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Response to Referee 1

We thank the reviewer for his/her positive and insightful comments on the manuscript.
Below is our response to the issues raised in the review.

Referee 1

This is a very meaningful study that puts forward a combination of statistical methods
and approaches to produce fine scale resolution rainfall estimates for catchments (small
to medium/large-ish sizes). It combines aspects of the weather-generator type approach
with spatial statistics, acknowledging the need to also consider temporal dependencies and
structures.

The language and graphics are clear and concise, explicit formulas are provided, accompanied
by relevant references to underpinning methods and reference to used R-packages/methods.

Whilst I think that there are a one or two of issues to address method wise before it can be
applied in a climate change context, I think it is a meaningful suggestion to build on. Overall,
in my opinion this manuscript offers a very meaningful contribution to the peer-literature
on statistical downscaling and merits publication with only minor edits.

Reply: Thank you for your positive evaluation of our work. We will modify the manuscript
following your suggestions. Please find details below.

General comments

Given the focus of this paper, I suggest a few changes that would make the paper more
accessible to a wider audience that should pay attention to this work but would find it
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difficult to detangle the methodology (the paper has a very strong statistical flavour and
assumes that readers are familiar with statistical terminology). Firstly, I suggest that you
put in a conceptual graphic, that outlines the different components in our analysis and how
they fit together, this will help the reader understand how the different model parts fits
together, and where the ‘change’ is applied (change between the two time periods). Second,
I think it will help the reader if you outline when you expect the model to work well, and
when you expect there to be difficulties in the methods section. Some of the performance
issues discussed in the discussion section are entirely predictable and I think it will help
the reader understand the method better if you have a paragraph that speaks about the
expected strengths and expected weaknesses before you conduct the experiments, this will
get the reader introduced to how the method works, and then the results will make more
sense. I think the manuscript will be more accessible and thus more successful if it embraces
a wider audience.

Reply: Thank you for your suggestions. Firstly, we will include a conceptual graphic in the
introduction section, see Figure 1 below. Second, we will add a paragraph in the introduction
section where we introduce our approach (after line 55) where we state the two main strengths
of our method (that it is stochastic in nature and that climate change is added to the simulations
in a fully transparent manner) as well as its two main assumptions (that the RCM correctly
captures the climate change signal in the model components and that climate change effects are
transferrable between the two scales).
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Figure 1: The proposed two-stage weather generator approach for simulations of fine-scale
daily precipitation in a future climate.
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One aspect not discussed in this paper is the applicability in a climate change context.
Whilst the two time periods do exhibit some climatological differences, changes that one
might expect in 20-50 years time are likely to be more pronounced. In this context, you may
need to include a representation of oscillatory behaviour in the spatial dependency structure
(in addition to a seasonal representation). This may not be the case for Norway, but other
regions with more variable rainfall climatologies (strongly influenced by e.g. ENSO or IDO
... or any other large-scale climate oscillation or teleconnection pattern. I think it would be
very meaningful if you could elaborate on this need in your discussion section, and perhaps
propose a couple of tests to see if this is necessary, e.g. compare spatial correlation in sub-
sets of RCM rainfall fields that capture certain seasonal/oscillation modes – are these still
similar enough (how to judge?) to what we see in the coarse resolution observed rainfall
fields?

Reply: This is indeed a very important discussion point for a practical application of our method
in climate change impact studies. We will add the following paragraph to the discussion section
(after line 411): “ In our case study, the training and the test period are two consecutive time
periods. However, in climate change impact studies, there is commonly a large gap on the order
of decades between the historical period and the future period of interest. In this case, it may
be necessary to expand our proposed model to also account for large-scale climate oscillation
or teleconnection patterns, such as the El Niño-Sourthern Oscillation (ENSO) and the Indian
Ocean Diopole (IOD), particularly in regions where rainfall climatologies are dominated by such
patterns (e.g. Wu et al., 2003; Andreoli and Kayano, 2005). In such cases, specific components
of the model, e.g. the spatial correlation structure, may need to be estimated depending on both
seasonal variation and oscillation modes. To assess this, the parameter estimation procedure can
be extended to obtain separate estimates for both months and oscillation modes. The series of
parameter estimates can then be assessed for seasonal and oscillation dependence using standard
regression techniques.”

