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Abstract.  

In this paper we propose adaptive clustering as a new method to reduce computational efforts of distributed modelling. It 10 

consists of identifying similar acting model elements during runtime, clustering them, running the model for just a few 

representatives per cluster, and mapping their results to the remaining model elements in the cluster. Key requirements for 

the application of adaptive clustering are the existence of i) many model elements with ii) comparable structural and 

functional properties and iii) only weak interaction (e.g. hill slopes, sub catchments or surface grid elements in hydrological 

and land surface models). The clustering of model elements must not only consider their time-invariant structural and 15 

functional properties, but also their current state and forcing, as all these aspects influence their current functioning. Joining 

model elements into clusters is therefore a continuous task during model execution rather than a one-time exercise that can 

be done beforehand. Adaptive clustering takes this into account by continuously checking the clustering, and re-clustering 

when necessary. 

We explain the steps of adaptive clustering and provide a proof-of-concept at the example of a distributed, conceptual 20 

hydrological model fit to the Attert basin in Luxembourg. The clustering is done based on normalized and binned 

transformations of model element states and fluxes. Analysing a 5-year time series of these transformed states and fluxes 

revealed that many model elements act very similarly, and the degree of similarity strongly varies with time, indicating the 

potential for adaptive clustering to save computation time. Compared to a standard, full-resolution model run used as a 

virtual reality ‘truth’, adaptive clustering indeed reduced computation time by 75 percent, while model quality, expressed as 25 

Nash-Sutcliffe efficiency of sub catchment runoff, declined from 1 to 0.84. Based on this proof-of-concept application, we 

believe that adaptive clustering is a promising tool for reducing the computation time of distributed models. Being adaptive, 

it integrates and enhances existing methods of static grouping of model elements, such as lumping or grouped response units 

(GRU). It is compatible with existing dynamical methods such as adaptive time-stepping or adaptive gridding, and unlike the 

latter, does not require adjacency of the model elements to be joined.  30 

As a welcome side effect, adaptive clustering can be used for system analysis: In our case, analysing the space-time patterns 

of clustered model elements confirmed that the hydrological functioning of the Attert catchment is mainly controlled by the 

spatial patterns of geology and precipitation. 

1 Introduction 

Hydrological systems are often characterized by considerable spatial heterogeneity of relevant properties such as topography 35 

or soils (Schulz et al., 2006), and considerable temporal variability due to time changing boundary conditions such as 

precipitation or radiation, and time changing system properties such as vegetation cover (Zehe and Sivapalan, 2009). If we 

are mainly interested in aggregated characteristics and dynamics of such systems, such as mean wetness, mean travel times, 

mailto:uwe.ehret@kit.edu


2 

 

or discharge at a catchment outlet, a spatially lumped representation in a model will suffice. Models designed for such coarse 

spatial resolutions, such as Topmodel (Beven and Kirkby, 1979) or HBV (Bergström, 1976) are easy to set up and 

computationally highly efficient, but necessarily conceptualize process patterns and redistribution processes and the 

underlying controls by means of effective dynamical laws, effective states, effective parameters and effective fluxes. 

Often, however, we want to analyse and predict hydrological systems in higher spatial detail, which requires spatially 5 

distributed models. In distributed models, spatial variability of hydrological systems is captured by dividing the model 

domain into sub domains, which are assumed to be internally homogeneous with respect to their main structural and 

functional properties. Such model elements have been referred to as hydrological response units HRU (Flügel, 1995; 

Kouwen et al., 1993), representative elementary areas REA (Wood et al., 1988), or representative elementary watersheds 

REW (Reggiani et al., 1998). Beyond incorporating the spatial variability of the hydrological system, distributed models 10 

offer additional advantages: They incorporate distributed forcing, they can be parameterized and validated by distributed 

observations, and they permit more fundamental process representations (Kouwen et al., 1993). Distributed, physically based 

models such as MIKE SHE (Abbott et al., 1986), HYDRUS (Šimunek et al., 1999) or CATFLOW (Zehe et al., 2001) 

therefore have the desirable property of providing physically meaningful, distributed answers based on distributed internal 

dynamics.  15 

The major drawback of distributed models is their large demand of high-resolution data for model setup and operation, and a 

CPU demand that rapidly grows with system resolution. The question about the optimal balance of spatial resolution and 

computational burden has therefore been a long-standing issue (not only) in the hydrological sciences (Melsen et al., 2016; 

Liu et al., 2016; Dehotin and Braud, 2008; Booij, 2003; Gharari et al., 2020). In this context, a range of methods have been 

proposed to address the computational problem: It can be crushed by massive parallel computing (Kollet, 2010), or reduced 20 

by avoiding redundant computations. Redundancy occurs if several model elements act similar, such that knowing the 

behaviour of one is a good proxy for the behaviour of the others. In this context, and throughout the remainder of this text, 

we define similarity of two model elements as follows: "Two model elements act similarly if they share similar structural 

and functional properties, are in a similar state and exposed to similar forcing, such that they produce similar responses 

based on similar internal fluxes and state changes" (see also Zehe et al., 2014). Similarity - and its counterpart, redundancy - 25 

among model elements can be considered as a time-invariant (static) or time-variant (dynamic) phenomenon, and methods 

for redundancy reduction have been proposed on the basis of either of these views. Grouped response units GRU (Kouwen et 

al., 1993) for example rely on the static similarity paradigm. GRUs are groups of HRUs close enough to be subject to 

uniform forcing and negligible differences in routing. All HRUs in a GRU are then treated as a single computational unit. 

This considerably reduces computational effort, but it comes at the cost of losing spatial detail and spatial positioning. Time-30 

variant (or adaptive) methods do not rely on a single, time-invariant grouping. Instead, groups of model elements are 

dynamically established and adjusted during model run time by identifying and exploiting patterns of similarity in either 

time or space. Adaptive time stepping (Minkoff and Kridler, 2006) exploits patterns of similarity in time, adaptive gridding 

(Pettway et al., 2010; Berger and Oliger, 1984) exploits patterns of similarity in space; combinations of both approaches are 

possible (Miller et al., 2006). Due to their generality, adaptive methods have been used to improve distributed modelling of a 35 

large variety of systems such as the universe (Teyssier, 2002), the atmosphere (Bacon et al., 2000; Aydogdu et al., 2019), 

oceans (Pain et al., 2005), and groundwater systems (Miller et al., 2006). While adaptive methods are highly useful, they all 

require direct adjacency - in either time or space - of the model elements to be joined. However, similarity, in both nature 

and models, is not necessarily restricted to contiguous regions. For example, there may be many non-contiguous south-

facing forested hillslopes with shallow soils in a watershed, in an intermediate wetness state, which will act very similarly at 40 

a particular sunny day.  

In this context, we suggest a new adaptive method for clustering of model elements, which is not limited to contiguous 

regions. It is motivated by the suggestions of Melsen et al. (2016) "to further investigate and substantially improve the 
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representation of spatial and temporal variability in large-domain hydrological models" and contributes to solving the 

computational challenges of hydrological modelling as formulated by Clark et al. (2017). It comprises several steps: 

Clustering of model elements, choice of cluster representatives, mapping of results from representatives to recipients, and 

continuous evaluation of the clustering to decide when re-clustering is needed. We demonstrate adaptive clustering at the 

example of a distributed, conceptual hydrological model of the Attert basin in Luxembourg. Besides evaluating adaptive 5 

clustering in terms of computational gains and related losses of modelling quality, we also discuss how the normalized and 

binned representations of model states and fluxes that we used for clustering contribute to hydrological system analysis by 

revealing space-time patterns of similarity in the catchment. 

The remainder of the manuscript is structured as follows: In Sect. 2, we first describe the general, application-independent 

steps of adaptive clustering. This is the key methodological contribution of the paper. We then introduce the SHM 10 

hydrological model and its set-up for the Attert basin in Luxembourg. The model constitutes the test environment for the 

proof-of-concept of adaptive clustering. We then describe how adaptive clustering is implemented in the SHM Attert model, 

and finally describe our approach and metrics used for evaluating adaptive clustering and measuring hydrological similarity. 

