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Abstract. Several alternatives have been proposed to shift the paradigms of water management under uncertainty from pre-

dictive to decision-centric. An often mentioned
:::::::::::::
often-mentioned

:
tool is the stress-test response surface;

:
, mapping system

performance to a large sample of future hydro-climatic conditions. Dividing this exposure space between success and failure

requires clear performance targets
:::::::::
acceptable

:::
and

:::::::::::
unacceptable

:::::
states

:::::::
requires

:
a
:::::::
criterion

::
of

:::::::::
acceptable

:::::::::::
performance

::::::
defined

:::
by

:
a
::::::::
threshold. In practice, however, stakeholders and decision-makers may be confronted with ambiguous objectives for which5

there are no clearly-defined
::
the

:::
the

:::::::::::
acceptability

::::::::
threshold

::
is

:::
not

::::::
clearly

::::::
defined

:
(crisp)performance thresholds. Furthermore,

response surfaces can be non-deterministic, as they do not fully capture all possible sources of .
:::

To
::::::::::::

accommodate
:::::

such

::::::::
situations,

::::
this

:::::
paper

::::::::
integrates

::::::
fuzzy

::::::::
thresholds

:::
to

:::
the

::::::::
response

::::::
surface

::::
tool.

:::::
Such

:::::::::
integration

::
is
::::

not
:::::::::::::
straightforward

:::::
when

:::::::
response

:::::::
surfaces

::::
also

:::::
have

::::
their

::::
own

:::::::::
irreducible

::::::::::
uncertainty,

:::::
from

:::
the

:::::::
limited

::::::
number

:::
of

:::::::::
descriptors

::::
and

:::
the

:::::::::::
stochasticity

::
of hydro-climatic uncertainty. The challenge is thus to combine two different types of uncertainty

:::::::::
conditions.

::::::::::::
Incorporating10

::::
fuzzy

:::::::::
thresholds

::::::::
therefore

::::::::
requires

:::::::::
articulating

:::::::::::
uncertainties

::::
that

:::
are

::::::::
different

::
in
::::::

nature: the irreducible uncertainty of the

response itself relative to the variables that describe change, and the fuzziness of the performance target. We
::::::::
ambiguity

::
of

:::
the

:::::::::::
acceptability

:::::::::
threshold.

:::
We

::::
thus

:
propose possibilistic surfaces to assess flood vulnerability with fuzzy performance

thresholds. Three approaches are tested and compared on a un-gridded sample of the exposure space: (i) an aggregation of

logistic regressions based on α-cuts combines the uncertainty of the response itself
::::::::::
acceptability

::::::::::
thresholds.

:::
An

:::::::::
adaptation

::
of15

::
the

:::::::
logistic

:::::::::
regression

:::
for

:::::
fuzzy

:::
set

::::::
theory

::::::::
combines

:::
the

::::::::::
probability

::
of

:::::::::
acceptable

::::::::
outcome and the ambiguity of the target

::::::::::
acceptability

:::::::
criterion

:
within a single possibility measure; (ii) an alternative approximates the response with a fuzzy analytical

surface; and (iii) a convex delineation expresses the largest range of failure specific to a given management rule without

probabilistic assumptions. To illustrate the proposed approaches, we .
::::

We use the flood-prone reservoir system of the Upper

Saint-François River Basin in Canada as a case study . This study shows that ambiguity can be effectively be considered20

::
to

:::::::
illustrate

:::
the

::::::::
proposed

:::::::::
approach.

::::::
Results

:::::
show

::::
how

::
a
:::::
fuzzy

::::::::
threshold

:::
can

:::
be

:::::::::::
quantitatively

:::::::::
integrated

:
when generating a

response surfaceand suggests how further research could build a possibilistic framework ,
::::
and

::::
how

:::::::
ignoring

::
it
::::::
might

::::
lead

::
to

:::::::
different

:::::::::
decisions.

::::
This

:::::
study

:::::::
suggests

::::
that

::::::
further

:::::::::
theoretical

:::::::::::
development

::::::
should

::::
link

:::
the

::::::::::::::
decision-making

:::::
under

:::::
deep

:::::::::
uncertainty

:::::::::
framework

:::::
with

:::
the

:::::::
existing

:::::::::
experience

::
of

::::::
fuzzy

::
set

:::::::
theory,

::::::
notably

:
for hydro-climatic uncertainty

::::::::::
vulnerability

::::::
analysis.25

1



1 Introduction

Uncertainty is a driving force of the transformations of human societies. Settlement, agriculture and animal husbandry, storage

facilities, many innovations seek to make the future more predictable, and thus allow for investments with a better knowledge

of associated risks. For some social scientists, uncertainty and risk become more central, even constitutive of society, following

the industrial revolutions (U. Beck, 1985). As the scope of human activity expands exponentially and meets the boundaries30

of its functional environment (J. Rockström et al. 2009), the adverse externalities shape a new layer of human-induced risks.

Nuclear and chemical catastrophes were the first to attract global attention, later joined by the perturbation of climatic and

biophysical mechanisms at a global scale.

The relationship between society and water follows the same path. Five millennia of engineering have seen the development

of reservoirs, irrigation, levees and aqueducts in order to counter the uncertainty inherent to precipitations and river flows. The35

water domain is consequently confronted to the same new layer of uncertainty and risks stemming from human externalities.

