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Abstract. Climate change impact assessment related to floods, infrastructure networks and water resources management appli-

cations requires realistic simulations of high-resolution gridded precipitation series under a future climate. This paper proposes

to produce such simulations by combining a weather generator for high-resolution gridded daily precipitation, trained on his-

torical observation-based gridded data product, with coarser scale climate change information obtained using a regional climate

model. The climate change information can be added to various components of the weather generator, related to both the prob-5

ability of precipitation as well as the amount of precipitation on wet days. The information is added in a transparent manner,

allowing for an assessment of the plausibility of the added information. In a case study of nine hydrological catchments in

central Norway with the study areas covering 1000-5500 km2, daily simulations are obtained on a 1 km grid for a period of

19 years. The method yields simulations with realistic temporal and spatial structures and outperforms empirical quantile delta

mapping in terms of marginal performance.10

Copyright statement. TEXT

1 Introduction

The rate of projected future warming in Northern Europe is amongst the highest in the world, driven to a large extent by

the strong feedback involving snow and ice as the climate warms (Collins et al., 2013). As a consequence, the hydrological

cycle intensifies (Bengtsson, 2010) leading to more precipitation as well as more intense extreme events (e.g. Vautard et al.,15

2014). The projected changes in precipitation amounts, snowpack and snow cover will considerably impact surface hydrology

through, for example, changed runoff magnitude as well as timing and amplitude of the spring flood (e.g. Von Storch et al.,

2015). In order to study these effects, impact models optimally require inputs that reliably represent precipitation occurrence

and intensity at a high spatial resolution, spatial and temporal variability, as well as physical consistency for different regions

and seasons (Maraun et al., 2010).20

Coupled atmosphere-ocean general circulation models (GCMs) remain our main source of information for projections of

future climate. However, these have spatial resolutions that are too coarse for assessing the often localized impacts of changing
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precipitation patterns. Regional climate models (RCMs) at a spatial resolution of 10-15 km (e.g. Jacob et al., 2014) are able

to explicitly resolve mesoscale atmospheric processes and add valuable information for precipitation modeling over a region,

with the newest model generations at an even higher resolution and able to include explicit deep convection (Lind et al., 2020;25

Prein et al., 2020).

To obtain reference results for current climate, impact models are commonly applied to high-resolution historical data prod-

ucts such as the Nordic Gridded Climate Dataset (NGCD, https://surfobs.climate.copernicus.eu/dataaccess/access_ngcd.php)

which provides historical estimates of precipitation and temperature in Northern Europe at a 1 km spatial resolution. Such data

products come with their own inherent biases which can be difficult to correct due to lack of data. For an accurate assessment30

of climate impact, one goal is thus to generate high-resolution realizations of future climate with the same distributional prop-

erties as the historical data product, except for potential changes in these distributional properties due to climate change. For

comparable future projections, RCM simulations need a further downscaling step, and systematic biases as well as incompati-

bilities between the two spatial scales should be removed. It has further been argued that downscaling should be stochastic in

nature and able to generate sub-grid spatial variability (Maraun et al., 2017). The stochastic point process of the Neyman-Scott35

and Bartlett-Lewis types have been used to stochastically downscale precipitation data most often at single locations (Burton

et al., 2008). More recent model extensions into two-dimension space (Cowpertwait et al., 2002), spatial nonstationarity (Bur-

ton et al., 2010) and temporal nonstationarity regarding long-term trend (Luca et al., 2020) have seen rarer applications in the

literature. Recently proposed stochastic downscaling methods have proven skillful in modeling the small-scale variability of

precipitation occurrence and intensity across sets of point locations (Wong et al., 2014; Volosciuk et al., 2017).40

This paper proposes a two-stage weather generator (WG) approach to generate high-dimensional simulations of future

climate on a fine scale grid. Specifically, a stochastic model describing a high-resolution data product in a reference period

is combined with climate change projections based on a lower resolution RCM. Weather generators are commonly used to

generate spatially and temporally correlated fields of daily precipitation, with the early work of Wilks (1998) paving the way

for many current approaches. Chandler and Wheater (2002) illustrate the use of a generalized linear model (GLM) to describe45

daily precipitation series at individual sites, using a logistic regression model for the occurrence and a gamma model for the

amounts. More recently, Kleiber et al. (2012) propose an approach relying on two latent Gaussian random fields to generate

spatially correlated occurrence and intensity, with spatial heterogeneity described through both spatially varying covariates and

regression parameters. Serinaldi and Kilsby (2014) propose a more computationally efficient approach, where a single latent

Gaussian random field is used to describe the spatial correlation in both precipitation occurrence and intensity.50

With applications related to hydrological impacts in mind, we consider a case study of nine different catchments in central

Norway. The simulation of daily fine-scale precipitation for a catchment requires daily simulations of spatially correlated

random fields on a high-resolution grid with roughly 1000-5500 grid cells, depending on the size of the catchment. As the

catchments are located in different climatic zones, the stochastic model is estimated independently for each catchment. Spatial

heterogeneity within a catchment is introduced via spatially varying covariates for both the occurrence and the intensity models,55

where the covariate contribution to the precipitation intensity may vary smoothly in space. Additionally, temporal aspects are

modeled with seasonal effects and linear trends in the marginal distributions, as well as an autoregressive component in the
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residual process. Climate change information from an RCM output may be added in a transparent manner by updating each

component of the weather generator based on estimated climate change in the corresponding component at the coarser RCM

scale. Yuan et al. (2019) propose a similar model for obtaining high-resolution daily mean temperature projections.60

As demonstrated in Figure 1, the stochastic model generates realizations of future precipitation occurrence and intensity

that are correlated in space and time, thus combining four separate components: spatial and temporal correlation structures,

and marginal models at each grid cell location for probability of occurrence and intensity. The fine-scale spatial correlation

structure is assumed constant over time, while climate change information from the RCM can be used to update the other three

components both in terms of overall level as well as seasonal patterns. In addition to being stochastic in nature, the method65

provides a transparent way to add climate change signal to the precipitation simulations. The success of the model producing

realistic realizations for a future climate depends on two factors: the RCM must be able to correctly capture the climate change

signal in the model components, and the scale of the fine scale change must be close enough to that of the RCM scale for

climate change effects to be transferrable between the two scales.

