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Abstract  25 

Remotely sensed evapotranspiration (RS-ET) products have been widely adopted as additional 26 

constraints on hydrologic modeling to enhance the model predictability while reducing predictive 27 

uncertainty. However, vegetation parameters, responsible for key time/space variation in 28 

evapotranspiration (ET), are often calibrated without the use of suitable constraints. Remotely 29 

sensed leaf area index (RS-LAI) products are increasingly available and provide an opportunity to 30 

assess vegetation dynamics and improve calibration of associated parameters. The goal of this 31 

study is to assess the Soil and Water Assessment Tool (SWAT) predictive uncertainty in estimates 32 

of ET using streamflow and two remotely sensed products (i.e., RS-ET and RS-LAI). We explore 33 

how the application of RS-ET and RS-LAI products contributes to 1) reducing the parameter 34 

uncertainty; 2) improving the model capacity to predict the spatial distribution of ET and LAI at 35 

the sub-watershed level; and 3) assessing the model predictions of ET and LAI at the basic 36 

modeling unit (i.e., the hydrologic response unit [HRU]) under the assumption that ET and LAI 37 

are related in croplands. Our results suggest that most of the parameter sets with acceptable 38 

performances for two constraints (i.e., streamflow and RS-ET; 12 parameter sets) are also 39 

acceptable for three constraints (i.e., streamflow, RS-ET, and RS-LAI; 11 parameter sets) at the 40 

watershed level. This finding is likely because both the ET simulation algorithm and the RS-ET 41 

products consider LAI as an input variable. Relative to the watershed-level assessment, the number 42 

of parameter sets that satisfactorily characterize spatial patterns of ET and LAI at the sub-43 

watershed level are reduced from 11 to 6. Among the 11 parameter sets acceptable for three 44 

constraints (i.e., streamflow, RS-ET and RS-LAI) at the sub-watershed level, two parameter sets 45 

appear to provide high spatial and temporal consistency between ET and LAI at the HRU level. 46 

These results suggested that use of multiple remotely sensed products as model constraints enables 47 
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model evaluations at finer scales - thereby constraining acceptable parameter sets and accurately 48 

representing the spatial characteristics of hydrologic variables. As such, this study highlights the 49 

potential of remotely sensed data to increase the predictability and utility of hydrologic models.   50 

 51 

Keywords: Remotely sensed evapotranspiration (RS-ET); remotely sensed leaf area index (RS-52 

LAI); Soil and Water Assessment Tool (SWAT); predictive uncertainty 53 
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1. Introduction 67 

One major concern with regard to any hydrologic modeling exercise is predictive uncertainty. 68 

Although the reliability of simulated outcomes is assessed via model calibration and validation to 69 

some degree, predictive uncertainty always exists (Arnold et al., 2012; Yen et al., 2014a). A lack 70 

of observations is one of the primary uncertainty sources. The vast majority of hydrologic 71 

modeling studies depend solely on water quantity and/or quality measurements collected at the 72 

watershed outlet (Arnold et al., 2012; Gassman et al., 2014). To overcome predictive uncertainty 73 

resulting from data shortfalls, the use of so-called soft data (e.g., expert knowledge, literature, 74 

remotely sensed data and extensive field monitoring) has been suggested as an additional 75 

constraint (Arnold et al., 2015; Lee et al., 2019; Seibert and McDonnell, 2002; Yen et al., 2016). 76 

Soft data have been used to better represent intra-watershed processes (i.e., the hydrologic 77 

processes that take place between the stream and upland areas; Yen et al., 2014a). The inclusion 78 

of soft data has been found to be efficient for constraining model parameter values, leading to a 79 

reduction of predictive uncertainty (Julich et al., 2012; Lee et al., 2019; Vaché and McDonnell, 80 

2006). 81 

The Soil and Water Assessment Tool (SWAT) is a semi-distributed hydrologic model that 82 

commonly encounters predictive uncertainty due to a lack of observations (Gassman et al., 2014). 83 

One way to address this problem is employing remotely sensed data into SWAT simulations, 84 

capturing plant growth (Strauch and Volk, 2013; Yeo et al., 2014), wetland inundation dynamics 85 

(Lee et al., 2019; Yeo et al., 2019), and soil moisture (Chen et al., 2011). Compared to in-situ 86 

measurements that require intensive labor and high cost, remotely sensed data have an advantage 87 

of providing measurements across landscapes for a long period, reducing the problem of data 88 

deficiency for hydrologic model operations (Jiang and Wang, 2019; Xu et al., 2014). The SWAT 89 
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has been recently calibrated against remotely sensed evapotranspiration (referred to as RS-ET) 90 

products, leading to improved model predictions (Herman et al., 2018; Parajuli et al., 2018; Rajib 91 

et al., 2018; Wambura et al., 2018). Evapotranspiration (ET), defined as the sum of evaporation 92 

and transpiration fluxes, plays a critical role in water and energy cycling by transferring soil 93 

moisture to the atmosphere (Schlesinger and Jasechko, 2014). Thus, improved ET predictions can 94 

increase the overall accuracy of model outcomes.  95 

A common use of RS-ET products as calibration data is to be used with streamflow to better 96 

constrain hydrologic parameters (Herman et al., 2018; Parajuli et al., 2018; Rajib et al., 2018; 97 

Wambura et al., 2018). Simultaneous use of streamflow and RS-ET products is capable of 98 

constraining parameter values, reducing predictive uncertainty (Herman et al., 2018; Parajuli et al., 99 

2018; Rajib et al., 2018; Wambura et al., 2018). Wambura et al. (2018) showed the usefulness of 100 

RS-ET products in reducing the degree of equifinality (i.e., the tendency for different parameter 101 

sets [referred to as PARs hereafter] to produce equally acceptable model outputs; Beven, 2006). A 102 

study by Rajib et al. (2018) found substantial improvement in the modeled ET predictions by 103 

including vegetation parameters and the utility of RS-ET products in evaluating ET variations 104 

across a landscape. Thus, access to RS-ET products enables an assessment of model capacity to 105 

predict the spatial distribution of hydrologic variables (Becker et al., 2019; Rajib et al., 2018).  106 

Root uptake of water, and subsequent transpiration from leaf area comprises a significant 107 

portion of total ET in vegetated area and thus its parameterization is crucial for ET simulations. 108 

However, previous studies have rarely included vegetation data for the calibration and validation 109 

of ET simulations (Herman et al., 2018; Parajuli et al., 2018; Rajib et al., 2018; Wambura et al., 110 

