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Abstract. Data assimilation methods are used throughout the geosciences to combine information from uncertain models and

uncertain measurement data. However, the characteristics of geophysical systems differ and may be distinguished between

divergent and convergent systems. In divergent systems initially nearby states will drift apart, while they will coalesce in

convergent systems. This difference has implications for the application of sequential ensemble data assimilation methods. This

study explores these implications on two exemplary systems: the divergent Lorenz-96 model and the convergent description of5

soil water movement by the Richards equation. The results show that sequential ensemble data assimilation methods require a

sufficient divergent component. This makes the transfer of the methods from divergent to convergent systems challenging. We

demonstrate through a set of case studies that it is imperative to represent model errors adequately and incorporate parameter

uncertainties in ensemble data assimilation in convergent systems.

1 Introduction10

Information on physical systems is often available in two forms: on the one hand from observations and on the other hand

through mathematical models describing the systems dynamics. The combination of both can lead to an improved description

of the system. This is the aim of data assimilation, typically with a focus on state estimation.

Data assimilation has broad applications throughout the geosciences and can be already seen as an independent discipline

(Carrassi et al., 2018). It is typically used to estimate states, but also parameters: in weather forecasting (Houtekamer and15

Zhang, 2016; Ruiz et al., 2013), for atmospheric chemical transport (Carmichael et al., 2008; Zhang et al., 2012) also coupled

to meteorology (Bocquet et al., 2015), in oceanography including biogeochemical processes (Stammer et al., 2016; Edwards

et al., 2015), and in hydrology for flow, transport, and reaction in terrestrial surface and subsurface systems (Liu et al., 2012).

Data assimilation is also increasingly applied in ecology with applications ranging from the spread of infectious diseases and

wildfires, to population dynamics, and to the terrestrial carbon cycle (Niu et al., 2014; Luo et al., 2011).20

In this study we distinguish geophysical systems between divergent and convergent systems, depending on the development

of two initially nearby states (Fig. 1). In a divergent system, initially close states will inevitably drift apart, even if the system

is described by a perfect model (Kalnay, 2003). This leads to an upper limit for the predictability in divergent systems (Lorenz,
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Figure 1. Dynamics of a generic divergent and convergent dynamic system with different initial states. Both panels show a single state

dimension of a multi-dimensional system. In the divergent system, initially infinitesimally close states drift apart, while in the convergent

system initially apart states converge.

1982). In a convergent system, nearby trajectories will coalesce. If the model to describe such a convergent system is perfect,

this results in a high predictability (Lorenz, 1996). An error in the initial state will decay towards the truth after some transient25

phase. However, this is only true for perfect models, which is usually not the case for geophysical systems. This can lead to a

bias with convergence to a wrong state.

Many recent advances of data assimilation methods have been developed in the context of weather forecasting (van Leeuwen

et al., 2015). They are therefore designed to meet the challenges in the atmosphere – a predominantly divergent system. Due

to the fundamental limit for long time predictions from uncertain initial conditions in divergent systems, data assimilation in30

operational weather forecasting primarily focuses on state estimation (Reichle, 2008; van Leeuwen et al., 2015).

While weather forecasting or oceanography are divergent systems, several geophysical system, such as soil hydrology or

chemical transport are convergent systems. In ensemble data assimilation methods, if uncertainties are only represented through

an ensemble of states, convergent systems lead to decreasing uncertainties over time, which favors filter degeneration. This dif-

ference to divergent systems, where the ensemble spread increases exponentially, makes the direct transfer of data assimilation35

methods from divergent systems to convergent systems challenging and often requires adaptations to prevent filter degeneracy.

The application of data assimilation when coupling a divergent and a convergent model, for example in coupled chemistry

meteorology models, may lead to potentially new difficulties (Bocquet et al., 2015).

The largest uncertainties in convergent systems typically do not reside in uncertain initial conditions but rather in boundary

conditions, which include external forcings, the representation of sub-scale physics through parameterizations, and unrep-40

resented physics in the model equations. These uncertainties should then be addressed integratedly (Liu and Gupta, 2007).

