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Abstract. Droughts are expected to become more frequent and severe under climate change, increasing the need for accurate

predictions of plant drought response. This response varies substantially depending on plant properties that regulate water

transport and storage within plants, i.e., plant hydraulic traits. It is therefore crucial to map plant hydraulic traits at a large

scale to better assess drought impacts. Improved understanding of global variations in plant hydraulic traits is also needed for

paramaterizing the latest generation of land surface models, many of which explicitly simulate plant hydraulic processes for the5

first time. Here, we use a model-data fusion approach to evaluate the spatial pattern of plant hydraulic traits across the globe.

This approach integrates a plant hydraulic model with datasets derived from microwave remote sensing that inform ecosystem-

scale plant water regulation. In particular, we use both surface soil moisture and vegetation optical depth (VOD) derived from

the X-band JAXA Advanced Microwave Scanning Radiometer for EOS (AMSR-E). VOD is proportional to vegetation water

content and therefore closely related to leaf water potential. In addition, evapotranspiration (ET) from the Atmosphere Land-10

Exchange Inverse model (ALEXI) is also used as a constraint to derive plant hydraulic traits. The derived traits are compared

to independent data sources based on ground measurements. Using the K-means clustering method, we build six hydraulic

functional types (HFTs) with distinct trait combinations - mathematically tractable alternatives to the common approach of

assigning plant hydraulic values based on plant functional types. Using traits averaged by HFTs rather than by PFTs improves

VOD and ET estimation accuracies in the majority of areas across the globe. The use of HFTs and/or plant hydraulic traits15

derived from model-data fusion in this study will contribute to improved parameterization of plant hydraulics in large-scale

models and the prediction of ecosystem drought response.

1 Introduction

Water stress during drought restricts photosynthesis, thus weakening the strength of the terrestrial carbon sink (Ma et al., 2012;

Wolf et al., 2016; Konings et al., 2017) and possibly causing plant mortality under severe conditions (McDowell et al., 2016;20

Adams et al., 2017; Choat et al., 2018). The plant response to water stress also directly controls regional water resources and

drought propagation by modulating water flux and energy partitioning between the land surface and the atmosphere (Goulden

and Bales, 2014; Manoli et al., 2016; Anderegg et al., 2019). However, how plants regulate water, carbon and energy fluxes

and plant mortality under drought could vary considerably depending on plant properties, particularly plant hydraulic traits
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(Sack et al., 2016; Hartmann et al., 2018; McDowell et al., 2019). Understanding this variation is therefore crucial to accurate25

prediction of ecosystem dynamics under changing climate.

Plant hydraulic traits at both stem (e.g., ψ50,x, the xylem water potential under 50% loss of xylem conductivity) and stomatal

(e.g, g1, the sensitivity parameter of stomatal conductance to vapor pressure deficit) levels control plant water uptake and the

extent of stomatal closure under water stress (Martin-StPaul et al., 2017; Feng et al., 2017; Meinzer et al., 2017; Anderegg

et al., 2017). Distinct hydraulic traits across species and plant communities define hydraulic strategies, which lead to different30

responses of leaf water potential and gas exchange during drought (Matheny et al., 2017; Barros et al., 2019). Plant hydraulic

traits play critical roles in predicting stomatal response to stress (Sperry et al., 2017; Liu et al., 2020), plant water storage

(Huang et al., 2017), leaf desiccation (Blackman et al., 2019), and drought-driven tree mortality risk (Anderegg et al., 2016;

Powell et al., 2017; Liu et al., 2017; De Kauwe et al., 2020). As a result of their effect on the surface energy balance, plant

hydraulic traits also impact the magnitude of land-atmosphere feedbacks (Anderegg et al., 2019). In dry tropical forests, leaf35

water potential - which is directly influenced by hydraulic traits - has also been shown to affect leaf phenology (Xu et al.,

2016). As a result, it has been increasingly recognized that plant hydraulic traits are important in mediating ecosystem drought

response and hydroclimatic feedbacks at regional to global scales (Choat et al., 2012; Anderegg, 2015; Choat et al., 2018;

Hartmann et al., 2018).

Understanding how plant hydraulic traits modulate large-scale drought responses requires mapping these traits. At large40

scales, plant traits are often parameterized based on plant functional types (PFTs), such as evergreen needleleaf forests, ev-

ergreen broadleaf forests, deciduous broadleaf forests, mixed forests, shrublands, grasslands and croplands. However, plant

hydraulic traits can vary as much across PFTs as within them (Anderegg, 2015; Konings and Gentine, 2017). Finding alter-

native ways to scale up in situ measurements using a bottom up approach is challenging because the spatial coverage of such

measurements is often limited and biased towards temperate regions. Furthermore, plant hydraulic traits are highly variable45

within species (Anderegg, 2015) and even between different components of a single plant and across vertical gradients within

individual trees (Johnson et al., 2016). Alternatively, because microwave remote sensing observations of vegetation optical

depth (VOD) are sensitive to leaf water potential (Momen et al., 2017; Konings et al., 2019; Holtzman et al., 2021), they may

carry implicit information that can be used to disentangle plant hydraulic traits, without the need for explicit upscaling.

Konings and Gentine (2017) first derived plant hydraulic trait variations at large scales by using VOD to calculate the50

effective ecosystem-scale isohydricity. The isohydricity reflects the response of leaf water potential as soil water potential dries

down (Tardieu and Simonneau, 1998). At a stand scale, this plant physiological metric has been used to explain photosynthesis

variations (Roman et al., 2015) and drought mortality risk (McDowell et al., 2008) across species. At a global scale, remote-

sensing derived isohydricity patterns have been used to explain photosynthesis sensitivity to VPD and soil moisture in North

American grasslands (Konings et al., 2017) and the Amazon (Giardina et al., 2018), to explore the interannual variability55

of isohydricity (Wu et al., 2020), and to explain the relationship between drought resistance and resilience in gymnosperms

(Li et al., 2020). However, because isohydricity is an emergent rather than intrinsic property, it is subject to change with

environmental conditions (Hochberg et al., 2018; Novick et al., 2019; Feng et al., 2019; Mrad et al., 2019). Furthermore,

isohydricity is influenced by both stomatal and xylem traits (Martínez-Vilalta et al., 2014), which do not always co-vary
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(Manzoni et al., 2013; Martínez-Vilalta et al., 2014; Bartlett et al., 2016; Martínez-Vilalta and Garcia-Forner, 2017). Estimating60

intrinsic xylem and stomatal traits separately is therefore necessary for better assessment of plant drought response.