2018). Ha et al. (2018) applied remotely sensed ET and vegetation data into SWAT modeling, but 111 

their study only focused on the usefulness of remotely sensed data for regions without streamflow 112 
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observations. ET simulations without model calibration against vegetation data can be problematic 113 

since SWAT estimates of ET may not accurately reflect the vegetation contribution. The leaf area 114 

index (LAI), referred to as the projected leaf area over a unit of land, is an important vegetation 115 

parameter closely related to vegetation transpiration (Bian et al., 2019; Gigante et al., 2009). 116 

Several studies have emphasized that LAI should be taken into account for ET predictions due to 117 

the strongly correlated relationship between ET and LAI (Wang et al., 2010; Yan et al., 2012). The 118 

increased availability of remotely sensed LAI (referred to as RS-LAI) products provides an 119 

opportunity to apply those data to hydrologic modeling studies (Andersen et al., 2002; Stisen et 120 

al., 2008).  121 

The primary goal of this study is to explore the hydrologic model predictive uncertainty in 122 

estimating ET using daily streamflow, RS-ET, and RS-LAI products for a small watershed (221 123 

km2) within the Coastal Plain of the Chesapeake Bay Watershed (CBW). The hydrologic model 124 

used in this study is the SWAT since remotely sensed data have been widely incorporated into the 125 

model. We conducted a lumped parameterization at the watershed level using three constraints: 126 

streamflow, RS-ET, and RS-LAI products. The PARs that result in acceptable streamflow and ET 127 

simulations (referred to as “PARs-1”, hereafter) were taken from all PARs explored for calibration. 128 

In addition, the PARs with acceptable model performance measures for not only streamflow and 129 

ET, but also LAI (referred to as “PARs-2”, hereafter) were also extracted from all explored PARs. 130 

Regarding the advantage of remotely sensed data, the spatial distribution of sub-watershed-level 131 

ET and LAI simulations was also evaluated using the results from the PARs-2. We further 132 

attempted to evaluate the model predictions at the smallest modeling unit, the Hydrologic 133 

Response Unit (HRU), given the similar modeling behaviors of ET and LAI (Wang et al., 2010; 134 

Yan et al., 2012).   135 
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The specific objectives of this study are to: (i) compare the two PARs (i.e., PARs-1 and PARs-136 

2) along with their simulated outputs (e.g., streamflow, ET, and LAI) to explore the role of 137 

vegetation constraints (i.e., RS-LAI products) for improving ET simulations and constraining 138 

acceptable PARs; (ii) test whether those additional constraints (i.e., RS-ET and RS-LAI products) 139 

are useful in identifying the PARs that well represent the spatial distribution of ET and LAI at 140 

different spatial resolutions; and (iii) suggest the appropriate evaluation method for HRU-level 141 

model predictions based on the relationship between ET and LAI.  142 

 143 

2. Materials and methods 144 

2.1. Study area 145 

This study was conducted in the Tuckahoe Creek Watershed (TCW) upstream of the U.S. 146 

Geological Survey (USGS) gauge station #01491500. The watershed is a sub-basin of the 147 

Choptank River watershed within the Coastal Plain of the CBW (Figure 1a). The Choptank River 148 

watershed has been the focus of intensive research (McCarty et al., 2008) led by the U.S. 149 

Department of Agriculture-Natural Resources Conservation Service (USDA-NRCS, Duriancik et 150 

al., 2008), and USDA-Agricultural Research Service (USDA-ARS, Baffaut et al., 2020). The TCW 151 

is predominantly covered by croplands (54 %), followed by forest (32.8 %), pasture (8.4 %), urban 152 

land (4.2 %) and water bodies (0.6 %, Fig. 1b). The main crops in the watershed are corn, soybean, 153 

and winter wheat. Soils are evenly divided between well- (Hydrologic Soil Group (HSG) – A and 154 

B, 56 %) and poorly- (HSG – C and D%, 44 %) drained soils (Fig. 1c). A detailed description of 155 

HSGs can be found in Fig. 1. Based on long-term weather observations from three meteorological 156 

stations operated by the National Climate Data Center (NCDC), National Oceanic and 157 
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Atmospheric Administration (NOAA) (Fig. 1a), annual mean precipitation and temperature for the 158 

past 30 years (1985 – 2014) are 1166 mm (± 228 mm) and 13 °C (± 1 °C), respectively. In this 159 

region, precipitation is fairly uniform over the course of the year, but ET exhibits high seasonal 160 

variability (Fisher et al., 2010). Irrigation for corn and soybean production during the summer 161 

season has substantially increased in this region (Wolman, 2008), which can amplify water loss by 162 

ET during summer seasons. Water balance cycling in this region is greatly affected by the seasonal 163 

variation in ET. Thus, accurate ET simulation for this region is crucial to advance the predictions 164 

from hydrologic models. 165 

 166 

 167 

Fig. 1. Characteristics of the study area (Tuckahoe Creek Watershed): (a) location, (b) land use 168 

type, and (c) hydrologic soil groups (adapted from Lee et al. 2018a) Note: hydrologic soil groups 169 

(HSGs) are characterized as follows: Type A- well-drained soils with 7.6-11.4 mm·hr-1 water 170 

infiltration rate; B - moderately well-drained soils with 3.8-7.6 mm·hr-1; C - moderately poorly-171 
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drained soils with 1.3-3.8 mm·hr-1; and D – poorly-drained soils with 0-1.3 mm·hr-1 (Neitsch et 172 

al., 2011). HSG-A, B, C, and D account for 0.3, 55.8, 2.2, and 41.7% of the TCW, respectively. 173 

 174 

2.2. Soil and Water Assessment Tool 175 

 The SWAT model is a watershed-scale model designed for modeling the impacts of 176 

environmental and anthropogenic changes on hydrological processes within an agricultural 177 

watershed (Neitsch et al., 2011). The model partitions a given watershed into sub-watersheds and 178 

further into hydrologic response units (HRUs). Hydrologic variables are determined at the 179 

individual HRU level, and then outputs are combined at the sub-watershed and watershed level 180 

through channel processes (Neitsch et al., 2011). The cumulative water balance of each HRU is 181 

computed using Eq. 1: 182 

𝑆𝑊𝑡 = 𝑆𝑊0 + ∑ (𝑅𝑑𝑎𝑦 − 𝑄𝑠𝑢𝑟𝑓 − 𝐸𝑎 − 𝑊𝑠𝑒𝑒𝑝 − 𝑄𝑔𝑤)𝑡
𝑖=1                                                                                (1) 183 

where 𝑆𝑊𝑡 is the final soil water content (mm H2O), 𝑆𝑊0 is the initial soil water content (mm 184 