Fine-scale 
historical data

Changes at 
coarse scale

Marginal model for occurrence

Marginal model for intensity

Temporal correlation structure

Daily fine-scale precipitation generator
in the future

Stage 1 Stage 2

Spatial correlation structure

Figure 1. The proposed two-stage weather generator approach for simulations of fine-scale daily precipitation in a future climate.

The remainder of the paper is organized as follows. Section 2 introduces the datasets and the study area. Details of the70

two-stage WG approach are given in Section 3, together with a description of a reference method based on empirical quantile

delta mapping as well as the evaluation methods used to compare the two approaches. The models are estimated based on data

from the period 1957-1986 and the estimates are used to simulate data for the period 1987-2005. The results of this analysis

3



and comparison of the various approaches is given in Section 4. The paper then concludes with a brief summary and discussion

in Section 5.75

2 Data and study area

We apply our methodology to daily precipitation simulations from two RCMs from the EURO-CORDEX-11 ensemble. One

(referred to as RCM1 in the following) combines the COSMO Climate Limited area Model (CCLM) from the Potsdam Institute

for Climate Research (Rockel et al., 2008) with boundary conditions from the CNRM-CM5 Earth system model developed

by the French National Centre for Meteorological Research (Voldoire et al., 2013), whereas the other (referred to as RCM2)80

combines the CCLM model with boundary conditions from the MPI Earth system model developed by the Max Planck Institute

for Meteorology (Giorgetta et al., 2013). The RCM simulations are conducted over Europe at a spatial resolution of 0.11 degrees

or about 12 km (Jacob et al., 2014). In the historical period up to 2005 the outputs are simulated based on recorded emissions

and are thus comparable to observed climate.

For observational reference data, we use the seNorge gridded data product version 2018 produced by the Norwegian Mete-85

orological Institute (Lussana et al., 2019), as subset of the Nordic Gridded Climate Datasets for Norway. The data result from

a multi-scale spatial interpolation of measurements from 500-700 surface weather observation stations for the period 1957

to present. The data have a daily temporal resolution and a spatial resolution of 1 km over an area covering the Norwegian

mainland and an adjacent strip along the Norwegian border. Compared with previous versions of the data product (i.e., Lussana

et al., 2018), seNorge version 2018 adjusts the measurements for wind-induced under-catch of solid precipitation, and makes90

use of dynamically downscaled reanalysis to form the reference fields for data-sparse areas, and thus is considered to have a

higher effective resolution. In the following, we will treat this dataset as observations and refer to it as such.

Grid-cell precipitation is an areal average of sub-grid precipitations and at a daily timescale, each value in a time series

is an accumulation over 24 hours. We upscale the fine-scale seNorge values to the coarse-scale RCM grid by calculating the

weighted average over all seNorge grid cells within a given RCM grid cell, where the weights equal the proportion of each95

seNorge cell within the given RCM cell. The precipitation data have unit kg m−2 which is approximately equivalent to mm;

we then set all values less than 0.1 to 0 before other processing.

For study area, we consider the Trøndelag area in central Norway, see Figure 2. The area comprises 695 RCM grid cells and

109 514 seNorge grid cells. The extraction of the climate change signal is performed at the RCM scale while the fine-scale

daily precipitation fields are generated at nine hydrological catchments within the domain, see Figure 2 and Table 1. Two of the100

catchments, Krinsvatn and Oeyungen, have maritime climate while the others have continental climate. For each catchment, the

modeling is performed over all seNorge grid cells within the RCM grid cells that cover the catchment, the spatial dimensions of

which vary between approximately 940 and 5500 grid cells at 1 km resolution. Both historical RCM simulations and seNorge

observations are available over the time period 1957-2005. We use the time period 1957-1986 as a training period to estimate

model parameters and perform an out-of-sample evaluation over the remaining 19 years 1987-2005. As a result, the training105

period consists of 10 950 days while the test period comprises 6 935 days.
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Additionally, we use explanatory variables, or covariates, to describe the spatial variations in the statistical characteristics of

the daily precipitation distributions. We consider latitude, longitude and elevation as potential geographic covariates. Elevation

information for the seNorge data is obtained from a digital elevation model based on a 100 m resolution terrain model from

the Norwegian Mapping Authority (Mohr, 2009). We upscale these data in the same manner as the daily mean precipitation to110

obtain the elevation at the RCM scale. Note that this is not equal to the orography information provided by EURO-CORDEX.

Figure 2. The study area is located in Trøndelag in central Norway, covering the entire Trøndelag and a small part of neighboring Sweden, and
consists of 695 RCM grid cells (rectangular-like polygons) and 109 514 seNorge grid cells (within the polygons, not shown). For stochastic
simulations of gridded daily precipitation, nine catchments within Trøndelag with catchment areas from 144 km2 to 3084 km2 (shaded in
gray) are used, see also Table 1.

3 Methods

As mentioned in the introduction, the aim of this study is to provide realistic projections of daily precipitation at a fine spatial

scale over large areas. We apply a parametric weather generator approach that belongs to the class of models proposed by Wilks

(1998) and Chandler and Wheater (2002). For computational feasibility, we apply the approach proposed by Serinaldi and115

Kilsby (2014) where a discrete-continuous distribution with a single latent field is used to simultaneously model the marginal

precipitation occurrence, intensity on wet days and the space-time dependence. Specifically, we employ a combination of a

latent non-stationary Gaussian space-time random field and a gamma distribution with parameters that vary in space and time,
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Table 1. Characteristics of the nine catchments in Trøndelag, Norway considered in the stochastic simulations of gridded daily precipitation.