From a modeling perspective, as plant hydraulics has been increasingly recognized as a central link connecting hydro-

climatic processes and ecosystem ecology (Sack et al., 2016; McDowell et al., 2019), land surface and dynamic vegetation

models that explicitly incorporate plant hydraulics are becoming more common (e.g. Xu et al., 2016; Christoffersen et al.,

2016; Kennedy et al., 2019; De Kauwe et al., 2020; Eller et al., 2020). However, explicit plant hydraulic representation also65

requires parametrization choices for the associated plant hydraulic traits. As discussed above, a bottom-up scaling of in situ

measurements is likely to miss significant fractions of the spatial variability in these parameters. Alternatively, Liu et al. (2020)

took a top-down inversion approach by integrating a plant hydraulic model with ET data observed at FLUXNET sites. This

model-data fusion approach identifies the most likely traits generating modeled dynamics consistent with observations, thus

providing effective hydraulic traits that represent ecosystem-scale behaviours. Similar model-data fusion approaches have been70

previously applied in carbon cycle models (e.g. Wang et al., 2009; Dietze et al., 2013; Quetin et al., 2020). Not surprisingly,

many of these applications suggest that integrating informative observations is among the keys to effectively constraining

model parameters.

Here, we use the model-data fusion approach to evaluate the global pattern of ecosystem-scale plant hydraulic traits. Specif-

ically, we determined global maps of five plant hydraulic traits (see methods). To effectively constrain the traits, we use several75

datasets derived from microwave remote sensing observations, each of which is affected by plant hydraulic behaviour. Specif-

ically, we used VOD, surface soil moisture, and ET estimates from a microwave implementation of the Atmosphere Land

Exchange Inverse (ALEXI) framework. The resulting retrieved ecosystem-scale plant hydraulic traits are then compared to

available in situ observations. Having derived spatial maps of variations in plant hydraulic traits, we explore whether sim-

ple alternatives to PFTs can be built to facilitate parameterizing land surface models. We derive several so-called ‘hydraulic80

functional types’ (HFTs) based on the clustering of retrieved hydraulic traits and examine their spatial patterns.

2 Methods

2.1 Plant hydraulics model

For the model underlying the model-data fusion system, we used a soil-plant system model adapted from Liu et al. (2020)

that incorporates plant hydraulics. The soil is characterized by two layers: a hydraulically active rooting zone extending to the85

maximum rooting depth, topped by a surface layer with a fixed depth of 5 cm. Soil moisture in both layers is modeled based

on the soil water balance, i.e.,

Z1
ds1
dt

= P −L12−E (1)

Z2
ds2
dt

= L12−L23− J (2)

where Z1 ( = 5 cm) and Z2 are the thickness of the two soil layers and s1 and s2 are the volumetric soil moisture of the two90

layers. P is the precipitation rate,E is the soil evaporation rate, and J is plant water uptake. The L12 and L23 are vertical fluxes
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between the two soil layers and out of the rooting zone respectively. Both are calculated based on Darcy’s law. A constant soil

moisture below the rooting zone is assumed as the boundary condition for the L23 calculation. The soil evaporation rate E

is calculated as the potential evaporation from the Penman equation multiplied by a stress factor of s1/n, where n is the soil

porosity. The potential evaporation is driven by the fraction of total net radiation that penetrates through the canopy to the95

ground surface based on Beer’s law (Campbell and Norman, 1998). The remaining fraction of total net radiation is absorbed

by the leaves and drives transpiration (Eq.7). Plant water uptake J is determined as the product of the whole-plant conductance

(gp) and the water potential gradient between the soil (ψs) and the leaf (ψl), i.e.,

J = gp (ψs−ψl), (3)

where the soil water potential is calculated from s2 based on the empirical soil water retention curve by Clapp and Hornberger100

(1978).

ψs = ψs,sat (s2/n)−b0 . (4)

Above, ψs,sat is the saturated soil water potential, n is the soil porosity, and b0 is the shape parameter. Plant water uptake from

the thin surface layer is assumed to be negligible. The whole-plant conductance varies with leaf water potential following a

linear vulnerability curve as105

gp = gp,max (1− ψl

2ψ50,x
), (5)

where gp,max is the maximum xylem conductance and ψ50,x is the water potential at which xylem conductance drops to half of

its maximum. A linear vulnerability curve is used because the nonlinearity of the vulnerability curve can hardly be identified

using the model data-fusion approach even at a much finer scale of flux tower foot print (Liu et al., 2020). The linearized form

here keeps the number of parameters minimal.110

The model assumes a single water storage pool in the canopy. The size of this pool is recharged by plant water uptake (J) and

reduced by transpiration (T ), with a vegetation capacitance parameter C determining the proportionality between that water

flux and the corresponding change in plant water potential.