H2O), t is the time (days), 𝑅𝑑𝑎𝑦 is the amount of precipitation on day i (mm H2O), 𝑄𝑠𝑢𝑟𝑓 is the 185 

amount of surface runoff on day i (mm H2O), 𝐸𝑎  is the amount of ET on day i (mm H2O), 𝑊𝑠𝑒𝑒𝑝 186 

is the amount of percolation and bypass flow existing the soil profile bottom on day i (mm H2O), 187 

and 𝑄𝑔𝑤 is the amount of groundwater flow on day i (mm H2O).  188 

The SWAT model first calculates potential ET (PET) and then estimates actual ET (AET) 189 

by subtracting several factors from PET. Three calculation methods for potential 190 

evapotranspiration (𝑃𝐸𝑇) are available in the SWAT model: Penman–Monteith, Priestley–Taylor, 191 

and Hargreaves (Neitsch et al., 2011). The Penman–Monteith method is expressed:  192 

𝜆𝐸 =
∆∙(Hnet − G)+ρair∙cp∙[ez

0 − ez]/ra

∆+γ∙(1+rc/ra)
                                                                                             (2) 193 
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where 𝜆E is the latent heat of vaporization (MJ kg−1), 𝐸 the depth rate evaporation (mm d-1), Δ the 194 

slope of the saturation vapor pressure-temperature curve (kPa ◦C −1), 𝐻𝑛𝑒𝑡 the net radiation (MJ 195 

m−2 d−1), G the ground heat flux density (MJ m−2 d−1), 𝜌𝑎𝑖𝑟 the air density (kg m−3), 𝑐𝑝 the specific 196 

heat at constant pressure (MJ kg−1 ◦C −1), 𝑒𝑧
0 the saturation vapor pressure of air at height z (kPa), 197 

e𝑧 the water vapor pressure of air at height z (kPa), γ the psychrometric constant (kPa ◦C −1), rc 198 

the plant canopy resistance (s m−1) and ra the diffusion resistance of the air layer (aerodynamic 199 

resistance) (s m−1).  200 

 After computing PET, AET is estimated in the SWAT. At first, rainfall captured by the 201 

plant canopy is evaporated. Then, the maximum amount of sublimation/soil evaporation is 202 

calculated and their actual amount is subsequently calculated. If a snow cover exits, sublimation 203 

will take place, but if not only soil evaporation is considered. Further details about the Penman–204 

Monteith method and AET calculation are available in Neitsch et al. (2011).   205 

 In the SWAT, dynamic LAI estimates are generated as a function of the optimal leaf area 206 

development curve.  This curve controls LAI growth by accumulated potential heat units. A daily 207 

potential heat unit is computed by the difference between daily average temperature and the base 208 

temperature. If the base temperature is greater than daily average temperature, a daily heat unit is 209 

zero. Once the LAI reaches its (vegetation type-specific) maximum value, the maximum LAI will 210 

be maintained until leaf senescence begins.  211 

𝐿𝐴𝐼 = 𝐿𝐴𝐼𝑚𝑥 ∙
(1 − 𝑓𝑟𝑃𝐻𝑈)

(1 − 𝑓𝑟𝑃𝐻𝑈,𝑠𝑒𝑛)
                                                                                                         (3) 212 

where LAI is the leaf area index for a given day, 𝐿𝐴𝐼𝑚𝑥 is the maximum LAI, 𝑓𝑟𝑃𝐻𝑈 is the fraction 213 

of potential accumulated heat units for the plant on a given day, 𝑓𝑟𝑃𝐻𝑈,𝑠𝑒𝑛  is the fraction of 214 
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potential accumulated heat units where the senescence becomes the dominant growth process. 215 

Please see Neitsch et al. (2011) for further details. 216 

 217 

2.3. Input and calibration data 218 

 The SWAT model requires climate and geospatial data as input for simulations (Table 1). 219 

Daily precipitation and temperature records from 2008 – 2014 were downloaded from the NOAA 220 

NCDC monitoring stations (Fig. 1a). Daily solar radiation, relative humidity, and wind speed were 221 

prepared using the SWAT model’s built-in weather generator (Neitsch et al., 2011). Digital 222 

Elevation Model (DEM) data were collected by Maryland Department of Natural Resources (MD-223 

DNR) and the dataset was post-processed by USDA-ARS, Beltsville to use the DEM as input to 224 

the SWAT model. Soil map information corresponding to the study area was downloaded from 225 

Soil Survey Geographical Database (SSURGO). A land use map developed by Lee et al. (2016)   226 

was used, based on multiple geospatial sources listed in Table 1 (Lee et al., 2016). This map 227 

includes eight representative crop rotations (Table 2) with their locations determined by multi-year 228 

Cropland Data Layers (CDLs) obtained from the USDA-National Agricultural Statistics Service 229 

(NASS). Detailed scheduling data are available in the supplementary material Table S1.  230 

 231 

 232 

 233 

 234 

 235 
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Table 1. List of SWAT model input and calibration data  236 

Data Type Source Description Year 

DEM MD-DNR LiDAR-based 10-meter resolution 2006 

Land Use USDA-NASS Cropland Data Layer (CDL) 2008 - 2012 

MRLC National Land Cover Database (NLCD) 2006 

USDA-FSA-

APFO 

National Agricultural Imagery Program 

digital Orthophoto quad imagery 

1998 

US Census 

Bureau 

TIGER road map 2010 

Soils USDA-NRCS Soil Survey Geographical Database 

(SSURGO) 

2012 

Climate NCDC Daily precipitation and temperature 2008 – 2014 

Streamflow USGS Monthly streamflow 2008 – 2014 

RS-ET Sun et al. (2017) Daily ET 2010 – 2014 

RS-LAI  Daily LAI 2010 – 2014 

MRLC: Multi-Resolution Land Characteristics Consortium, USDA-FSA-APFO: USDA-Farm 237 

Service Agency-Aerial Photography Field Office, and TIGER: Topologically Integrated 238 

Geographic Encoding and Referencing. 239 

  240 

Table 2. Eight representative cropland rotations used in the SWAT simulations. 241 