Therefore, data assimilation methods have been used to not only estimate states but also parameters to reduce these uncertain-

ties. The combined estimation of states and parameters is thought to be a solution of reducing the impact of model errors on

parameter estimation (Liu et al., 2012). Estimating parameters in ensemble data assimilation methods through an augmented
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state requires a forward model for the parameters as well. This model is typically assumed to be constant, which is neither45

divergent nor convergent. However, the filter will gradually reduce the uncertainty in the parameters, which is not increased

through a divergent forward model and challenges similar to convergent systems can arise. This is sometimes alleviated by

assigning a random walk as the forward model to the parameters, which then requires to determine an appropriate step size,

however.

A challenge for sequential ensemble data assimilation in convergent systems it to maintain a sufficient ensemble spread.50

This would require an adequate representation of all uncertainties, including unrepresented physics in the model equations. In

real world systems this is often difficult or impossible. Therefore, practical alternatives are necessary, which are often heuristic

and may interfere with basic assumptions in the data assimilation methods, however. One possibility are inflation methods,

which counteract the coalescing tendency. Unfortunately, there exist no universal method to accomplish this and a range of

approaches are followed. One example is the increase of the ensemble spread of parameters to a threshold value, as soon as55

the parameter uncertainty drops below this value. This approach was introduced for a see-breeze model (Aksoy et al., 2006)

and has been used in hydrology, as well (e.g. Shi et al., 2014; Rasmussen et al., 2015). A modification to this, also applied

in hydrology, is to keep the parameter uncertainty entirely constant (Han et al., 2014; Zhang et al., 2017). This ensures a

sufficient ensemble spread in the state itself, but can impact the accuracy of the estimation. A widely used adjustment to limit

the reduction of an ensemble spread in hydrology is the use of a damping factor (Hendricks Franssen and Kinzelbach, 2008). In60

soil hydrology, a multiplicative inflation method was proposed, specifically adjusted to the needs of the system (Bauser et al.,

2018). Similarly, Constantinescu et al. (2007) showed that an atmospheric chemical transport model required much stronger

inflation than reported in the meteorological literature and showed better results for a model specific inflation, where the key

parameters are perturbed to achieve an increased spread in the state. Consequently, a better understanding and control over

errors has been recognized as a major challenge in chemical data assimilation as well (Zhang et al., 2012).65

Although plenty of knowledge and experience is available in the different communities how to handle data assimilation

methods in their specific model, we are not aware of a fundamental analysis of the difference between divergent and conver-

gent models with respect to their utilization within ensemble data assimilation frameworks. We investigate and demonstrate the

different challenges, that illustrate for example the different requirements for inflation methods, using the ensemble Kalman fil-

ter (Evensen, 1994; Burgers et al., 1998). The divergent case is illustrated using the Lorenz-96 model (Lorenz, 1996), while for70

the convergent case, a soil hydrological system described by Richards’ equation is used. Naturally, these are highly simplified

models compared to real-world applications. Still, they demonstrate key aspects that also have to be addressed in more compli-

cated situations. The specific adjustments applied there depend on the particular model. Our focus here is on the fundamentals,

not on the wide range of specifics.

2 Data assimilation method75

For this study we chose the ensemble Kalman filter (EnKF), a sequential data assimilation method, based on Bayes’ theorem

and the assumption of unbiased Gaussian error distributions. It was introduced as an extension of the Kalman filter (Kalman,
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1960) for nonlinear models (Evensen, 1994; Burgers et al., 1998) and approximates the Gaussian distributions by an ensemble

of states ψi, where the subscript i denotes the ensemble member.

To sequentially assimilate new observations, the EnKF alternates between a forecast (subscript ‘f’) and an analysis step80

(subscript ‘a’). In the forecast, the ensemble is propagated using the nonlinear model f(·)

ψkf,i = f(ψk−1
f,i ) +βk , (1)

where βk is a stochastic model error and k is a discrete time.

The analysis state ψa is calculated by applying the Kalman gain

Kk = Pkf H
ᵀ(HPkf H

ᵀ +Rk)−1 (2)85

to every ensemble member. The Kalman gain weights the forecast error covariance P with the observation error covariance R.