Climate change is a looming threat on current investment or planning decisions in water resources (IPCC, 2014), while

increased pressure at the basin level makes hazards, appropriations and conflicts all the more impactful (Srinivasan et al.,

2012), as illustrated by the closed basin concept (Molle et al., 2010).

The way water
::::::
defining

::::::
feature

:::
of

:::::
water management - both science and practice- handles uncertainty is crucial. Not only40

does uncertainty justify intervention
::
the

:::::
need

:::
for

::::::::::::
infrastructures,

:::::::::::
interventions

:
and planning, but the way decisions are taken

is also based on different interpretations of uncertainty. The dominant paradigm has been to optimize investments or manage-

ment plans according to the most probable future, a knowledge based on the statistical analysis of historical time series and

assuming their stationarity. This assumption of stationarity
::::::::
assuming

:::
that

:::
the

:::::::::
underlying

::::::::
processes

:::
are

:::::::::
stationary.

::::::::
However,

:::
the

::::::::
stationary

::::::::::
assumption has been contested however as anthropogenic activities do affect the very climatic processes that led to45

past hydrologic behavior
::::::::
processes

:::
that

::::::
govern

:::
the

:::::
water

:::::
cycle

:
(Milly et al., 2008).

Water planning can also rely on the modeling of future scenarios and
:::::::
resource

::::::::
planning

:::::::::
approaches

:::::::
usually

:::::::
requires

::
a

::::::::
prediction

:::
of

:::::
those

::::::::
processes

::::::::
affecting

::::
both

:::::
sides

::
of
::::

the
:::::::::::::
supply-demand

:::::::::::
relationship.

::
In

:::::::::
particular,

:::
the

::::::::::
assessment

::
of

:
cli-

mate change impacts over existing hydro-climatic conditions. This widely used method
::::::::
commonly

:
relies on General Circula-

tion Models (GCM) that simulates
::::::
simulate

:
future global climates depending on assumptions (Representative Concentration50

Pathways, RCP) about the CO2
:::::
based

::
on

:::::::::::
assumptions

:::::
about

::::::::::
greenhouse

:::
gas concentrations in the atmosphere

:
, or more gen-

erally,
:
the radiative forcing (Brown and Wilby, 2012, Weaver et al, 2013).

::::::::::
Assumptions

:::::
about

::::::::::
greenhouse

::::
gas

:::::::::
emissions,

:::
land

::::::
cover

::
or

:::::::::
population

:::
are

::::::::
grouped

:::::
under

::::::::::::
representative

:::::::::::
concentration

:::::::::
pathways

::::::
(RCP).

:
Results from global simulations

are translated into local hydro-climatic projections through a downscaling process. Hydrological modelling then translates cli-

matic variables into run-off time series. Such an approach has its own limitations,
:
however. CO2 emission pathways depend55

on worldwide future policy choices which are not yet known nor even predictable. Moreover, climate models carry their own

structural uncertainties, and so are
::
do

:
the downscaling processes (Prudhomme et al., 2010, Mastrandrea et al., 2010, Kay, et

al., 2013, Weaver et al., 2013, Kim et al., 2019). Besides, a discrete set of projections is not suited to find the hydro-climatic

thresholds beyond which a system fails to reach its target (Culley et al., 2016). Such a risk assessment process is also increas-
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ingly unreliable with systems that operate with shorter time steps and extreme events, like flood control operations (Knighton60

et al., 2017).

In the last 15 years there has thus been a widespread effort to find new paradigms to make decisions under deep uncertainty,

notably through a greater focus on the decision process rather than on improving predictions (Lempert et al., 2006, Maier et

al., 2016, Lempert, 2019). Switching to a robust or decision-centric paradigm always seeks to increase the sampling of hydro-

climatic conditions, and relies on a sensitivity analysis of a water system to driving variables
:::::::
stressors rather than evaluating65

the consequences of the most probable future and optimizing accordingly (Weaver et al., 2013). A consolidation of the field is

proposed under the decision making under deep uncertainty (DMDU) denomination (Marchau et al., 2019).

One of the most common tools within the decision-centric framework is the response function or surface (Prudhomme et al.,

2010, Brown et al., 2012, Culley et. al., 2016, Brown et al., 2019, Nazemi et al., 2020
:
,
::
Di

:::::::::
Francesco

::
et

:::
al.,

:::::
2020). Through a

stress-test, "bottom-up" approach, a water system is simulated for a large set of conditions representing possible evolutions of70

some uncertain hydro-climatic variables (or stressors), establishing a relationship between such stressors and the performance

of the system.
:::::
When

::::::::::
specifically

:::::::::
addressing

:::::::
climate

::::::
change,

::
it
:::::::::::
corresponds

::
to

:::
the

::::::
reverse

:::::
CIRF

::::::::
(Climate

::::::
Impact

:::::::::
Response

::::::::
Function,

:::::
Fussel

::
et

:::
al.,

:::::
2003,

::::::::::::
Marcos-Garcia

::
et
:::
al.,

::::::
2020). Such an approach is sometimes called scenario-neutral (Prudhomme

et al., 2010, Broderick et al., 2019) as it doesn’t intrinsically rely on GCM outputs and RCP assumptions
::::::::
separates

:::
the

::::::
system

:::::::
response

:::::
from

:::
the

::::::::
likelihood

:::
of

::::
each

::::::::
scenario. Alternatives, like making new investments, changing management schemes,75

are compared through their respective performance outcome over a whole space of possibilities
:::::
range

::
of

::::::::::
possibilities

::::::
(states

::
of

:::
the

::::::
world), or exposure space (Culley et al., 2016).