Catchment ID Size Downscaling area Median elevation
(km2) (km2) (m.a.s.l)

Gaulfoss A 3084 5479 734
Aamot B 286 1112 460
Krinsvatn C 206 1108 349
Oeyungen D 245 952 295
Trangen E 852 2327 558
Veravatn F 176 1101 514
Dillfoss G 484 1863 506
Hoeggaas H 491 1853 505
Kjeldstad I 144 940 578

with each model component estimated independently. The precipitation process at the RCM scale is described using a similar

statistical model, and the climate change signal is added to the fine-scale model by relating the models at the two spatial scales.120

3.1 Marginal models for precipitation occurrence and intensity

Denote precipitation occurrence in grid cell s ∈ {1,2, . . . ,S} at time t ∈ {1,2, . . . ,T} by Ost = 1 if there is precipitation and

Ost = 0 otherwise, where S denotes the number of grid cells and T the number of days in a given dataset. We follow Kleiber

et al. (2012) and relate the pattern of wet and dry days to a latent Gaussian variable Wst with mean µst and variance 1.

Precipitation intensity Yst (i.e., the amount conditional on Ost = 1) is assumed to be gamma distributed with a constant shape125

k and scale θst that varies over space and time, following e.g. Chandler and Wheater (2002) and Yang et al. (2005). Formally,

we write

Wst = µst + εst, εst ∼N(0,1), (1)

Ost = 1{Wst > 0}, (2)

Yst|Ost = 1∼ Γ(k,θst). (3)130

Precipitation processes often show different features depending on the time of the year, and neighboring sites tend to share

similar precipitation climate. Such systematic variations are modeled by letting the parameters µst and θst of the above distri-

butions change smoothly across time and space. We describe this through three additive components: a spatial effect, a seasonal

effect and a linear climate change effect. In particular, we set

µst = fo1 (cs) + fo2 (t) + fo3 (t), (4)135

log(kθst) = fg1 (cs) + fg2 (t) + fg3 (t), (5)

6



where, in their simplest form, the three effect functions are given by

fζ1 (cs) = βζ11 +βζ12lats +βζ13lons +βζ14elevs, (6)

fζ2 (t) = βζ21 cos

(
2πd(t)

365

)
+βζ22 sin

(
2πd(t)

365

)
+βζ23 cos

(
4πd(t)

365

)
+βζ24 sin

(
4πd(t)

365

)
, (7)

fζ3 (t) = βζ3 y(t), (8)140

for ζ ∈ {o,g}. Here, f1 models the spatially varying baseline of the parameters with cs being latitude, longitude and mean

elevation of grid cell s. Seasonal changes are described by f2, with d(t) returning the calendar day of time point t and f3

captures potential linear trend, with y(t) returning the calendar year normalized so that β3 describes a decadal trend in the data.

This modeling framework corresponds to a generalized linear model (GLM) framework.

While the linear spatial effect function in (6) can capture the spatial variations in the occurrence at both spatial scales as145

well as the intensity at the RCM scale, we find that this model is too simple to capture the spatial variations in the intensity

across a catchment at the finer 1× 1 km scale. At the finer scale, we thus expand (6) so that the covariate contribution varies

smoothly in space (Wood, 2003), expanding the model to a generalized additive model (GAM). That is, we set for the two

largest catchments A (Gaulfoss) and E (Trangen)

fg1 (cs) = βg11 + sg1(lats, lons) + sg2(elevs),150

where s1 and s2 are smooth functions, and the slightly simpler

fg1 (cs) = βg11 + sg1(lats, lons) +βg14elevs

for the other catchments. This substantially improved the in-sample fit for all catchments. Alternatively, Kleiber et al. (2012)

propose spatially varying regression parameters.

To estimate the parameter µst of the latent Gaussian model specified in (4) and (6)-(8), we transform the data to a binary155

dataset with ost = 1 if the observed value fulfils yst > 0 and ost = 0 if yst = 0. We then estimate µst using probit regression

with P(ost = 1) = Φ(µst) and P(ost = 0) = 1−Φ(µst), where Φ denotes the cumulative distribution function (CDF) of the

standard normal distribution. The estimation is performed using the function glm() in the statistical software R (R Core

Team, 2019), separately for each catchment and spatial scale. The parameters of the gamma model are estimated using only

the positive values in the dataset, that is, only data where yst > 0. At the RCM scale, the gamma model is a GLM and can160

be estimated using glm(). At the seNorge scale, we employ the function bam() from the R package mgcv version 1.8-31

(Wood, 2017) so that the smooth functions s1 and s2 are given by thin plate regression splines as described in Wood (2003).

The complexity of the spatial baseline term f1 is determined by empirically assessing the spatial structure of the average in-

sample residuals over the spatial domain. Note that for a linear modeling design as in (6)-(8), glm() and bam() will return
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identical estimates, insuring consistency in our estimation across the different datasets. Specifically, the inference methods165

return estimates of log(kθst) and k, from which estimates of θst can easily be derived.

3.2 Space-time correlation structure

The marginal models for precipitation occurrence and intensity defined in the previous section describe changes in the marginal

distributional properties across space and time. For realistic simulations of daily precipitation fields, we additionally need to

account for space-time correlations of individual realizations. Here, for computational feasibility given the dimensionality170

of our data, we follow the approach proposed by Serinaldi and Kilsby (2014) and define a single latent Gaussian process

that drives the correlation in both occurrence and intensity. We further assume that spatial and temporal correlations can be

estimated separately, with the parameters of each component allowed to vary over the year to account for potential seasonality

in the correlation structure. In practice, this is performed by obtaining independent estimates for each calendar month and,

subsequently, fitting a smooth function of the type given in (7) to the monthly estimates to obtain daily smoothly varying175

estimates. Furthermore, the correlation models are estimated independently for each catchment to account for differences

between the different climatic zones.

The estimation of the correlation structure within frameworks with underlying assumptions of normality is complicated by

the shape of the precipitation distribution with its point mass in zero and the skewness of the positive part. To account for this,

Serinaldi and Kilsby (2014) propose to estimate the Kendall rank correlation coefficient τ from the data (Kendall, 1945) and,180

subsequently, transform τ into the Pearson correlation ρ by the identity ρ= sin(τπ/2). For the spatial correlation structure, we

use this approach to estimate the correlation between all pairs of grid cells within a catchment using the R function cor().