Type 2008 2009 2010 2011 2012 2013 2014 Proportion  

1 WW/Soyb Corn WW/Soyb Corn WW/Soyb Corn WW/Soyb 14.5 

2 Corn WW/Soyb Corn WW/Soyb Corn WW/Soyb Corn 21.9 

3 WW/Soyb Corn Soyb Corn WW/Soyb Corn Soyb 7.7 

4 Soyb Corn Soyb Corn Soyb Corn Soyb 11.3 

5 Corn Soyb Corn Soyb Corn Soyb Corn 9.8 

6 Corn Corn Corn Corn Corn Corn Corn 17.1 

7 Corn Soyb Soyb Corn Soyb Soyb Corn 10.2 

8 Soyb Corn Soyb Soyb Corn Soyb Soyb 7.5 

Corn 59 58 49 61 56 51 59 56 

Soyb 41 42 51 39 44 49 41 44 

WW/Soyb and Soyb indicate double crop winter wheat/soybean and soybean, respectively. The 242 

last column indicates the relative area (%) of each crop rotation applied to croplands. The bottom 243 

two rows indicate the relative area (%) of corn and soybean fields resulting from different 244 

concurrent rotations. The shaded types 4 – 8 are used for HRU-level assessment (see Section 2.5). 245 

 246 

Daily streamflow records from 2010 to 2014 were obtained from USGS gauging station 247 

#01491500 located at the outlet of TCW (Fig. 1a). Daily RS-ET products were generated from the 248 

regional Atmosphere-Land Exchange Inverse (ALEXI) model (Anderson et al., 1997, 2007) and 249 

associated flux spatial-temporal disaggregation scheme (DisALEXI) (Anderson et al., 2004). This 250 
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multi-scale modeling system is based on the two-source energy balance model (Norman et al., 251 

1995), which uses remotely sensed land surface temperature (LST) observations to partition 252 

available energy between latent and sensible heat fluxes from the soil and canopy components of 253 

the scene. A data fusion algorithm can be used to fuse 30-m resolution/bi-weekly ET retrievals 254 

from Landsat LST observations with 500-m/daily data from MODIS, which results in fused 255 

datasets with both high spatial and temporal resolution (Anderson et al., 2018; Cammalleri et al., 256 

2013, 2014).  Over the study area, 30-m daily RS-ET products from ALEXI/DisALEXI have been 257 

well-validated against in-situ eddy covariance flux tower measurements with an average relative 258 

error of 10% (Sun et al., 2017). RS-ET products used here cover the time period from January 259 

2010 to December 2014.  260 

Daily LAI with a 500-m spatial resolution was generated from the MODIS Version 6 261 

LAI/FPAR products (MCD15A3H). MCD15A3H is a combined LAI product from two satellites 262 

(Terra and Aqua) at 4-day temporal frequency. Daily LAI values were produced through two steps. 263 

First, MODIS LAI quality control (QC) layers (FparLai_QC and FparExtra_QC) were used to 264 

exclude LAI retrievals from partial clouds, cloud shadows, and dead detector. LAI retrievals from 265 

the physical radiative-transfer model (main algorithm) and the empirical model (backup algorithm) 266 

(Myneni et al., 2002) were separated. Second, the 4-day MODIS LAI data from the first step were 267 

smoothed and interpolated to daily LAI values using the Savitzky–Golay (SG) filter approach. 268 

Daily LAI values at 500-m spatial resolution from 2010 to 2014 were generated for this study.        269 
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 270 
Fig. 2. Examples of RS-ET (mm day-1) and RS-LAI (m2 m-2) used in this study. 271 

 272 

2.4. Model calibration and validation 273 

Model simulations were performed at a daily time step for seven years (2008 – 2014) given 274 

the availability of RS-ET (2010 to 2014). The first two years (2008 – 2009) were used as a spin-275 

up period. Three years (2010 – 2012) were set aside for model calibration. Model validation was 276 

executed for five years (2010 – 2014) to consider seasonal and annual variability in hydrological 277 
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processes (Rajib et al., 2018). This study used 13 hydrologic parameters shown to be sensitive to 278 

streamflow in previous studies (Parajuli et al., 2013; Sexton et al., 2010; Yeo et al., 2014, Table 279 

2) . In addition to hydrologic parameters, 14 vegetation parameters were selected (Table 2). Only 280 

corn and soybean parameters were calibrated since the distribution and rotation of the two crops 281 

were well captured by the land use map used in this study and detailed practice schedules (e.g., the 282 

application timing and amount of fertilizer, planting and harvesting timings) of the two crops were 283 

well developed by local experts (Lee et al., 2016). Thus growth dynamics of corn and soybean 284 

were well depicted in our simulations. Double crop soybean was not calibrated as all information 285 

described above was made for summer crops. 286 

3,000 PARs were prepared using the Latin Hypercube sampling (LHS) method. The LHS 287 

method divides a sampling space of individual parameters into multiple non-overlapping sub-288 

spaces with equal probability (McKay et al., 2000). The LHS then generates one PAR by randomly 289 

selecting individual parameter values within each sub-space while forcing each sub-space to have 290 

only one value for each PAR (McKay et al., 2000). 291 

 292 

 293 

 294 

 295 

 296 

 297 
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Table 3. The description, range, and sensitivity ranking of calibrated parameters 298 

Parameter Description (units) Range 

CN SCS runoff curve number -20 – 20% 

GW_DELAY Groundwater delay (days) 0 – 100 

ALPHA_BF Baseflow alpha factor (days-1) 0 – 1 

GWQMN Threshold depth of water in the shallow aquifer required for return flow to occur (mm H2O) 0 – 5000 

GW_REVAP Groundwater "revap" coefficient 0.02 – 0.2 

REVAPMN Threshold depth of water in the shallow aquifer for "revap" to occur (mm H2O) 0 – 500 

SOL_AWC Available water capacity of the soil layer (mm H2O ·mm soil-1) -50 – 50% 

CH_K2 Effective hydraulic conductivity in the main channel alluvium 0 – 150 

CH_N2 Manning's "n" value for the tributary channels 0.01 – 0.3 

SURLAG Surface runoff lag coefficient 0.5 – 24 

ESCO Soil evaporation compensation factor 0 – 1 

EPCO Plant uptake compensation factor 0 – 1 

CANMX Maximum canopy storage (mm H2O) 0 – 1 

BIO_E (corn) Radiation use efficiency in ambient CO2 14 – 54 

HVSTI (corn) Harvest index for optimal growing conditions 0.4 – 0.7 

BLAI (corn) Maximum potential leaf area index 4 – 8 

FRGRW1 (corn) Fraction of the plant growing season of total potential heat units corresponding to the first point on the leaf 

area development curve 

0 – 0.4 

FRGRW2 (corn) Fraction of the plant growing season of total potential heat units corresponding to the second point on the leaf 

area development curve 

0.4 – 1 

LAIMX1 (corn) Fraction of the maximum leaf area index corresponding to the first point on the leaf area development curve 0 – 0.4 