C
dψl

dt
= J −T (6)

Transpiration is computed using the Penman-Monteith equation.115

T =
∆Rnl + ρa cp gaD

λ [∆ + γ (1 + ga/gs)]
(7)

where ∆ is the rate of change of saturated vapor pressure with air temperature; Rnl is the fraction of net radiation absorbed

by the leaves; ρa is the air density; cp is the specific heat capacity of air; ga is the aerodynamic conductance; D is the vapor

pressure deficit; λ is the latent heat of vaporization; γ is the psychrometric constant; and gs is the stomatal conductance to water

vapor per unit ground area. The stomatal conductance is calculated using the Medlyn stomatal conductance model (Medlyn120

et al., 2011), while omitting cuticular and epidermal losses by assuming zero minimum stomatal conductance.

gs = a0 LAI
(

1 +
g1√
D

)
A

ca
(8)
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where a0 = 1.6 is the relative diffusivity of water vapor with respect to CO2; LAI is the leaf area index; g1 is the slope param-

eter, inversely proportional to the square root of marginal water use-efficiency (Medlyn et al., 2011; Lin et al., 2015); A is the

biochemical demand for CO2 calculated using the photosynthesis model (Farquhar et al., 1980); and ca is the atmospheric CO2125

concentration. Photosynthesis is limited by either RuBP regeneration or by the carboxylation rate. Water stress is assumed to

restrict photosynthesis under the carboxylation-limited regime through a down-regulated maximum carboxylation rate (Vcmax)

following Kennedy et al. (2019) and Fisher et al. (2019).

Vcmax =

(
1− ψl

2ψ50,s

)
Vcmax, w (9)

where ψ50,s is the leaf water potential when Vcmax drops to half of its maximum value under well-watered conditions (Vcmax, w).130

The model was driven by climate conditions at a 3-hourly scale. To temporally integrate the model, a forward Euler’s

method was used for computational efficiency, except for the calculation of plant water uptake, for which Eqns. 2 through 6

were linearized at each time step and then solved analytically to ensure numerical stability. The modeled time-series of ET

(E+T ), surface soil moisture (s1) and VOD were compared with microwave remote sensing observations as described below.

2.2 Microwave remote sensing constraints135

To derive plant hydraulic traits, the model in Section 2.1 was constrained by microwave remote sensing products of VOD and

surface soil moisture, as well as by remote-sensing derived ET, all with a spatial resolution of 0.25◦.

2.2.1 VOD

We used VOD and surface soil moisture derived from the JAXA Advanced Microwave Scanning Radiometer for EOS (AMSR-

E) retrieved by the Land Parameter Retrieval Model (LPRM) (Owe et al., 2008; Vrije Universiteit Amsterdam and NASA140

GSFC, 2016). This dataset is based on observations at X-band frequency (10.7 GHz), which is primarily sensitive to water

content of the upper canopy layers (Frappart et al., 2020). Here, we used an X-band record rather than lower microwave

frequencies to reduce errors associated with potential sensitivities of these lower frequencies to xylem water potential, which

might deviate from leaf water potential. Data for 2003-2011 were used. Outliers that are more than three scaled median

absolute deviations away from the median were filtered out and attributed to high-frequency noise in the retrievals common145

to VOD datasets (Konings et al., 2015, 2016). A five-day moving average method was applied to midday and midnight VOD

respectively to further diminish noise in the raw data. Both ascending (1:30 AM) and descending (1:30 PM) observations were

used, to enable them to constrain sub-daily variations in plant hydraulic dynamics.

To relate VOD and leaf water potential, we noted that VOD is proportional to vegetation water content (VWC). In turn,

VWC is determined by the product of above ground biomass (AGB) and plant relative water content (RWC).150

VOD = βVWC = βAGB×RWC (10)

where β is the scaling parameter depending on the structure and dielectric properties of plants (Kirdiashev et al., 1979).

As in Momen et al. (2017), AGB is represented using linearized relationships of LAI and ψl respectively. The relationship
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between RWC andψl usually follows a Weibull pressure-volume curve. However, it has been successfully linearized in previous

theoretical and observational applications (Manzoni et al., 2014; Momen et al., 2017; Konings and Gentine, 2017). Thus, VOD155

is modeled as:

VOD = (a+ bLAI)(1 + cψl) (11)

where a and b are the scaling parameters from LAI to βAGB; and c is the linearized slope of the pressure-volume curve. The

a, b and c parameters vary across pixels and were retrieved as additional inversion parameters as part of the model-data fusion

process.160

2.2.2 Soil moisture

We also used the associated surface soil moisture retrievals from LPRM as additional constraints. Instead of performing a direct

comparison between modeled and retrieved soil moisture, we followed the widely-used approach of assimilating retrieved soil

moisture only after matching its cumulative distribution function (cdf) to the modeled soil moisture (Reichle and Koster, 2004;

Su et al., 2013; Parrens et al., 2014). Because the magnitudes of both retrieved and modeled soil moisture are highly dependent165

on the retrieval algorithm and specific model structure (Koster et al., 2009), this cdf-matching approach reduces the effect of

bias in either the model or observations on the ability of the soil moisture observations to act as useful constraints. Unlike

VOD, surface soil moisture does not have a strong diurnal cycle. Additionally, because the canopy and soil often reach thermal

equilibrium at night, AMSR-E retrievals at 1:30 PM have greater retrieval errors than at 1:30 AM (Parinussa et al., 2016).

Therefore, only 1:30 AM surface soil moisture was included as a model constraint here.170

2.2.3 Evapotranspiration

The model was also constrained by weekly ET during 2003-2011. ET was estimated using the Atmosphere–Land Exchange

Inverse (ALEXI) algorithm (Anderson et al., 1997, 2007; Holmes et al., 2018). Most remote sensing-based ET datasets assume

prior values of stomatal parameters (Kalma et al., 2008; Wang and Dickinson, 2012), which would make it circular to retrieve

plant traits based on these datasets. By contrast, the ALEXI framework is relatively independent from prior assumptions on175

vegetation properties. To achieve this independence, ALEXI uses a two-source energy balance method and is constrained to be

consistent with the boundary layer evolution (Anderson et al., 2007; Holmes et al., 2018). We further used a version of ALEXI

based on microwave-derived land surface temperatures rather than optical ones as in the classic ALEXI implementations. When

compared to in situ observations, microwave-ALEXI and optical-ALEXI performed similarly (Holmes et al., 2018), but the

microwave-based version has the advantage of having more observations because, unlikely optically-derived estimates, it is180

not limited by cloud cover. The 0.25 degree resolution of the microwave ALEXI product is also more consistent with the other

components of our model-data fusion system.
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2.3 Model-data fusion

Plant hydraulic traits and several other model parameters controlling plant hydraulic behaviour were retrieved using a Markov