In the estimation procedure, ties are removed from the data which implies that the estimation is only based on data pairs

with two non-zero values or one zero and one non-zero value, see also the discussion in Serinaldi (2007). The R function

fit.variogram() from the R package gstat (Pebesma, 2004; Gräler et al., 2016) is then employed to fit theoretical185

correlation functions to the empirical correlations via fitting the corresponding variogram functions. An empirical comparison

of fits based on the exponential, the spherical, the Gaussian and the Matérn correlation models shows that the three-parameter

Matérn model fits best in all months for all catchments.

The Matérn correlation between two grid cells with Euclidean distance ‖h‖ at time point t is given by (e.g., Cressie and

Wikle, 2015)190

C(‖h‖, t) = σ2
0t1{‖h‖= 0}+σ2

1t{2ν−1Γ(ν)}−1{‖h‖/αt}νKν(‖h‖/αt), (9)

where Γ is the gamma function and Kν is the modified Bessel function of the second kind. The nugget σ2
0t, partial sill σ2

1t and

range αt are assumed to vary over the year while ν is assumed constant. An optimal value of ν is chosen such that the sum of

squared errors of the fitted models over all 12 months is minimized. Then, a Matérn correlation function with a fixed value of

ν is fitted again for each month to obtain monthly estimates of σ1t and αt. Here, we assume σ2
0t+σ2

1t = 1, so that the resulting195

matrix is a correlation matrix.
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In the literature, spatial dependencies in intensity and occurrence are commonly modeled separately assuming two latent

Gaussian fields, one driving the occurrence and the other the intensity. For correlations in intensity, parametric models include

the exponential (Kleiber et al., 2012) and the power exponential (Wilks, 1998; Serinaldi and Kilsby, 2014) models, as well as

the simple strategy of having constant intersite correlation (Yang et al., 2005). Correlations in occurrence are more challenging200

to model, as appropriate transformation from binary occurrence to marginal normality is less straightforward. Wilks (1998)

illustrates an empirical approach to find a link between the unobservable correlation (from a Gaussian model) and observable

but unknown correlation (from a bivariate binary model) for each pair of sites. Kleiber et al. (2012) use an exponential covari-

ance function in a similar approach. Yang et al. (2005) propose to model the number of wet sites by a beta-binomial model,

and then utilize empirical conditional probabilities to allocate the positions of wet sites.205

Following Serinaldi and Kilsby (2014), we introduce the short-term autocorrelation through temporal dependence in the

underlying spatial random field. Here, temporal correlation is assumed to follow an autoregressive (AR) process of order

one. At each grid cell, Kendall’s τ is calculated for each month; the monthly value for the entire catchment is then taken as

the median value over all grid cells in the catchment. Subsequently, a smooth function of the form in (7) is fitted to the 12

monthly values to obtain smoothly changing daily estimates ρ̂t = sin(τ̂tπ/2). Stochastic simulation models for precipitation210

commonly assume autocorrelation of order one (e.g. Evin et al., 2018; Kleiber et al., 2012). However, it varies somewhat how

the autocorrelation is introduced into the model. For example, Kleiber et al. (2012) include the occurrence on the previous day

as a covariate in the regression models for the mean of the latent field and the parameters of the gamma intensity model.

To summarize, denote by εt = (ε1t, . . . , εSt) the vector of random noise defined in (1) in all the S grid cells at time t. The

random noise is assumed to follow a space-time correlation structure of the form215

ηt ∼N(0,ΣΣΣt), (10)

εt+1 = ρtεt +
√

1− ρ2t ηt, (11)

where ΣΣΣt is a Matérn correlation matrix and the correlation coefficient ρt is obtained as described above.

3.3 Relating models from two spatial scales

Marginal models outlined in Sections 3.1 are fitted to the coarser RCM scale data for both training and test period, where the220

significance of coefficients is tested at the 0.05 level. In particular, for data from the test period, we incorporate the training-

period estimates of the coefficients into the three model components in the following manner: 1) the baseline f1 is fixed to be

the sum of its estimated value and the increment due to the estimated linear trend in the training period; 2) for the seasonality

f2 and the potential linear trend f3, we use the training-period coefficients as reference, and effectively estimate and test the

significance of the changes in these terms. In R, this could be done by using several offset() terms in the model formula225

applied in the glm() function. We opt for such practice in the situation where the test period directly follows the training

period. In addition, the temporal correlation at the coarser RCM scale is estimated for both training and test period. The
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spatial correlation is excluded in the estimation because for a given spatial domain data at the coarser scale has lower spatial

dimensionality than data at the finer scale and thus does not convey information on the finer scale spatial structures.

The models outlined in Sections 3.1 and 3.2 are fitted to the finer seNorge scale data only for the training period. In order230

to obtain model parameter estimates at the finer scale in the test period, we need to relate the models at the two scales so that

model changes between the training and the test period at the coarser scale can be used to infer model changes at the finer

scale. Specifically, we may update the mean of the latent field µst in (1), the parameters of the gamma distribution k and θst

in (3) and the autocorrelation coefficient ρt in (11), while the structure of the spatial correlation matrix ΣΣΣt in (10) is assumed

constant for the aforementioned reason.235

For µst and log(θst) = log(kθst)−log(k), we may update each of the terms in (4) and (5), respectively. Here, the seasonality

(7) and the potential linear trend component (8) of µst (and similar for log(θst)) are adjusted so that the average adjustment

over all the time points in the test period µ̄as· fulfils

µ̄as· = µ̄trs· + (µ̄ter· − µ̄trr·),

where te indicates the test period, tr indicates the training period, and s is a fine scale grid cell located within a coarse scale240

grid cell r.

Figure 3 shows the training-period estimates of the seasonality component given in (7). While the seasonality patterns vary

substantially across the different catchments as well as between the two model parts, the estimates are very consistent across

the two spatial scales. We thus infer seasonality components for the fine scale during the test period by updating the fine scale

components from the training period according to the estimated changes between the training and the test period at the coarse245

scale. We see the same patterns for the trend coefficient in (8), see Table 2. The trend coefficient and the correlation coefficient

ρt are thus updated in the same manner as the seasonality component. Finally, the shape parameter of the gamma distribution

k may be updated so that the ratio of the estimates in the training and the test period at the fine scale equals the ratio of the two

estimates at the coarser scale.