In Sect. 3, we present and discuss results from distributed modelling with and without adaptive clustering, and compare them 

to a range of benchmark models in terms of computational efficiency and model quality. In the same section, we show 15 

results of the hydrological similarity analysis. These results are relevant in relation to adaptive clustering, as the time-varying 

degree of similarity among model elements directly controls adaptive clustering. In addition, they are also useful for 

hydrological system analysis. In Sect. 4, we summarize the results, draw conclusions, discuss limitations of adaptive 

clustering and suggest further research. 

2 Data and methods 20 

2.1 Adaptive clustering 

As explained in the introduction, the main goal of adaptive clustering is to reduce computational efforts of distributed and 

high-resolution modelling. The main idea is to avoid redundant computations by clustering similar acting model elements, 

and then to infer the dynamics of all elements in a cluster from just a few representatives. Key requirements for the 

successful application of adaptive clustering are the existence of i) many model elements with ii) comparable structural and 25 

functional properties and iii) only weak interaction. If there are only few model elements, there will be nothing to cluster, if 

they are not structurally and functionally similar, it will be impossible to assign results from representatives to the remaining 

cluster members (recipients), and if there is strong interaction, ignoring it - which is inevitable in adaptive clustering - will 

cause large modelling error. It is important to keep in mind that even if two model elements are identical with respect to all 

time invariant (structural) properties, they can still act differently when starting from different initial conditions, or when 30 

exposed to different boundary conditions. Therefore, while similarity among model elements can have a strong time 

invariant component, and static clustering can be beneficial, the full potential of clustering will be exploited if it is treated as 

time-variant (Loritz et al., 2018). This is the core idea of adaptive clustering. Its main steps are illustrated in Fig. 1, and we 

will explain the method along steps 'a' to 'j' in the plot. 

Step 'a': Start the model from a fully distributed (non-clustered) initial state. Each model element - depicted by a circle - is in 35 

a particular initial state – indicated by the value in the circle. Model elements typically possess several state variables and 

hence an array of state values, but for simplicity only a single one is shown in the plot. 

Step 'b': Based on the similarity of their states, combine the model elements in clusters. In the plot, the clusters are depicted 

by bold circles and labelled 'A', 'B' and 'C'. The clustering involves two important choices: Choice of a suitable clustering 

algorithm and values of its hyper parameters, and choice of a state variable by which the clustering is done. In the following, 40 

we will refer to this variable as 'clustering control variable'. The clusters, determined with states at the current time step, will 
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until further decision (see step 'h') be used for all further modelling time steps. For these time steps, we refer to clusters 

determined in the past as 'inherited clusters'. 

Step 'c': Select from each cluster a subset of model elements. These serve as cluster representatives. In the plot, the 

representatives are indicated by blue circles. The number of representatives per cluster controls the performance of adaptive 

clustering: A large number will guarantee high modelling quality, but small computational gains, and vice versa.  5 

Step 'd': Execute the model for the next time step, but only for the representatives. From running the model, the  

representatives obtain updated values for each of their state variables. In the plot, the updated states are indicated by red 

colour. 

Step 'e': The representatives 'donate' their updated states (and fluxes) to all recipients in their cluster by using a suitable 

mapping technique. In the plot, this is indicated by arrows. Note that due to the mapping, conservations laws are potentially 10 

violated. This is a drawback of adaptive clustering and requires further attention. 

Step 'f': Based on the updated states of the clustering control variable, combine the representatives into a new set of clusters. 

In the plot, the new clusters are depicted by bold circles labelled 'I' and 'II' in red colour. These clusters may differ from the 

inherited clusters: When the model is executed in step 'd', each representative is driven by its particular forcing, which 

potentially leads - even within a cluster - to a divergence of states. Clusters may therefore break apart, unite, or exchange 15 

elements as the states of the model elements evolve over time. Inherited clusters may therefore at some point become invalid 

and must be replaced by an up-to-date version.  

Step 'g': Compare the new clusters to the inherited clusters. Please note that the new clustering in step 'f', and the cluster 

comparison is done only for the representatives. This is much more efficient than considering all model elements. 

Comparing clusters involves identifying matching clusters, and then measuring their degree of agreement. In the plot, this is 20 

illustrated by a table: Each column represents one of the inherited clusters, each row one of the new clusters. Matching 

clusters are indicated by cells with blue background colour ('A' and 'I', 'B' and 'II', 'C' has no match). The larger the number 

of representative model elements in matching clusters, the higher the agreement of the new and the inherited clusters. 

Step 'h': Decide if the agreement of the new and the inherited clusters is sufficiently high. If the answer is 'Yes', the inherited 

clusters are still valid, and steps 'd' to 'h' are repeated for the next time step. If the answer is 'No', the inherited clusters are 25 

replaced. Obviously, the new clusters can be used as a replacement, but they only contain the representatives. Recipients can 

be assigned to the new clusters based on their current state. The problem is, however, that their states were transferred from 

the representatives, and depending on the mapping method, they may be more or less averaged, smoothed states. If these 

values are used for clustering, there is a risk that recipients are always clustered in the same manner, limiting the model's 

ability to adapt to changing conditions and to represent heterogeneous situations. This risk can be reduced by operating the 30 

model in full resolution for some time, as explained in steps 'i' and 'j', allowing the recipient model elements to evolve 

towards their particular state. 

Step 'i': From the current time step, jump back in time. In the plot, this is indicated by a curved arrow extending back over 

two time steps. 

Step 'j': Set the model to a fully distributed (non-clustered) mode. In the plot, this is indicated by all model elements arranged 35 

in a row, without surrounding clusters. Starting from the state of the model elements at the jumped-to time, execute the 

model in full resolution until the current time step is reached again. Generally, the length of the jump back is a trade-off 

between enabling the recipient model elements to evolve towards their particular states free from cluster constraints, and 

additional computational expenses. Based on the new states of all model elements, continue at step 'b'.  

 40 
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Figure 1. Main steps of adaptive clustering. A detailed explanation is given in the text. 

 

2.2 Study area and hydrological model 

The Attert basin, our test site, is located in the central western part of the Grand Duchy of Luxembourg and partially in 5 

Eastern Belgium with a total catchment area of 288 km² up to gauge Useldange (Fig. 2). The landscape shows topographical, 

geological and pedological diversity, with a small area underlain by sandstones in the South and Northeast, a wide area of 

sandy marls in the centre part, and an elevated region underlain by schist in the North, which is part of the Ardennes massif. 

The schist region reaches elevations up to 539 m a.s.l. and contains deeply incised river valleys. The Attert basin is situated 

in the temperate oceanic climate zone, and snow-related processes play a negligible role. Precipitation is mainly associated 10 

with westerly synoptic flow regimes and reaches annual amounts of about 850 mm (Pfister et al., 2005; Pfister et al., 2000).  

We selected the Attert basin for several reasons: A large body of existing hydrological knowledge (Pfister et al., 2009; 

Juilleret et al., 2012) including modelling studies (Fenicia et al., 2014; Fenicia et al., 2016), access to a comprehensive data 

set compiled in the CAOS (Catchments as Organized Systems) project (Zehe et al., 2014), and own prior modelling studies 
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in the Colpach, a sub basin of the Attert, that revealed pronounced and time-variable similarity of model element behaviour 

(Loritz et al., 2018).  

Instead of using one of the existing hydrological models for the Attert basin, we decided to set up a new one. This was 

mainly to ensure full code control, which greatly facilitates prototyping and testing of adaptive clustering. We chose a 

simple, conceptual, yet distributed model architecture tailored to the structure and hydrological function of the Attert basin. 5 

It is closely related to established hydrological models such as HBV (Bergström, 1976), and due to its simplicity, we named 

it 'SHM' (Simple Hydrological Model). Its general structure and process inventory is explained in detail in Appendix A.1. 