The observation operator H maps the state from state space to observation space. The forecast error covariance P is calculated

using the forecast ensemble

Pkf =
(
ψkf −ψkf

)(
ψkf −ψkf

)ᵀ
. (3)

It is necessary to add a realization of the observation error to the observation for each ensemble member (Burgers et al.,90

1998). The resulting analysis state is

ψka,i =ψkf,i +Kk
(
dk −Hψkf,i + εki

)
, εki ∝N (0,Rk) . (4)

By combining the information from measurement and model, the uncertainty in the analysis ensemble is decreased. For se-

quential data assimilation, the process of forecast and analysis is iterated for every new observation.

The joint estimation of states and parameters can be realized through state augmentation. The original state ψ is extended95

with the parameters p to an augmented state

u=

 ψ

p

 . (5)

The model equation (Eq. 1) changes to

uk =

 ψk

pk

=

 fψ

(
ψk−1,pk−1

)
+βkψ

fp
(
pk−1

)
+βp

 , (6)

with the models for the state fψ(·) and for the parameters fp(·), as well as the corresponding model errors βψ and βp. The100

model for the state is typical nonlinear, while the parameters are often assumed constant fp(pk−1) = pk−1.

In this study, we set both stochastic model errors in Eq. (6) to zero. The EnKF is used without any extensions and an

ensemble size of N = 100 was chosen for all cases.
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3 Divergent system

This section demonstrates the data assimilation behavior for a divergent system on the example of the 40-dimensional Lorenz-105

96 model, which has been widely used to test data assimilation methods in atmospheric sciences (e.g., Li et al., 2009). We first

introduce the model before we look into four characteristic different cases.

3.1 Lorenz-96

The Lorenz-96 model (Lorenz, 1996) is an artificial model and cannot be derived from any dynamic equation (Lorenz, 2005).

It can be interpreted as an unspecified scalar quantity x in a one dimensional atmosphere on a latitude circle and was defined110

in a study on predictability (Lorenz, 1996).

The governing equations are a set of coupled ordinary differential equations:

dxi
dt

= (xi+1−xi−2)xi−1−xi +F , i ∈ [1,2, . . . ,J ] (7)

with constant forcing F , periodic boundaries (xJ+1 = x1) and dimension J . The dimension is often chosen as J = 40, which

we also do in this study. Even though the system is not derived from physical principles, it shares certain properties of large115

atmospheric models (Lorenz and Emanuel, 1998). The quadratic terms represent advection and conserve the total energy, while

the linear term decreases the total energy comparable to dissipation. The constant F represents external forcing and prevents

the system’s total energy from decaying to zero. The value is often chosen as F = 8 (Lorenz and Emanuel, 1998).

The Lyapunov exponent quantifies how fast two initially infinitesimal close trajectories will separate. Analyzing the leading

Lyapunov exponent for F = 8 shows a doubling time of τd = 0.42 units for the distance between two initially infinitesimally120

close neighboring states (Lorenz and Emanuel, 1998). Increasing the forcing leads to a more divergent system, for instance

τd = 0.3 for F = 10 (Lorenz, 1996). With τd decreasing, so does the predictability of the system.

3.2 Characteristic cases

The behavior of the EnKF on a divergent system is investigated through four different cases (DC1-4), which are purposely

designed simple to illustrate the behavior concisely. For all cases, the model is solved using a fourth order Runge-Kutta method125

with a time step of ∆t= 0.01.

The initial condition for the synthetic truth for all cases is generated by running the model until time 2000 from an initial state

xi = 4.0 ∀i ∈ [1,2, . . . ,39] and x40 = 4.001, with the typical value F = 8 for the forcing parameter. The final state of this run

is used as the synthetic true initial state for all cases. This ensures that the state is on the attractor without the initial transient

phase. The initial ensemble for the data assimilation runs is generated by perturbing the true initial state with a Gaussian130

distribution N (0,1).

