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Abstract. Soil evaporation is a key process in the water cycle and can be conveniently quantified using 12 

2H and 18O in bulk surface soil water (BW). However, recent research shows that soil water in larger 13 

pores evaporates first and differs from water in smaller pores in 2H and 18O, which disqualifies the 14 

quantification of evaporation from BW 2H and 18O. We hypothesized that BW had different isotopic 15 

compositions from evaporating water (EW). Therefore, our objectives were to test this hypothesis first 16 

and then evaluate whether the isotopic difference alters the calculated evaporative water loss. We 17 

measured the isotopic composition of soil water during two continuous evaporation periods in a summer 18 

maize field. Period Ⅰ had a duration of 32 days following a natural precipitation event, and Period Ⅱ lasted 19 

24 days following an irrigation event with a 2H-enriched water. BW was obtained by cryogenically 20 

extracting water from samples of 0–5 cm soil taken every 3 days; EW was derived from condensation 21 

water collected every 2 days on a plastic film placed on the soil surface. The results showed that when 22 

event water was “heavier” than pre-event BW, 2H of BW in Period Ⅱ decreased with an increase in 23 

evaporation time, indicating heavy water evaporation. When event water was “lighter” than the pre-event 24 

BW, 2H and 18O of BW in Period Ⅰ and 18O of BW in Period Ⅱ increased with increasing evaporation 25 

time, suggesting light water evaporation. Moreover, relative to BW, EW had significantly smaller 2H 26 

and 18O in Period Ⅰ and significantly smaller 18O in Period Ⅱ (p < 0.05). These observations suggest 27 

that the evaporating water was close to the event water, both of which differed from the bulk soil water. 28 

Furthermore, the event water might be in larger pores, from which evaporation takes precedence. The 29 

soil evaporative water losses derived from EW isotopes were compared with those from BW. With a 30 
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small isotopic difference between EW and BW, the evaporative water losses in the soil did not differ 145 

significantly (p > 0.05). Our results have important implications for quantifying evaporation processes 146 

using water stable isotopes. Future studies are needed to investigate how soil water isotopes partition 147 

differently between pores in soils with different pore size distributions and how this might affect soil 148 

evaporation estimation. 149 

1 Introduction 150 

Terrestrial ecosystems receive water from precipitation and subsequently release all or part of the water 151 

to the atmosphere through evapotranspiration. The evapotranspiration process consumes approximately 152 

25% of the incoming solar energy (Trenberth et al., 2009) and can be divided into two components: 153 

transpiration from plant leaves and evaporation from the soil surface. Soil evaporation varies from 10 to 154 

60% of the total precipitation (Good et al., 2015; Oki and Kanae, 2006). Precise estimation of soil 155 

evaporative water loss relative to precipitation is critical for improving our knowledge of water budgets, 156 

plant water use efficiency, global ecosystem productivity, allocation of increasingly scarce water 157 

resources, and calibrating hydrological and climatic models (Kool et al., 2014; Oki and Kanae, 2006; Or 158 

et al., 2013; Or and Lehmann, 2019; Wang et al., 2014).  159 

Water loss from soil progresses with air invasion into the soil in the order of large to small pores 160 

(Aminzadeh and Or, 2014; Lehmann and Or, 2009; Or et al., 2013). Soil pores can be divided into large, 161 

medium, and small pores. There is a minimum amount of small pore water at which liquid water in soil 162 

is still continuous or connected, below which liquid water is no longer connected, and vapor transport is 163 

the only way to further reduce water in soil. This water content is called the residual water content in the 164 

soil characteristic curve (Van Genuchten, 1980; Zhang et al., 2015). When large soil pores are filled with 165 

water, water in small pores does not participate in evaporation (Or and Lehmann, 2019; Zhang et al., 166 

2015). Therefore, soil evaporation can be divided into three stages (Hillel, 1998; Or et al, 2013). Stage Ⅰ: 167 

the evaporation front is in the surface soil, and water in large and medium pores participates in 168 

evaporation, but larger pores are the primary contributors. With the progressive reduction of water in the 169 

larger pores, the evaporation rate gradually decreases. Stage Ⅱ: evaporation front is still in the surface 170 

soil, but larger pores are filled with air, water residing in the medium soil pores in the surface soil 171 

evaporates, and deep larger soil pores recharge the surface medium pores by capillary pull (Or and 172 
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Lehmann, 2019), and the evaporation rate remains constant. Stage Ⅲ: the hydraulic connectivity between 242 

the surface medium pores and deep large pores breaks, such that the evaporation front recedes into the 243 

subsurface soil. Water in the surface small pores and water in medium pores on the evaporation front 244 

evaporates. The evaporation rate decreases to a low value (Or et al, 2013).  245 

Furthermore, pre-event soil water fills the smallest pores that are empty. When the event water amount 246 

is small, the empty small soil pores are filled with event water first (Beven and Germann, 1982; Brooks 247 

et al., 2010). However, when small pores are filled with water or when the amount of event water is large, 248 

the infiltration water preferentially enters larger pores and bypasses the saturated small pores (Beven and 249 

Germann, 1982; Booltink and Bouma, 1991; Sprenger and Allen, 2020). As larger pores have greater 250 

hydraulic conductivity, water residing in larger pores flows faster and drains first. Conversely, water 251 

residing in small pores drains lastly (Gerke and Van Genuchten, 1993; Phillips, 2010; Van Genuchten, 252 

1980). Therefore, water in smaller pores has a longer residence time in the soil (Sprenger et al., 2019b).  253 

The sequence of water infiltration and reduction could introduce variability in the isotopic composition 254 

between soil pore spaces. It is well known that there are seasonal, temperature, and amount effects of 255 

local precipitation events, causing strong temporal variation in the isotopic composition of precipitation 256 

(Kendall and McDonnell, 2012). As a result, different precipitation events with different isotopic 257 

compositions recharge different soil pores, which may yield different isotopic compositions between 258 

small- and large-pore water (Brooks et al., 2010; Goldsmith et al., 2012; Good et al., 2015). Isotopically, 259 

small-pore water may be similar to old precipitation, with large-pore water resembling new precipitation 260 

(Sprenger et al., 2019a; Sprenger et al., 2019b). In addition, mineral-water interaction, soil particle 261 

surface adsorption, and soil tension may also cause isotopic variations in the soil pore space (Gaj et al., 262 