:::
The

::::::::
response

::::::
surface

:::
can

:::
be

::::
used

::
to
::::::::

measure
::
an

::::::::::
uncertainty

:::::::
horizon

:::::::
between

:
a
::::
first

:::::::
estimate

::
of

:::
the

::::
state

:::
of

:::
the

:::::
world

:::
and

:::
an

::::::::::
acceptability

:::::::
frontier

::::::::
(Info-gap

:::::::
decision

::::::
theory,

::::::::::
Ben-Haim,

::::::
2006). In

the Decision Scaling approach (Brown et al., 2012, Brown et al., 2019) GCM projections can then be introduced as weights on

the response surface to inform probabilities associated to climate states. GCMs can thus remain useful without conditioning the80

decision process, and once updated their outcomes on the system can be mapped on the response
::::
their

::::::
weights

::::
can

::
be

:::::::
updated

::
as

:::::::::
uncertainty

::
is

::::::::
resolved,

:::::::
resulting

::
in

::
a

::::::
refined

:::::::
estimate

::
of

:::
the

:::::::
expected

::::::
system

::::::::
outcome

::::
over

:::
the

:::::::
response

::::::
surface

:
without the

need for new simulations of the water system. The intention shared within the overall decision-centric framework is to adapt

classic risk assessment to the “death of stationarity” (Milly et al., 2008) while producing information more useful and engaging

than a fully descriptive scenario approach (Weaver 2013). Response surfaces have been illustrated by many case studies (e.g.85

Nazemi et al., 2013, Turner et al., 2014, Whateley et al., 2014, Herman et al., 2015, Steinschneider et al., 2015, Spence et al.,

2016, Pirttioja et al., 2019, Ray et al., 2020), expanded to many-objectives or stakeholder systems (Poff et al., 2016; Culley et

al., 2016, Kim et al., 2019) and sometimes officially adopted in management processes (Moody and Brown, 2013, Weaver et

al., 2013, Brown et al., 2019).

Although the response surface is a powerful and efficient tool to circumvent the problems and arbitrariness brought by90

“top-down”, GCM-based assessments, the applications
:::::::::::
incorporation

::
of

::::
such

:::::
tools

::
in

:::::
actual

::::::::::::::
decision-making

::::::::
processes to date

remain relatively recent and scarce (Guo et al., 2018). Moreover, many assumptions associated with the stress test approach

can introduce additional uncertainty.
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One source can be the ambiguity of the user-defined performance targets
:::::::::::
acceptability

::::::::
thresholds

:
(Maier et al., 2016). The

stress-test approach needs performance target values (thresholds) in order to separate the exposure space between accepted and95

rejected
::::::::
acceptable

::::
and

:::::::::::
unacceptable domains. However such targets

:::::::::
thresholds are often unclear or arbitrary ; and are heavily

reliant on political, sociological and institutional processes (El-Baroudy and Simonovic, 2004).
::::::::
Recently,

::::::::::
Hadjimichel

::
et

:::
al.

:::::
(2020)

:::::::::
performed

::
a

::::::::
sensitivity

:::::::
analysis

:::
on

:::
the

::::::::
definition

::
of

::::::
binary

:::::::::::
acceptability

:::::::::
thresholds

::
for

::
a
::::
large

:::::::
number

::
of

:::::::::::
stakeholders

::
in

:
a
::::
deep

::::::::::
uncertainty

::::::::::
framework,

::::::::::::
demonstrating

::
its

:::::::
impact

::
on

:::::::
decision

::::::::
making. Fuzzy set theory (Zadeh, 1965) provides an

analytical framework to characterize and manipulate stakeholders’ ambiguity (Huynh et al., 2007). It has been extensively100

used in the water domain (
::::::
Tilmant

::
et
:::
al.,

:::::
2002,

:
El-Baroudy and Simonovic, 2004, Qiu et al., 2018) in particular to solve multi-

objective decision-making problems (e.g. Jun et al., 2013). However, to the best of our knowledge, fuzzy set theory has not

yet been used to handle imprecise thresholds between satisfactory and failure
:::::::::::
unsatisfactory

:
regions of a response surface. The

very notion of an arbitrary threshold defining success, like flood control reliability above 0.95, can be considered as a departure

from a strictly probabilistic framework and could justify a complementary possibilistic approach based on fuzzy sets (Dubois105

et al., 2004).
::::
This

:::::
paper

:::::::
therefore

:::::::::
introduces

::::
the

:::
use

::
of

:::::
fuzzy

:::::::::::
acceptability

:::::::::
thresholds

:::::
when

:::::::
building

::
a
:::::::
response

:::::::
surface

:::
for

:::::::::::::
decision-centric

::::::::::
vulnerability

::::::::::
assessment.