The setup of SHM for the Attert basin is described in Appendix A.2, and its multi-criteria calibration and validation - based 

on five years of hourly data - in Appendix A.3. Overall, the model achieves acceptable performance (Nash-Sutcliffe 

efficiency of 0.73 for validation), making it a suitable test bed for exploring adaptive clustering. 10 

 

 

Figure 2. Map of the Attert basin up to gauge Useldange. Black labels are SHM sub catchment ID's, blue labels are SHM 

river element IDs. Yellow and blue labels are rain and river gauge IDs, respectively. The yellow lines indicate the area of 

influence of each rain gauge as determined by the Nearest Neighbor method. Further information about the gauges and the 15 

SHM model are given in Appendices A.1-A.3. 

 

2.3 Implementation of adaptive clustering in SHM Attert 

In this section, we explain how adaptive clustering is implemented in the SHM Attert model. We do so along the lines of the 

general steps 'a' to 'j' of adaptive clustering as described in Sect. 2.1 and Fig. 1. 20 

For clustering of model elements - SHM sub catchments in our study - (step 'b'), we apply a straightforward yet effective 

approach based on binning: First, all model states of all sub catchments are normalized to [0,1] values. The state variable- 
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and sub catchment-specific minima and maxima required for normalization were obtained from running the model – in full 

resolution – for the entire five years of available data. The [0,1] value range is then subdivided into 64 bins of uniform width. 

Choosing the number of bins was guided by the objective to balance resolution (many bins) and sufficiently populated bins 

(few bins). All sub catchments with normalized values of the clustering control variable falling into the same bin are 

assigned to the same cluster. Each non-empty bin therefore defines a cluster. The possible number of clusters is limited to a 5 

minimum of one and a maximum of 64, and the number of clusters at a given point in time expresses the degree of similarity 

among the sub catchments at that time. We selected sub catchment runoff (qcat,out, see Fig. A1 and Table A1) as a single 

clustering control variable for three reasons: Firstly, for catchment hydrologists runoff is the main variable of interest, 

secondly, sub catchment runoff is influenced by all sub catchment states and fluxes, hence similarity of two sub catchments 

with respect to their runoff is a reasonable single-value indicator of overall similarity, thirdly we used only a single control 10 

variable to keep things simple.  

For each cluster, representatives are selected (step 'c') by random picking controlled by three parameters (see Table 1): 

Perc_reps defines the total number of representatives, expressed as percentage of the total number of sub catchments in the 

model. Applied to each cluster, it provides a first estimate about how many representatives should be picked from it. We 

found that besides controlling the total number of representatives, it is also useful to set a limit to the minimum and 15 

maximum number of representatives per cluster. This is controlled by parameters min_reps_per_clus and 

max_reps_per_clus.  

Mapping states and fluxes from cluster representatives to recipients (step 'e') applies the normalized values already used for 

clustering: Recipients are forced to assume the representative’s normalized state (or flux), and these normalized states (or 

fluxes) are then re-converted by each recipient's min-max range to dimensionful values. If there is more than one 20 

representative in a cluster, a single best one is selected as the representative closest to the median value of the clustering 

control variable of all representatives. The results of that single best representative are then mapped to all recipients. This 

method clearly leaves room for improvement, but we considered it good enough for a first proof-of-concept. 

Comparing inherited clusters with current clusters (step 'g') involves two steps: Identifying matching clusters, and then 

measuring the degree of agreement between them. Note that with respect to the first step, it is not possible to simply define 25 

matching clusters as those with the same bin number. For example, assume that the inherited clusters are determined, and 

afterwards uniform rainfall falls in the catchment, uniformly shifting all sub catchment states to a higher, 'wetter' bin. 

Clustering the sub catchments with the new states will yield clusters identical to the inherited ones, but the cluster labels will 

have changed. We used the well-known Hungarian method (Kuhn, 1955; Munkres, 1957), which matches clusters by 

maximizing the agreement of their content instead of comparing their labels. When the cluster matches are established 30 

(compare the table in Fig. 1), the degree of similarity between the clusterings is measured by the number of elements in 

matching clusters divided by the total number of elements (in Fig. 1, this is the number of elements in the blue cells divided 

by the total number of elements in the table). Clustering similarity is hence expressed by a number between zero (clusterings 

are incomparable) and one (clusterings are identical). 

The inherited clusters are replaced (step 'h') if clustering similarity falls below an acceptance limit set by sim_crit (Table 1). 35 

The jump back in time (step 'i') is controlled by parameter sim_uncrit, which like sim_crit is a similarity threshold: The jump 

goes back to the last time at which this threshold was still exceeded. Depending on the prevailing hydro-meteorological 

situation, the jump can be shorter or longer, but it will never extend beyond the time at which the inherited clusters were 

established.  

All parameters controlling adaptive clustering are summarized in Table 1. For the SHM Attert application, we determined 40 

their values by manual, iterative trial-and-error with the objective of maximizing computational savings while minimizing 

quality loss. 
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Table 1. Parameters of adaptive clustering and their values for SHM Attert 

Name Description Value chosen 

num_bins 
The value range of a variable is divided into num_bins bins 

of uniform width 
64a 

perc_reps 
Ratio of sub catchments used as representatives and total 

number of sub catchments 
10 

min_reps_per_clus Minimum number of representatives per cluster 1 

max_reps_per_clus Maximum number of representatives per cluster 8 

sim_crit 
Replace inherited clustering if its similarity to the current 

clustering is < sim_crit.  
55 

sim_uncrit 

If re-clustering is required, go back in time until the 

similarity between the inherited and the current clustering 

is ≥ sim_uncrit. 

75 

a for normalized variables with value range [0,1], this means bin edges [0, 0.0156,  0.0313, … , 0.9688, 0.9844, 1] 

 

2.4 Experimental design and evaluation criteria 

The existence of time-variant similarity among model elements is a precondition for a useful application of adaptive 5 

clustering (see the related discussion in Sect. 2.1). We therefore precede the analysis of adaptive clustering performance with 

an analysis of space-time patterns of similarity among SHM Attert sub catchments. The approach and related metrics are 

explained in Sect. 2.4.1. In Sect. 2.4.2, we describe SHM Attert model variants used as benchmarks for adaptive clustering, 

and we introduce the evaluation criteria for measuring both computational effort and simulation quality of the competing 

models. 10 

2.4.1 Entropy as a measure of hydrological similarity 

How to measure the similarity among sub catchments, and its variation with time? Sub catchments differ in size, and many 

of their states and fluxes are size-dependent. Therefore, instead of directly comparing their values, we use the (0,1)-

normalized and binned time series of states and fluxes of all sub catchments as described in Sect. 2.3, step 'b'. At each point 

in time, the occupations of the 64 bins together form a histogram, which can be normalized to a discrete probability 15 

distribution by dividing the bin populations with the total number of sub catchments. The overall degree of similarity among 

sub catchments can then be measured - in the same manner for any state or flux of interest - by Shannon information entropy 

in the universal unit of 'bit' (Eq. 1). We adopted this approach from Loritz et al. (2018); a more detailed introduction to 

concepts, measures and applications of information theory is given in Neuper and Ehret (2019), Singh (2013), and Cover and 

Thomas (1991). 20 

 

𝐻(𝑋) =  − ∑ 𝑝(𝑥)

𝑥∈𝑋

 𝑙𝑜𝑔2 𝑝(𝑥) (1) 

 

As a basis for the similarity analysis, we operated the SHM Attert model in full resolution (no clustering) for the entire 5-

year period of available data and then converted all sub catchment states and fluxes to normalized and binned values. Spatial 

maps of these states are then used to analyze spatial patterns of similarity, and time series of entropy to analyze temporal 25 

patterns. For each state and flux, we also calculated the time-averaged entropy as a measure of overall, mean variability. 
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It is an interesting property of Shannon entropy that for a discrete distribution with a given number of bins, there exists an 

upper and a lower bound: If all elements fall into a single bin, the entropy of the distribution will take its minimum value, 

zero. If the elements are uniformly distributed over the bins, entropy will take its maximum value of 𝐻 = 𝑙𝑜𝑔2(𝑛), where n 

is the number of bins. As we use the same 64 bins for all variables, the same lower bound of zero and the same upper bound 

of six bit applies to all of them, which facilitates comparison. In terms of similarity, entropies close to zero indicate a high 5 

degree of similarity among model elements, entropies close to six indicate low similarity. 