2017a; Gaj and McDonnell, 2019; Oerter et al., 2014; Orlowski and Breuer, 2020; Thielemann et al., 263 

2019).  264 

Despite the recent progress in understanding evaporation processes and isotope partitioning in soil pore 265 

space, the latter, to the best of our knowledge, is not considered in the calculation of soil evaporative 266 

water loss in terms of the isotope-based method. The isotopic composition of bulk soil water, which is 267 

extracted by cryogenic vacuum distillation, containing all pore water, is still routinely used in evaporation 268 

calculations using the Craig-Gordon model (Allison and Barnes, 1983; Dubbert et al., 2013; Good et al., 269 

2014; Robertson and Gazis, 2006; Sprenger et al., 2017). This might bias the evaporation estimates 270 
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because of isotopic variation in pore space and the preference for larger-pore water by evaporation.  456 

Therefore, we hypothesize that the isotopic composition in evaporating water (EW) is similar to that of 457 

water in larger pores but differs from that in BW; thus, evaporative water loss based on isotope values in 458 

BW will be biased. The objectives of this study were to verify 1) whether isotopic compositions differ 459 

between EW and BW and 2) if the isotopic composition difference substantially biases the calculated 460 

evaporative water loss. This study may help improve our understanding of soil evaporation and 461 

ecohydrological processes. 462 

2 Materials and methods 463 

2.1 Experimental site 464 

The field experiment was conducted from June to September of 2016 at Huangjiabao Village (34°17′ N, 465 

108°05′ E, 534 m above sea level), located in the southern Chinese Loess Plateau. The study site 466 

experiences a temperate, semi-humid climate, with a mean annual temperature of 13 °C, precipitation of 467 

620 mm, and potential evaporation of 1,400 mm (Liang et al., 2012). Winter wheat followed by summer 468 

maize rotation is routine practice in this region (Chen et al., 2015).  469 

2.2 Experimental design 470 

A summer maize field (35 m long and 21 m wide) was selected for this study. On June 18, 2016, maize 471 

seeds were sown in alternating row spaces of 70 cm and 40 cm with 30-cm seed intervals in each row. 472 

Seeds were planted at a depth of 5 cm beneath the soil surface using a hole-sowing machine. On August 473 

26, 2016, the field was irrigated with 30 mm water (2H = 49.87 ± 2.7 ‰, 18O = -9.40 ± 0.05 ‰, n = 5) 474 

which was a mixture of tap water (2H = -61.11 ‰, 18O = -9.42 ‰) and deuterium-enriched water (the 475 

2H concentration was 99.96%, 2H = 1.60  1010 ‰; Cambridge Isotope Laboratories, Inc., Tewksbury, 476 

MA, USA).   477 

2.3 Samples collection and measurement 478 

A randomized replication design was used to collect samples. To determine the water isotopic 479 

composition in EW from the condensation water of the evaporation vapor, we randomly selected three 480 

rectangular plots (40 cm long and 30 cm wide) in the field. A channel of 3 cm deep was dug around the 481 
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edge of the plot (Fig. 1). Subsequently, a piece of plastic film without holes (approximately 0.2 m2, 40 585 

and 50 cm) was used to cover the soil surface, with an extra 5 cm on each side. The channels were then 586 

backfilled with soil to keep the covered area free of the wind. To eliminate the secondary evaporation of 587 

the condensation water, we first allowed evaporation and condensation to equilibrate for 2 days under 588 

the plastic film. Then, in the early morning (approximately 7 a.m.), we collected the condensation water 589 

adhered to the underside of the plastic film using an injection syringe (Fig. 1a). The collected water was 590 

immediately transferred into a 1-mL glass vial. Therefore, it is reasonable to assume that the condensation 591 

water was in constant equilibrium with the evaporating water in the soil, and the water isotopes of 592 

evaporating water in the soil could be obtained from condensation water on the plastic film. After 593 

collection, the plastic film was removed with little disturbance to the site. Subsequently, three new plots 594 

were selected randomly and similarly covered with a new piece of plastic film for the next water 595 

collection.  596 

 597 

Figure 1: Photo of new plastic film cover and condensation water collection using a syringe (a), schematic of 598 

the condensation process (b), and photo of field soil condition (c). 599 

In addition, BW was obtained from 0–5 cm surface soil water (Wen et al., 2016). The soil samples were 600 

collected using a soil auger every 3 days with 3 replicates, and each was mixed well and separated into 601 

2 subsamples: one for determining the soil gravimetric water content and the other for water stable 602 
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isotope analysis. The subsample for soil gravimetric water content was stored in an aluminum box and 691 

oven-dried for 24 h at 105 °C, while the water stable isotope analysis sample was stored in 150-mL high-692 

density polyethylene bottles, sealed with Parafilm®, transported, and stored in a freezer at -20 °C at the 693 

laboratory until cryogenic liquid water extraction took place. To obtain bulk soil density, field capacity, 694 

and residual water content, three 70-cm deep pits were dug at the end of the growing season,. Stainless 695 

rings with a volume of 100 cm3 (DIK-1801; Daiki Rika Kogyo Co., Ltd, Saitama, Japan) were pushed 696 

into the face of each soil pit at depths of 10, 20, 40, and 60 cm to obtain the soil samples. The soil samples 697 

were then saturated with distilled water, weighed, and placed in a high-speed centrifuge (CR21GⅡ; 698 

Hitachi, Tokyo, Japan) with a centrifugation rotation velocity equivalent to a soil suction of 1 kPa for 10 699 

min. The soil samples were weighed again to obtain the gravimetric water content at the aforementioned 700 

suction. This was repeated for suctions of 5, 10, 30, 50, 70, 100, 300, 500, and 700 kPa for 17, 26, 42, 701 

49, 53, 58, 73, 81, and 85 min, respectively, to obtain the soil characteristic curve. After centrifugation, 702 

the soil samples were oven-dried and weighed to obtain the bulk soil density, which was used to convert 703 

gravimetric water content to volumetric water content.  704 

A cryogenic vacuum distillation system (Li-2000; Lica United Technology Limited, Beijing, China) with 705 

a pressure of approximately 0.2 Pa and a heating temperature of 95 °C was used to extract soil water 706 