Chain Monte Carlo (MCMC) method, which determined the parameter values that yield model output most consistent with185

observed constraints. Thirteen parameters were retrieved in total, including five plant hydraulic traits (g1, ψ50,s, C, gp,max,

and ψ50,x), three scaling parameters relating VOD to ψl (a, b and c in Eq. 11), two soil properties (including b0 in Eq. 4

and the subsurface boundary condition of soil moisture in the deepest layer), and three uncertainty values, describing the

standard deviation of the observational noise of VOD (σVOD), surface soil moisture (σSM) and ET (σET), respectively. An

adaptive Metropolized independence sampler was used to generate posterior samples (Ji and Schmidler, 2013). This sampling190

method was designed to facilitate convergence especially for nonlinear models and has been shown effective for retrieving

plant hydraulic traits at flux tower sites (Liu et al., 2020). To reduce the dimensionality of the parameter space and facilitate

convergence, the MCMC jointly sampled all parameters except the three scaling parameters of VOD. For these parameters,

the optimal values were determined conditional on the rest of the parameters after each sampling step based on least squared

error. That is, after each sampling step, the three values were optimized so as to minimize the least-squares difference between195

observed VOD and the predicted VOD conditional on simulated ψl and the optimized parameter values for a, b, and c.

The MCMC also incorporated prior information about parameter ranges and constraints on their realistic combinations. For

ψ50,x, a generalized extreme value distribution was used as the prior for the corresponding PFT. The distribution was fitted

using measurements of species belonging to each PFT in the TRY database (Kattge et al., 2011). The corresponding PFT

of each species was determined based on the PLANTS database (USDA, NRCS, 2020) and the Encyclopedia of Life (Parr200

et al., 2014). For PFTs not included the TRY database, a distribution fitted using measurements for all species was used as

the prior (Fig. S1). We also incorporated a physiological constraint from meta-analysis suggesting stomatal conductance is

down-regulated before substantial xylem embolism occurs (Martin-StPaul et al., 2017; Anderegg et al., 2017), i.e.,

|ψ50,s|< |ψ50,x|. (12)

The physiological constraint, which was also used in Liu et al. (2020), avoids unrealistic combinations of parameters that205

nevertheless match data. For other parameters, uniform non-informative priors spanning realistic ranges were used (Table S1).

The cost function in the MCMC (i.e., the reverse of the likelihood function multiplied by the prior) determines the esti-

mated posterior distribution of parameters. The likelihood function was calculated by comparing the modeled VOD, surface

soil moisture and ET with the three categories of observations. Observations on rainy (daily cumulative precipitation > 1 cm)

or freezing (daily minimum air temperature < 0 ◦C) days were removed. Each of the remaining observations was considered210

independent, following a Gaussian distribution with a mean of the modeled value and the standard deviation of the correspond-

ing category (i.e., one of σVOD, σSM and σET). The likelihood of all observations were then combined after re-weighting each

constraint based on its number of observations. That is,

log
(
L(y(1:nv)

v ,y(1:ne)
e ,y(1:ns)

s |θ
)

=

(
1

nv

nv∑
i=0

logL(y(i)v |θ) +
1

ne

ne∑
i=0

logL(y(i)e |θ) +
1

ns

ns∑
i=0

logL(y(i)s |θ)

)
nv +ne +ns

3
(13)
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where L is likelihood of observed VOD (yv), ET (ye), and surface soil moisture (ys) under given parameters θ (including all215

the thirteen parameters to be retrieved); nv , ne,and ns are the number of valid data of VOD, ET and surface soil moisture,

respectively. Due to the unbalanced number of observations among the measurement types, re-normalizing the weights in each

category based on its number of observations avoids over-weighting of semi-daily VOD and surface soil moisture over weekly

ET observations.

For the global retrievals, pixels classified by MODIS land cover data as wetland, urban area, barren area, snow/ice covered,220

or tundra-dominated were excluded from the analysis. Pixels where VOD is below 0.15 or above 0.8 were also excluded to

remove sparsely vegetated pixels and extremely dense vegetation areas, respectively. The most densely vegetated areas were

removed because low microwave transmissivity significantly reduces the accuracy of VOD and soil moisture retrievals there

(Kumar et al., 2020), and low VOD pixels were removed to reduce inaccuracies due to ground volume scattering and low

vegetation density. For the remaining pixels, parameters were retrieved using observations in 2004 and 2005, during which the225

El Niño event and the elevated tropical North Atlantic sea surface temperatures induced drought stress in many regions across

the globe (Phillips et al., 2009; FAO, 2014). Here, we used only two years of observations, rather than the entire period, to

reduce the computational load of model-data fusion. The remaining seven years were used for testing. Separating retrieval and

testing periods also helped to (potentially) identify overfitting.

For each pixel, four MCMC chains were used. Each started randomly within the prior parameter ranges, and each generated230

50,000 samples. Within- and among-chain convergences were diagnosed by Gelman–Rubin (<1.2) and Geweke values (<0.2)

(Brooks and Gelman, 1998). Across the studied pixels, all parameters converged for 79% of pixels, while at least half of

the parameters converged for 97% of pixels. The remaining 3% of pixels that did not converge were removed from analysis.

For each pixel, 200 samples were randomly selected from the chains after step 40,000 as posterior samples of parameters.

Ensemble means of VOD, surface soil moisture, and ET modeled using posterior samples were compared to observations235

during the period 2003-2011. Posterior means of the hydraulic traits in each pixel were used for analysis below.