:

Independently from performance targets, response functions also have their own noise or internal uncertainty , as their

selected driving
::::::::
However,

:::
the

:::::::
internal

:::::::::
uncertainty

::
of
:::

the
::::::::

response
::::::
surface

:::::::
hinders

:::
the

:::::
direct

:::::::::
application

:::
of

:
a
:::::
fuzzy

:::::::::
threshold.

:::
The

:::::::
selected

:::::::
stressor variables can only partially explain hydrological and climatic uncertainties

:::::::::::
hydro-climatic

::::::::::::
uncertainties,110

:::
and

::::::::
stochastic

::::::::::
realizations

:::::::::
introduce

::::
noise

:::
in

:::
the

:::::::
resulting

:::::::
system

::::::::::
performance. As such, performance is an expected value

rather than a deterministic one, hence possibly underestimating
:::
and

:::
that

::::::::
estimate

:::::
might

::::::::::::
underestimate real risks. Irreducible

uncertainty usually requires adaptive management (Brown et al., 2011), but there is interest to integrate part of this information

::
in

:::::::::
integrating

::::::::
estimates

::
of

:::::::::
uncertainty

:
into the response surface tool.

Kay et al. (2014) proposed the use of uncertainty allowances that could vary depending on the response type and catchment.115

More specifically, flood control systems operate on shorter time scales and are even harder to assess over long term climate

shifts (Knighton et al. 2017), thus also more challenging to evaluate with
::::::::
increasing

::::::::::
uncertainty

::
in

:::::
flood response functions.

Kim et al. (2018) stress
::::
show

:
how the choice of

:
a
::::::
longer modelling time scale (daily vs hourly) can lead to risk underesti-

mation. The choice of different
::::::
weather

::::::::
generator

::::
used

::
to

::::::::
generate

:::::::
synthetic

:::::::
weather

:::::
series

::
in

::
a scenario-neutral methods can

:::::::::
experiment

:::
can

::::
also lead to different results (Keller et al., 2019), notably the choice of the synthetic series generator (,

:
Nazemi120

et al., 2020). Steinschneider et al. (2015)
:::
and

:::::::::
Whateley

:::
and

::::::
Brown

::::::
(2016)

:
compare different sources of uncertainty

::
in

:::
the

:::::::
response, acknowledging the strong impacts of hydrological modelling and internal climate variability compared to long term

climate uncertainty, as well as Whateley and Brown (2016). Testing a limited number of stressors as explaining
::::::::::
explanatory

variables therefore leads to a response function that returns uncertain performance .
::::::::
imprecise

::::::::::
performance

:::::::::
estimates.

:::::
Quin

:
et
:::

al.
::::::
(2018),

:
Kim et al. (2019)propose to associate probabilities to uncertain response functions through logistic regression ,125

while ,
:::::::::::
Lamontagne

::
et

::
al.

::::::
(2019),

::::::::::::
Hadjimichael

:
et
:::
al.

::::::
(2020),

:::
and

:::::::::::::
Marcos-Garcia

::
et

::
al.

::::::
(2020)

:::
use

:
a
:::::::
logistic

::::::::
regression

::
to

::::::
divide

::
the

::::::::
exposure

:::::
space

:::::
based

:::
on

:::::::::
probability

::
of

::::::
success

::::::
(often

::
as

:
a
::::
first

::::
step

::
in

:
a
::::::::::::::::
scenario-discovery

:::::::::
approach). Tanner et al. (2019)
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do so with a Bayesian belief network model. It is here noted that most response surfaces follow gridded sampling, which can

also be a loss of information (e.g. Huang, 2000 for elevation models) and thus risk under-estimation.

The objective of the present study is to combine with a possibilistic approach
::::
Such

:::::::
internal

::::::::::
uncertainty

::
to

:::
the

::::::::
response130

:::::::
function

:::::::::
challenges

::
the

:::::::::::
introduction

::
of

:::::
fuzzy

:::::::::
thresholds,

::
as

:::
the

::::::::
separation

::
of

:::
the

::::::::
exposure

:::::
space

::
in

:::::::::
acceptable

:::
and

:::::::::::
unacceptable

::::::
regions

::
is

:::
not

:::::::
obvious

::::
even

::::
with

:
a
::::::
binary

::::::::
definition.

:

:::::::
Through

:
a
::::::::::
possibilistic

::::::::
approach,

:::
the

::::::
present

:::::
study

::::::::
combines

:
two different types of uncertainty: the fuzziness of performance

targets
::::::::::
acceptability

:::::::::
thresholds and the irreducible uncertainty of the response surface. The rationale behind it and three tested

implementations are presented
::
of

:::
the

:::::
paper

::
is

::::::
further

::::::::
developed

:
in section 2: a numerical approximation of a fuzzy-random

:
,135

:::::::
followed

:::
by

:::
the

:::::::::::
incorporation

::
of

:
a
:::::
fuzzy

:::::::::::
acceptability

::::::::
threshold

::
to

:::
the

:
logistic regression, a fuzzy analytical approximation of

the response itself and a convex delineation of the largest range of failure
:::::
which

:::
has

:::::::
already

::::
been

::::
used

::
to

::::::
handle

:::
the

::::::::
response

:::::::::
uncertainty. A case study is presented in section 3, a flood-prone reservoir system in southern Québec, Canada. Results are

presented in part 4, followed by a discussion on the respective merits and limitations of the proposed methods
::::::
method.