(Wang et al., 2020). The extraction time was at least 2 h until all the water evaporated from the soil and 707 

was deposited in the cryogenic tube. To calculate the extraction efficiency, samples were weighed before 708 

and after extraction and weighed again after oven-drying for 24 h following extraction. Samples with an 709 

extraction efficiency of less than 98% were discarded. In terms of weight, cryogenic vacuum distillation 710 

extracts all water from the soil. However, in terms of isotopic compositions, the extracted water is 711 

generally depleted in heavy isotopes relative to the reference water, and the extent of depletion is affected 712 

by soil clay content and water content due to incomplete soil water extraction (Orlowski et al., 2016; 713 

Orlowski et al., 2013).To extract all water from a soil sample, a higher extraction temperature (>200 °C) 714 

might be desirable, especially for soils with substantial clay particles such as in the present study (clay 715 

content of 0.24 g g-1) (Gaj et al., 2017a; Gaj et al., 2017b; Orlowski et al., 2018). Therefore, the water 716 

isotopic compositions obtained from our distillation system were subsequently corrected by calibration 717 

equations: 718 

δ
2
H(post corrected)=δ

2
H(measured)-21.085*WC(water content)+5.144*CC(clay content)+5.944 and 719 
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δ
18

O(post corrected)=δ
18

O(measured)-2.095*WC+0.783*CC+0.502 . The equations were obtained 877 

through a spiking experiment with 205 °C-oven-dried soils. 878 

Five deep soil profiles were collected on July 17, 2016 (pre-precipitation), August 3, 2016 (10 days after 879 

precipitation, DAP), August 17, 2016 (24 DAP), September 1, 2016 (6 days after irrigation, 6 DAI), and 880 

September 16, 2016 (21 DAI) with increments of 0–5, 5–10, 10–20, 20–30, 30–40, and 40–60 cm. These 881 

soil samples were used to measure soil texture (Dane and Topp, 2020), soil water content, and soil water 882 

isotopic composition. Furthermore, the lc-excess of the soil water before the enriched-2H irrigation was 883 

calculated to infer the evaporation enrichment of soil water. A more negative lc-excess value indicates a 884 

stronger evaporation effect (Landwehr and Coplen, 2006). 885 

lc-excess= δ
2
H-7.81δ

18
O-10.42,             (1) 886 

where 2H and 18O are the soil water isotopic compositions; 7.81 and 10.42 are the slope and intercept 887 

of the local meteoric water line (LMWL), respectively. 888 

Precipitation was collected during the entire growing season using three rainfall collectors (Wang et al., 889 

2010) in the experimental field. The amount of rainfall was determined by weighing using a balance. 890 

Subsequently, sub-samples of these rainfall samples were transferred to 15-mL glass vials, sealed 891 

immediately with Parafilm®, and placed in a refrigerator at 4 °C. To obtain the LMWL, we used 3 years 892 

of precipitation isotope data (Zhao et al., 2020) from April 1, 2015, to March 19, 2018. The equation for 893 

LMWL was 2H=7.81 18O+10.42. 894 

Hourly air and 0–5-cm soil temperature under the newly covered plastic film from September 10, 2016, 895 

to September 28, 2016, were measured using an E-type thermocouple (Omega Engineering, Norwalk, 896 

CT, USA) controlled by a CR1000 datalogger (Campbell Scientific, Inc., Logan, UT, USA). The 0–5-cm 897 

field soil temperature was measured during the whole field season using an ibutton device (DS1921G; 898 

Maxim Integrated, San Jose, CA, USA) at a frequency of 1 h. The 0–5-cm soil temperature and air 899 

temperature under the plastic film are required to calculate the evaporation ratios, but these measurements 900 

were not available before September 10, 2016. To obtain these temperature values, a regression equation 901 

was established between the measured 0–5-cm soil temperature values under the newly covered plastic 902 

film and those without plastic film covering from September 10, 2016, to September 28, 2016. We then 903 

used the equation to estimate 0–5-cm soil temperature under the newly covered plastic film before 904 

September 10, 2016, based on the ibutton-measured temperature of the 0–5-cm soil without the plastic 905 
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film covering in the same period. Subsequently, another regression equation was obtained between air 1085 

temperature and 0–5-cm soil temperature from September 10, 2016, to September 28, 2016, both of 1086 

which were under the newly covered plastic film. Then the air temperature under the newly covered 1087 

plastic film before September 10, 2016, was estimated from the estimated 0–5-cm soil temperature under 1088 

the newly covered plastic film. The regression equations are presented in the Supplement File. Moreover, 1089 

the hourly ambient air relative humidity was recorded by an automatic weather station (HOBO event 1090 

logger; Onset Computer Corporation, Bourne, MA,  USA) located 3 km away. 1091 

A micro-lysimeter (Ding et al., 2013; Kool et al., 2014) replicated thrice, made of high-density 1092 

polyethylene with a 10-cm in depth, 5.2-cm inner radius, and 3-mm thickness, was used to obtain the soil 1093 

evaporation amount. The micro-lysimeter was pushed into the soil surface between maize rows to retrieve 1094 

an undisturbed soil sample. Subsequently, we sealed the bottom, weighed the micro-lysimeter, placed it 1095 

back in the soil at the same level as the soil surface, and no other sensor was installed in the micro-1096 

lysimeter. After 2 days of evaporation, the lysimeter was weighed again. The mass difference was defined 1097 

as the amount of soil evaporation. When evaporation occurs, unlike with soil outside the lysimeter, the 1098 

soil within lysimeters is not replenished with water from deeper layers; thus, relative to soil outside the 1099 

lysimeter, the soil water content within the lysimeters is generally smaller following continuous 1100 

evaporation. Therefore, to represent the field soil conditions, the soil within the lysimeter was replaced 1101 

every 4 days. In addition, after every rainfall or irrigation period, the inner soil was changed immediately.  1102 

All water samples were analyzed for 2H and 18O using isotopic ratio infrared spectroscopy (Model 1103 

IWA-45EP; Los Gatos Research, Inc., San Jose, CA, USA). The instrument’s precision was 1.0 ‰ and 1104 

0.2 ‰ for 2H and 18O, respectively. Three liquid standards (LGR3C, LGR4C, and LGR5C and their 1105 

respective 2H = -97.30, -51.60, -9.20 ‰; 18O = -13.39, -7.94, -2.69 ‰) were used sequentially for each 1106 

of the three samples to remove the drift effect. To eliminate the memory effect, each sample was analyzed 1107 

using six injections, of which only the last four injections were used to calculate the average. To check 1108 

the effect of extrapolation beyond the range of standards, we performed a comparative experiment. In 1109 

the experiment, 10 liquid samples with 2H varying from 0.14 to 107 ‰ and 18O from -1.75 to 12.24 ‰ 1110 

were analyzed using LGR 3C, LGR 4C, and LGR 5C as standards (same with our former analysis) and 1111 

were also analyzed using LGR 5C, GBW 04401 (2H = -0.4 ‰, 18O = 0.32 ‰), and LGR E1 (2H = 1112 