2.4.2 Evaluation criteria and benchmark models for adaptive clustering 

With respect to adaptive clustering, two aspects are important: Computational savings, and related losses of modeling 

quality. The savings we measure by overall model run time, as it measures the entire modeling effort, i.e. the effort for 

operating the actual hydrological model and the effort for the adaptive clustering overhead. In order to make run times 10 

comparable, we performed all model runs on the same machine and with no additional processes active. We verified the 

reproducibility of the results by repeating the runs many times: The observed spread was less than one per cent of total run 

time and therefore considered negligible. Modeling quality we measure by Nash-Sutcliffe efficiency (NSE) of sub catchment 

runoff qcat,out., as sub catchment runoff is a comprehensive single-valued indicator of overall sub catchment state, and NSE is 

the best-known quality measure in hydrology. We calculate NSE in a distributed manner, i.e. separately for each sub 15 

catchment runoff, and then take its mean, weighted by the area of each sub catchment. Unlike directly calculating NSE of 

discharge at the basin outlet, this avoids potential compensation of under- and overestimations in particular sub catchments 

when aggregating their discharge in the river network. 

As for similarity analysis, we use the results of a fully distributed model run for the entire 5-year time series of available data 

as a virtual reality benchmark. This 'reference' run was created by operating SHM Attert in a standard mode, i.e. without any 20 

adaptive clustering functionality implemented. In addition to the 'reference' run, we established further benchmark cases: For 

the 'static' benchmark, we implemented the adaptive clustering functionality into SHM Attert, but set its parameters such that 

throughout the entire model run, each sub catchment was treated separately, and any clustering was suppressed. This means 

that adaptive clustering was in action, causing its computational overhead, but nevertheless the model was operated in the 

same fully distributed manner as the 'reference' run. We also established a 'static optimal' benchmark based on an offline, 25 

prior similarity analysis of the sub catchments: All sub catchments with identical structural properties - except size - and 

identical forcing were joined into a set of time-invariant clusters (see Table 2). As we set up the SHM Attert model in a 

straightforward manner, with sub catchment parameters varying only between different geology and land use classes, and 

sub catchment forcings varying only between rain gauges, the 173 sub catchments could be grouped into only 24 time-

invariant, yet optimal clusters. 'Optimal' here means that there is no within-cluster variability - except size, which vanishes 30 

due to the (0,1)-normalization - and any single sub catchment picked from a cluster is a perfect representative of all others. 

This is of course a simplified and idealized case due to the simplified set up of the model. Adding further structural 

properties and forcing, and in higher resolution, will result in more clusters. Nevertheless we used the 'static optimal' 

benchmark to evaluate the merits of advance knowledge about time-invariant sub catchment similarity. Its model setup and 

operation was equal to the 'static' case, but this time the 24 static optimal clusters were used, instead of treating each sub 35 

catchment as a single cluster.  

 

 

 

 40 
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Table 2. Sub catchments of SHM Attert, grouped into 24 time-invariant clusters by agreement in attributes geology, land use and 

meteorological forcing. The clusters are used in the 'static optimal' benchmark model. Sub catchment locations are shown in Fig. 2. The 

possible number of unique combinations of geology, land use, and rain gauge is 3 * 5 * 3 = 45. The cluster sizes range from 1 to 28, the 

average number of elements in a cluster is 7.2.  5 

Geology 

classa 

Land use 

classb 

Rain 

gaugec 

# of cluster 

members 
Sub catchment IDs 

1 1 ROD 13 6, 7, 8, 10, 14, 15, 40, 127, 131, 133, 134, 135, 137 

1 1 RCL 1 124 

1 2 ROD 7 21, 36, 91, 142, 144, 152, 153 

1 2 RCL 1 123 

1 3 ROD 13 9, 27, 30, 33, 41, 52, 126, 128, 129, 136, 143, 154, 155 

1 3 RCL 1 122 

1 4 ROD 5 24, 28, 31, 130, 132 

2 1 ROD 22 
19, 22, 26, 47, 71, 74, 82, 88, 94, 95, 96, 97, 98, 106, 108, 110, 116, 118, 

157, 161, 168, 169 

2 1 RCL 28 
29, 34, 38, 44, 48, 51, 53, 62, 64, 67, 70, 79, 83, 84, 85, 90, 92, 99, 111, 

117, 119, 138, 139, 146, 147, 150, 158, 164 

2 1 USL 15 32, 72, 73, 76, 86, 102, 103, 104, 105, 112, 113, 115, 121, 140, 151 

2 2 ROD 19 35, 42, 45, 54, 56, 58, 59, 65, 68, 69, 75, 78, 80, 81, 89, 93, 101, 145, 148 

2 2 RCL 6 16, 43, 46, 60, 61, 100 

2 2 USL 6 39, 49, 50, 57, 87, 141 

2 3 ROD 2 149, 167 

2 4 ROD 7 37, 77, 107, 109, 156, 160, 162 

2 4 RCL 5 25, 55, 63, 120, 159 

2 5 ROD 2 66, 163 

3 1 RCL 6 2, 4, 11, 12, 23, 125 

3 2 ROD 1 114 

3 2 RCL 1 20 

3 3 ROD 1 166 

3 3 RCL 5 1, 3, 5, 13, 18 

3 4 RCL 4 17, 165, 170, 171 

3 4 USL 2 172, 173 
a 1: Schist, 2: Marl, 3: Sandstone 

b 1: Meadow, 2: Agriculture, 3: Coniferous forest, 4: Broad-leaf forest, 5: Sealed area 

c ROD = Roodt, RCL = Reichlange, USL = Useldange (compare Table A2) 

 

 10 
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3 Results and discussion 

We first show results from analysing sub catchment similarity, as it is a precondition for adaptive clustering, and then results 

from comparing models runs with adaptive clustering to benchmark cases. We also discuss if, and to which degree, space-

time patterns of similarity apparent in the fully distributed 'reference' model run are preserved by adaptive clustering. 

3.1 Results for hydrological similarity 5 

We discuss hydrological similarity by three aspects: Time-variant behavior, time-averaged values, and spatial patterns. For 

the first, time series of Shannon entropy for selected variables of the fully distributed 'reference' model run are shown in Fig. 

3, panel 'a'. For better visibility, the plot is restricted to a single year. High entropies indicate little similarity among sub 

catchments, low entropies indicate high similarity. It is apparent that for all variables, entropies remain well below the 

benchmark maximum entropy (shown as red line), and often they are close to zero. This indicates that many of the sub 10 

catchments act similarly, leading to redundancies in modeling which can potentially be reduced by adaptive clustering. Also, 

entropies vary with time. While the variability differs among variables (e.g. high for interflow storage si, and low for base 

flow storage sb), it is present for all of them, which emphasizes that clustering should be done in a time-variant manner. The 

entropy of the clustering control variable, qcat,out, shows a high correlation with discharge magnitude as shown in panel 'b': In 

times of rising and high discharge, entropies are high, which is likely due to i) the interplay of spatially distributed 15 

precipitation and catchment states, and ii) the onset of fast runoff components, which may differ among sub catchments. As 

through times of recession, precipitation is zero for all sub catchments, and fast runoff components are dormant, low flow 

situations are accompanied by low entropies, indicating a high degree of similarity among sub catchments. All of these 

observations agree with the findings of Loritz et al. (2018).  

 20 

 

Figure 3. Panel a: Time series of Shannon entropy of distributions of normalized and binned sub catchment states and fluxes. Distributions 

are based on the fully distributed 'reference' model run. 'P' is precipitation, 'su' is unsaturated zone storage, 'si' and 'sb' are interflow and base 

flow storage, 'qout' is sub catchment runoff (see Fig. A1 and Table A1). 'Uniform' indicates the benchmark maximum entropy of 6 bit for a 
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64-bin distribution. Black vertical lines indicate times for which spatial maps are shown in Fig. 4. Panel b: Discharge time series at 

catchment outlet gauge Useldange. 'Observed' are observations, 'reference' are results from the fully distributed 'reference' model run, 

'adap-c' are from an adaptive clustering run with optimized parameters as shown in Table 1. 