Synthetic observations are generated in all 40 dimensions by a forward run until time 4, using the true value and perturbing

it with a Gaussian distribution with a zero mean and a standard deviation of σobs = 1.0. For cases DC1 and DC2 observations

are generated at 8 different times with an observation interval of ∆tObs = 0.5. This observation interval is chosen rather large
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Figure 2. State estimation in a divergent system. (a): Divergent case 1 (DC1), the ensemble is propagated with the same parameter as the

truth (F = 8). (b): Divergent case 2 (DC2), the ensemble is propagated with F = 10 instead. (c): Divergent case 3 (DC3), the ensemble

is propagated with F = 10 and the observation interval is reduced to ∆tObs = 0.05. (d): Divergent case 4 (DC4), the parameter error is

represented by the ensemble using N (10,22) for the reduced observation interval of ∆tObs = 0.05. Top panels : The ensemble mean (orange

line) and the ensemble (light orange lines) in the data assimilation run for state dimension 2 x2 together with the observations (purple),

generated from the truth (black dashed line). (b-d) additionally show a single forward run (blue dashed line) using a wrong parameter

F = 10 starting from the true initial condition. Bottom panels: Mean variance σ2 of the ensemble over all dimensions (light blue line) and

variance σ2
dim of state dimension 2 (black line).

to ensure a large divergence of the system. For cases DC3 and DC4 observations are generated at 80 different times with an135

observation interval of ∆tObs = 0.05. This interval is often used in other studies (e.g. Nakano et al., 2007; van Leeuwen, 2010;

Poterjoy, 2016).
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3.2.1 Divergent case 1 (DC1) – state estimation, true parameter

In this case, the ensemble is propagated with the same parameter (F = 8) as the synthetic truth.Uncertainty only stems from the

uncertainty in the initial condition. Figure 2a shows the time development of one state dimension of the Lorenz-96 model (top140

panel) and the ensemble variance of this state dimension σ2
dim together with the mean variance over all dimensions σ2 (bottom

panel). Due to the divergent nature of the model, the ensemble spread increases between observations and the ensemble has a

sufficient spread such that the EnKF is able to correct the states to follow the truth.

The mean ensemble spread σ2 increases exponentially between two observations. At each observation, the EnKF updates

the ensemble and the variance decreases correspondingly.145

The behavior of σ2
dim differs from the behavior of σ2. During the forecast, σ2

dim sometimes increases, decreases or stays

approximately constant. This occurs because the Lorenz-96 model is bounded and has, therefore, convergent and divergent

directions.

3.2.2 Divergent case 2 (DC2) – state estimation, wrong parameter

In this case, in order to investigate the impact of an unrepresented model error, the ensemble is propagated with a wrong150

parameter of F = 10 instead of F = 8 (Fig. 2b), which was used to generate the observations. Therefore, the ensemble is

propagated with a model that is more divergent than the synthetic truth.

Compared to DC1 (Fig. 2a, bottom panel), σ2 and σ2
dim increase faster and the ensemble spread reaches higher values, which

shows the increased divergence of the system. Propagating the ensemble with this different model leads to a larger deviation of

the ensemble mean from the truth (see Fig. 2b, top panel) than in DC1. However, the divergent nature of the model ensures a155

sufficient ensemble spread such that the state can be corrected towards the truth and the wrong parameter is compensated. This

leads to a worsened but still good estimation of the truth without filter divergence.

3.2.3 Divergent case 3 (DC3) – state estimation, small observation interval, wrong parameter

The case is similar to DC2 except that the observation interval is reduced to ∆tObs = 0.05. The high frequency of analysis steps,

where the Kalman update reduces the variance in the ensemble, prevents the Lorenz-96 model to develop enough divergence160

to increase the ensemble spread sufficiently in the short time intervals in between (see Fig. 2c, bottom panel). Although the

ensemble is propagated with a more divergent model (F = 10), the divergence is not sufficient to encompass the model error

due to the wrong parameter and the filter can degenerate (see Fig. 2c, top panel). This is in contrast to DC2, where the Kalman

filter can successfully estimate the state. However, the comparison with the forecast of the true initial state using the wrong

parameter shows that the EnKF is able to improve the state significantly.165
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3.2.4 Divergent case 4 (DC4) – state estimation, small observation interval, represented error

In divergent case 4 (DC4), the observation interval is, as in DC3, reduced to ∆tObs = 0.05. The parameter error is represented

by the ensemble by assigning each ensemble member a different parameter F . The forcing parameter F is drawn from a

Gaussian distribution N (10,22), such that the true value lies within one standard deviation .