2 Methods140

2.1 Rationale

2.1.1 Uncertain response function

We first consider how a limited set of variables leads to an inherently uncertain response function, and how it relates to the

partition of the exposure space and the decision process.

A stress test consists in assessing the performance of a system for a large enough number of situations, in order to iden-145

tify which of these situations leads to an unsatisfying performance, or overall failure
:::::
which

::
of

:::::
these

:::::::::
situations

::::
lead

::
to

:::
an

::::::::::
unacceptable

:::::::::::
performance.

Concept of the response surface as a stress-test with describing variables (x1, x2). Success and failure regions are defined

by a threshold θ over performance p.

Often inspired from Hashimoto et al. (1982), a performance indicator is a statistical measure of local failureduration or150

amplitude, aggregated over a certain time period. Local failure is
::
We

::::
first

::::::
define

::::
how

::::::::
success,

::::::
failure,

:::::::::::
performance

::::
and

::::::::::
acceptability

:::
are

:::::
used

::
in

::::
this

:::::
study.

:::::::
Success

:::
or

::::::
failure

:::
are

:
a state of the system at a given time step: a state of flooding

:
.

:::
For

:::::::
example

::::::
failure can be defined by a streamflow exceeding a threshold at any moment,

::::::::::::
characterizing

:
a
:::::

state
::
of

::::::::
flooding.

:::::::
Inspired

::::
from

::::::::::
Hashimoto

::
et

:::
al.

::::::
(1982),

::::::::
common

:::::::::::
performance

:::::::::
indicators

::
of

::
a
:::::
water

::::::
system

::::
are

::::::::
statistical

::::::::
measures

:::
of

:::
the

::::::::
frequency,

:::::::::
amplitude

::
or

:::::::
duration

::
of

:::::::
failures,

:::::::::
aggregated

::::
over

::
a

::::::
certain

::::
time

:::::
period. The overall performance of the system over155

a period quantifies its ability to mitigate the number or amplitude of local failures. For example, the reliability of a flood control

system can be measured as the proportion of a given period
:::::::::
(frequency)

:
where no flooding happens.

:::::
While

::::::::::::
success/failure

::::::
define

:::
the

::::
state

::
of

:::
the

::::::
system

:::
for

::
a

:::::
single

::::
time

::::
step,

::::::::::::::::::::
acceptable/unacceptable

::::::
define

::
its

::::::::
behavior

::::
over

:
a
::::
time

::::::
period.

:
When performing a stress-test of a system, overall success or failure

::
the

::::::::
criterion

:::
for

::::::::::::::::::::
acceptable/unacceptable
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::::::::
outcomes is usually defined by a performance target

::::::::::
performance

::::::::
satisfying

::
a
::::::::
threshold θ, for example reliability above 0.95160

over a given period can define overall success
:
an

:::::::::
acceptable

::::::::
outcome.

A stress-test maps the performance p
:
R

:
on a response surface, to a limited number of descriptive variables

:
or

::::::::
stressors xi.

It aims at delineating
::::
Each

:::::::::
coordinate,

::
or

:::::
state

::
of

:::
the

::::::
world,

::
is

:
a
:::::::::::
combination

::
of

:::::::
specific

:::::
values

:::::
taken

:::
by

::::
such

::::::::
stressors.

::::
The

::::::::
stress-test

::::
aims

::
to
::::::::

delineate
:
the subsets A and D of overall success and failure

::::::::
acceptable

::::
and

:::::::::::
unacceptable

::::::::
outcomes

:
(Fig.

1). Such variables
:::::::::
Alternative

:::::::
options

:::::::::::
(management

:::::
rules,

::::::::::::
infrastructure

::::::
design)

::::
can

::
be

::::::
ranked

::::::
based

::
on

:::
the

:::::::::
respective

::::
size165

::
of

::::::
subsets

::
A

::::
and

::
D.

::::
The

:::::
more

:::::
states

::
of

:::
the

::::::
world

::::
lead

::
to

:::::::::
acceptable

:::::::::
outcomes,

:::
the

:::::
more

:::::
robust

:::
an

:::::
option

:::
is,

::::
thus

:::
the

:::::
more

::::::::
preferable

::
in

::::
this

::::::::
approach.

:::
The

:::::::::
descriptive

::::::::
variables

::
or
::::::::

stressors, like the mean flow, the peak flow, or temporal autocorrelations, are aggregations of

the time series that are the inputs of a water system simulation
:::::
model. Because a limited number of descriptors do not capture

all possible fluctuations of a time series, a term of irreducible uncertainty remains. The response surface
:
,
::
R,

:
is then given by:170

pR
:

= g(x1,x2...) +Rε (1)

In a risk-averse approach, the objective is to find the range of failure (more than success)
::::::::::
unacceptable

::::::::
outcomes, the space

over which a system fails to satisfy a performance target
::
an

::::::::::
acceptability

::::::::
threshold

:
θ. With 2 variables, this space is the set of

solutions D = (x∗1,x
∗
2) to the inequation

::::::::
inequality p < θ, so

g(x1,x2) +Rε < θ (2)175

Simplifying the response surface by averaging it over p (vertically)
:::
e.g.