 

Time-averaged entropies for all SHM state and flux variables are shown in Table 3. Like in Fig. 3, the values differ quite 5 

substantially among the variables, with precipitation 'p' showing the lowest entropy of only 0.1 bit, and base flow related 

variables sb and qb,out showing the highest entropy of 2.88 bit. The low value of precipitation entropy can be explained by two 

effects: Firstly, during the frequent times of no rain, precipitation entropy is also zero as all stations show the same value, 

and secondly, even if it rains, at most three different bins of the distribution can be occupied as precipitation is measured by 

only three stations. This limits precipitation entropy to a possible maximum of log2(3) = 1.58 bit. The high values for base 10 

flow can be explained by the pronounced, geology-induced differences of the base flow behavior across the catchment 

(compare the values of kb in Table A3), and the fact that due to the slow-changing nature of base flow, these differences 

prevail for a long time, keeping entropies high throughout the year (see Fig. 3, panel 'a'). Interestingly, the entropies of 

several variables are identical (qi,in, qb,in, and qu,out; si and qi,out; sb and qb,out). This is not a coincidence, but a consequence of 

how they are related: qi,in, and qb,in are percentages of qu,out; runoff from both the interflow and the base flow reservoir are 15 

linear functions of the respective storages (see Fig. A1 and Table A1). All of these relations are entropy-preserving 

transformations, i.e. the entropies of all variables involved are necessarily equal.  

 

Table 3. Mean entropy of all normalized and binned SHM Attert states and fluxes of the 'reference' run, for period 2011/11/01 00:00 – 

2016/10/31 23:00. The states and fluxes are explained in Table A1. 20 

State or 

flux 

Entropy H 

[bit] 

uniform 6a 

p 0.10 

et 0.76 

su 2.38 

qu,out 0.18 

qi,in 0.18 

si 1.23 

qi,out 1.23 

qb,in 0.18 

sb 2.88 

qb,out 2.88 

qcat,out 1.84 
a Entropy of the benchmark uniform distribution 

 

Fig. 4 shows spatial patterns of normalized and binned values of the clustering control variable qcat,out for selected points in 

time. Plots in the left column ('a'-'e') are based on the 'reference' run, and we will focus on these in the following. We 

selected the times such as to cover a wide range of different hydrological situations (compare the black vertical lines in Fig. 25 

3). Plots 'a' and 'b' are both in spring and related to the same rainfall-runoff event, the last in a sequence of three, with plot 'a' 

showing the values just before the onset of precipitation, and plot 'b' at the time of peak runoff. Comparing the plots it is 

obvious that the general magnitude of runoff has increased, indicated by the main colours shifting from red (low values) to 



13 

 

yellow (intermediate values). Additionally we see that the spatial pattern of similarity also shifted from a geology-dominated 

pattern, reflecting the geology-based parametrization of sub catchments, to a pattern reflecting the joint influence of both 

geology and the spatial distribution of rainfall (see geological map and rain gauge areas of influence in Fig. 2). Interestingly, 

while the grouping of the sub catchments into clusters obviously changed, the overall number of clusters did only increase by 

two, from 12 to 14, indicating that the overall degree of similarity among sub catchment remained largely constant. The next 5 

plot, 'c', shows a very different situation at the end of a long summer drought: Most sub catchments show very low runoff, 

only the sand stone areas, where groundwater flow dominates, maintain runoff above their absolute minimum. Overall, the 

entire catchment is in a very homogeneous state and sub catchments group into only three clusters. This state of high 

similarity comes to a sudden end with the onset of precipitation (plot 'd'), increasing the diversity of sub catchment runoff to 

18 clusters and the development of a spatial pattern which is mainly influenced by rainfall spatial distribution and only to a 10 

lesser degree by geology: the sand stone area is not as clearly separated from the other geologies as usual. Finally, after a 

period of extended rainfall (plot 'e'), a spatial pattern similar to the initial one in plot 'a' has re-established, but overall runoff 

magnitudes are still lower; a heritage of the long dry summer. 

Altogether, the analysis of time-variant behavior, time-averages, and spatial patterns of similarity reveals several important 

points: i) for most variables, there is pronounced hydrological similarity among sub catchments, ii) similarity is time-variant, 15 

and iii) the spatial patterns of similarity and their variation with time are in accordance with hydrological reasoning, which 

increases our confidence that expressing similarity among sub catchments by entropies is reasonable. In the next section we 

discuss to which degree, and at which price, adaptive clustering can capitalize on this. 
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Figure 4. Spatial maps of normalized and binned values of the clustering control variable, qcat,out, for all sub catchments and for selected 

points in time as marked by the black vertical lines in Fig. 3. Colors indicate the values, which correspond to the bin numbers ranging from 

1 (lowest normalized state, red) to 64 (highest normalized state, blue). Values in the left column are from the fully distributed 'reference' 

run, values in the right column are from an adaptive clustering run with optimized parameters as shown in Table 1. 

 5 

3.2 Results for adaptive clustering 

As explained in Sect. 2.4.2, we evaluate adaptive clustering for both computational effort and associated quality losses 

against several benchmarks. Fig. 5 shows the results as a two-dimensional plot. The black square indicates the 'reference' 

run, which corresponds to the standard case of running a model run in full resolution and without any adaptive clustering 

functionality. It took 816 seconds, and as the 'reference' run is our virtual reality 'truth', the model shows perfect simulation 10 

quality, indicated by an NSE of 1. When adaptive clustering functionality is integrated into the model, but by choice of its 

parameters a fully distributed run is enforced (the 'static' benchmark case), the model still shows perfect simulation quality, 
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but the overhead of adaptive clustering increases computation times by 707 seconds to a total of 1523 seconds (black triangle 

in Fig. 5). This is almost a doubling compared to the 'reference' case, a computational extra cost which clustering needs to 

over-compensate in order to be worth the effort. This is indeed the case, even for the simple 'static optimal' benchmark case 

(red triangle in Fig. 5): Representing 173 sub catchments by 24 representatives (one per cluster, see Table 2) reduced 

computation time to 233 seconds, despite the overhead, at no loss of quality. How does time-variable, adaptive clustering 5 

compare to that? The blue dots in Fig. 5 depict results for selected parameter choices of adaptive clustering (we tested many 

but only show the pareto-optimal results), and reveal a general pattern of trade-off between effort and quality: The higher the 

computational effort, the higher the modelling quality, and vice versa. The red dot indicates the - in our eyes - optimal 

tradeoff based on the optimized parameter set shown in Table 1. The related computation time is 207 seconds, NSE is 0.84. 

This means that compared to the 'reference' case, computation time is reduced by 75% at the price of worsening NSE by 10 

0.16. The effect of adaptive clustering on the quality of discharge simulations at the catchment outlet is shown in Fig. 3, 

panel 'b': Differences between the 'reference' and the 'adap-c' optimal adaptive clustering run are visible, but they are 

generally much lower than the differences between the 'reference' simulation and the observed discharge. This is 

encouraging. But when comparing the 'adap-c optimal' run to the 'static optimal' benchmark, we may ask whether the small 

reductions in computation time, at the cost of a decrease in model quality, makes adaptive clustering worth the effort. For the 15 

given model, our answer will likely be 'No'. However, as discussed in Sect. 2.4.2, SHM Attert is extremely well suited for 

static clustering due to its simple set up, and for most distributed models it will not be possible to group model elements into 

an equally small number of time-invariant yet optimal clusters. In such cases, the relative gains of adaptive clustering will be 

potentially more pronounced. 

 20 

 

Figure 5. Performance of model runs with respect to effort, measured by execution time, and quality, measured by mean Nash-Sutcliffe 

efficiency of sub catchment runoff qcat,out. ‘Reference’: Full resolution, no adaptive clustering overhead; ‘static’: Full resolution, but with 

adaptive clustering overhead; ‘static optimal’: Time-invariant optimal clustering, with clusters shown in Table 2; ‘adap-c variations’: 

adaptive clustering with various parameter settings; ‘adap-c optimal’: optimal adaptive clustering with parameters shown in Table 1. 