107 ‰, 18O = 12.24 ‰) as standards. The differences between the two sets of measurements were 1113 
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regressed with the sample isotope values obtained using LGR 5C, GBW 04401, and LGR E1 as standards, 1153 

with a linear relationship of 2H = -0.0192H-0.271 (with R2=1) and 18O = -0.05318O-0.091 (with 1154 

R2=1). We then applied the relationship and corrected the isotopic data that had 2H larger than -9.26 ‰ 1155 

and 18O larger than -2.72 ‰. All the analyses in this study were based on the reanalyzed data. 1156 

The results are reported in  notation: 1157 

δ= (
Rsample

Rstandard
-1) ×1000 ‰ ,              (2) 1158 

where Rsample denotes the ratio of the number of heavy isotopes to that of the light isotope in the sample 1159 

water, and Rstandard is the ratio in the Vienna Standard Mean Ocean Water (V-SMOW). 1160 

2.4 Equilibrium fractionation processes 1161 

The isotopic composition of EW was calculated using the condensation water that adhered to the 1162 

underside of the newly covered plastic film. We assumed that the water vapor under the newly covered 1163 

plastic film and above the surface soil constitutes a closed system. Within the system, two equilibrium 1164 

fractionation processes are temperature-dependent and occur independently: evaporation from surface 1165 

soil water to air under the plastic film occurs during the day time (8 a.m. to 8 p.m., Fig. 2), condensation 1166 

from the water vapor under the plastic film to liquid water ensued at night time (8 p.m. to 8 a.m.), and 1167 

the resulting dews (condensation water) adhered to the plastic film. The average temperatures from 8 a.m. 1168 

to 8 p.m. and 8 p.m. to 8 a.m. on the day before water collection were used to calculate the equilibrium 1169 

fractionation factor (α) (Horita and Wesolowski, 1994) for the evaporation and condensation processes, 1170 

respectively. 1171 

1000×ln𝛼+( 𝐻2 )=
1158.8×T3

10
9 -

1620.1×T2

10
6 +

794.84×T

10
3 -161.04+

2.9992×10
9

T
3  ,       (3) 1172 

1000×ln𝛼+( 𝑂18 )=-7.685+
6.7123×10

3

T
-

1.6664×10
6

T
2 +

0.35041×10
9

T
3  ,        (4) 1173 

𝛼+=
δliquid+1000

δvapor+1000
 ,                (5) 1174 

𝛼∗ = 1 𝛼+⁄  ,                 (6) 1175 

where 𝛼+  and 𝛼∗  are the equilibrium fractionation factors during condensation and evaporation, 1176 

respectively; δliquid is the isotopic composition in the liquid water, δvapor is the isotopic composition in 1177 

the vapor, and T is the temperature presented in Kelvins. 1178 
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 1196 

Figure 2: Temporal variation in temperature of soil under film, vapor under film, field soil, and ambient air 1197 

during the study period.  1198 

Based on Eqs. (3) to (6) and Fig. 1b, the fractionation factors for the two processes under the newly 1199 

covered plastic film are expressed using equations (7) and (8). 1200 

𝛼1
∗=

δEW+1000

δVp+1000
 ,                 (7) 1201 

𝛼2
+=

δCW+1000

δVp+1000
 ,                 (8) 1202 

where Vp represents the isotope values of water vapor under the newly covered plastic film, EW 1203 

represents the isotope value in evaporating water, and CW represents the isotope value in condensation 1204 

water.  1205 

Combining equations (7) and (8), we obtain the isotopic composition in the EW: 1206 

δEW=
1

𝛼1
∗𝛼2

+ (δCW+1000)-1000 ,              (9) 1207 

2.5 Evaporative water losses 1208 

For an open system (field soil condition, Fig. 1c), evaporation from surface soil water to ambient air 1209 

undergoes two processes: the equilibrium fractionation process from the surface soil to the saturated 1210 
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vapor layer above the soil surface and the kinetic fractionation process from the saturated vapor layer to 1222 

ambient air. The isotopic composition of evaporation vapor is controlled by the isotope values of the 1223 

evaporating soil water and ambient vapor, equilibrium, and kinetic fractionations. The kinetic 1224 

fractionation can be described by the enrichment factors (𝜀𝑘) of 18O and 2H as a function of ambient air 1225 

relative humidity (h) (Gat 1996): 1226 

𝜀𝑘( 𝑂18 ) = 28.5(1 − ℎ),               (10) 1227 

𝜀𝑘( 𝐻2 ) = 25.115(1 − ℎ),              (11) 1228 

The total enrichment factor, 𝜀, can be obtained from the kinetic enrichment factor (𝜀𝑘) and equilibrium 1229 

fractionation factor (𝛼3
∗) (Skrzypek et al., 2015): 1230 

𝜀 = (1 − 𝛼3
∗) ∗ 1000 + 𝜀𝑘,              (12) 1231 

The ambient vapor isotopic composition (𝛿𝐴)can be obtained as follows (Gibson et al., 2008): 1232 

𝛿𝐴 = (𝛿𝑟𝑎𝑖𝑛 − (𝛼𝐴
+ − 1) ∗ 1000) 𝛼𝐴

+⁄  ,            (13) 1233 

where 𝛼A
+  is the equilibrium fractionation factor in the ambient air, 𝛿rain  is the amount weighted 1234 

isotopic composition in precipitation from July 11, 2016, to September 16, 2016. 1235 

The isotopic compositions of bulk soil water and evaporating water can be used to evaporating soil water 1236 

in the Craig-Gordon model (Eq. 14) to calculate the isotope value of the evaporation vapor (𝛿𝐸𝑉).  1237 