In Section 4 various versions of the method are compared, where individual model components are either updated according250

to information based on an RCM output, or assumed stationary over the entire time period.

3.4 Daily fine-scale precipitation generator

With the adjustments described above, the marginal models and the space-time Gaussian random field together form a precip-

itation generator for use on the fine-scale grid in the test period. The parameters of the generator are obtained using seNorge

data in the training period and adjusted based on RCM data spanning both training and test periods. Assume we want to simu-255

late data at all grid cell locations s ∈ {1, . . . ,S} and time points t ∈ {1, . . . ,T}, a total of S locations and T time points. Data

simulation from the generator consists of the following steps, with the superscript a indicating adjusted parameter estimates:
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Figure 3. seNorge estimates of the seasonality component in (7) in the training period 1957-1986 for all catchments at both spatial scales.
Top: The estimated seasonality in the mean of the latent Gaussian field µst estimated by probit regression. Bottom: The estimated seasonality
in the mean of the gamma distribution log(kθst) estimated within a GLM/GAM framework.
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Table 2. The estimated trend coefficient in (8) for each catchment based on data from 1957-1986 for µst in the probit model (left) and
log(θst) in the gamma model (right). Estimates are given for both 1 km seNorge data and seNorge data upscaled to 12 km resolution.

µst log(θst)

seNorge seNorge seNorge seNorge
Catchment 1× 1 km 12× 12 km 1× 1 km 12× 12 km

Gaulfoss 0.002 0.002 -0.003 -0.004
Aamot 0.009 0.011 0.046 0.045
Krinsvatn 0.035 0.036 0.023 0.020
Oeyungen 0.020 0.019 0.045 0.047
Trangen 0.001 0.000 0.038 0.039
Veravatn 0.051 0.049 0.016 0.018
Dillfoss 0.022 0.020 -0.026 -0.025
Hoeggaas 0.010 0.010 -0.024 -0.023
Kjeldstad -0.003 -0.003 0.013 0.013

1. For each time point t, spatially correlated but temporally independent random vectors η∗t of size S are drawn from the

multivariate Gaussian distribution with mean vector 0 and correlation matrix Σ̂ΣΣt specified by the Matérn correlation

function, i.e. η∗t ∼N(0,Σ̂ΣΣt).260

2. Temporal correlation is introduced by setting ε∗t+1 = ρ̂at ε
∗
t +
√

1− (ρ̂at )2η∗t .

3. At grid cell s and time t, the probability of precipitation is p̂ast = Φ(µ̂ast). The precipitation amount is set as y∗st = 0 if

Φ(ε∗st)≤ 1− p̂ast and y∗st = Γ−1((Φ(ε∗st)− (1− p̂ast))/p̂ast; k̂a, θ̂ast) otherwise.

That is, as mentioned above, the fine-scale spatial correlation structure described by Σ̂ΣΣt is the single part of the model that is

not adjusted based on information from the RCM.265

3.5 Reference method

To assess the performance of the proposed method, we use the empirical quantile delta mapping method as a reference. The

RCM outputs of approximately 12 × 12 km resolution are first re-gridded to the 1 × 1 km seNorge grid using bilinear

interpolation, as implemented in the R package akima version 0.6-2 (Akima and Gebhardt, 2016). Wet-day correction is

applied prior to bias correction of precipitation amount, as RCM outputs tend to give more rainy days than the observed (Frei270

et al., 2003). Specifically, a threshold value is determined such that the wet-day frequency in the re-gridded RCM dataset is

equal to that in the seNorge dataset for the training period; precipitation values below the threshold value are set to zero for

both training and test periods. Correction of precipitation amount in the test period is carried out using the empirical quantile

delta mapping method proposed by Cannon et al. (2015), where the relative changes in the precipitation quantiles projected

by an RCM from the training period to the test period are explicitly preserved. For individual seNorge grid cells, the method275

is applied to pooled daily data for each calendar month to ensure an unbiased seasonal cycle and computational efficiency,
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although this might lead to potential continuity issue at the turn of the month. The method belongs to the class of widely used

empirical quantile mapping methods (EQM), and we will refer to it as such in the following.

3.6 Evaluation methods

An evaluation and comparison of the different approaches is performed by comparing various aspects of the resulting datasets.280

For an overall ranking of the approaches, we employ the proper evaluation metric integrated quadratic distance (IQD) that

compares the full distributions of observed and modeled precipitation (Thorarinsdottir et al., 2013). That is, denote by F the

empirical cumulative distribution function (ECDF) of seNorge precipitation over all time points in the test set at a given grid

cell and by G the corresponding ECDF from one of the modeling approaches. The distance between F and G as measured by

the IQD is then given by285

d(F,G) =

+∞∫
−∞

(F (x)−G(x))2dx.

The overall performance of the model at a catchment is then calculated as the average IQD over all grid cells in the catchment

area with a lower value indicating a better performance. The IQD fulfils the property that the true data generating process is

expected to obtain an IQD value of 0 when compared against ECDFs based on data samples of any size. It is thus an appropriate

metric for ranking competing methods (Gneiting and Raftery, 2007; Thorarinsdottir et al., 2013). For the WG approach, we290

can easily obtain a precise approximation of the marginal distribution in each grid cell by simulating multiple realizations from

each daily distribution. For the EQM approach, however, the marginal distribution in a grid cell is estimated by combining one

value for each day in the time period of interest.

For an improved understanding of the behavior of the models, we further perform several empirical diagnostics. To analyse

the marginal distributions at each grid cell, we compare means of daily precipitation, wet-day frequency given by the number295

of wet days, wet-day intensity as measured by the mean and standard deviation of the precipitation on wet days only, and rep-

resentation of heavy precipitation as measured by the 95th percentile of positive precipitation. Diagnostics of the temporal data

structure are performed by assessing dry-wet temporal patterns and seasonal patterns of temporal autocorrelation coefficients,

while empirical functions of the Pearson’s correlation as a function of distance are used to perform spatial data diagnostics.