 25 
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Fig. 6 is based on the ‘adap-c optimal’ model run and gives some insights about the behavior of adaptive clustering. The blue 

line in panel 'a' shows for each time step the agreement between the inherited and the current clustering (step 'g' in Sect. 2.1 

and Sect. 2.3). The related thresholds for starting and ending jumps back in time are indicated by horizontal lines: sim_crit is 

indicated by the lower line, sim_uncrit by the upper line (see Table 1). Each time the clustering agreement falls below 

sim_crit, a jump back in time is triggered (red circle in the plot). It goes back to the closest time when the agreement was still 5 

above sim_uncrit (red dot in in the plot). From this point in time, the model is operated in full distribution (no clusters) until 

the time of the jump back is reached again. Fig. 6 reveals that the occurrence and the length of jump back periods varies with 

the hydrological situation. During times of rapidly changing catchment conditions, such as in April, frequent but short jumps 

back appear, indicating that the inherited clusters are only valid for short periods of time. For periods of low flow, such as in 

August, no jumps back occur at all: Apparently, the clusters determined in mid-June remain valid until rainfall events at the 10 

beginning of September terminate the long period of synchronized drying of all sub catchments. This indicates that updating 

of the clusters is controlled by changes in the hydro-meteorological situation. For the entire five-year simulation period, 

overall 165 re-clusterings occur, i.e. on average one every eleven days. 

Adaptive clustering increases modeling efficiency by restricting computations to the representatives, but it also comes at a 

computational cost. This is illustrated by the blue line in Fig. 6, panel 'b', which shows the number of sub catchments for 15 

which hydrological processes were calculated at each time step. Normally, this number corresponds to the number of cluster 

representatives set by parameter perc_reps (see Table 1). For the jump back periods it is different: They are visited twice, 

once when the model is in normal, clustered, forward mode, and once in full resolution when the model is in jump back 

mode. As a consequence, the total number of sub catchments processed in these times is high. It can even exceed the total 

number of sub catchments of the model (173, indicated by the red line). Overall, however, the savings prevail: For the entire 20 

five-year simulation period, on average 34 of 173 sub catchments were processed per time step, which means a reduction of 

80% compared to the 'reference' model run. 
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Figure 6. Panel 'a': Time series of agreement between inherited and current clusters, based on the ‘adap-c optimal’ model run. Black 

vertical lines indicate times of special interest (compare Fig. 3 and Fig. 4), black horizontal lines indicate the agreement thresholds given 

by parameters sim_crit and sim_uncrit (see Table 1). A red circle indicates when a jump back in time was triggered. The jump goes back 

to the next red dot to the left of each circle. Panel 'b': Number of sub catchments per time step for which hydrological processes were 

calculated. The red horizontal line indicates the total number of sub catchments (173) in the SHM Attert model.  5 

 

Adaptive clustering restricts the execution of hydrological processes to a few representative sub catchments. While this 

seems sufficient to preserve the time-variant behavior of all sub catchments - as indicated by the high NSE values of the 

adaptive clustering model runs, and the good agreement of the discharge hydrographs in Fig. 3, panel 'b' - the question 

remains whether spatial patterns of similarity are also preserved. To address this question, spatial maps of sub catchment 10 

discharge from the optimized adaptive clustering run are plotted in the right column of Fig. 4. The dates of each plot are 

identical to those of the 'reference' run in the left column. Comparing the associated maps shows that they largely agree. 

Further, the main characteristics of sub catchment similarity seem to be preserved by adaptive clustering: Geology is the 

main and precipitation a secondary control, and the degree of similarity varies over time. But there are also differences:  For 

example, comparing plots 'b' and 'g' reveals a smaller influence of the rainfall pattern in the adaptive clustering case, for plots 15 

'd' and 'i' the opposite is the case. Generally, the overall degree of similarity is larger for the adaptive clustering case, i.e. the 

number of clusters is always smaller as for the 'reference' case. This is a consequence of mapping states from a few 

representatives to many recipients in a cluster, which involves averaging and hence an artificial increase of similarity among 

sub catchments. 

To summarize: We have tested many variants of adaptive clustering against several benchmark models in terms of 20 

computational effort and model quality. For the best variant, computation time was reduced by 75% compared to the full-

resolution 'reference' model run, and model quality, expressed by NSE, decreased by 0.16. Compared to the 'static optimal' 

benchmark, which uses time-invariant clusters, computational savings were much smaller, as the SHM Attert model, due to 
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its simplicity, lends itself well for time-invariant clustering. Analysing the time-variant behaviour of adaptive clustering 

revealed that re-clustering is linked to changes of the hydro-meteorological situation. Analysing spatial patterns of sub 

catchment similarity from model runs with and without adaptive clustering revealed that adaptive clustering preserves their  

main characteristics but shows a tendency for exaggerating similarity. 

4 Summary and conclusions 5 

In this paper we proposed and described adaptive clustering as a new way to reduce computational efforts of distributed 

modelling, while largely maintaining modelling quality. This is done by identifying, in a time-variant manner, similar acting 

model elements, clustering them and inferring dynamics of all model elements from just a few representatives per cluster.  

We started from the observation that hydrological systems generally exhibit spatial variability of their properties, and that 

this variability is non-negligible if distributed dynamics are of interest, which then requires distributed modelling. We further 10 

hypothesized that despite this variability, there is also similarity, i.e. many model elements exist with similar properties, 

which will exhibit similar internal dynamics and produce similar output when in similar initial states and when exposed to 

similar forcing. Similarity among model elements is hence not a static but rather a time-variable property dependant on the 

interplay of these factors, and similarity is also not necessarily limited to contiguous model elements. 

Based on these premises we developed adaptive clustering, and provided a proof-of-concept at the example of a distributed, 15 

conceptual hydrological model - SHM -, fit to the Attert basin in Luxembourg. Adaptive clustering comprises several steps: 

Clustering of model elements, choice of cluster representatives, mapping of results from representatives to recipients, and 

comparison of clusterings over time to decide when re-clustering is required. We explained these steps in general, and its 

implementation in the SHM Attert model in particular. We used normalized and binned transformations of model states for 

both clustering and for measuring overall similarity among model elements by Shannon information entropy. Analysing time 20 

series of entropy of model states and fluxes revealed that i) for most variables, there is pronounced hydrological similarity 

among sub catchments, ii) similarity is time-variant, and iii) the spatial patterns of similarity and their variation with time are 

in accordance with hydrological reasoning. We then evaluated adaptive clustering with respect to both computational gains 

and losses of model quality against several benchmark models. Compared to a standard, full-resolution model run used as a 

virtual reality ‘truth’, computation time could be reduced by 75%, when a decrease of Nash-Sutcliffe efficiency by 0.16 was 25 

accepted. Re-clustering of model elements was linked to changes of the hydro-meteorological situation, and was on average 

carried out once every eleven days. 

Our tests and analyses were conducted in the virtual reality of a fully distributed model run, due to a lack of equally 

comprehensive observations. However, due to the good overall agreement of the model with the available multi-variate 

observations, we are confident that our main conclusion, namely that adaptive clustering is a promising tool for accelerating 30 

distributed modelling of hydrological and other dynamical systems, also holds with respect to real world systems. 

Additionally, adaptive clustering yields spatial and temporal patterns of similarity among model elements, which can be used 

for hydrological system analysis. Adaptive clustering integrates and enhances existing methods of time-invariant grouping of 

model elements, such as lumping or grouped response units (GRU), and it can be applied together with existing methods of 

exploiting time-variable similarity, such as adaptive gridding or adaptive time-stepping. A limitation of the method lies in 35 

the potential violation of conservation laws when mapping results from cluster representatives to recipients. 