Four smaller issues

(1) I think it is always useful to be critical of the RCM – hence I think the authors should
point out the need to demonstrate that the RCMs selected for the analysis do indeed capture
the spatial and temporal patterns of the variable of interest on its resolution before down-
scaling (where the downscaling is drawing on a relationship derived from observed data).

Reply: It is useful to check if the spatial and temporal patterns of the RCM outputs are realistic
at its own scale. In a pre-analysis step, we compared three summary statistics at individual grid
cells between the RCM data and the upscaled seNorge data (i.e. the approximate true climate at
the RCM scale) for the training period 1957-1986. We can see in Figure 2 below, that the overall
mean and the mean on wet days of the daily precipitation from the two RCMs have similar spatial
patterns as the upscaled seNorge, although with an underestimation in the coastal area and colder
seasons. The frequency of wet days is substantially overestimated by RCMs as expected, but the
underlying spatial pattern resembles the upscaled seNorge data, see Figure 3 below.
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Figure 2: Overall daily mean and the mean on wet days in the training period 1957-1986
calculated over all days (Annual) as well as days by season: Spring (MAM), Summer (JJA),
Autumn (SON) and Winter (DJF), based on three datasets at 12 km resolution: the upscaled
seNorge data and two RCMs.
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Figure 3: Frequency of wet days in the training period 1957-1986 calculated over all days
(Annual) as well as days by season: Spring (MAM), Summer (JJA), Autumn (SON) and
Winter (DJF), based on three datasets at 12 km resolution: the upscaled seNorge data and
two RCMs.
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(2) Using empirical scaling (or decile scaling) as a reference is meaningful because that is a
very common method. However, many water-related studies would use daily scaling rather
than monthly scaling as you are draping a scaling coefficient of monthly resolution onto
a variable with daily resolution, then evaluating on the daily resolution. The comparison
seems a little unfair. I see no need to redo your analysis, but I would point out how the
monthly scaling could impact the comparison.

Reply: The quantile delta mapping method can be implemented on different time scales (Cannon
et al., 2015). Given the amount of data available and the current training-test design, the relative
changes in the precipitation quantiles on daily time scale would have been derived by comparing
empirical cumulative distribution functions (ECDFs) based on 30 and 19 values, respectively.
This may yield unrealistic estimates for individual days and require additional steps of processing.
A pooling procedure is thus necessary to obtain robust and stable estimates of the changes. In
this study, the method was applied to pooled daily data separately for each calendar month, i.e.
on the monthly scale. This is also a rather common procedure to take into account possible
biases in the seasonal cycle (e.g. Räty et al., 2018; Meyer et al., 2019). Alternatively, one can
apply a 30-day window centered on the day of interest. This might arguably be better in terms
of continuity/smoother transition at the turn of the month. However, for most of the days, the
differences are minimal. For computational efficiency, we opted for the monthly scale. We will
include this information in Section 3.5.

(3) Sequencing of dry days (and wet days) is very important in many regions, hence if straight
forward I would contemplate including a figure that captures this information.

Reply: Thank you for the comment. We found that the distribution of dry spells is similar
across all simulations for a given catchment, where the majority consist of the short-term cases
and a drought event longer than two weeks is rare. In Figure 4 below, it appears all simulations
are more successful in modeling the dry spells at the larger catchment Gaulfoss than the smaller
coastal catchment Oeyungen. However, the difference associated with the size of catchment can
not be generalized due to the limited number of catchments in the study area. We will add this
in the results section. We have chosen not to show the figures in the paper. Nonetheless, we are
happy to reconsider this if needed.

(4) It would be good to have a climatology map and a DEM for the catchment shown in
Figure 3, it would help with interpretation of bias pattern.

Reply: We will include such information in the results section, see Figure 5 below.

Minor comments

P1. Line 17. What do you mean by ‘changed runoff”’ (magnitude, seasonal flow, low/high
flow metrics?). Perhaps qualify this a little, otherwise it looks a little ‘hand-wavy’.