4 Results300

We perform model inference using data from 1957-1986 and infer climate change effects by comparing the coarse scale RCM

data from the two time periods 1957-1986 and 1987-2005. Simulations of fine scale precipitation for the test set 1987-2005 are

then compared against the seNorge data for the test period 1987-2005.

We consider three versions of the WG method, where we include varying degrees of climate change information derived

from the RCM data. A stationary version, denoted by WGs, assumes that trends estimated for the seNorge data in the training305
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period continue into the test period with the remaining model components fixed at their estimates in the training period. That is,

no RCM information is used. A version denoted by WG1.1 and WG2.1 for RCM information derived from RCM1 and RCM2,

respectively, includes climate change information from the RCM in the seasonality and trend components of the gamma model

for precipitation amount on wet days. Finally, a version denoted by WG1.2 and WG2.2 for RCM information derived from

RCM1 and RCM2, respectively, includes climate change information from the RCM in the seasonality and trend components310

of both the gamma model and the probit model for precipitation occurrence. The various WG methods are compared against

the reference method in Section 3.5 denoted EQM1 and EQM2 derived from RCM1 and RCM2, respectively, as well as a

simple method that uses the empirical distributions of the fine scale seNorge data in the training period directly as predictions

for the corresponding empirical distributions of the fine scale seNorge data in the test period.

4.1 Marginal performance315

Table 3. Integrated quadratic distance (IQD) values comparing simulated and seNorge distributions over all days in 1987-2005. The results
are averaged over all 1×1 km grid cells in each catchment. The simple method seNorge uses the daily values over the period 1957-1986 as a
prediction, WGs assumes trends estimated for 1957-1986 continue in 1987-2005, WG1.1 and WG2.1 include seasonality and trend estimates
from RCM1 and RCM2, respectively, in the gamma model, while for WG1.2 and WG2.2, RCM information is included in both the gamma
model and the probit model. Results of the reference method are denoted EQM1 for RCM1 and EQM2 for RCM2. The best method for each
catchment is indicated in bold.

Catchment seNorge WGs WG1.1 WG2.1 WG1.2 WG2.2 EQM1 EQM2

Gaulfoss 3.46 3.99 2.87 3.10 3.91 2.97 3.73 2.80
Aamot 2.23 1.64 2.90 2.37 2.37 2.86 2.67 2.33
Krinsvatn 8.18 1.94 3.02 1.96 2.54 1.79 12.27 7.62
Oeyungen 5.52 5.94 7.14 7.46 4.90 6.44 11.20 4.91
Trangen 9.37 5.56 5.12 5.50 6.12 5.49 10.72 7.84
Veravatn 11.26 2.66 2.37 2.24 2.77 2.22 15.45 8.12
Dillfoss 5.17 6.59 4.73 4.27 6.97 4.23 5.58 3.05
Hoeggaas 2.65 5.84 3.54 3.21 6.15 3.17 3.21 1.46
Kjeldstad 6.96 6.71 4.32 4.00 6.51 3.96 7.38 3.50

Overall 4.88 4.50 3.60 3.65 4.61 3.54 5.82 3.83

We evaluate the marginal performance of the simulations by comparing empirical distributions of simulations and observa-

tions over all time points in the test set. Specifically, we compare the empirical distribution of the seNorge data in every 1×1

km grid cell to simulations for that same grid cell using the IQD. The average IQD values over all grid cells in each catchments

are given in Table 3. Overall, the WG methods that include RCM information perform better than the stationary approach

which again outperforms using the historical data directly. The WG simulations have better performance than EQM for both320

RCM1 and RCM2. The best performing simulation is WG2.2, where both the gamma model for precipitation amount and the

probit model for the wet frequency are updated with climate change information from RCM2. EQM based on RCM2 performs

quite well, while EQM based on RCM1 yields the worst performing simulations.
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The IQD values in Table 3 vary substantially across the simulation methods for individual catchments. To investigate this

further, we take a closer look at the trend coefficient estimates, as the estimated changes in seasonality are quite stable across325

catchments for a given RCM and model component (results not shown). The estimates of the trend coefficient in (8) based on

the seNorge training data from 1957-1986 are given in Table 2 in Section 3.3 above. For the probit model, the trend estimates

are positive in all but one catchment, the small inland catchment Kjeldstad, where a small negative trend is estimated. As a

result, the probability of precipitation is expected to increase over time. The rate of the increase varies substantially for the

different catchments, ranging from 0.001 in Trangen to 0.051 in Veravatn. For the gamma distribution, the trend coefficient330

estimates are highly varying across catchments, with negative estimates for three catchments and positive estimates for six

cathcments, indicating no consistent trend pattern in the amount of daily precipitation on wet days. When fitting these models

to the RCM data in the training period, we found insignificant trend estimates for the probit model in seven catchments based

on RCM1 and five based on RCM2, while the number of cases for the gamma model is six based on RCM1 and four based on

RCM2.335

The estimated changes in trend coefficients at 12×12 km scale between training and test period are listed in Table 4. The

zeros in the table indicate that the changes are not significantly different from 0 at the 0.05 level. The seNorge estimates for

the probit model are mostly positive, corresponding to a higher trend estimate in the test period than the training period. The

estimates based on RCM1 are consistently negative, while no change is estimated based on RCM2 except for Aamot. For the

gamma model, approximately as many positive and negative values are observed, while estimates in all catchments are positive340

by both RCMs. Note that the stationary simulation WGs assumes the same trends in the training and test periods, corresponding

to values of 0 in Table 4.

Table 4. Estimated changes in the trend coefficient in (8) between the training period 1957-1986 and the test period 1987-2005, for µst in
the probit model (left) and log(θst) in the gamma model (right). Estimates for three different data sources at 12 km resolution are shown:
upscaled seNorge data and two RCM outputs.