What’s ahead? For the study we selected sub catchment runoff as the single variable for both clustering control and model 

evaluation. This was mainly based on hydrological reasoning, and clearly other and/or additional variables for clustering 

control should be tested, and the effect of adaptive clustering on all model states and fluxes should be evaluated. Also, so far 

cluster representatives were simply chosen by random picking. We expect better performance by a targeted selection of 40 

model elements, e.g. those close to the cluster centre. At last, we have tested adaptive clustering at the example of a 
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relatively simple, conceptual hydrological model with limited internal variability. The performance of adaptive clustering in 

more advanced models such as MIKE SHE (Abbott et al., 1986), HydroGeoSphere (Brunner and Simmons, 2011; Davison et 

al., 2018), Noah-MP LSM (Niu et al., 2011), or the Community Land Model CLM (Lawrence et al., 2019) - where 

computation times are indeed a challenge - remains to be demonstrated. On the one hand, the potential savings by adaptive 

clustering will increase with the level of process detail in a model. On the other hand, its implementation will become more 5 

difficult. For example, existing code may be structured in a way unfavourable for integrating the adaptive clustering 

functionality; it can be a challenge to combine massive parallel processing with adaptive clustering; and it will be difficult to 

integrate it into models where many processes act simultaneously at a hierarchy of model elements. However, the same 

could be said about adaptive gridding and adaptive time stepping, nevertheless they have been implemented very 

successfully in many advanced earth science models. 10 

Appendix A 

A.1 SHM model structure 

SHM is a distributed hydrological model, i.e. a catchment is divided into sub catchments which are typically a few square 

kilometres in size. The water stocks and fluxes in each sub catchment are represented in a conceptualized manner by a set of 

linked linear reservoirs (see Fig. A1). The choice of the type, number and linkage of reservoirs is based on the insights about 15 

the hydrological functioning of the Attert basin and suitable conceptualizations reported by Fenicia et al. (2014) and Fenicia 

et al. (2016). The model structural elements and all related equations are shown in Fig. A1 and Table A1. The first reservoir 

represents the unsaturated zone. Precipitation falling onto a sub catchment is divided into direct runoff and soil moisture 

replenishment as a nonlinear function of current soil moisture (the HBV beta store concept). Evapotranspiration draws water 

from the unsaturated zone storage. Direct runoff is split by a constant factor and replenishes two linear reservoirs, one 20 

representing interflow, the other representing base flow. Runoff from the interflow and base flow reservoirs are added and 

then enter the river system. The river system is represented by a linear reservoir cascade, where each element represents a 

river stretch of about one kilometre. The model is coded in Matlab, the numerical scheme is non-iterative forward-in-time, 

the time-stepping is hourly. 

 25 
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Figure A1. Structural elements, parameters (green), state variables (black) and fluxes (red) of the SHM model. 
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Table A1. SHM model equations and parameters 

Number Equationa Description 

(A1) 𝑣𝑜𝑙_𝑝 = 𝑝 ∙ 𝑎 

vol_p: precipitation volume [m³] 

p: precipitation [m] 

a: sub catchment area [m²] 

(A2) Ψ = (
𝑠𝑢

𝑠𝑢,𝑚𝑎𝑥

)

𝛽

 

: runoff coefficient [-] 

su: storage in unsaturated zone reservoir [m] 

su,max: maximum storage in unsaturated zone reservoir [m] 

ß: shape coefficient [-] 

(A3) 𝑞𝑢,𝑜𝑢𝑡 = Ψ ∙ 𝑣𝑜𝑙_𝑝 qu,out: runoff from unsaturated zone reservoir [m³]  

(A4) 𝑒𝑡 = 𝑒𝑡𝑟𝑒𝑓 ∙ 𝑘𝑐 ∙ 𝑘𝜃 

et: evapotranspiration [m³] 

etref: reference evapotranspiration [m³]b 

kc: vegetation correction factor [-]c 

k: soil moisture correction factor [-]d 

(A5) 𝑞𝑖,𝑖𝑛 = 𝑞𝑢,𝑜𝑢𝑡 ∙ 𝑝𝑒𝑟𝑐 
qi,in: inflow to interflow reservoir [m³] 

perc: interflow-baseflow partitioning factor [-] 

(A6) 𝑞𝑏,𝑖𝑛 = 𝑞𝑢,𝑜𝑢𝑡 ∙ (1 − 𝑝𝑒𝑟𝑐) qb,in: inflow to baseflow reservoir [m³] 

(A7) 𝑞𝑖,𝑜𝑢𝑡 =
𝑠𝑖

𝑘𝑖

∙ 𝑎 

qi,out: runoff from interflow reservoir [m³] 

si: storage in interflow reservoir [m] 

ki: interflow reservoir retention constant [-] 

(A8) 𝑞𝑏,𝑜𝑢𝑡 =
𝑠𝑏

𝑘𝑏

∙ 𝑎 

qb,out: runoff from baseflow reservoir [m³] 

sb: storage in baseflow reservoir [m] 

kb: baseflow reservoir retention constant [-] 

(A9) 𝑞𝑐𝑎𝑡,𝑜𝑢𝑡 = 𝑞𝑖,𝑜𝑢𝑡 + 𝑞𝑏,𝑜𝑢𝑡 qcat,out: runoff from sub catchment [m³] 

(A10) 𝑠𝑟 = 𝑠𝑟 + ∑ 𝑞𝑟𝑣𝑒,𝑖𝑛,𝑖

𝑖

+ ∑ 𝑞𝑐𝑎𝑡,𝑜𝑢𝑡,𝑗

𝑗

 
sr(t): storage in river element [m³] 

qrve,in,i: inflow from connected river element i [m³] 

qcat,out,j: inflow from connected sub catchment j [m³] 

(A11) 𝑞𝑟𝑣𝑒,𝑜𝑢𝑡 =
𝑠𝑟

𝑘𝑟

 
qrve,out: runoff from river element [m³] 

kr: river element retention constant [-] 

a   in all equations, time subscripts t and t-1 are dropped for brevity 

b evapotranspiration from reference surface (short grass) according to Penman (1956). Equations taken from DVWK (1996), 

section 5.3.1. 5 

c vegetation correction factor as a function of land used and month of the year. Taken from Dunger (2006), Appendix 11. 

Value range [0.65, 1.3] 

d adapted from Dunger (2006), section 4.5.8.4, Fig. 37 with the assumptions k = 0 for su ≤ 0; k = 1 for su ≥ 0.8*su,max; k = 

su/su,max for 0 < k < 0.8*su,max 

A.2 SHM Attert – model setup 10 

Setting up the SHM model for a catchment starts by GIS-based delineation of sub catchments and river elements using a 

digital elevation model. For the Attert, a 5 m digital elevation model based on LIDAR scans provided by the Luxembourg 

Institute of Science and Technology (LIST) was used. Each sub catchment was assigned a single land use, based on the 

Corine Land Cover map provided by the European Environment Agency, and a single geology, based on the  'Carte 

géologique détaillée 1:25000-1:50000’ provided by the Luxembourg geological survey. In the catchment, altogether five 15 
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different land use classes and three geological classes occurred. For an overview of geology and land use classes assigned to 

each sub catchment, please see Table 2. 

In the Attert basin, hydrological function is strongly controlled by geology (Fenicia et al., 2016). Therefore, all soil-related 

model parameters (ß, su,max, perc, ki, kb) were kept equal for all sub catchments sharing the same geology. The parameter 

values were determined by calibration (see Appendix A.3). Likewise, all parameters related to evapotranspiration (kc, kθ) 5 

were kept equal among all sub catchments sharing the same land use class. These were - without calibration - directly 

inferred from the land use (see Eq. A4 in Table A1). As we set all river elements to be approximately one kilometre in 

length, we could assign to all 147 of them the same value for kr, which we determined by calibration. 

Running the SHM model requires observed time series of precipitation, air temperature, air relative humidity, wind velocity 

and global radiation. For precipitation, data from three stations were available. While this is clearly not enough to represent 10 

the full spatial variability of precipitation, it nevertheless represents some of it. Each sub catchment was assigned 

precipitation from a single station using a nearest neighbour approach (see Fig. 2 and Table 2). As the remaining hydro-

meteorological variables typically exhibit less spatial variability than precipitation, we used observations from only a single 

station each (see Table A2 and Fig. 2). 

 15 

Table A2. Time series data used for model calibration, validation, and operation. All data were available in 1-h resolution for the period 

2011/11/01 00:00 – 2016/10/31 23:00. Time reference is MEZ. 