𝛿𝐸𝑉 =
𝛼3

∗𝛿𝐵𝑊−ℎ𝛿𝐴−𝜀

(1−ℎ)+𝜀𝑘 1000⁄
 or 

𝛼3
∗ 𝛿𝐸𝑊−ℎ𝛿𝐴−𝜀

(1−ℎ)+𝜀𝑘 1000⁄
            (14) 1238 

Based on the bulk soil water isotope mass balance, i.e., the change in bulk soil water isotopic composition 1239 

multiplied by the soil water reduction equals the evaporation vapor isotopic composition multiplied by 1240 

the evaporation amount (Hamilton et al., 2005; Skrzypek et al., 2015; Sprenger et al., 2017), we can 1241 

calculate evaporative water loss to the total water source (f). 1242 

𝑓 = 1 − [
𝛿𝐵𝑊−𝛿∗

𝛿𝐼−𝛿∗ ]

1

𝑚
 ,               (15) 1243 

where 𝛿I  is the isotopic signal of the original water source. 𝛿𝐼  is generally unknown and can be 1244 

conveniently obtained by calculating the intersection between the regression line of the 0–5-cm bulk soil 1245 

water isotope in Period Ⅰ and the LMWL in the dual-isotope plot (Fig. 3). 𝑚 and 𝛿∗ in Eq. (15) are 1246 

given by:  1247 

𝑚 =
ℎ−

𝜀

1000

1−ℎ+
𝜀𝑘

1000

 ,                 (16) 1248 

𝛿∗ =
ℎ∗𝛿𝐴+𝜀

ℎ−
𝜀

1000

 ,                 (17) 1249 
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 1263 

 1264 

Figure 3: The dual-isotope plot of precipitation and 0–5-cm bulk soil water from 2016/7/25 to 2016/8/25 1265 

(Period Ⅰ). The regression line of precipitation represents the local meteoric water line. 1266 

In Period Ⅱ, the initial values (-9.52 and 11.50 ‰ for 18O and 2H, respectively) were calculated from 1267 

the weighted average of the isotope values of irrigation water and Period Ⅰ original water described above. 1268 

To calculate evaporative water loss from EW 18O, we used BW to express EW and obtained the 1269 

following formulas (Eqs. 18–19) for evaporative water loss. 1270 

𝑓 = 1 − [
𝛿𝐵𝑊−𝛿∗+𝑛

𝛿𝐼−𝛿∗+𝑛
]

1

𝑚
 ,               (18) 1271 

where n is an intermediate variable and can be expressed as follows: 1272 

𝑛 =
−1.99𝛼1

∗

ℎ−
𝜀

1000

 ,                 (19) 1273 

2.6 Statistical Analysis 1274 

A general linear model (GLM) was used to test if the regression lines for isotopic 1275 

composition/evaporative water loss of BW as a function of days after precipitation/irrigation (DAP/I) 1276 

differ from those of EW. GLM was also used to compare the Period Ⅰ evaporative water loss derived from 1277 

2H and 18O of BW. The Shapiro-Wilk test was used to test the normality of the error structure of the 1278 
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model (p > 0.05). Further, Student’s t-test (Knezevic, 2008) was used to compare two corresponding 1348 

mean values of three replicates.  1349 

3 Results 1350 

3.1 Variation of 0–5-cm soil water content 1351 

Between the two large precipitation events on July 24, 2016, and September 20, 2016, there was no 1352 

effective precipitation, except for an irrigation event of 30 mm on August 26, 2016 (Fig. 4a). Thus, two 1353 

continuous evaporation periods can be identified: Period Ⅰ from July 25, 2016, to August 25, 2016, and 1354 

Period Ⅱ from August 27, 2016, to September 19, 2016.  1355 

 1356 
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Figure 4: The amount of precipitation, irrigation, and 0–5-cm bulk soil water content (a), 2H and 1384 

18O of precipitation and irrigation (b), 2H of 0–5-cm bulk soil water and evaporating water (c), 1385 

18O of 0–5-cm bulk soil water and evaporating water (d) at different times of the experimental 1386 

period. Black arrows in panel (a) indicate dates when deep soil sampling took place, and the 1387 

corresponding days after precipitation (irrigation) are indicated above the arrows. The two 1388 

evaporation periods, marked by colored shades, include Period I from July 25, 2016, to August 25, 1389 

2016 (green) and Period II from August 27, 2016, to September 19, 2016 (cyan). Within the green 1390 

circle in Period I, the mean ± standard error values were 2H =-46.80 ± 1.07 ‰ and 18O -3.22 ± 1391 

0.31 ‰ for 0–5-cm bulk soil water, and 2H =-57.55 ± 2.60 ‰ and 18O = -5.35 ± 0.22 ‰ for 1392 

evaporating water.  1393 

 1394 

Soil water content in 0–5 cm reached field capacity (0.30 cm3 cm-3) with a volumetric water content of 1395 

0.30 ± 0.007 cm3 cm-3 and a porosity of 0.50 ± 0.05 cm3 cm-3 right after the first large precipitation event 1396 

(July 24, 2016) and then decreased with evaporation time (grey bars in Fig. 4a). At the end of Period Ⅰ, 1397 

0–5-cm soil water content was 0.05 ± 0.005 cm3 cm-3, close to the residual water content of 0.08 ± 0.03 1398 

cm3 cm-3. Similarly, after the irrigation event (August 26, 2016), 0–5-cm soil water content increased to 1399 

a high value (0.24 ± 0.03 cm3 cm-3) and then decreased with an increase in evaporation time (Fig. 4a). At 1400 

the end of Period Ⅱ, 0–5-cm soil water content was 0.09 ± 0.005 cm3 cm-3, also close to the residual water 1401 

content. In total, there was a 12.73 ± 0.58 mm and 7.51 ± 1.24 mm reduction in soil water storage at 0–1402 

5 cm during Periods Ⅰ and Ⅱ, respectively. However, from the micro-lysimeters, we obtained a total 1403 

evaporation amount of 20.45 ± 0.95 mm in Period Ⅰ and 9.56 ± 1.18 mm in Period Ⅱ. Therefore, the 1404 

evaporation amount in each of the two periods was greater than the soil water storage reduction at 0–5 1405 

cm, suggesting that soil water from below 5 cm moved up and participated in evaporation in each of the 1406 

two periods, especially in Period I. 1407 

3.2 2H and 18O in evaporating water and bulk soil water 1408 

The precipitation on July 24, 2016, had a 18O value of -8.11 ‰ and 2H value of -62.97 ‰, which were 1409 

smaller than the respective values of pre-event BW (-1.24 ± 0.87 ‰ for 18O and -37.79 ± 2.81 ‰ for 1410 