::
its

:::::::
average

::::::::
estimate can thus under-estimate the

failure
::::::::::::
unacceptability

:
domain. Irreducible uncertainty can be addressed through adaptive management (Brown et al., 2011),

uncertainty allowances (Kay et al., 2014), and extensive Monte-Carlo sampling (Whateley and Brown, 2016). If possible

though, it can be convenient to directly integrate information about
:::
the

:
remaining uncertainty within the response surface

itself. It can be represented through a transition zone between success and failure domains , as performed by Kim et al. (2019)180

with a logistic regression. Besides, most studies use gridded sampling of the exposure space, which is a horizontal aggregation

that also results in information loss like in the case of digital elevation models (Huang, 2000), and which in this case can also

under-estimate risks. A simple un-gridded alternative is proposed in section 3.2.

2.1.2 Fuzzy performance targetsThe performance target
:::::::::::
acceptability

:::::::::
thresholds

:::
The

:::::::::::
acceptability

:::::::
criterion

:::::
based

::
on

::
a

:::::::
threshold

:
θ defines the set of successful

:::::::::
acceptable outcomes. It is a subjective or arbitrary185

opinion from stakeholders or decision makers to attribute a normative value to a certain performance level. The vast majority of

the studies reported in the literature assume that the threshold between satisfactory and unsatisfactory states
:::::::
outcomes

:
is crisp

(Brown et al., 2012, Culley et al., 2016, Kim et al., 2019). As such a threshold shapes directly the partition of the response

function, with a crisp value the exposure space can be subdivided in only two sub-spaces: failure versus success
:::::::::
acceptable

:::::
versus

:::::::::::
unacceptable.190
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Figure 1.
::::::
Concept

::
of

:::
the

::::::
response

::::::
surface

::
as

:
a
:::::::
stress-test

::::
with

::::::::
descriptive

:::::::
variables

:::
(x1,

::::
x2).

::::::::
Acceptable

:::
and

::::::::::
unacceptable

:::::
regions

:::
are

::::::
defined

::
by

:
a
:::::::
threshold

::
θ

:::
over

::::::::::
performance

::
R.

Figure 2.
::::::
Concept

:::
for

:
a
:::::
fuzzy

::
set

::
of

::::::::
acceptable

:::::::
outcomes

:::
Aµ::::

over
:::::::::
performance

:::
R.

The very existence of a target
:::::::
threshold

:
is the basis of satisficing behaviors (Simon, 1955) that differ from utility maximizing

behaviors as coined by Von Neumann and Morgenstern (1944). In practice however, while clearly following a satisficing model,

there might be situations whereby the water manager is unable (or unwilling) to provide a crisp, well-defined target
:::::::
threshold,

or when such threshold is disagreed upon by stakeholders. For example, when controlling water levels in a reservoir to prevent

inundations
:::::
floods, the operator can handle certain tolerances above the maximum desired level. Of course, the greater the195

deviation from the desired level, the less acceptable it becomes.

Mathematically, fuzzy sets theory (FST) handles imprecisely-defined or ambiguous quantities. Introduced by Zadeh in 1965,

fuzzy sets theory has become a common tool in decision making analysis or computational sciences when non-probabilistic

uncertainty stemming from ambiguity or vagueness must be considered (Yu et al., 2002). In our case, FST
::::
fuzzy

::::
sets

::::::
theory
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allows us to introduce vagueness in target-based decision making, without forsaking a target-based model in favor of an un-200

bounded maximizing behavior (although a fuzzy target can also be seen as a generalization of both maximizing and satisficing

behaviors – see Castagnoli and LiCalzi, 1996, and Huynh et al., 2007).

Concept for a fuzzy set of success Aµ over performance p.

We consider here the case where such a target
:::::::
threshold

:
θ may not be precisely defined by stakeholders but can take many

subjective qualifications from acceptable to unbearable, hence relaxing (without fully removing) the arbitrary condition of205

satisfying a crisp value. A fuzzy set Aµ of acceptable states therefore qualifies the performance p
::
R

:
with a membership value

comprised between 0 and 1. The membership function µ
:
µ
:
associated to the fuzzy set A describes the degree to which any

value of p
::
R more or less belongs to A (Figure 2, eq 3).


µ(R) = 0 R< θ1

0< µ(R)< 1 θ1 ≥R< θ2

µ(R) = 1 R≥ θ2

(3)

When a threshold corresponds to a fuzzy set, it means that there is a transition zone between success and failure states210

::::::::
acceptable

::::
and

:::::::::::
unacceptable

::::::::
outcomes

:
where intermediate levels of membership exist. Conversely, another interpretation is

that the membership function is the distribution of the possibilities (Zadeh 1978, Dubois and Prade, 1988) that any given

performance p represents a success
::
R

::::::::
represents

:::
an

:::::::::
acceptable

:::::::
outcome.