Representing the error increases σ2 only slightly (Fig. 2d, bottom panel) compared to DC3, but the minimal variance of σ2
dim170

has higher values. This increase is sufficient to help the filter such that it does not degenerate (Fig. 2d, top panel). Representing

the parameter error in the ensemble in the case of frequent observations can prevent filter degeneracy.

4 Convergent system

This section demonstrates the data assimilation behavior for a convergent system on the example of soil water flow. We again

first introduce the model before we look into four characteristic cases.175

4.1 Soil water flow

Water flow in an unsaturated porous medium can be described by the Richards equation:

∂tθ−∇ · [K(θ) [∇hm(θ)− 1]] = 0 , (8)

where θ (−) is the volumetric water content, K (LT−1) is the isotropic hydraulic conductivity, and hm (L) is the matric head.

To close Eq. 8 soil hydraulic material properties are necessary, which specify the dependency of the matric head and the hy-180

draulic conductivity on the water content. We use the Mualem-van Genuchten parametrisation (Mualem, 1976; Van Genuchten,

1980) in its simplified form:

K(Θ) =KwΘτ

[
1−

[
1−Θn/[n−1]

]1−1/n
]2

, (9)

hm(Θ) =
1

α

[
Θ−n/[n−1]− 1

]1−1/n

, (10)

with the saturation Θ (−)185

Θ :=
θ− θr
θs− θr

. (11)

The parameter θs (−) is the saturated water content and θr (−) is the residual water content. The matric head hm is scaled with

the parameter α (L−1) that can be related to the inverse air entry value. The parameter Kw (LT−1) is the saturated hydraulic

conductivity, τ (−) a tortuosity factor and n (−) is a shape parameter. Equation (9) and Eq. (10) describe the sub-scale physics

with six parameters for a homogeneous soil.190
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4.2 Characteristic cases

The behavior of the EnKF on a convergent system is investigated through four different cases (CC1-4). For the case studies, a

one-dimensional homogeneous soil is used with an extent of 1 m. The Richards equation is solved using MuPhi (Ippisch et al.,

2006) with a spatial resolution of 1 cm, which results in a 100-dimensional water content state.

For the true trajectories and the observations, parameters for a loamy sand by Carsel and Parrish (1988) are used: θs = 0.41,195

θr = 0.057, τ = 0.5, n= 2.28, α=−12.4 m−1, and Kw = 4.00 · 10−5 m s−1. For the lower boundary, a Dirichlet condition

with zero potential (groundwater table) is set and for the upper boundary a constant infiltration over the whole observation time

with a flux of 5 · 10−7 m s−1 is used.

Initially, the system is in hydraulic equilibrium. The infiltration boundary condition leads to a downward propagating infil-

tration front increasing the water content. Four time domain reflectometry (TDR)-like water content observations are generated200

equidistantly at depths of (0.2,0.4,0.6,0.8) m. The observation error is chosen to be σObs = 0.007 (e.g., Jaumann and Roth,

2017). Observations are taken hourly for a duration of 30 h.

To generate the initial ensemble, the ensemble mean of the water content state is perturbed by a correlated multivariate

Gaussian distribution using a Cholesky decomposition to create an ensemble that corresponds to a predefined covariance

matrix (e.g., Berg et al., 2019). The main diagonal of this covariance matrix of the ensemble is 0.0032. The off-diagonal entries205

are determined by multiplying the variance on the main diagonal with the the fifth-order piecewise rational function by Gaspari

and Cohn (1999) using a length scale of c= 10 cm. This ensures a spatially correlated initial state, which increases the diversity

of the ensemble. If instead uncorrelated Gaussian random numbers with a zero mean were used, the dissipative component of

the system would lead to a fast vanishing of the perturbation in space for each individual ensemble member.