LAIMX2 (corn) Fraction of the maximum leaf area index corresponding to the second point 0.4 – 1 

BIO_E (soybean) Radiation use efficiency in ambient CO2 14 – 54 

HVSTI 

(soybean) 

Harvest index for optimal growing conditions 0.4 – 0.7 

BLAI (soybean) Maximum potential leaf area index 4 – 8 

FRGRW1 

(soybean) 

Fraction of the plant growing season of total potential heat units 

corresponding to the first point on the leaf area development curve 

0 – 0.4 

FRGRW2 

(soybean) 

Fraction of the plant growing season of total potential heat units 

corresponding to the second point on the leaf area development curve 

0.4 – 1 

LAIMX1 
(soybean) 

Fraction of the maximum leaf area index corresponding to the first 
point on the leaf area development curve 

0 – 0.4 

LAIMX2 

(soybean) 

Fraction of the maximum leaf area index corresponding to the second 

point 

0.4 – 1 

Note: Parameter values for PARs-1 and PARs-2 are shown in the supplementary material Table 299 

S2.  300 

 301 

Model performance for daily streamflow, ET, and LAI was evaluated using Kling-Gupta 302 

Efficiency (KGE). KGE diagnostically decomposes the Nash-Sutcliffe efficiency (NSE) and Mean 303 

Squared Error (MSE) to provide a combined measure of relative importance of correlation, bias 304 

and variability for hydrological modelling (Gupta et al., 2009). KGE values range from – ∞ to 1, 305 

with values closer to 1 indicating stronger model performance. 306 
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𝐾𝐺𝐸 = 1 − √(𝑟 − 1)2 − (𝜎𝑠/𝜎𝑜 − 1)2 − (𝜇𝑠/𝜇𝑜 − 1)2             (4) 307 

where 𝑟 indicates the Pearson product-moment correlation coefficient, 𝜎𝑠/𝜎𝑜 and 𝜇𝑠/𝜇𝑜 indicate 308 

variability ratio and bias between simulations and observations, respectively, 𝜎 and 𝜇 indicate the 309 

standard deviation and mean of the variables, respectively. The subscripts, 𝑠  and 𝑜 , indicate 310 

simulations and observations, respectively. KGE was computed using the “hydroGOF” package 311 

of the R program (Zambrano, 2017). This study defined the acceptable daily model performance 312 

measure as streamflow (KGE ≥ 0.65) and ET (KGE ≥ 0.55). These criteria thresholds have been 313 

viewed as “satisfactory” in previous studies (Becker et al., 2019; Poméon et al., 2018; Rajib et al., 314 

2018; Wallace et al., 2018). The ET criterion was directly applied to define the acceptable LAI 315 

criterion (KGE ≥ 0.55) as vegetation dynamics indicated by LAI substantially accounts for ET. 316 

 317 

2.5. The spatial distribution of ET and LAI at the sub-watershed level 318 

We compared simulated ET and LAI with RS-ET and RS-LAI products, respectively, at the 319 

sub-watershed level. RS-ET and RS-LAI products were discretized by the sub-watershed boundary 320 

generated from the ArcSWAT interface using the input DEM (Winchell et al., 2007). The TCW 321 

includes 19 sub-watersheds, and except for one sub-watershed smaller than the LAI pixel size 322 

(0.25 km2), 18 sub-watersheds with sizes ranging from 2.55 – 31.19 km2 were used for the sub-323 

watershed-level spatial evaluation. This evaluation was conducted using simulations from PARs-324 

2 that show acceptable daily performance for streamflow, ET and LAI. We computed KGE values 325 

for ET and LAI for individual sub-watersheds and computed the median KGE values. The PARs 326 

with the median KGE values equal or greater than 0.55 for both ET and LAI were considered to 327 

represent acceptable performance measures for the spatial distribution of ET and LAI in this study. 328 
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The PARs not meeting these criteria were viewed as unable to capture the spatial distribution of 329 

ET and LAI at the sub-watershed level although they showed acceptable performance at the 330 

watershed level. We used the evaluation results to further assess the degree of equifinality.  331 

 332 

2.6. Consistency between ET and LAI at the HRU-level  333 

Relative to the sub-watersheds, the size and configuration of HRUs are small and irregularly 334 

shaped, which often constrain the use of remotely sensed data for the HRU-level evaluation. 335 

Becker et al. (2019) pointed out that remotely sensed data are limited for a watershed dominated 336 

by small croplands, and the HRU-level calibration requires substantial computer resources as well 337 

as data processing to use remotely sensed data. Rather than directly using remotely sensed data to 338 

assess HRU-level simulation, we explored the relationship between simulated outputs at the HRU 339 

level. The simulated outputs accepted for upper-level spatial units (i.e., the results from PARs-2) 340 

were adopted in the HRU-level assessment. The relationship of two simulated ET and LAI at the 341 

HRU level was viewed as the assessment criteria based on the assumption that the dynamics of ET 342 

and LAI are similar in croplands and thus a well-calibrated model can show the correlations 343 

between ET and LAI. The comparison of simulated ET and LAI at the cropland HRUs can be a 344 

way to test whether PARs suitable for the (sub)watershed-level can also capture HRU-level 345 

processes.  346 

This hypothesis was tested on five different types (4 - 8) of croplands (see Table 2) where 347 

corn and soybean are cultivated during summer growing seasons (May to October) from 2010 to 348 

2014 (Fig. 3). Croplands with double crop winter wheat/soybean were excluded in this analysis 349 

because of inaccurate crop information during non-summer growing seasons. The results from 350 

PARs-2 were applied in the HRU-level assessment. The temporal consistency was assessed by 351 
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comparing between cropland-level daily average of ET and LAI during 5-year summer growing 352 

seasons for individual cropland types (Fig. 3). For the spatial consistency, 5-year summer growing 353 

season averages of ET and LAI at individual HRUs within individual cropland types. Then, ET 354 

and LAI were compared individually for each cropland type (Fig. 3). Temporal and spatial 355 

consistency were also evaluated for individual PARs-2. The degree of consistency was quantified 356 

using the coefficient of determination (R2). 357 

 358 

Fig. 3. Diagram of the HRU-level assessment 359 

 360 

 To identify the PAR that results in the best temporal and spatial consistency between ET 361 

and LAI at the field level, the Pareto frontier was computed using the “rPref” package (Roocks, 362 