An α-cut Aα is the crisp set over Aµ for which the membership degree to Aµ is equal or above α. The largest α-cut is called

the support of the fuzzy set Aµ (p≥ θ1::::::
R≥ θ1). The smallest α-cut is the core of the fuzzy set (p≥ θ2).215

:::::::
R≥ θ2).

Aα = {pR
:
∈Aµ | µ(pR

:
)≥ α} (4)

:
A
::::::

fuzzy
::::::::
definition

::
of

:::::::::::
acceptability

::
is

:::
not

::::
only

::
a
::::
way

::
to

::::::::::::
accommodate

:::::::::
ambiguity

::
as

:
a
::::::::::::::::

stakeholder-based
:::::::::
constraint,

:
it
::::
can

:::
also

::::
alter

::::
the

:::::::
outcome

::
of

::::
the

:::::::
analysis.

::::::::::::
Theoretically,

::
it

:::
can

:::::::
happen

:::::
when

:::
the

:::::
slope

::
of

:
a
::::::::

response
::
as
::::::::

function
::
of

::::::::
stressors

::
is

:::::::
different

:::
for

:::
the

::::::::
compared

::::::::::
alternatives

::::::::::::
(infrastructure

:::::::::::
investments,

::::::::::
management

:::::::::
rules. . . ),

::
as

::::::::
illustrated

:::
in

:::
Fig.

::
3
:::
for

:
a
::::::
single220

::::::
stressor

::::::::
variable.

::::
Rule

:
2
::::
has

:
a
:::::
larger

::::::
region

::
of

::::::
success

::::
with

::
a
::::
crisp

:::::::::
threshold,

:::
but

:::
the

:::::
result

:
is
::::::
mixed

::::
with

:
a
:::::
fuzzy

:::::::::
definition

::
of

:::::::::::
acceptability.

::
In

:::
that

:::::
case,

:
a
:::::::
trade-off

:::::::
appears

:::::::
between

::::::::::
minimizing

:
a
::::
loss

::
of

:::
any

:::
sort

::::
(i.e.

:::
any

::::
type

::
of

:::::::::
flooding),

:::
and

::::::::::
minimizing

::
the

:::::::::
maximum

::::
loss

:::::::::
(min-max).

:

:::
For

::::::::
example,

::
in

:::::
Quinn

::
et

:::
al.

:::::::
(2017a),

::
an

:::::::
attempt

::
at

:::::::
reducing

:::::::
flooding

:::::
most

::
of

:::
the

::::
time

:::::
leads

::
to

:::::
worse

::::::
results

:::::
under

:::::::
extreme

::::::
events.

:::::::::::
Hadjimichael

::
et
:::
al.

::::::
(2020)

:::::::
perform

::
a
:::::::::
sensitivity

:::::::
analysis

:::
on

::::::
binary

:::::::::::
acceptability

:::::::::
thresholds,

:::::
show

:::
the

::::::
impact

:::::
such225

::::::::
definition

:::
has

:::
on

:::
the

:::::::
outcome

:::
of

:
a
:::::::::::
vulnerability

::::::::::
assessment.

::::::::
Criterion

:::::::::
ambiguity

:::::
could

::::
lead

::
to

::::::
similar

:::::::
effects:

:::
the

::::::::
preferred

:::::
option

:::::
might

::::
not

::
be

:::
the

:::::
same

:::::::::
depending

:::
on

:::
the

:::::
value

::
of

:::
the

:::::::::
threshold,

:::
and

::
in

:::
the

:::::::
present

:::::
study

:::::::::
depending

::
on

:::
the

::::::
degree

:::
of

:::::::::::
acceptability.

8



Figure 3.
::
The

::::
case

::
of
:::::::

different
::::::::::
performance

::::::
slopes,

::
as

::::::
function

::
of
::

a
:::::
single

::::::
stressor

:::
X .

::
(a)

:::::
With

:
a
::::
crisp

:::::::
threshold

::
θ,
::::

rule
:
2
:::

has
::

a
:::::
larger

::::::::
acceptable

:::::
region

:::
A2.

:::
(b)

::::
With

:
a
:::::
fuzzy

:::::::
threshold

::::::
(θ1,θ2),

:::
the

:::::
fuzzy

::
set

::
of

::::::::
acceptable

::::::::
outcomes

::::
over

:::::::::
performance

::
R

:::
has

::
a

:::
core

:::::::
(R≥ θ1 :

,

::::
where

::::::::::
acceptability

:::::
µ= 1)

:::
and

::
a
::::::
support

::::::
(R≥ θ2,

:::::
where

::::::
µ≥ 0),

::
to

:::::
which

:::::::
respective

::::::
regions

::
C

:::
and

:
S
:::
are

::::::::
associated.

::::
Rule

:
2
:::

has
::
a

::::
larger

:::
“at

:::
least

::::::
partial”

::::::::::
acceptability

::::::
domain

::
S2,

:::
but

:
a
::::::
smaller

:::::
“full"

:::::::::
acceptability

::::::
domain

:::
C2,

::::
than

::::
Rule

:
1.
:

2.2 Combination of fuzzy targets
:::::::::
thresholds and uncertain response function

The230

:::::
When

:::::::::::
incorporating

:
a
:::::
fuzzy

:::::::::
threshold,

:::
the challenge is to combine two different sources of uncertainty described in section

2.1: the uncertainty or low quality of the response itself relative to the variables that describe change, and the fuzziness of the

performance target. In order to integrate both, three methods are suggested: an
::::::::
ambiguity

::
of

:::
the

:::::::::::
acceptability

:::::::::
threshold.