4.2.1 Convergent case 1 (CC1) – no estimation210

In this case no data assimilation is used and the ensemble is propagated with the true model. The initial conditions for the

ensemble members are based on the linearly interpolated observations at time zero. This approximated state is used as the

ensemble mean for the EnKF. This state is then perturbed by a correlated multivariate Gaussian distribution such that the

spread of the initial ensemble is sufficient to represent the uncertainty of the water content in most parts.

The temporal development of the water content at 20 cm depth, the position of the uppermost observation, is shown in215

Fig. 3a (top panel). Due to the convergent behavior of the model in combination with the true representation, the initially broad

ensemble converges to the truth, even though the initial condition was not represented accurately.

The ensemble variance at this depth σ2
dim increases when the infiltration front reaches 20 cm. Because of the nonlinear

conductivity function (Eq. 9), the different initial water contents lead to a different arrival time of the infiltration front at the

first observation position. This leads to an increase in the ensemble spread.220

After the increase of the water content, the ensemble collapses fast since the hydraulic conductivity increases with the water

content, which leads to a fast convergence of the different ensemble members to the truth due the convergent nature of the

9
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Figure 3. (a): Convergent case 1 (CC1): forward run without data assimilation, using an interpolated initial condition. In the other three

cases the truth as used to generate the initial ensemble. (b): Convergent case 2 (CC2): the ensemble is propagated with n= 2.68 instead of

ntrue = 2.28 and the state is estimated. (c): Convergent case 3 (CC3): the parameter error is represented by the ensemble using N (2.68,0.42)

and the state is estimated. (d): Convergent case 4 (CC4): simultaneous state and parameter estimation. Top panels: The ensemble mean

(orange) and the ensemble (light orange lines) during the forward run at the depth of the uppermost observation (20 cm). The truth, which

is used to generate the observations (purple), is shown as a black dashed line. (b-d) additionally show a single forward run (blue dashed

line) using a wrong parameter n= 2.68 starting from the true initial condition. Bottom panels: Mean variance σ2 of the ensemble over all

dimensions (light blue line) and variance σ2
dim at the depth of 20 cm (black line).

model. The variance over all dimensions σ2 decreases slowly and approaches zero over time. If the system is started with a

higher water content instead of equilibrium, this collapse will occur faster.

This case shows that a perfectly convergent system is predictable for all times. This is in contrast to divergent systems, that225

only have a finite limit of predictability even if the model including boundary conditions is perfectly known. After a transient

phase, the states converge to the truth (Kalnay, 2003). A perfect model is not what we encounter in reality, however.
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4.2.2 Convergent case 2 (CC2) – state estimation, wrong parameter

In this case, the state is estimated with the EnKF but the ensemble is propagated with a wrong parameter. Instead of ntrue = 2.28,

n= 2.68 is chosen. The mean for the initial state is chosen as the true initial water content.230

In Fig. 3b (top panel) the temporal development of the water content at the depth of the uppermost observation (20 cm) is

shown. A larger n results in an earlier arrival of the infiltration front at the depth of 20 cm for the ensemble than for the truth.

The EnKF tries to correct the ensemble but fails because its variance is too small and cannot represent the truth. Due to the

convergent system, σ2 decreases constantly while σ2
dim decreases fast to zero after the infiltration front reaches the depth of

20 cm (see Fig. 3b, bottom panel). This convergence leads to a false trust in the model and the filter degenerates. Compared235

to a forward run without data assimilation, the EnKF can only improve the state estimation for a short time when the water

content rises due to the infiltration front. Soon after, the ensemble coincides with the free forward run and the estimated state

shows no advantage any more.

This case illustrates that a wrong parameter in a convergent system can lead to filter degeneration. This is in direct contrast

to DC2 (Fig. 2b), where the filter is still able to estimate the state. The behavior also differs from DC3 (Fig. 2c), where the240

observation interval in the Lorenz-96 model is too short such that it cannot develop its full divergent behavior. There the filter

can also degenerate for a wrong parameter, but the data assimilation is still able to improve the estimation compared to a free

forward run, since the ensemble never collapses entirely.

4.2.3 Convergent case 3 (CC3) – state estimation, represented error

In this case, the parameter error is represented with the ensemble but the parameter is not estimated. Each ensemble member245

has a different parameter n. The parameters are Gaussian distributed with N (2.68,0.42) such that the truth lies within one

standard deviation. Since the model error is known in this synthetic case we can create an ensemble that represents the model

error adequately. Note, that this is more difficult or even impossible in a real-world system. The mean for the initial state is

chosen as the true initial water content.