2.4 Climate forcing and ancillary properties

The model-data fusion system was run at 0.25◦ resolution. Meteorological drivers at this spatial resolution and the 3-hourly

temporal resolution used by the model were derived from the Global Land Data Assimilation System (GLDAS) (Rodell et al.,

2004; Beaudoing and Rodell, 2020). In particular, GLDAS-derived forcings include net shortwave radiation, air temperature,240

precipitation, surface atmospheric pressure, specific humidity, and aerodynamic conductance calculated using the ratio between

the sensible heat net flux and the difference between air and surface skin temperatures. LAI data from the MODIS (Moderate

Resolution Imaging Spectroradiometer) product MCD15A3H.006 (Myneni et al., 2015) with a 500 m resolution were aggre-

gated to a 0.25 degree scale using Google Earth Engine to be consistent with the GLDAS climatic drivers. Missing data were

linearly interpolated, and a Savitzky–Golay filter (Savitzky and Golay, 1964) was applied to diminish high-frequency noise in245

the LAI time series. To estimate Vcmax,w, a PFT map from the GLDAS land cover map derived from MODIS was used (Fig. S2).

The Vcmax,w of each PFT was set as the static PFT-average from Walker et al. (2017) and corrected by temperature following

Medlyn et al. (2002). The maximum rooting depth was obtained from a global map synthesized from in situ observations (Fan
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et al., 2017). Soil texture from the Harmonized World Soils Database (FAO/IIASA/ISRIC/ISSCAS/JRC, 2012) was used to

calculate soil drainage parameters based on empirical relations (Clapp and Hornberger, 1978).250

2.5 Analyses

2.5.1 Observing system simulation experiment

To test the capability of the model-data fusion approach to correctly retrieve parameters under the presence of observational

noise, we conducted an Observing System Simulation Experiment (OSSE) for 50 pixels. The 50 pixels were randomly dis-

tributed across the globe. The OSSE uses synthetic rather than real observations to test data-assimilation uncertainty, among255

other objectives (Arnold and Dey, 1986; Nearing et al., 2012; Errico et al., 2013). At each pixel, time series of VOD, surface

soil moisture and ET were generated by using the model (Section 2.1) with prescribed parameters. To mimic the presence of

observational noise in real observational estimates, white noise was then added to the simulated values of VOD, surface soil

moisture ET. The prescribed standard deviations of noise in VOD, surface soil moisture and ET, i.e., 0.05, 0.08, and 0.5 mm

day−1 respectively, were chosen to be within the mid 50% ranges retrieved using real data. The parameters retrieved using the260

model-data fusion approach were then compared with the prescribed values.

2.5.2 Comparison between derived traits and in situ measurements

Because hydraulic traits are often measured at a single plant or a segment scale that is much smaller than the ecosystem

scale used in model-data fusion, and because of the relatively coarse spatial resolution of the remote sensing data used as

constraints here, a one-to-one comparison between in situ data and model-data fusion derived values is likely to be dominated265

by representativeness error. Instead, we aggregated both in situ measurements and the traits derived here by PFTs to evaluate

whether across-PFT patterns can be captured. Among the most ecologically important and widely measured traits are g1 and

ψ50,x, which indicate stomatal marginal water use efficiency and vulnerability to xylem cavitation, respectively. Synthesized

datasets of g1 from Lin et al. (2015) and ψ50,x from Kattge et al. (2011) based on in situ measurements covering a variety of

species and climate types were used for comparison. In addition, Trugman et al. (2020) derived a map of tree ψ50,x across the270

continental United States at a 1 degree resolution, which integrated measurements in the Xylem Functional Trait Database and

the US Forest Service Forest Inventory and Analysis (FIA) long-term permanent plot network. This map was used for a pixel-

wise comparison with the ψ50,x retrieved here in US areas dominated by forests. To perform this comparison, our model-data

fusion derived traits were first aggregated from 0.25◦ to the 1◦ resolution of the estimates by Trugman et al. (2020).

2.5.3 Clustering analysis275

To understand the global pattern of retrieved plant hydraulic traits, we constructed hydraulic functional types (HFTs) using the

K-means clustering method (MacQueen, 1967). This method classifies each pixel to the nearest mean, i.e., the cluster center

in the five dimensional space spanned by the modeled hydraulic traits. To find the optimal number of clusters, we calculated

the ratio between the variance within an across clusters traits across 3 to 20 clusters. The elbow method was used to derive
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the optimal number of clusters (Kodinariya and Makwana, 2013). That is, the optimal number of clusters was chosen based280

on the inflection point (elbow) of the curve relating the above ratio and the number of clusters. The global pattern of these

HFTs were examined. To provide insight into whether HFTs could be used as an alternative to PFTs, we evaluated how much

the accuracy of estimated VOD and ET would degrade if VOD and ET were modeled using hydraulic traits based on an HFT-

based clustering rather than a more typical PFT-based clustering. That is, we calculated the simulated VOD and ET by assigning

hydraulic traits as the center values for the HFT present at each pixel, rather than by using the average derived value across285

each PFT as the PFT-wide value. Several factors differ between this calculation and the potential reduced error from using

HFTs in land surface models. For example, land surface models often use sub-grid scale tiling systems that are more complex

than the pixel-scale calculations performed here. The calculation here also did not account for uncertainties in determining the

optimal PFT-wide or HFT-wide values, or indeed, the mapping of PFTs or HFTs to begin with (Poulter et al., 2011; Hartley

et al., 2017). Nevertheless, this analysis provides first order insight into the capacity of HFT-based parametrization to improve290

over a PFT-based approach.

3 Results

3.1 Parameter retrieval in the OSSE

Across the 50 pixels tested in the OSSE, the prescribed traits can be recovered using model-data fusion, with high Pearson

correlations between the assumed and retrieved values (Fig. 1). The hydraulic traits of g1, ψ50,x, and gp,max along with the soil295

parameters (b0 in Eq. 4 and the boundary condition bc) are accurately recovered (r ≥ 0.77). The C and the ratio between ψ50,s

and ψ50,x showed larger discrepancies and greater uncertainty ranges due to the presence of (simulated) observational noise.

For all parameters, the residual errors are randomly distributed, rather than scaling the the true parameter value. Overall, the

OSSE supports the effectiveness of the model-data fusion approach.