2016) within the R programing environment. The objective function (OF) was defined as: 363 

𝑂𝐹𝐻𝑅𝑈 = min (1 − 𝑅𝑠𝑝𝑎
2 , 1 − 𝑅𝑡𝑒𝑚

2 )                                                  (5) 364 
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where min () indicates the selection of minimum values.  𝑅𝑠𝑝𝑎
2

 and 𝑅𝑡𝑒𝑚
2  are 𝑅2  values for the 365 

spatial and temporal consistency between ET and LAI, respectively. The Pareto frontiers (i.e., 366 

PAR) frequently shown in five cropland types were chosen as the optimal PAR for watershed- and 367 

field-level evaluation. 368 

 369 

3. Results and discussions 370 

3.1. Impacts of vegetation data on ET predictions and predictive uncertainty at the 371 

watershed level 372 

Among 3,000 PARs, there were 12 PARs with acceptable model performances for streamflow 373 

and RS-ET (i.e., PARs-1). The observed streamflow, RS-ET, and RS-LAI were plotted with 374 

simulation results from two parameter sets (#7 and #9) with the high KGE values during the 375 

calibration period (Fig. 4). The visual comparisons of the other ten PARs are available in the 376 

supplementary material Figs. S1 – S3. The ranges of KGE values for PARs-1 were 0.65 – 0.87 377 

(0.65 – 0.83) for streamflow and 0.58 – 0.60 (0.55 – 0.57) for RS-ET during calibration (and 378 

validation) periods (Table 4). 11 PARs (PARs-2) simultaneously satisfied model performance 379 

thresholds for streamflow, RS-ET, and RS-LAI (Table 4). The model performance measures for 380 

PARs-2 were 0.65 – 0.87 (0.65 – 0.83) for streamflow, 0.58 – 0.60 (0.55 – 0.57) for RS-ET, and 381 

0.66 – 0.70 (0.66 – 0.71) for RS-LAI during calibration (and validation) periods.  382 

The degree of equifinality was slightly reduced from 12 to 11 with inclusion of RS-LAI. Only 383 

one PAR among PARs-1 did not show an acceptable KGE value for RS-LAI (Table 4). The high 384 

similarity between the PARs-1 and PARs-2 is not surprising since both the ET calculation and RS-385 

ET consider LAI. The ET calculation method in this study (Penman-Monteith) uses the canopy 386 
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resistance as a key variable and the canopy resistance is calculated from LAI in SWAT (Neitsch 387 

et al., 2011). RS-LAI data were an input for RS-ET retrievals (Sun et al., 2017) and thus calibrated 388 

parameter sets that match RS-ET can also perform well with regards to LAI estimation. A previous 389 

study by Chen et al. (2017) also reported a high correlation between ET and LAI from SWAT 390 

results.  391 

 392 

 393 

Fig. 4. Comparison of daily simulations with observed streamflow, watershed-level RS-ET, and 394 

RS-LAI during the simulation period from 2010 to 2014. The unit of LAI is m2∙m-2. The 395 

simulations results from PAR #7 (a, c, and e) and #9 (b, d, and f) are only shown in Fig. 3. Results 396 

for the other ten acceptable PARs are provided in the supplementary material Figs. S1 – S3.  397 

 398 

 399 
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Table 4. Performance measures (KGE value) for daily streamflow, RS-ET, and RS-LAI 400 

PAR  1 2 3 4 5 6 7 8 9 10 11 12 

Streamflow Cal. 0.67 0.65 0.83 0.67 0.74 0.71 0.87 0.79 0.80 0.75 0.66 0.67 

 Val. 0.68 0.67 0.81 0.69 0.69 0.70 0.83 0.75 0.74 0.75 0.69 0.65 

ET Cal. 0.59 0.59 0.59 0.59 0.59 0.58 0.60 0.59 0.60 0.59 0.58 0.59 

 Val. 0.57 0.56 0.56 0.57 0.57 0.55 0.57 0.57 0.57 0.57 0.55 0.56 

LAI Cal. 0.67 0.63 0.61 0.66 0.70 0.42 0.65 0.61 0.66 0.63 0.65 0.65 

 Val. 0.69 0.67 0.66 0.67 0.71 0.49 0.68 0.66 0.66 0.66 0.67 0.69 

Note: The column with the gray background is the parameter set not included in PARs-2.  401 

 402 

Simulated streamflow did not capture observed peak flows over the simulation period (Fig. 403 

4ab and Fig. S1). This may be because the precipitation data collected at the weather stations do 404 

not fully represent the spatial variations of meteorological conditions across the entire study site. 405 

Localized variations in precipitation have frequently been observed at this study area, which might 406 

further contribute to the underestimation of peak streamflow (Lee et al., 2016; Yeo et al., 2014). 407 

ET and LAI results showed strong seasonal trends with high values during the summer season 408 

(May to October) and low values during the winter season (November to April), which agreed 409 

with an earlier study by Fisher et al. (2010) and local tower measurements (Sun et al., 2017). Warm 410 

temperatures and plant growth led to peak ET and LAI values during the summer season.  411 

The underestimation of ET simulations (Fig. 4cd and Fig. S2) can be attributed to a number of 412 

possible factors. A previous study also reported the ET simulations were lower than remotely 413 

sensed ET (Odusanya et al., 2019). The underestimated ET for this study is likely attributable to 414 

the exclusion of irrigation practices in our simulations due to inadequate associated information 415 

while the thermal ET remote sensing approach directly captures the impact of irrigation on ET 416 

(Hain et al., 2015). A previous study found that improved ET simulation resulted from the 417 

inclusion of irrigation practices in simulations (Chen et al., 2017). In addition, forested areas 418 
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accounts for 33 % of our study site, and these areas were simulated using default growth 419 

parameters due to the absence of adequate forest growth data for calibration. Depressional 420 

wetlands, abundant in forested areas of this region, are likely to lose water via ET at rates larger 421 

than captured by the SWAT model. Therefore, the ET module in the forested settings may be an 422 

additional factor leading to the underestimated model ET (Fig. 4ef and Fig. S3). Winter cover 423 

crops are widely implemented in this region to reduce nutrient loads and those crops are shown to 424 

increase the wintertime vegetation index (Hively et al., 2020). The omission of winter cover crops 425 

from our simulation resulted in low LAI relative to RS-LAI. 426 

 427 

3.2. Comparing model results with RS-ET and RS-LAI at the sub-watershed level 428 

Sub-watershed-level KGE values were calculated for daily ET and LAI in Fig. 4. The median 429 