2H) (Fig. 4). The irrigation water—with a 18O of -9.40 ± 0.05 ‰ and 2H of 49.87 ± 2.7 ‰ on August 1411 

26, 2016—had a lower 18O, but a much higher 2H than the pre-irrigation BW (-0.27 ± 0.56 ‰ for 18O 1412 
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and -39.21 ± 2.81 ‰ for 2H). In summary, the event water in Period I was more depleted in heavy 1549 

isotopes than in pre-event BW (p < 0.05). In Period II, the event water had a lower 18O but a higher 2H 1550 

than pre-event BW (p < 0.05). 1551 

As expected, the 2H and 18O in BW increased as evaporation occurred during Period I (p < 0.05). The 1552 

increase in 2H and 18O in BW had a significant linear relationship with evaporation time (p < 0.05; Fig. 1553 

5), suggesting that evaporation favored the lighter water isotopes from BW, resulting in greater 2H and 1554 

18O in BW. In Period II, BW 18O also increased as evaporation progressed (p < 0.05). The increase in 1555 

BW 18O also had a significant linear relationship with evaporation time (p < 0.05; Fig. 5). In contrast, 1556 

2H of BW decreased linearly with evaporation (p < 0.01) in Period II. The slope and intercept both 1557 

significantly differed from zero (p < 0.01), suggesting that in Period II, evaporation takes away the lighter 1558 

O isotope and heavier H isotope from BW. 1559 

 1560 

Figure 5: Temporal variation of 2H (upper panel) and 18O (lower panel) in 0–5-cm bulk soil water and 1561 

evaporating water during Period Ⅰ (left column) and Period Ⅱ (right column). The precipitation occurred on 1562 

July 24, 2016, and the irrigation took place on August 26, 2016.  1563 
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The evaporation line, defined as the change in water isotopes with evaporation time in EW, was 1694 

remarkably similar to that for BW (Fig. 5). For example, in Period II, 2H in both EW and BW decreased 1695 

as evaporation proceeded, and both lines had a slope significantly smaller than zero (p < 0.05; Fig. 5b). 1696 

This is contrary to our understanding that evaporation enriches 2H in EW and BW. Moreover, it seemed 1697 

that EW had higher 2H vales than BW, but the slope and intercept of the EW evaporation line did not 1698 

differ from that of the BW evaporation line (p > 0.05; Fig. 5b). 1699 

In period II, 18O in both EW and BW increased with evaporation time (Fig. 5d), and the slopes and 1700 

intercepts significantly differed from zero (p < 0.05), indicating that evaporation, as expected, 1701 

significantly enriched 18O in EW and BW. However, there were some differences between EW and BW; 1702 

18O was consistently more depleted in EW than in BW during this period. Further regression analyses 1703 

of 18O vs. time relationships in EW and BW in Period II indicated that though 18O vs. time in EW had 1704 

the same slope as that in BW (p > 0.05), it had significantly smaller intercept than BW (p < 0.05). Thus, 1705 

the linear relationship in 18O between EW and BW was given as 18O(EW) = 18O(BW)-1.99 (Fig. 5). 1706 

As is well known, the evaporation line (18O vs. time) reflects the evaporative demand and the source 1707 

water isotopic signature. First, the slopes of the evaporation lines represent the evaporative demand of 1708 

the atmosphere. Given that EW and BW are under the same evaporative demand, their evaporation lines 1709 

should have identical slopes. Second, the intercept of the evaporation line represents the isotopic 1710 

signature of the initial evaporation water source. Therefore, in Period II, the intercepts of an 18O value 1711 

of -1.76 ‰ for BW and -3.75 ‰ for EW represent the initial water sources of BW and EW, respectively. 1712 

In other words, the sources of water for BW and EW had different isotopic compositions during Period 1713 

II.  1714 

In Period I, we compared the mean 2H and 18O values of all measurements within the green circle (Fig. 1715 

4) for both EW and BW. The mean 2H and 18O values for EW were significantly lower than those for 1716 

BW (p < 0.05). Unfortunately, there were only four data points for EW, so we could not obtain a reliable 1717 

isotopic relationship between EW and BW.  1718 

3.3 Variation of deep soil water content, 2H, 18O, and lc-excess  1719 

The precipitation event on July 24, 2016, increased the soil water content in the top 60 cm and decreased 1720 

soil water 2H and 18O in the top 20 cm (Fig. 6, upper panel). Therefore, the top 20 cm lc-excess 1721 

increased at 10 DAP. However, precipitation did not influence the deeper soil 2H, 18O, and lc-excess. 1722 
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At the end of evaporation Period Ⅰ (24 DAP), the soil water content decreased in the top 60 cm. In the 1751 

top 10 cm, soil water 2H and 18O increased, and lc-excess decreased. 1752 

 1753 

 1754 

Figure 6: Temporal variation of deep soil water content, 2H, 18O, and lc-excess during Period Ⅰ (upper panel) 1755 

and Period Ⅱ (lower panel). The precipitation event occurred on July 24, 2016, and the irrigation took place 1756 

on August 26, 2016.  1757 

 1758 

Similar to precipitation on July 24, 2016, the irrigation on August 26, 2016, increased the soil water 1759 

content and decreased the 18O of the top 10-cm soil (Fig. 6, lower panel). However, the irrigation event 1760 

increased the 2H in the top 20 cm. At the end of evaporation Period Ⅱ, i.e., 21 DAI, the top 10-cm soil 1761 

water 18O became more enriched whereas 2H became more depleted. Note that the 2H at 5–10 cm was 1762 

similar to that at 0–5 cm (Fig. 6f). 1763 

3.4 Evaporative water loss derived from bulk soil water and evaporating water 1764 

In Period Ⅰ, evaporative water loss (f) derived from either 2H or 18O in BW increased with increasing 1765 

evaporation time (p < 0.01), and there was no significant difference between them with the same slope 1766 

and similar intercepts (p > 0.05, Fig. 7). The average f values during the period were 0.27 ± 0.004 and 1767 
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0.23 ± 0.002 for 2H and 18O, respectively. In Period Ⅱ, f derived from 18O in BW and EW increased 1797 

with evaporation time (p < 0.05), and there was no significant difference between them with the same 1798 

slope and similar intercepts (p > 0.05). The average f was 0.27 ± 0.01 and 0.24 ± 0.01 for BW and EW, 1799 

respectively. However, the evaporative water loss could not be calculated from 2H in BW or EW, as 2H 1800 

decreased as evaporation progressed (Fig. 5), which was inconsistent with the evaporation theory that 1801 

soil evaporation enriches heavier water isotopes in the residual soil water. Moreover, we could not 1802 

calculate the evaporative water loss based on the isotopic composition of EW in Period I, as a reliable 1803 

linear isotopic relationship between EW and BW could not be obtained from the four data points we had 1804 

during the period. 1805 

 1806 

Figure 7: Temporal variation of evaporative water loss (f) derived from isotope value (2H for upper panel 1807 

and 18O for lower panel) in bulk soil water and evaporating water during Period Ⅰ (left column) and Period 1808 