3.2 Accuracy of modeled VOD, ET, and surface soil moisture300

Over the entire study period of 2003-2011, the coefficient of determination (R2) between estimated and observed VOD has

a median of 0.38 and a mid-50% range of (0.22,0.55) across the globe (Fig. 2a). The estimated VOD is highly correlated

with observations in northern and southwestern Australia, northeastern China, India, central Europe, Africa, and eastern South

America. The high VOD accuracy in these areas is likely partially a result of the large contribution of biomass to VOD due to

strong biomass seasonality in these areas (Liu et al., 2011; Momen et al., 2017). Notably, however, even in areas where VOD305

has been shown to be less correlated with LAI, including central Australia, central Asia, South Africa, and the western US

(Momen et al., 2017), the estimated VOD accounting for the signature of leaf water potential is also able to capture observed

VOD. The model also accurately estimates observed ET with a median R2 of 0.60 and a mid-50% range of (0.36,0.78) (Fig.

2b). Unlike in the majority of the world, the R2 of ET is relatively lower in central Australia, southern South America, and

the southwestern US, where highly heterogeneous vegetation cover such as savannas and coexisting grass and shrubs within310
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Figure 1. Comparison between the prescribed and retrieved plant hydraulic traits (g1, ψ50,s/ψ50,x, ψ50,x, gp,max, C) and soil properties

(b0, bc) in the observing system simulation experiment. The black dots and grey lines represent the mean and range of one standard deviation

of retrieved posterior distributions. The diagonal dashed line is the 1:1 line. Pearson correlation coefficient (r) between the prescribed and

retrieved parameters are noted.

a pixel could undermine model accuracy. The median and mid-50% range of surface soil moisture R2 is 0.22 and (0.08,0.42),

respectively. Modeled surface soil moisture is less accurate in croplands (likely due to irrigation), as well as in boreal regions,

eastern China, Europe, and the mid-west and east of US. These regions largely overlap with those where the observed soil

moisture from AMSR-E is weakly correlated with the reanalysis product of ERA-Interim that integrates ground observations

(Parinussa et al., 2015), suggesting greater uncertainties of surface soil moisture from AMSR-E compared to other regions.315

The overall accuracy of estimated VOD, ET and surface soil moisture both within (Fig. S3) and outside (Fig. 2) the training

period 2004-2005 suggest that the model and the derived traits effectively represent plant hydraulic dynamics.

3.3 Global pattern of plant hydraulic traits

The retrieved stomatal conductance slope parameter g1, which is inversely proportional to marginal water use efficiency (Eq. 6),

exhibits clear spatial patterns (Fig. 3a). High g1 values arise in areas covered by grasses and savannas, such as the western US,320

the Sahel, central Asia, northern Mongolia, and inner Australia. This pattern is consistent with predictions from experimental

data and optimality theory that herbaceous species – given the low cost of stem wood construction per unit water transport –

should have the largest g1, i.e., be the least water-use efficient (Manzoni et al., 2011; Lin et al., 2015). In addition, croplands

in India and eastern China also show high g1, consistent with the high isohydricity of these regions (Konings and Gentine,
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Figure 2. Assimilation accuracy (R2) of (a) VOD, (b) ET, and (c) soil moisture during the entire study period 2003-2011. Insets show the

probability distribution (pdf) of R2 across the entire study area. Gray shaded area is not included in analysis.
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2017). Consistent with ground measurements that suggest g1 increases with biome average temperature (Lin et al., 2015), the325

g1 derived here is also (on average) lower in boreal ecosystems than in temperate and tropical ecosystems.

Highly negative ψ50,x values are found in boreal evergreen needleleaf forests and in arid or seasonally dry biomes covered

by forests, shrubs or savannas, such as the western US, Central America, eastern south America, southeastern Africa, and

Australia (Fig. 3b). However, ψ50,x is more spatially scattered than g1. This could partially arise from the greater coefficient

of variation across ensembles of ψ50,x (Fig. 4), suggesting ψ50,x is less tightly constrained compared to g1 (consistent with330

site-scale model-data fusion efforts in Liu et al. (2020) and the uncertainty estimates in the OSSE, Fig. 1). This additional

uncertainty might translate to more ‘noise’ in the ensemble medians for ψ50,x than that for g1. Maps of other hydraulic traits

are shown in Fig. S4. The patterns of hydraulic traits exhibit greater variability beyond PFT distribution (Fig. S2) and only

limited correlation with soil and climate conditions (Fig. S5).

Among the plant hydraulic traits, we found strong coordination between the vulnerability of stomata and the xylem (ψ50,s335

and ψ50,x) across space (Fig. S5), consistent with existing evidence from ground measurements (Anderegg et al., 2017). Other

hydraulic traits are only weakly correlated, including gp,max and ψ50,x (Fig. S5), which is consistent with the previous finding

suggesting the safety-efficiency trade-off of xylem traits is weak across > 400 species (Gleason et al., 2016).

Across PFTs, evergreen needleleaf forests have the lowest g1, followed by deciduous broadleaf forests and shrublands (Fig.

5a). Grasslands and croplands have the highest g1. This trend follows the across-PFT pattern found by (Lin et al., 2015). The340

estimated across-PFT pattern of mean ψ50,x is also consistent with measurements included in the TRY database (Kattge et al.,

2011), i.e., lowest in grasslands and highest in evergreen needleleaf forests (Fig. 5b). However, across the globe, we found the

average standard deviation within PFTs is 3.6 and 2.3 times the standard deviation across PFTs for g1 and ψ50,x, respectively.

The large within-PFT variation is consistent with in situ observations (Anderegg, 2015), indicating PFTs are not informative

of plant hydraulic traits.345

We further compared the retrieved ψ50,x for specific locations to an alternative estimate upscaled from forest inventory

(FIA) surveys (Fig. 6). Consistent with the FIA-based estimate, the retrieved ψ50,x are overall lower in pixels dominated by

evergreen needleleaf forests than in evergreen and deciduous broadleaf forests and mixed forests. However, across pixels, the

ecosystem-scale ψ50,x derived from remote sensing vary significantly more than the estimates from the Trugman et al. (2020)

dataset. Some fraction of this discrepancy might be due to intra-species variability in ψ50,x, which is not accounted for in the350

FIA-based estimate, and due to uncertainty in the kriging-based interpolation used for upscaling from the sparse FIA plots

to each 1◦ pixel. Nevertheless, this discrepancy highlights the scale-gap between traits measured for a single plant and that

derived for an ecosystem.