ID Full name Data type and unit 
Catchment area 

[km²] 
Source 

ROD_p Roodt precipitation [mm] - ASTAa 

RCL_p Reichlange precipitation [mm] - AGEb 

USL_p Useldange precipitation [mm] - ASTA 

USL_ta Useldange air temperature at 2 m [°C] - ASTA 

USL_rh Useldange air relative humidity at 2 m [%] - ASTA 

ROD_v Roodt wind velocity at 3 m [m/s] - LISTc 

MER_rg Merl global radiation [W/m²] - ASTA 

COL_q Colpach discharge [m³/s] 19.5 LIST 

WOB_q Wollefsbach discharge [m³/s] 4.5 LIST 

PLA_q Platen discharge [m³/s] 44.2 LIST 

USL_q Useldange discharge [m³/s] 245 LIST 

a Administration des services techniques de l'agriculture Luxembourg 

b Administration de la gestion de l'eau Luxembourg 

c Luxembourg Institute of Science and Technology 20 

A.3 SHM Attert – model calibration and validation 

We applied a multi-criteria calibration approach to ensure good overall performance of SHM Attert, and not just with respect 

to discharge at the catchment outlet. For calibration we used data from the four-year period 2011/11/01 00:00 – 2015/10/31 

23:00; for validation we used the remaining one-year period 2015/11/01 00:00 – 2016/10/31 23:00. We started by joint 

calibration of all sub catchment parameters on catchment scale, i.e. against observed discharge at the catchment outlet 25 

Useldange, and against catchment-averaged observations of soil moisture and evapotranspiration. The unique set of available 

soil moisture data (observations from 18 sensors in the schist, 11 in the marls, and 19 in the sandstone region, all taken at 50 

cm depth) was taken during the CAOS project. There is no direct representation of soil moisture in SHM, we therefore 

compared normalized and catchment-averaged soil moisture observations against normalized and catchment-averaged 
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storage in the SHM unsaturated zone reservoir (su). While this did not permit quantitative conclusions, it was nevertheless 

informative in terms of the timing of relative minima and maxima, and the overall shape of the time series. As direct 

observations of catchment-scale evapotranspiration rates were not available, we used satellite-based estimates provided by 

EUMETSAT (Trigo et al., 2011) instead and compared them to catchment-averaged evapotranspiration rates of SHM. For 

each variable we measured model performance by Nash-Sutcliffe efficiency (Nash and Sutcliffe, 1970). To measure overall 5 

model performance in a single number, we merged the three efficiencies for discharge, soil moisture and evapotranspiration 

into a single, multi-criteria objective function according to Eq. (A12). The weights assigned to each component were 

subjectively chosen, mainly based on our evaluation of the quality of the underlying observations. To a lesser degree, the 

weights also reflect our evaluation of the relative importance of each component for overall model evaluation. 

 10 

𝑁𝑆𝐸𝑡𝑜𝑡𝑎𝑙 = 0.5 ∙ 𝑁𝑆𝐸𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 + 0.3 ∙ 𝑁𝑆𝐸𝑠𝑜𝑖𝑙 𝑚𝑜𝑖𝑠𝑡𝑢𝑟𝑒 + 0.2 ∙ 𝑁𝑆𝐸𝑒𝑣𝑎𝑝𝑜𝑡𝑟𝑎𝑛𝑠𝑝𝑖𝑟𝑎𝑡𝑖𝑜𝑛 (A12) 

 

After the first catchment-uniform and multi-criteria estimation of parameters, we refined the estimates of all soil-related 

model parameters by calibration against three gauges, each representative for a particular geology: Colpach for schist, 

Wollefsbach for marls, and Platen for sandstone. These parameters (see Table A3) were then assigned to all sub catchments 

sharing the same geology. After a few iterations of catchment-scale- and geology-specific calibration, we determined the 15 

final, distributed parameter sets as shown in Table A3. The main differences among geology-specific parameters appear for 

the retention behaviour of the interflow and the base flow reservoir (ki and kb, respectively), which reflects the geology-

specific hydrological functioning of the Attert basin as described by Fenicia et al. (2016): In the schist, dynamics is governed 

by a combination of two subsurface flow paths, in the marl, fast responses governed by near-surface flow paths prevail, 

while the sandstone areas are characterized by delayed responses governed by groundwater flow. 20 

The catchment-scale performance measures for both the calibration and the validation period are shown in Table A4, and in 

Table A5 for performance at the gauges used for geology-specific and for catchment-wide calibration. The model achieves a 

catchment-scale, multi-objective Nash-Sutcliffe efficiency of 0.73 in the validation period; gauge- or criteria-specific 

efficiencies range from 0.61 for gauge Wollefsbach to 0.77 for gauge Useldange at the catchment outlet. For a visual 

comparison of observed and simulated discharge at Useldange in the year 2015, see Fig. 3, panel b, lines 'observed' and 25 

'reference'.  

 

Table A3. Parameters of the SHM Attert found by calibration in the period 2011/11/01 00:00 – 2015/10/31 23:00. The parameters are 

described in Table A1. 

Geology 
Target gauge 

ID 

su,max 

[m] 

ß 

[-] 

perc 

[-] 

ki 

[-] 

kb 

[-] 

kr 

[-] 

Schist COL_q 0.17 5 0.5 44 500 1.1 

Marls WOB_q 0.17 3 0.7 20 3000 1.1 

Sandstone PLA_q 0.17 2 0.05 100 20000 1.1 

 30 
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Table A4. Catchment-scale performance measures (discharge: Nash-Sutcliffe efficiency at gauge Useldange. Soil moisture and 

evapotranspiration: Nash-Sutcliffe efficiency of catchment averages) of the SHM Attert in the 5-year calibration period (2011/11/01 00:00 

– 2015/10/31 23:00) and 1-year validation period (2015/11/01 00:00 – 2016/10/31 23:00). 'Combination' refers to the joint objective 

function according to Eq. (A12). 

Series Calibration Validation 

Discharge 0.85 0.77 

Soil moisture 0.80 0.66 

Evapotranspiration 0.58 0.74 

Combination 0.78 0.73 

 5 

Table A5. Gauge-specific performance measures (Nash-Sutcliffe efficiency of discharge) of the SHM Attert in the calibration and 

validation period. Gauge locations are shown in Fig. 2, catchment sizes in Table A2. 

Geology Gauge ID Calibration Validation 

Shist COL_q 0.78 0.65 

Marls WOB_q 0.66 0.61 

Sandstone PLA_q 0.79 0.74 

Catchment USL_q 0.85 0.77 

 

Code availability. The SHM Attert including the adaptive clustering functionality and all code used to conduct the analyses 

in this paper are publicly available at https://github.com/KIT-HYD/SHM-Attert-Adaptive-Clustering. 10 

 

Data availability. The precipitation data of stations Roodt and Useldange, the air temperature, relative humidity and global 

radiation data are publicly available from the Administration des services techniques de l'agriculture Luxembourg ASTA at  

http://www.agrimeteo.lu/  (last  access: 2019/08/20). The precipitation and discharge data at station Reichlange are available 

upon request from the Administration de la gestion de l'eau Luxembourg AGE at https://www.inondations.lu/ (last access: 15 

2019/08/20). All other discharge data and the wind velocity data are available upon request from Luxembourg Institute of 

Science and Technology LIST at https://www.list.lu/ (last access: 2019/08/20). The EUMETSAT-based LSA-SAF 

evapotranspiration products are publicly available from http://landsaf.ipma.pt (last access: 2019/08/20). The soil moisture 

data are available upon request from Theresa Blume (blume@gfz-potsdam.de) and Markus Weiler 

(markus.weiler@hydrology.uni-freiburg.de). The digital elevation model is available upon request from LIST. The 2012 20 

Corine Land Cover data are publicly available from the Copernicus sites of the European Environment Agency EEA at 

http://land.copernicus.eu/pan-european/corine-land-cover/clc-2012/view (last access: 2019/08/20). The geological maps are 

available upon request from the Service géologique, Administration des ponts et chaussées Luxembourg at 

http://www.geologie.lu/geolwiki/index.php/Cartes_g%C3%A9ologiques (last access: 2019/08/20).  

 25 
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