Figure 3c (top panel) shows the temporal development of the water content at a depth of 20 cm. The infiltration front reaches250

this depth at different times due to the different parameter n for each ensemble member. This increases the variance in the

ensemble, both at this depth and overall (see Fig. 3c, bottom panel). The variance increases rapidly between the observations,

similar to the divergent cases. This way, the ensemble spread stays large enough such that the EnKF can correct the states.

The ensemble can follow and represent the truth. This behavior can also be observed for the divergent case DC4 with a short

observation interval (Fig. 2d).255

Representing the model error adds a divergent component to the ensemble for a convergent model. This allows the EnKF

to correct the state and follow the truth. However, the predictability of the system decreases since each ensemble member

converges to a different fixed point apart from the truth. To increase the predictability, parameter estimation is necessary.
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Figure 4. Estimation of parameter n in convergent case 4 (CC4). The ensemble mean is shown in orange and the ensemble in light orange.

The truth is a black dashed line.

4.2.4 Convergent case 4 (CC4) – state and parameter estimation

In this case, the error in the parameter n is not only represented but also estimated using the state augmentation method. The260

initial parameter set is, as in CC3, Gaussian distributed with N (2.68,0.42) such that the truth is located within one standard

deviation. Again, the mean for the initial state is chosen as the true initial water content.

The estimation of n is shown in Fig. 4. The ensemble converges rapidly to the truth because only one parameter is estimated,

so every deviation from the truth is mainly caused by this parameter.

The mean variance σ2 increases initially (Fig. 3d, bottom panel), because in the beginning the parameter has not been265

sufficiently improved such that the ensemble members still have different n. This leads to a divergent ensemble in state space

during the infiltration similar to CC3. While the parameter is estimated, the variance of the ensemble decreases fast and the

convergent property of the system becomes dominant.

The temporal development of the water content at a depth of 20 cm is shown in Fig. 3d (top panel). In contrast to CC3, the

corrections of the EnKF to the state are much smaller. The mean of the parameter n comes close to the true value and the270

uncertainty of n decreases. This causes the forward propagation to come close to the true model as well. The propagation with

an almost correct model supports the state estimation due to the convergent nature of the system which forces the state to the

true value.
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5 Discussion

For the divergent Lorenz-96 system, the EnKF is able to estimate the state for the true model as well as for the case with a275

wrong parameter. In a divergent system, the volume of the prior in state space increases during forward propagation (Evensen,

1994). For the EnKF, this is directly connected to the ensemble spread, which increases rapidly between the observations. This

prevents a collapse of the ensemble even in the presence of an unrepresented parameter error. However, if the observation

interval is too small relative to the characteristic time for divergence, the EnKF leads to a decrease in the ensemble spread such

that the filter degenerates in the case of an unrepresented parameter error. Nevertheless, the divergent behavior of the model280

prevents a complete collapse of the ensemble, so that the filter is still able to improve the state in a limited way.

In the convergent soil hydrological system, the volume of the prior distribution decreases during forward propagation such

that the prior becomes more certain even without an observation and data assimilation. For a perfect model, the predictability

and state estimation in a convergent model are trivial. The initial ensemble will converge to the truth after some time, even with

a rough initial approximation. In this case, data assimilation is not necessary.285

In the case of model errors, in our study realized through a wrong parameter, the situation is different. The ensemble

converges to a wrong state, the filter degenerates and data assimilation fails. Increasing the ensemble size can only improve the

performance marginally since all ensemble members converge to the same fixed point.

Representing the parameter error by assigning each ensemble member a different parameter, increases the divergence of

the system and the filter is able to estimate the state again. Between the observations, the ensemble spread increases rapidly290

because the ensemble members diverge to different fixed points apart from the truth. This results in a finite predictability. By

representing the parameter error, the Richards equation gains a divergent part similar to the Lorenz-96 model. In the case of a

convergent system, it is necessary to represent the parameter error, otherwise the ensemble collapses.