KGE values for ET ranged from 0.52 to 0.56 (Fig. 5a). Increased KGE values were observed for 430 

LAI (0.60 – 0.65, Fig. 5b) relative to ET. Only six PARs-2 (#1, #2, #3, #7, #8 and #12) were found 431 

to exceed the sub-watershed-level ET criteria (KGE ≥ 0.55). In compliance with the watershed-432 

level result, the PAR#7 case is associated with high KGE values for ET (0.57) and LAI (0.63) at 433 

the sub-watershed level (Fig. 5 a and c). However, the PAR#9 case, exhibiting high KGE values 434 

at the watershed level, narrowly failed to meet the sub-watershed-level criteria for ET (0.54, Fig. 435 

6 b and d). The number of acceptable PARs decreased from 11 (PARs-2) to six, which can suggest 436 

that the sub-watershed-level assessment help to identify the PARs that satisfactorily characterize 437 

internal processes at a finer spatial level. This finding supports a conclusion that the spatial 438 

assessment using remotely sensed data can further narrow acceptable PARs - thus reducing 439 

predictive uncertainty (e.g., equifinality).  440 
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 441 

 442 

Fig. 5. KGE values for (a) ET and (b) LAI at the sub-watershed level. The vertical red line indicates 443 

a KGE threshold value of 0.55. KGE values of ET and LAI for individual sub-watersheds are 444 

available in the supplementary material Tables S3 and S4, respectively.  445 

 446 
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 447 
Fig. 6. The spatial distribution of KGE values for the PAR#7 and PAR#9 cases at the sub-448 

watershed level for ET (a and b) and LAI (c and d). 449 

 450 

At the sub-watershed level, approximately half of the PARs-2 were acceptable for ET while 451 

all PARs-2 met the sub-watershed-level LAI criterion. This was likely due to the spatial resolution 452 

of RS-ET and RS-LAI (Fig. 2). RS-ET with a 30-meter resolution might better represent the sub-453 

watershed-level ET, but RS-LAI with a 500-meter resolution might not well discern the the sub-454 

watershed-level LAI from the watershed-level value.  455 
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Previous studies have illustrated that, while a spatialized parameterization requires large 456 

computational resources and long simulation times, it is useful for characterizing large watersheds 457 

(Becker et al., 2019; Rajib et al., 2018). However, relative to the spatial extent of those studies (> 458 

1670 km2), the spatial extent of our study site (220 km2) is small, and our study focused on the use 459 

of multiple remotely sensed data to reduce predictive uncertainty. Therefore, we would argue that 460 

the lumped parameterization used in this study was sufficient to assess the prediction accuracy of 461 

the spatial distribution of ET and LAI.  462 

 463 

3.3. The consistency between ET and LAI at the HRU level 464 

Using simulations from the PARs-2 case, an assessment was conducted to identify the PAR 465 

indicating the spatial and temporal consistencies between simulated ET and LAI for five different 466 

cropland types using the Pareto frontiers (Fig. 7). The lower values indicated a greater consistency 467 

between ET and LAI (x-axis: temporal consistency and y-axis: spatial consistency). The spatial 468 

consistency between simulated ET and LAI tended to be better than the temporal consistency 469 

between them (Fig. 7). The spatial consistency was assessed using 5-year averages of ET and LAI 470 

for individual HRUs within individual cropland types, while cropland-level daily values were used 471 

for the temporal consistency. Seasonal variations of ET and LAI were evidently observed in this 472 

region (Fig. 4 c-f). Thus, the 5-year average values used in the spatial consistency smoothened 473 

daily picky values, likely reducing inconsistent patterns between ET and LAI. 474 

The four PARs (#1, #5, #11, and #12) were optimal for only one or two cropland types and 475 

other five PARs (#2, #3, #4, #8, and #10) were distant from the Pareto frontiers for all cropland 476 

types (Fig. 7). Based on the assumption that ET and LAI are correlated, this HRU-level comparison 477 
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likely found the PARs that improved representation of internal processes, reducing the number of 478 

acceptable PARs.  479 

This HRU-level assessment illustrates the capability for using multiple remotely sensed data 480 

products to identify the parameter set well depicting intra-watershed processes. As discussed in 481 

the introduction section, a hydrologic model is commonly calibrated using the observational data 482 

acquired at the watershed outlet, which may lead to inaccurate predictions of intra-watershed 483 

processes. Likewise, remotely sensed data struggle to provide field-level assessments due to coarse 484 

resolutions and spatial mismatch. However, after watershed-level assessment against multiple 485 

remotely sensed data, the relationships among variables calibrated at the watershed level can 486 

provide an opportunity to assess their relationships in intra-watershed processes. Furthermore, the 487 

reduction of acceptable PARs resulting from HRU-level assessment is useful when using 488 

hydrologic models for operational purposes. Modeling hydrologic models with different scenarios 489 

is commonly adopted for developing water resources management plans, and this approach often 490 

uses only one parameter set to anticipate hydrologic variables under various conditions (Gassman 491 

et al., 2014). The HRU-level assessment introduced in this study can benefit to choose the 492 

parameter set for a scenario-based modeling approach. 493 

Previous studies modified a hydrologic model algorithm (Sharifi et al., 2016) or employed local 494 

information, e.g., annual denitrification and groundwater contribution of annual nitrate discharge 495 

at the watershed outlet, to increase model ability to simulate intra-watershed processes (Yen et al., 496 

2014b). The two methods are not applicable for some areas with insufficient local data or limited 497 

expertise to modify model structures to reflect local characteristics. Availability of remotely sensed 498 

data is rapidly increasing, and thus the multi-level assessment shown in this study would be a 499 

possible way to overcome model predictions on intra-watershed responses. 500 
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 501 

 502 

Fig. 7. Spatial and temporal consistency between ET and LAI for croplands 4-8. The red points 503 

indicate Pareto frontiers. The number next to the red points corresponds to the PAR number in 504 

Table 4. 𝑅𝑠𝑝𝑎
2

 and 𝑅𝑡𝑒𝑚
2  are 𝑅2 values for the spatial and temporal consistency between ET and 505 

LAI, respectively. Detailed management practices for the five cropland types are shown in Table 506 