Reply: This will be corrected to ”changed runoff magnitude”.
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Figure 4: Distribution of dry spells for the seNorge data in the training period 1957-1986
and the test period 1987-2005, as well as for six simulations of the test period. The results
are aggregated over all grid cells in the catchments Gaulfoss (top) and Oeyungen (bottom).
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Figure 5: Annual Precipitation (left) in the period 1957-2005 and elevation map (right) of
the catchment Gaulfoss.

P2. Line 24. RCMs can explicitly resolve some process, though at 10-15 km, many processes
relevant to rainfall events are parameterised. It would be more relevant here to speak about
the convective permitting regional climate models that operate on 1- 4 km resolution (the
recent UK national projections provide output on grid resolution just over 2km). The RCM
modelling community is now pushing more towards the CPM scale rather than the 10-15 km
scale. There are many recent overview type publications that you could cite here e.g:

Prein, A.F., Rasmussen, R., Castro, C.L. et al. Special issue: Advances in convection-
permitting climate modeling. Clim Dyn 55, 1–2 (2020). https://doi.org/10.1007/s00382-
020-05240-3

Reply: Thank you for bringing these recent publications to our attention. We will cite the
mentioned paper in the revised manuscript.

P3. Line 29-30. This sentence has a few errors in it, ‘which’ should be ‘with’ and ‘differ’
should be ‘different’.

Reply: We have rewritten this sentence to read: “For an accurate assessment of climate
impact, one goal is thus to generate high-resolution realizations of future climate with the same
distributional properties as the historical data product, except for potential changes in these
distributional properties due to climate change.”

P4 Line 87 – whilst I am not too familiar with Norwegian climatology, I would suggest that
Norway as a whole is maritime, compared to continental climates.

Reply: Since Norway has a complex topography and the seNorge data we use has very fine
spatial resolution, we carefully consider that the nine catchments belong to two climatic groups:
oceanic/maritime and continental, according to the modified Köppen-Geiger climate classification
method applied by Yang et al. (2020).

L403-408. To the reader this is a little confusing:

“Looking at the linear trend coefficient in the probit model, it seems that the seNorge
data upscaled to 12 km resolution are generally able to capture the change that there are
proportionally more wet days in the test period than in the training period, while the RCM
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data either project strong negative changes or simply no change in most catchments. For
the gamma model, both RCMs seem to have projected correct changes in the trend and
seasonality. For this reason, it cannot be expected that the RCM runs perfectly reproduce
the precipitation patterns in the finer-scale seNorge data”

The penultimate sentence in this section says ” For the gamma model, both RCMs seem to
have projected correct changes in the trend and seasonality” which is a positive aspect of the
model. Therefore, when reading the last sentence “For this reason, it cannot be expected that
the RCM runs perfectly reproduce the precipitation patterns in the finer-scale seNorge data”
one is a little surprised. Presumably the performance issues relate to the first sentence in this
section? To make this a little more understandable, I would replace “For this reason” in your
last sentence with the actual reason, presumably the somewhat different trend coefficient in
the RCMs? It is also worth noting that RCMs are not hind-casts (unless you were using
reanalysis forced RCMs), rather largely free running models (following the global response
to observed emissions as simulated by the driving GCM), hence you could easily end up with
somewhat different temporal trends, particularly on such short time frames.

Reply: Thank you for pointing out this contradictory messaging. We have rewritten the overall
statement to read:

“The historical RCM runs used here are available until 2005, and the observation-based data
is available from 1957, yielding a data set with 49 years of data. With 30 years of data used to
train the models, this leaves only 19 years of data for the out-of-sample evaluation. With only
19 years of data in the test period, we may expect to see some effects of natural variability when
comparing the seNorge data product and the largely free running RCMs. Looking at the linear
trend coefficient in the probit model, it seems that the seNorge data upscaled to 12 km resolution
are generally able to capture the change that there are proportionally more wet days in the test
period than in the training period, while the RCM data either project strong negative changes
or simply no change in most catchments. For the gamma model, however, both RCMs seem to
have projected correct changes in the trend and seasonality. Overall, we see that all versions of
the WG method yield better performance than the marginal persistence reference method based
on seNorge data from 1957-1986, and including RCM information improves upon the stationary
WG approach.”
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