Ⅱ (right column). The precipitation and irrigation events occurred on July 24, 2016, and August 26, 2016, 1809 

respectively.  1810 
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4 Discussion 1824 

4.1 Why evaporating and bulk soil water have different isotopic compositions  1825 

During evaporation, light isotopes are preferentially evaporated, enriching the residual liquid water in 1826 

heavy isotopes (Mook and De Vries, 2000). This could explain why, with increasing evaporation time, 1827 

2H and 18O in BW increased in Period Ⅰ. In Period Ⅱ, 18O (Fig. 5) displayed a similar, increasing trend, 1828 

whereas 2H had an opposite, decreasing trend. The progressive decrease in 2H with increasing 1829 

evaporation time cannot be explained by the general notion that with evaporation, residual soil water 1830 

becomes more enriched with heavy water isotopes. Therefore, there must be a mechanism that 1831 

preferentially removes 2H or dilutes 2H with 2H-depleted water.  1832 

For the latter, because there is negligible water input from the atmosphere (both in vapor and liquid form), 1833 

the only water input could be from the soil below 5 cm. Indeed, because the evaporation amount was 1834 

larger than the 0–5-cm soil water storage reduction (Section 3.1), the water below 5 cm must have moved 1835 

upward as evaporation occurred. Consequently, due to evaporation, the order of 2H value should be 0–1836 

5 cm > the mixture of pre-evaporation 0–5 cm and 5–10 cm soil water > 5–10 cm. However, 0–5-cm 2H 1837 

at the end of the evaporation period (21 DAI) was similar to 5–10-cm 2H (Fig. 6f). Moreover, if dilution 1838 

occurred, the 18O would also be diluted, which is not supported by the progressive increase in BW 18O 1839 

during evaporation in the same period and of both 2H and 18O in BW of Period I, which should have a 1840 

deeper soil water contribution (Sect. 3.1). Therefore, dilution does not substantially affect the isotopic 1841 

signature of BW. This is further supported by the larger 18O in BW in Period Ⅱ than that in EW (Figs. 1842 

4, 5). By deduction, the possible cause of the depletion in 2H would be the preferential removal of 2H 1843 

from the top 5 cm of soil.  1844 

No significant 2H differences were observed between EW and BW in Period Ⅱ (Fig. 5). However, there 1845 

was a significant 18O difference between EW and BW in Period Ⅱ, and both 2H and 18O in EW differed 1846 

from the respective values in BW in Period I (Figs. 4, 5). The different isotopic signatures of BW and 1847 

EW indicate that the water sources for BW and EW were different. Further, the source of EW is closer 1848 

to the event water than that of BW. This could be explained by a conceptual model of event water and 1849 

pre-event water partitioning in the soil (Fig. 8). 1850 
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 2034 

Figure 8: Schematic of soil pore water partitioning during evaporation. 2035 

4.2 Conceptual model for water partitioning in large and small pores during evaporation 2036 

For large precipitation events, event water preferentially infiltrate into the empty large pores because of 2037 

their high hydraulic conductivity. The infiltrated water may partially or fully transfer to the surrounding 2038 

empty smaller pores, thus bypassing the small soil pores that are filled with pre-event water at the point 2039 

of water entry and along the infiltration pathway (Beven and Germann, 1982; Booltink and Bouma, 1991; 2040 

Šimůnek and van Genuchten, 2008; Weiler and Naef, 2003; Zhang et al., 2019). In our experiment, the 2041 

precipitation event on July 24, 2016, was 31 mm, and the irrigation event on August 26, 2016, was 30 2042 

mm, and both were large events. Because small pores were prefilled with pre-event water, we assumed 2043 

that the new water filled large pores, and medium pores were likely filled by a mixture of pre-event and 2044 

event water. Therefore, water in large pores was similar to the event water and water in the small pores 2045 

was close to the pre-event water, i.e., old event water (Brooks et al., 2010; Sprenger et al., 2019a).  2046 

On the other hand, at the end of the evaporation period, lc-excess of 0–5-cm soil at 24 DAP, which had 2047 

a lower soil water content than in Period Ⅱ, was still the smallest compared with deeper soil (Fig. 6d). 2048 

Therefore, the evaporation front was in the surface soil during both periods. Accordingly, the evaporation 2049 

in our experiment was in evaporation stage Ⅰ or Ⅱ, as indicated in the Introduction. During evaporation 2050 

stages Ⅰ and Ⅱ, small-pore water does not evaporate (Or and Lehmann, 2019; Zhang et al., 2015), and 2051 

larger-pore water is the primary source of water for evaporation (Lehmann and Or, 2009; Or et al., 2013).  2052 

Therefore, EW is mainly from larger-pore water, similar to the event water in isotopic composition; BW 2053 

删除了: 2118 

删除了: s2119 

删除了: As pointed out abundantly in the recent literature, 2183 

there could be isotopic separation in water isotopes between 2184 

large pores and small pores (Brooks et al., 2010; Goldsmith et 2185 

al., 2012; Good et al., 2015; Sprenger et al., 2019a). The 2186 

irrigation water would first enter large pores, because small 2187 

pores are occupied by bound water and large pores are empty 2188 

(Beven and Germann, 1982; Gerke and Van Genuchten, 1993; 2189 
...

删除了: pores 2134 

删除了: new …vent water will …referentially infiltrate into 2179 

the empty large pores preferentially due to…ecause of the 2180 

large…heir high hydraulic conductivity associated with large 2181 

pores, and… The infiltrated water may partially or fully 2182 
...

设置了格式: 字体: (默认) Times New Roman, (中文) 等线,

10 磅, 字体颜色: 自动设置, 不检查拼写或语法, 图案: 清除

删除了: /7/242143 

删除了: /8/26…was 30 mm,, …and both are …ere large 2175 

events. Because small pores are …ere prefilled by …ith pre-2176 

event water, we assumed that the new water filled large pores 2177 

will be filled by the new water;… and medium pores 2178 
...