2. 507 

  508 

The two PARs (#7 and #9) indicating superior performances at the HRU level showed 509 

similar temporal dynamics for ET and LAI (Fig. 8). However, LAI values from the PAR #7 were 510 

greater than those from PAR #9. The PAR #7 case showed peak LAI values of 3.6 – 3.7 regardless 511 

of the crop rotation, but the PAR #9 case produced peak LAI values that were 1.5 and 2.0 lower 512 

during corn and soybean growing seasons, respectively. The LAI values for corn and soybean are 513 

affected by numerous factors (e.g., climatic conditions and agricultural practices). In SWAT, the 514 

default maximum LAI values are the same for corn (LAI value: 3) and soybean (LAI value: 3). 515 
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For the case of the Agricultural Policy/Environmental eXtender (APEX) model, corn (LAI value: 516 

6) has a greater default LAI value than soybean (LAI value: 5, Williams et al., 2015). To best 517 

characterize LAI dynamics in our study area, additional observational data are needed to better 518 

constrain the LAI parameter.  519 

The two PARs indicated similar ET predictions while they showed different patterns in 520 

LAI predictions. Differences in peak ET values between two PARs were 0.8 and 0.6 for corn and 521 

soybean growing seasons, respectively. It was also found that ET differences between croplands 522 

and forested areas were minimal relative to LAI differences (Fig. 9). This inconsistency of peak 523 

ET and LAI values between the two PARs was likely due to poor simulations of soil moisture 524 

conditions. In SWAT, ET is the summation of evaporation from plant canopy, transpiration, and 525 

soil evaporation. Actual transpiration is represented as the water uptake by plant root and 526 

calculated as a function of water required for plant transpiration as well as available soil water 527 

content (Neitsch et al., 2011). Therefore, the inconsistency between ET and LAI maximum values 528 

might be derived from poor soil moisture simulations. Remotely sensed soil moisture products can 529 

now be obtained from various satellite missions, the Advanced Microwave Scanning Radiometer 530 

(AMSR-E), the Advanced Scatterometer (ASCAT), the Soil Moisture and Ocean Salinity (SMOS), 531 

the Advanced Microwave Scanning Radiometer 2 (AMSR2), the Soil Moisture Active Passive 532 

(SMAP), and Global Navigation Satellite System (GNSS) signals (Dorigo et al., 2015; Imaoka et 533 

al., 2010; Kim et al., 2018; Kim and Lakshmi, 2018; Njoku et al., 2003; Rodriguez-Alvarez et al., 534 

2009; Wagner et al., 2013). However, most of these remote sensing soil moisture data are available 535 

at coarse resolutions (e.g., 25 km). Future use of high-resolution soil moisture products can provide 536 

additional information to the modeled spatial variations in ET and LAI.        537 
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 538 

Fig. 8. Comparison of simulated ET and LAI from PAR#7 and #9 over five growing seasons. (a) 539 

and (b) indicate cropland 4; (c) and (d) indicate cropland 5; (e) and (f) indicate cropland 6; (g) and 540 

(h) indicate cropland 7; and (i) and (j) indicate cropland 8. 541 

 542 
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 543 

Fig. 9. Daily simulated ET and LAI for croplands and forested areas. 544 

 545 

 546 

 547 

 548 

 549 

 550 

 551 

 552 

 553 

 554 
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4. Summary and Conclusion 555 

Hydrologic modelers tackle uncertainty issues caused by incomplete model structures and a 556 

lack of observational data. To address the issue, remotely sensed data have been employed as 557 

additional contraints to enhance the prediction accuracy of hydrologic models. For example, the 558 

use of RS-ET retrivals as additional constratins has led to the substantial reduction of predictive 559 

uncertainty and the achievement of the spatial evaluation. However, vegetation parameters 560 

affecting ET dynamics are often adjusted only against RS-ET without vegetation constraints. This 561 

calibration practice may inaccurately represent vegetation impacts on ET. In this study, we 562 

employed RS-LAI as an additional constraint to contrain vegetation parameters, and we explored 563 

whether the addition of RS-LAI was beneficial to reduce parameter uncertainty. The SWAT model 564 

was calibrated against observed streamflow and RS-ET, and the calibrated model was further 565 

constrained by RS-LAI to check the number of acceptable parameter sets depending on presence 566 

or absence of RS-LAI as a constraint. We further tested how well parameter sets (acceptable for 567 

streamflow, ET, and LAI at the watershed level) depicted the spatial distribution of ET and LAI at 568 

the sub-watershed level. This finer-level evaluation was effective to constrain acceptable 569 

parameter sets. We evaluated the spatial and temporal consistencies between ET and LAI at the 570 

finest spatial level (i.e., HRU-level) with the assumption that ET and LAI are strongly correlated. 571 

Using parameter sets acceptable for ET and LAI at the watershed level, we identified the parameter 572 

sets that best represented the spatial and temporal correlation between ET and LAI for five 573 

different croplands. 574 

 Our results found that the number of acceptable parameter sets was slightly reduced from 575 

12 to 11 with the inclusion of RS-LAI. LAI was used as the input variable for simulating ET in 576 

SWAT and producing RS-ET. Therefore, the calibrated model against RS-ET and RS-LAI was 577 
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not significantly different from the one calibrated against only RS-ET. Among the 11 parameter 578 

sets, only six parameter sets represented the spatial distribution of ET and LAI at the sub-watershed 579 

level with acceptable model performances. This finding indicated that hydrologic model’s 580 

equifinality is further constrained by the spatial evaluation performed in this study. Findings 581 

showed that RS-ET were the key constraint at the sub-watershed level while RS-LAI rarely limited 582 

the parameter sets. It was likely because RS-ET retrievals are obtained with a high spatial 583 

resolution (e.g., 30-meter) and did a better job of capturing spatialized characteristics relative to 584 

RS-LAI (e.g., 500-meter), therefore more efficiently constraining the acceptable parameter sets. 585 

This result suggests that the spatial resolution of  remotely sensed data should be carefully selected 586 

regarding the spatial extent of the study site. At the HRU level, two parameter sets were found to 587 

satisfactorily represent the spatial and temporal consistencies between ET and LAI for five 588 

different croplands examined.  589 

This study shows that the predictive uncertainty is not substantially affected by inclusion 590 

of RS-LAI at the watershed level, but remotely sensed data enables hydrologic modelers to conduct 591 

the spatial evaluation at finer spatial scales, which will lead to the reduction of the predictive 592 

uncertainty and improved representations of intra-watershed processes. These findings 593 

emphasized the importance of incorporating remotely sensed data as additional constraints to 594 

address uncertainty in hydrologic models, extending the usefulness of these models.  595 

 596 

 597 

 598 

 599 
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