Steven W. Running, and Ramakrishna R. Nemani. 2000.
1057 "Parameterization and Sensitivity Analysis of the BIOME–BGC Terrestrial Ecosystem
1058 Model: Net Primary Production Controls." *Earth Interactions* 4 (3): 1–85.
1059 [https://doi.org/10.1175/1087-3562\(2000\)004<0003:PASAOT>2.0.CO;2](https://doi.org/10.1175/1087-3562(2000)004<0003:PASAOT>2.0.CO;2).

1060 Wine, Michael L, Daniel Cadol, and Oleg Makhnin. 2018. "In Ecoregions across Western USA
1061 Streamflow Increases during Post-Wildfire Recovery." *Environmental Research Letters*
1062 13 (1): 014010. <https://doi.org/10.1088/1748-9326/aa9c5a>.

1063 Winkler, Rita, Sarah Boon, Barbara Zimonick, and Dave Spittlehouse. 2014. "Snow
1064 Accumulation and Ablation Response to Changes in Forest Structure and Snow Surface
1065 Albedo after Attack by Mountain Pine Beetle." *Hydrological Processes* 28 (2): 197–209.
1066 <https://doi.org/10.1002/hyp.9574>.

1067 Zhang, Ke, John S. Kimball, Qiaozhen Mu, Lucas A. Jones, Scott J. Goetz, and Steven W.
1068 Running. 2009. "Satellite Based Analysis of Northern ET Trends and Associated
1069 Changes in the Regional Water Balance from 1983 to 2005." *Journal of Hydrology* 379
1070 (1): 92–110. <https://doi.org/10.1016/j.jhydrol.2009.09.047>.

1071 Zhao, Maosheng, Steven W. Running, and Ramakrishna R. Nemani. 2006. "Sensitivity of
1072 Moderate Resolution Imaging Spectroradiometer (MODIS) Terrestrial Primary
1073 Production to the Accuracy of Meteorological Reanalyses." *Journal of Geophysical*
1074 *Research: Biogeosciences* 111 (G1). <https://doi.org/10.1029/2004JG000004>.

1075

1076

1077

1078 *Table 1. Classification of aridity index.*

1079

Aridity Index (i.e. PET/P)	Type
> 2	Water - limited
0.8 - 2	Balanced
< 0.8	Energy - limited

1080

1081

1082

1083

1084 *Figure 1. Mechanism of water yield responses to beetle-caused mortality during the red and*
 1085 *gray phases (0 – 10 years after beetle outbreak), semicircle boxes represent understory*
 1086 *responses and square boxes represent overstory responses.*

1087

1088

1089 *Figure 2. Land cover, elevation, and tree mortality for Trail Creek. (a) is the land cover map*
 1090 *with the main vegetation type, (b) is the elevation gradient, and (c) is the severity of beetle*
 1091 *caused tree mortality (during the period 2003-2012 Meddens et al. (2012)). Note that, for our*
 1092 *modeling experiments, we prescribe beetle outbreak uniformly across evergreen patches instead*
 1093 *of using historical beetle outbreak data.*

1094

1095

1096

1097 *Figure 3. Trail creek evergreen forest cover percentage for each sub-basin, sub-basin ID, and*
 1098 *long-term aridity index. Aridity index is defined as annual mean potential evapotranspiration*
 1099 *(PET) / precipitation (P) from 38 years of data (see Sect 3.4), PET/P > 2 is water-limited, PET/P*
 1100 *< 0.8 is energy-limited, PET/P between 0.8 and 2 is balanced. Recall that only evergreen forest*
 1101 *trees are attacked during beetle outbreaks.*

1102

1103

1104 *Figure 4. Conceptual framework of the beetle effect model.*
1105 **(a)** Normal background mortality routine in RHESSys before beetle outbreak. **(b)** Mortality from
1106 bark beetles. We add snag (standing dead trees) and dead foliage (needles still on dead trees)
1107 pools, shown in the dashed circle. After a beetle outbreak, carbon (C) and Nitrogen (N) move
1108 from stems to snag pools (black dashed arrow). After staying in the snag pool for m years, C and
1109 N move from snag to coarse wood debris pools (CWD) with an exponential decay rate to
1110 represent the snag fall (gray dashed arrow). It is a similar process for leaf C and N, which move
1111 from leaf to dead foliage to litter pools (black dotted arrow). Furthermore, C and N in the CWD
1112 and fine root pools move to the litter pool immediately after outbreak (solid black and gray
1113 arrows). Figure modified from Edburg et al. (2012).
1114

1115

1116 *Figure 5. Basin-scale vegetation responses after beetle outbreak for different evergreen*
 1117 *mortality level. (a) Annual live leaf area index (Live LAI), (b) Annual ~~Total~~ LAI (LAI calculated*
 1118 *including dead foliage pool), (c) Daily dead foliage pool, and (d) Daily snag pool after outbreak.*
 1119 *The green background color is the period before beetle outbreak, and the red background color*
 1120 *is after the beetle outbreak.*

1121

1122

1123 *Figure 6. Basin-scale annual sum of hydrologic fluxes responses after beetle outbreak (1989) for*
1124 *different evergreen mortality levels. (a) Annual water yield calculated as annual sum of basin*
1125 *streamflow, and (b) annual soil water storage change calculated as water year soil water*
1126 *storage at the end of water year minus soil water storage at the beginning of water year. (c)*
1127 *Transpiration is the annual sum of transpiration for both overstory and understory. (d)*
1128 *Evaporation is calculated as the annual sum of canopy evaporation, ground evaporation, and*
1129 *snow sublimation*

1131

1132 *Figure 7. Relationship among long-term aridity, vegetation mortality level, and differences in*
 1133 *evaporation for a dry year (1994, a) and wet year (1995, b). Differences are calculated as the*
 1134 *normalized differences (%) of evaporation between each evergreen mortality scenario and the*
 1135 *control run for no beetle outbreak. Vegetation mortality for each sub-basin is calculated as the*
 1136 *percentage of evergreen patches multiplied by the mortality level of evergreen caused by beetles.*
 1137 *Long-term aridity is defined as temporally averaged (38 years) potential evapotranspiration*
 1138 *relative to precipitation.*

1139

1141

1142 *Figure 8. Relationship among long-term aridity, vegetation mortality, and differences in*
 1143 *transpiration for a dry year (1994, a) and wet year (1995, b).*

1144

1145

1146 *Figure 9. Relationship among long-term aridity, vegetation mortality level and differences in ET*
 1147 for a dry year (1994, a) and a wet year (1995, b).

1148

1149

1150 *Figure 10. Relationship among long-term aridity, vegetation mortality level and Differences in*
 1151 *water yield for a dry year (1994, a) and wet year (1995, b).*
 1152

1153

1154 *Figure 11. Water yield response types after beetle outbreak for different evergreen mortality*
 1155 *scenarios compared with control scenario. D1 to D9 are water yield decrease types and W1 to*
 1156 *W5 are water yield increase types. In panel D and H, the left side of each type are increasing*
 1157 *fluxes that cause water yield decreases and the right side are decreasing fluxes that cause water*
 1158 *yield increase. If the left side is larger than the right side, water yield increases, and vice versa.*
 1159 *(Note: this mortality is evergreen mortality, which is different from vegetation mortality.)*

1160