µst log(θst)

Catchment seNorge RCM1 RCM2 seNorge RCM1 RCM2

Gaulfoss 0.026 -0.022 0.000 0.034 0.040 0.025
Aamot 0.000 -0.018 0.013 -0.081 0.034 0.013
Krinsvatn -0.014 -0.044 0.000 -0.043 0.037 0.014
Oeyungen 0.019 -0.044 0.000 -0.103 0.021 0.021
Trangen 0.080 -0.012 0.000 -0.012 0.020 0.000
Veravatn -0.093 -0.029 0.000 0.039 0.018 0.023
Dillfoss -0.021 -0.033 0.000 0.069 0.031 0.028
Hoeggaas 0.000 -0.033 0.000 0.057 0.039 0.034
Kjeldstad 0.039 -0.022 0.000 0.038 0.040 0.040

The simulations WGs, WG1.1 and WG2.1 share the same probit model for precipitation occurrence, while the gamma

model for the precipitation amount differ. For the gamma model, five catchments have a strong positive climate change signal

according to the upscaled seNorge data, where both RCMs project a change in the same direction. Looking at the IQD values345
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in Table 3 we see this translates directly into lower IQD values compared to the WGs simulations. IQD values are higher

than WGs in the three catchments closest to the coast (Aamot, Krinsvatn and Oeyungen), where both RCMs project a positive

change against the observed negative change. For Trangen, WG2.1 and WGs have similar IQD values because they both apply

no change in the trend. In general, both RCMs provide useful climate change information for the gamma model which makes

the overall performance of WG1.1 and WG2.1 better than WGs.350

Similar effect can be seen when comparing the IQD values for Gaulfoss, Trangen and Kjeldstad based on the simulations

WG1.1 and WG1.2. While these two simulations share the same gamma model, WG1.1 assumes a stationary probit model and

WG1.2 applies climate change information from RCM1 on the precipitation occurrence. Here, the climate change estimates

from RCM1 are negative, going in the opposite direction as for the seNorge data, and accordingly WG1.2 is worse than

WG1.1 which assumes no change in the trend. The negative change applied in WG1.2 in Hoeggaas can also relate to the355

reduced performance compared with WG1.1. In Veravatn and Dillfoss, however, the estimates based on RCM1 are in the

same direction as the observed but this somehow does not translate into a better performance of WG1.2. For Aamot, where no

change is estimated by the seNorge data, a negative change by RCM1 seems to make WG1.2 better than WG1.1, and a positive

change by RCM2 makes it the only catchment where WG2.2 is worse than WG2.1. In the other catchments, WG2.2 is slightly

better than WG2.1 given that they both apply no change in the trend of the probit model; this indicates that the changes in the360

seasonality projected by RCM2 is generally reasonable only the effect seems limited in most catchments.

Further analysis of the marginal performance of four of the simulations as well as the seNorge reference is shown in Figure 4

for the largest catchment Gaulfoss, while the climatology and elevation information is given in Figure 5. The leftmost plot in

Figure 4(a) shows that the frequency of wet days for the seNorge data is generally lower in the training period than the test

period. This again results in a significant bias in the overall mean, see Figure 4(b), while the general correspondence between365

the amount distributions on wet days is quite good. Here, the IQD value is 3.46 for seNorge, 3.99 for WGs, 3.10 for WG2.1,

2.97 for WG2.2 and 2.8 for EQM2. WG2.1 and WG2.2 share the same distribution for the precipitation amount on wet days,

and given that RCM2 projects zero change in the trend of the probit model, performance of the two simulations is different

solely due to the different seasonality which again is minimal, see Figure 4(a). While EQM2 has the lowest IQD value, it

appears that this method overestimates the wet frequency, see Figure 4(a), the spread on wet days Figure 4(d) and thus also370

the 95th percentile on wet days Figure 4(e). However, the IQD score is less sensitive to these errors than to erroneous overall

mean.

4.2 Spatial and temporal correlation structure

The spatial correlation structure at 1×1 km scale cannot be inferred from the 12×12 km RCM data and we thus assume that the

fine-scale spatial correlation estimated based on the training data also holds for the test data. This is assessed in Figure 6 for the375

largest catchment Gaulfoss and in Figure 7 for the smallest catchment Kjeldstad. The Matérn correlation function estimated

based on the training data appears to capture the overall structure of the test data, indicating no large deviations in spatial

structure between the two time periods. However, there are some smaller deviations, indicating smaller changes in the seasonal

pattern of the spatical structure. In particular, the estimated correlation is slightly higher than the observed in February and
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Figure 4. Relative bias in various marginal summary statistics at 1×1 km scale in the largest catchment Gaulfoss. The observed seNorge
data in the training period 1957-1986, the stationary WGs simulation and three simulations using climate change information from RCM2
are compared against the seNorge data in the test period 1987-2005.
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Figure 5. Average annual precipitation (left) in the period 1957-2005 and the digital elevation map (right) both at 1×1 km scale in the
catchment Gaulfoss.
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Figure 6. Empirical spatial correlation of precipitation amount at the catchment Gaulfoss for each month of the year. Results are shown
for the seNorge data in the test period 1987-2005 (red dots) and for the EQM simulation based on RCM2 (cyan dots). The Matérn spatial
correlation estimated with the WG method based on seNorge data in the training period 1957-1986 is indicated in gray with the width of the
bar indicating the spread of the daily estimates within the month.
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Figure 7. Empirical spatial correlation of precipitation amount at the catchment Kjeldstad for each month of the year. Results are shown
for the seNorge data in the test period 1987-2005 (red dots) and for the EQM simulation based on RCM2 (cyan dots). The Matérn spatial
correlation estimated with the WG method based on seNorge data in the training period 1957-1986 is indicated in gray with the width of the
bar indicating the spread of the daily estimates within the month.

somewhat lower in fall, especially at Kjeldstad. For both catchments, the largest spread of the daily estimates of the correlation380

function is in the spring months of April and May.