删除了: -… …cm soil at on 2016/8/17…4 DAP, which had 2171 

the … lower soil water content than that …n Period Ⅱ, was 2172 

still the smallest comparing …ompared with deeper soil (Fig. 2173 

6d). Therefore, the evaporation front was in the surface soil 2174 
...

删除了: large …arger-pore water, which is …imilar to the 2169 

new …2170 
...



22 

 

contains EW and evaporation-insulated small-pore water, similar to the pre-event water. Compared with 2190 

pre-event water, event water takes evaporation precedence. Therefore, the sequence of water in the 2191 

evaporation layer can be analogically summarized as adhering to a “last-in-first-out” rule. Thus, when 2192 

isotopic composition in the event water was smaller than that in pre-event BW, such as 2H and 18O in 2193 

Period Ⅰ and 18O in Period Ⅱ, the isotopic composition in EW was smaller than that in BW (Fig. 4). 2194 

When the event water was enriched in heavy isotopes relative to pre-event BW, such as 2H in Period Ⅱ, 2195 

EW should be enriched in 2H compared with BW; however, a more precise analysis is needed.  2196 

Furthermore, evaporative enrichment and loss of larger-pore water both affect the temporal variation of 2197 

2H and 18O in EW and BW. When larger-pore water is depleted in heavy isotopes relative to pre-event 2198 

water, the isotopic composition of EW and BW increases with time; when larger-pore water is enriched 2199 

in heavy isotopes relative to pre-event water, the enriched water in larger pores empty first, leaving lighter 2200 

water molecules in BW, which will decrease the isotopic composition in EW and BW with evaporation 2201 

time.  2202 

4.3 Why the different isotopic compositions in evaporating water and bulk soil water did not make 2203 

a difference in estimated evaporative water loss? 2204 

There was a significant difference in the isotopic composition between EW and BW; however, the 2205 

evaporative water loss derived from EW and BW did not differ (p > 0.05). As discussed above, the 2206 

difference between EW and BW is caused by the small-pore water, which does not experience 2207 

evaporation. The difference in Period Ⅱ was 1.99 ‰ for 18O. Nevertheless, the 18O difference between 2208 

EW and BW was too small to make a difference in the calculated evaporative water loss. However, 2209 

hypothetically increasing the difference from 1.99 ‰ to 3.40 ‰, resulted in a significant difference in 2210 

the calculated evaporative water loss (p < 0.05). The hypothetically calculated 18O difference is highly 2211 

likely in two adjacent precipitation events, based on the 3 years’ precipitation isotope data with the largest 2212 

difference of 16.46 ‰. Many factors could contribute to the differences in isotopic composition between 2213 

EW and BW. The first is the relative amount of small-pore water that did not experience evaporation and 2214 

its isotopic composition difference with EW. The higher the clay content, the greater the amount of small-2215 

pore water for the same bulk soil water content (Van Genuchten, 1980). The second is the amount of 2216 

event water and its isotopic difference with pre-event water. As such, the greater the temporal isotopic 2217 

variability in precipitation, and evaporation loss, the greater the isotopic difference between EW and BW. 2218 
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Finally, higher soil cations and clay contents also elevate the isotopic difference between EW and BW, 2308 

as the cations hydrated water and water absorbed by clay particles undergo isotopic fractionation (Gaj et 2309 

al., 2017a; Oerter et al., 2014). Therefore, an increased difference in isotopic composition between EW 2310 

and BW may occur for soils with high clay content and salinity and when the amount and isotopic 2311 

composition differ greatly between event water and pre-event soil water. 2312 

The event water was more enriched in heavy isotopes than pre-event soil water, as shown by our 2H 2313 

result in Period Ⅱ. However, this rarely occurs in nature. Normally, soil water experiences evaporation 2314 

and thus has more heavy isotopes than precipitation. Nevertheless, when the sub-cloud evaporation effect 2315 

in precipitation is strong (Salamalikis et al., 2016), precipitation can have more heavy isotopes than pre-2316 

event soil water. In this situation, it is impossible to calculate the evaporation ratio using current theories 2317 

and methods. New theories, or methods to precisely measure water evaporation are needed in this regard.  2318 

Larger-pore water, preferred by evaporation, also has a relatively higher matric potential and flows more 2319 

rapidly, and may thus be preferred by roots and dominate groundwater recharge (Sprenger et al., 2018). 2320 

In other words, evaporation, transpiration, and groundwater preferentially tap the same pool of water, the 2321 

water that resides in larger soil pores. This is consistent with the findings of Brooks et al. (2010), as 2322 

water-filled pores became progressively smaller after large-pore water percolates into streams 2323 

(groundwater) and/or is adsorbed by plant roots, and can have broad ecohydrological implications.  2324 

5 Conclusion 2325 

We performed an experiment in two continuous evaporation periods: a relatively depleted water input in 2326 

Period I and a more enriched 2H and depleted 18O water input in Period Ⅱ. We collected condensation 2327 

water using a newly covered plastic film and subsequently calculated the evaporating water’s isotopic 2328 

composition.  2329 

The results showed that 2H and 18O in EW had a similar trend to that in BW. When event water was 2330 

depleted in heavy isotopes relative to pre-event bulk soil water, isotopic composition in EW and BW 2331 

increased with increasing evaporation time (p < 0.05), and EW was depleted in heavy isotopes relative 2332 

to BW (p < 0.05). When event water was enriched in heavy isotopes relative to pre-event bulk soil water, 2333 

the isotopic composition in EW and BW decreased with increasing evaporation time (p < 0.01). Moreover, 2334 

the average evaporative water loss derived from 18O was 0.27 ± 0.01 and 0.24 ± 0.01 for BW and EW, 2335 
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respectively. The difference between evaporative water loss was negligible owing to the small difference 2366 

in 18O between EW and BW. As 2H in BW and EW decreased with evaporation, evaporative water loss 2367 

could not be obtained using 2H. Our results indicate that although the isotopic composition in BW was 2368 

significantly different from that in EW, the difference was too small to affect evaporative water loss 2369 

calculation. However, a larger isotopic difference between the event and pre-event water may do. Our 2370 

research is important for improving our understanding of soil evaporation processes and using isotopes 2371 

to study evaporation fluxes. 2372 
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