To increase the predictability of the system again, it is necessary to not only represent but also to reduce the parameter un-

certainty. In synthetic cases without model structural errors, the convergent property of the system supports the state estimation295

and the predictability increases, if the parameter estimation is successful. This shows the importance of parameter estimation

for convergent systems. For divergent systems parameter estimation also increases the predictability but only up to a point,

because predictability is limited by the system’s dynamics.

For the application of data assimilation to real data, model errors typically cannot be attributed to unknown parameters

or uncertainties in boundary conditions alone, but also stem from model structural errors like a simplified representation of300

sub-scale physics or unrepresented processes in the dynamics. Uncertainties in parameters and boundary conditions can be

represented in an ensemble, but representing model structural errors is challenging or can be impossible. For example, in

hydrology, the model errors are typically ill-known (Li and Ren, 2011) and can vary both in space and time, which then can

lead to filter degeneracy and biased parameter estimation (Berg et al., 2019). While divergent models can alleviate the effect of

an unrepresented error within bounds, in a convergent system it is necessary to represent all relevant model errors sufficiently305

to prevent filter degeneracy and enable an optimal state and parameter estimation. Since this is challenging or even impossible,

heuristic ways to address filter degeneracy are necessary.
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A practical alternative to increase the ensemble spread and avoid filter degeneracy are inflation methods. For example, keep-

ing a constant ensemble spread for the parameters can provide a sufficient spread in state space (Zhang et al., 2017). The

advantage is that this approach is a model-specific inflation and avoids overamplification of spurious correlations (Constanti-310

nescu et al., 2007). The disadvantage is, that the EnKF is prevented from reducing the prediction uncertainty. This behavior is

also shown in CC3. In this case, the ensemble spread in the parameter space adds a divergent component to the ensemble that

results in an increased ensemble spread in state space and prevents filter degeneracy.

Multiplicative inflation increases the ensemble spread through an inflation factor (Anderson and Anderson, 1999). In a

divergent system a small multiplicative inflation is sufficient to increase the existing ensemble spread. In a convergent system315

this requires a larger inflation and can lead to overinflation of spurious correlations (Constantinescu et al., 2007). To avoid

this and to cope with spatial and temporal varying model errors, the use of more sophisticated adaptive inflation methods (e.g.

Bauser et al., 2018; Gharamti, 2018) may be necessary in convergent systems.

Heuristic inflation methods cannot fully replace the representation of model errors and hence must be used judiciously.

They can lead to overinflation of spurious correlations and can lead to biases in the estimation of parameters. If unrepresented320

model errors can be identified and are limited in space or time, these biases can be prevented by using a closed-eye period

for the extent of the unrepresented model errors. In the closed-eye period, parameters are kept constant and only the state is

estimated, which can require inflation methods for a successful state estimation. This enables an improved parameter estimation

without compensating the unrepresented model dynamics though biased parameters outside of the closed-eye period, when and

where uncertainties can be represented. The use of the closed-eye period in combination with the representation of relevant325

uncertainties has already been demonstrated in hydrology (Bauser et al., 2016).

6 Conclusions

We demonstrated the difference and challenges of ensemble data assimilation for divergent and convergent systems on the

example of the EnKF applied to the divergent Lorenz-96 model and a convergent soil water movement model based on the

Richards equation.330

Sequential ensemble data assimilation methods require a sufficient divergent part in the ensemble to maintain an adequate

ensemble spread and prevent filter degeneration. In divergent systems this is inherent to the system, provided that observation

intervals and divergence times match. In convergent systems relevant model errors must be represented to increase the ensemble

spread and to thereby add a divergent part to the ensemble to avoid filter degeneracy. If errors stem from unknown parameters,

estimating the parameters improves state estimation. However, this will reduce the ensemble spread again and require the335

remaining relevant model errors to be represented. Since this can be challenging, increasing the model errors artificially, by

limiting the reduction of parameter uncertainty or through inflation methods, can be required in convergent systems.

This paper highlights the challenges when transferring sequential ensemble data assimilation methods from divergent sys-

tems to convergent systems, which must be considered when applying data assimilation.
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