The spatial structure of the EQM simulation differs somewhat from that of the data. The correlation is too strong in the

winter months of December, January and February, and too weak in June. It further appears that the EQM is more successful

in modeling the spatial correlation of the data from the larger cathcment Gaulfoss than the data from the small catchment

Kjeldstad, which area of 144 km2 is approximately 5% of the area of Gaulfoss at 3084 km2.385

In order to assess the temporal correlation structure of the various simulations, first consider the two-day dry/wet patterns

shown in Figure 8. For the inland catchment Gaulfoss, the proportions of two consecutive dry days and two consecutive wet

days is approximately equal in the training set, while the test set has fewer instances of two consecutive dry days with a

corresponding increase in two consecutive wet days. The proportions of two consecutive dry or wet days for the simulations

are mostly in between the values for the seNorge training and test set, except for EQM2 which has the highest frequency of wet390

days, see also Figure 4(a). At the coastal catchment Oeyungen nearly 50% of all the two-day patterns observed in the training
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period, and over 50% in the test set, are two consecutive wet days. Here, all the simulations yield a lower proportion of two

consecutive wet days than the observed test data, while the proportions of pairs with one wet day and one dry day is higher.

The results shown here for the WG method are based on a single simulation for each model version. We found that these results

may vary slightly between realizations from the same model (results not shown). In addition, we have compared the sequencing395

of dry days generated by different methods and found that the distribution of dry spells is similar across all simulations for a

given catchment, where the majority consist of the short-term cases and a drought event longer than two weeks is rare (results

not shown).
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Figure 8. Proportion of different two-day dry/wet patterns for the seNorge data in the training period 1957-1986 and the test period 1987-
2005, as well as for six different simulations of the test period. The results are aggregated over all grid cells in the catchments Gaulfoss (top)
and Oeyungen (bottom). Dry days are indicated with 0 and wet days with 1. For ease of interpretation, horizontal dashed lines are drawn at
the levels of the test set.

The temporal correlation applied in the daily fine-scale precipitation generator for the test period is assessed in Figure 9. As

described in Section 3.2, the short-term autocorrelation of the WG model is introduced through the temporal dependence in400

the underlying spatial random field. Data at both spatial scales have the same temporal dimensionality, we thus assume that the

fine-scale temporal correlation coefficients ρt can be updated by the changes projected by an RCM between training and test

periods. Estimates based on seNorge data in the training period indicate higher temporal dependence in spring and winter and

lower in summer. In the test period, dependence becomes lower in spring and summer and higher in October and November.
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The changes in spring are generally not realistically projected by RCMs, except for RCM2 in Trangen, while the changes in405

summer and early winter are better captured by RCM2 than RCM1 in most catchments.
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Figure 9. Smoothly changing daily estimates of the correlation coefficient ρt in (11) for each catchment, estimated based on the seNorge data
in the training period 1957-1986 (green dotted lines), inferred by adding the climate change information from RCM1 (cyan dashed lines) and
RCM2 (purple dashed lines) for the test period 1987-2005, and as reference the values estimated based on the seNorge data in the test period
1987-2005 (red solid lines).

5 Conclusions and discussion

This paper proposes a two-step stochastic downscaling and bias-correction approach for future projection of daily precipitation.

In a first step, a stochastic weather generator for a high-resolution grid is developed using a historical gridded observation-based

data product. In a second step, the weather generator is inferred for a future climate by using only the projected changes between410

a historical reference period and a future period based on a coarser scale RCM. In the current application, the observation-based

data product is available on a 1×1 km grid and the climate change information stems from an RCM on a 12×12 km grid. In

this setting, there appears to be good correspondence between catchment-scale seasonality and linear trend patterns at the two

spatial resolutions, making the transformation of information between the two scales feasible.
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The WG approach is applied to data from nine hydrological catchments in central Norway, with each study area ranging in415

size from approximately 1000-5500 km2, and compared against EQM and a simple persistence reference method. The methods

are trained on daily data from 1957-1986 and tested on out-of-sample data from 1987-2005. Based on an evaluation of the

resulting marginal distributions, the WG method overall outperforms the EQM approach, both in terms of the IQD score and

based on empirical assessment of marginal summary statistics. However, all the simulation methods show large variations in

the performance between individual catchments. The WG method furthermore yields realistic temporal and spatial correlation420

structure.

The historical RCM runs used here are available until 2005, and the observation-based data is available from 1957, yielding

a dataset with 49 years of data. With 30 years of data used to train the models, this leaves only 19 years of data for the out-

of-sample evaluation. With only 19 years of data in the test period, we may expect to see some effects of natural variability

when comparing the seNorge data product and the largely free running RCMs. Looking at the linear trend coefficient in the425

probit model, it seems that the seNorge data upscaled to 12 km resolution are generally able to capture the change that there are

proportionally more wet days in the test period than in the training period, while the RCM data either project strong negative

changes or simply no change in most catchments. For the gamma model, however, both RCMs seem to have projected correct

changes in the trend and seasonality. Overall, we see that all versions of the WG method yield better performance than the

marginal persistence reference method based on seNorge data from 1957-1986, and including RCM information improves430

upon the stationary WG approach. Furthermore, the transparent way in which the RCM information is included in the WG

simulations allows for a direct assessment of this information and its plausibility (Maraun et al., 2017).

In our case study, the training and the test period are two consecutive time periods. However, in climate change impact

studies, there is commonly a large gap on the order of decades between the historical period and the future period of interest. In

this case, it may be necessary to expand our proposed model to also account for large-scale climate oscillation or teleconnection435

patterns, such as the El Niño-Sourthern Oscillation (ENSO) and the Indian Ocean Diopole (IOD), particularly in regions where

rainfall climatologies are dominated by such patterns (e.g. Wu et al., 2003; Andreoli and Kayano, 2005). In such cases, specific

components of the model, e.g. the spatial correlation structure, may need to be estimated depending on both seasonal variation

and oscillation modes. To assess this, the parameter estimation procedure can be extended to obtain separate estimates for both

months and oscillation modes. The series of parameter estimates can then be assessed for seasonal and oscillation dependence440

using standard regression techniques.

While the application in this paper focuses on climate projections, the modeling framework proposed here provides a more

general approach for computationally efficient stochastic downscaling of precipitation. Other potential applications include

seasonal and decadal weather and climate predictions. The availability of computationally efficient downscaling methods is

especially important in settings where large ensembles are needed in order to achieve prediction skill, see e.g. Smith et al.445

(2019).
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