3.4 Hydraulic functional types (HFTs)

We built six HFTs (termed H1 to H6) using the K-means clustering method. The number of clusters (six) was chosen using the355

elbow method based on the inflection point of the ratio of within- to across-clusters variance (Fig. S6). Across the six HFTs,

the across-cluster variance is 1.7 times as large as the within-cluster variance. The HFTs explain 57% of the total variance of

hydraulic traits across the globe. The cluster centers of the six HFTs are characterized by distinct combinations of hydraulic
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Figure 3. Global maps of (a) g1 and (b) ψ50,x retrieved using model-data fusion. Posterior mean of each pixel is plotted.
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Figure 4. Empirical distribution across pixels of the coefficient of variation (CV) of g1 and ψ50,x calculated across ensembles.

Figure 5. Retrieved (a) g1 and (b) ψ50,x using model-data fusion (light colored bars) grouped by PFTs, in comparison with values derived

from in situ measurements (dark colored bars) reported in Lin et al. (2015) and the TRY database (Kattge et al., 2011). Compared PFTs

include evergreen needleleaf forest (ENF), deciduous broadleaf forest (DBF), evergreen broadleaf forest (EBF), shrubland (SHB), grassland

(GRA), cropland (CRO). Bars represent medians of each PFT and black lines indicate the 25th-75th percentile ranges. The g1 averaged

across gymnosperm trees and angiosperm trees from Lin et al. (2015) were compared to retrieved g1 in pixels dominated by ENF and DBF,

respectively.
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Figure 6. Aggregated ψ50,x from upscaling Forest Inventory and Analysis (FIA) plots based on Trugman et al. (2020) and ψ50,x retrieved

here for corresponding pixels. The point size is scaled by number of plots used in aggregation for each pixel.

traits (Fig. 7a). Specifically, H1 and H2 feature low ψ50,s and ψ50,x, and are mainly distributed in boreal forest and arid or

seasonally dry biomes including the western US, Central America, southeastern Africa, central Asia, and Australia (Fig. 7b).360

H3 and H4 are characterized by low and high vegetation capacitance (C) respectively, though both have low gp,max. H3 is

mainly but not exclusively distributed in grasslands and savannas in the central US, the Nordeste region in Brazil, eastern

South Africa, and eastern Australia, as well as in the Miombo woodlands. H4 is distributed in shrublands in the southwestern

US, Argentina, southern Africa, northwestern India, and northeastern Australia. H5, often found in tropical and sub-tropical

regions, is characterized by large gp,max and capacitance. H6 is characterized primarily by high g1, which includes croplands365

in Indian, southeastern Asia, and central and eastern China. Note that the pattern of HFTs (Fig. 7b) is substantially distinct

from the distribution of PFTs (Fig. S2), illustrating the limitations of parameterizing plant hydraulics based on PFTs.

Using averaged traits per PFT instead of pixel-specific traits to calculate VOD and ET led to a median increase in normalized

root-mean-square-error (nRMSE, with the long-term average used for normalization) of 0.82 and 0.58, respectively. This

degradation of accuracy is unsurprising given the high spatial variability of hydraulic traits and the fact that PFTs are not370

categorized specifically to distinguish plant hydraulic functions. However, using the hydraulic traits averaged per HFT instead

improves prediction accuracy over the PFT-based predictions. When compared to using pixel-specific values, using average

traits based on HFTs increases the nRMSE by 0.65 and 0.42 for VOD and ET, respectively. In each case, this is less than the

degradation when PFT-based averages are used. Indeed, when PFT-based instead of HFT-based model estimates are compared,

the nRMSE of ET increases by more than 0.1 in 58% of the analyzed area (Fig. 8a). ET is mainly improved in arid or seasonally375

dry biomes, including the western US, southern South America, southern and eastern Africa, central Asia, and Australia. In

addition, the normalized RMSE of VOD is also improved by more than 0.5 in 37% of the analyzed area using HFTs rather

than PFTs (Fig. 8b). Areas exhibiting reduced error are mainly located in the southwestern US, Central America, eastern South
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Figure 7. (a) Plant hydraulic traits of the centers of six hydraulic functional types and (b) their spatial pattern. Each trait of cluster centers is

normalized using (V −V5)/(V95−V5), where V is the trait magnitude, and V5 and V95 are the 5th and 95th percentiles of the corresponding

trait across the study area.

17



America, Mediterranean, Africa and Australia, where variation of leaf water potential has a strong signature on VOD (Momen

et al., 2017). These findings suggest the importance of appropriate parameterization of hydraulic traits on capturing leaf water380

potential and ET variations at an ecosystem scale.

a

b

HFT 
better

PFT 
better

HFT 
better

PFT 
better

Figure 8. Normalized root mean square error (nRMSE) of estimated (a) ET and (b) VOD using traits averaged by plant PFTs minus that

using traits averaged by HFTs. The insets show the areal frequency of the nRMSE difference.

4 Discussion

4.1 Contribution of VOD to informing plant hydraulic behavior

The fact that VOD varies with plant water content allows investigation of plant physiological dynamics at large scales. Although

VOD has often been used as a proxy of aboveground biomass (e.g. Liu et al., 2015; Tian et al., 2017; Brandt et al., 2018;385

Teubner et al., 2019), it is in fact determined by both biomass and plant water status (Konings et al., 2019). VOD variations
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within a day (Konings and Gentine, 2017; Li et al., 2017; Anderegg et al., 2018) and during soil dry-downs (Feldman et al.,

2018; Zhang et al., 2019; Feldman et al., 2020) highlight the sensitivity of VOD to relative water content. At seasonal and inter-

annual scales, VOD has also been found to be modulated by leaf water potential or relative water content, thus deviating from

biomass signals (Momen et al., 2017; Tian et al., 2018; Tong et al., 2019). Here, after parsing out the impact of biomass through390

LAI, VOD provides information about leaf water potential variation and therefore contributes to constraining the underlying

hydraulic traits. Kumar et al. (2020) previously assimilated VOD into a land surface model as a constraint on biomass, which

led to improvements in modelled ET. Our findings suggest that when assimilated into models with an explicit representation of

plant hydraulics, VOD can act to constrain both water and carbon dynamics and their respective climatic responses. Although

not explored in detail in this study, note also that, by determining optimal values for a, b, and c, (the parameters relating VOD395

to ψl in Eq. 11), the model-data fusion system introduced here also allows determination of ψl from VOD, which may be of

interest for a variety of studies of plant responses to drought. However, additional research is needed to understand the effect

of the choice of retrieval algorithm and specific VOD product (Li et al., 2021) on any inferred VOD-ψl relationships. For this

reason, any such efforts would also benefit from explicit uncertainty quantification.

Our previous study (Liu et al., 2020) at stand-scale has shown that stomatal traits are well-constrained using ET alone,400

whereas xylem traits including ψ50,x remain largely under-constrained, in part due to lack of information on leaf water poten-

tial. Incorporating VOD among the constraints here contributes to separation of xylem and stomatal behavior. As a result, the

model-data fusion approach here is, to our knowledge, the first to be able to retrieve both stomatal and xylem traits across the

globe. Nevertheless, ψ50,x is still less well-resolved across ensembles compared to other traits (Fig. 4). This could result from

trade-offs among hydraulic traits and the lack of constraints on the scaling from leaf water potential to VOD, which varies405

across space. More prior information about these two factors will likely contribute to improved retrieval of plant hydraulic

traits. Additionally, the use of solar-induced fluorescence or other constraints on photosynthesis may allow for independent

information about stomatal closure that could be used to improve the accuracy and certainty of the retrieved hydraulic traits.

However, care should be taken that the uncertainty introduced by coupling to a photosynthesis model does not outweigh the

added advantage of this additional constraint.410

4.2 Bridging the spatial scale gap of hydraulic traits

Plant hydraulic traits vary among segments from root to shoot even for a single tree, causing the hydraulic sensitivity at a

whole-tree scale to be distinct from that measured at a segment scale (Johnson et al., 2016). Likewise, species diversity, canopy

structure, and demographic composition can cause large variability of hydraulic traits. As a result, a community-weighted

average of a trait may not well represent the integrated hydraulic behavior at an ecosystem scale, as evidenced, for example, by415

the significant effect of plant hydraulic diversity on evapotranspiration responses to drought (Anderegg et al., 2018). Here, we

also found substantial discrepancy between community-weighted ψ50,x and the ecosystem-scaled value derived representing

the property of the entire pixel, even in the most extensively surveyed pixels available (biggest dots in Fig. 6). This highlights

the challenge of scaling up ground measurements of plant hydraulic traits to a scale relevant to land surface modeling from

the bottom-up. The model-data fusion used here provides an approach to help address this challenge. However, further study is420
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needed to explore how stand and ecosystem characteristics shape the ecosystem-scale hydraulic traits, as well as the effective

relationship between leaf water potential and remote-sensing scale water content.

4.3 Implications for land surface models

Because they are able to predict ET and VOD better than PFTs (Fig. 8), the HFTs point to the potential for a better parameteri-

zation scheme of plant hydraulics in land surface models. Because HFTs require fewer clusters than PFTs do to model ET with425

the same or better accuracy, parameterizing plant hydraulics by HFTs in land surface models may contribute to higher model

accuracy. However, because the magnitude of state variables may differ between models even as their temporal dynamics don’t

(Koster et al., 2009), including between a give land surface model and the model used here, using the exact values derived here

may cause errors. Instead, the map of HFTs and their relative magnitude of traits can be used as a baseline for model-specific

calibration. Moreover, moving beyond fixed values for each HFT, hydraulic traits within each type may be further related to to430

landscape features such as climate, topography, canopy height and stand age using the environmental filtering approach (Butler

et al., 2017). As demonstrated for photosynthetic traits (Verheijen et al., 2013; Smith et al., 2019), such relationships allow

practical flexibility to account for trait variations across space, thus improving the performance of large-scale models. They

may also allow improved compatibility with sub-grid tiling schemes used by land surface schemes. As land surface models

that explicitly represent plant hydraulics are becoming more common, our results demonstrate the possibility of alternative,435

computationally efficient approaches to parameterizing plant hydraulic behavior, which will contribute to improved prediction

of natural resources and climate feedbacks.

5 Conclusions

This study derived ecosystem-scale plant hydraulic traits across the globe using a model-data fusion approach. The retrieved

traits enable our hydraulic model to capture the dynamics of leaf water potential and ET, based on comparison to remote440

sensing observations. While the traits derived here are consistent with across-PFT patterns based on in situ measurements, they

also exhibit large within-PFT variations (as expected). There is some discrepancy between our derived ψ50,x and values derived

from interpolating between forest inventory plots, though it is unclear if this discrepancy is caused by errors in the model-data

fusion retrievals, errors in the upscaled inventory data due to intra-specific variability and spatial interpolation imperfections, or

both. Uncertainty is also induced by whether or not our retrievals represent the same effective values as a community-weighted445

average (see Section 4.2). Nevertheless, reasonable correspondence between the across-PFT variations in our derived traits

compared to in situ measurements add confidence to the dataset introduced here.

As an alternative to PFTs, we constructed “hydraulic functional types” based on clustering of the derived hydraulic traits.

Using the hydraulic functional types, rather than PFTs, to drive averaged traits by functional types improves the accuracy of

estimated ET and VOD, even as the number of functional types is reduced relative to a PFT-based representation. This suggests450

that hydraulic functional types may form a computationally efficient yet promising approach for representing the diversity of

plant hydraulic behavior in large-scale land surface models. We note that the exact values of the derived hydraulic traits depend
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on the specific data and model representation used here and therefore are subject to model and data uncertainties. However,

our findings highlight opportunities and challenges for further investigation of plant hydraulics at a global scale.
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