:::
An

approximated fuzzy-random logistic regression , an analytical approximation of the response surface and a convex delineation

of the space of failure
::
is

::::::::
proposed

::
in

::::
order

::
to
::::::::
integrate

::::
both.235

9



2.2.1 Approximation of a fuzzy-random logistic regression

As the goal of the response surface is to divide the exposure space between success and failure
::::::::
acceptable

::::
and

:::::::::::
unacceptable

::::::::
outcomes, the value associated to any combination of variables can be either 0 or 1 if a specific performance target

::::::::::
acceptability

:::::::
threshold

:
θ is reached or not. As seen in section 2.1, an intrinsic uncertainty remains in response surfaces.

::::
Quin

::
et

::
al.

:::::::
(2018),

Kim et al. (2019)introduce the ,
:::::::::::
Lamontagne

::
et

::
al.

:::::::
(2019),

:::::::::::
Hadjimichael

::
et
:::

al.
:::::::
(2020),

:::
and

:::::::::::::
Marcos-Garcia

::
et

::
al.

::::::
(2020)

::::
use240

:
a
:
logistic regression to incorporate probabilistic information into the response surface

:::::
divide

:::
the

::::::::
exposure

::::::
space

:::::
based

:::
on

:::::::::
probability

::
of

:::::::
success. The logistic regression is used to explain a binary outcome from independent variables (x1,x2), and

returns a probability of success π :

πθ =
1

1 + exp(−(β0 +β1x1 +β2x2 + . . .))
(5)

πθ (x1,x2) = P

(
pR

:
≥ θ
)

(6)245

where xi are the defining variables of the exposure space and βi the regression coefficients. The logistic response sur-

face therefore provides the probability π of meeting the target
:::::::
threshold

:
θ over the (x1,x2) exposure space.

:::
The

:::::::
logistic

::::::::
regression

::::
also

:::
has

:::
its

::::
own

::::::::::
uncertainty

:::
but

::
it

::
is

:::
not

:::::::::
considered

:::::
here.

:::::
While

:::
the

::::::::
response

::::::
surface

:::::::::
considers

:
a
:::::
range

:::
of

:::::
states

::
of

:::
the

:::::
world

::::::
without

::::::::
knowing

::::
their

:::::::::
probability

:::
of

:::::::::
occurrence,

:::
the

:::::::
logistic

::::::::
regression

::::
still

:::::::
provides

::
a
:::::::::
conditional

::::::::::
probability

::
of

::::::::
acceptable

::::::::
outcome

::::
once

::
a

:::::
given

::::
state

::
of

:::
the

:::::
world

::
is

:::::::
reached.

:
Partitions of the space between success and failure

:::::::::
acceptable250

:::
and

:::::::::::
unacceptable sub-spaces, that can be defined as π− cuts, are now relative to a specific probability of success π* taken by

πθ:

Sπ∗ = {x1,x2 | π (x1,x2)≥ π∗} (7)

By considering the domain of successful outcomes as a fuzzy set, we introduce a layer of uncertainty that is different in

nature from the irreducible hydro-climatic uncertainty. While the logistic regression returns a probability of surpassing any255

given performance target
::::::::::
acceptability

::::::::
threshold for a combination of variables (eq. 5 and 6), the fuzzy set of success returns

the possibility of any such performance target
::::
value

:
being actually considered as a success (eq. 7).

Fuzzy regression models, including fuzzy logistic regression (e.g. Pourahmad et al., 2011, Namdari et al., 2014) replace

probabilities by fuzzy numbers; they usually do not combine them. Fuzzy probabilities (Zadeh, 1984) are considered within

the so-called fuzzy random regression field, however no fuzzy random logistic regression seems to have been developed to date260

(see Chukhrova and Johannssen, 2019, for a review of the fuzzy regression field).

Here we use a discretised approximation of a fuzzy random logistic regression based on α-cuts. A single target θ defining a

crisp set of success
::
As

:::::::::
illustrated

::
in

::::
Fig.

:
2
::::
and

:::
Fig.

::
4,
::
a
:::::
fuzzy

:::
set

:::
Aµ :::

can
:::
be

::::::::::
decomposed

::
in

:::::::::
alpha-cuts.

:::::
Each

:::::
α-cut

::
is

:
a
:::::
crisp

:::
set,

:::
and

:::
the

::::::
values

::::::::
belonging

::
to

:::
an

:::::::
alpha-cut

::::
also

::::::
belong

::
to

:::
the

:::::
fuzzy

:::
set

:::
Aµ::::

with
:
a
:::::::::::
membership

::::::
degree

::::
equal

:::
or

:::::
above

::
α.

:
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Figure 4.
::::::
Concept

:::
for

::::
α-cut

::::::::
sampling,

::::::
sigmoid

:::::::
function

::::::::
Therefore,

::::
any

::::
crisp

:::
set

::
of

:::::::::
acceptable

::::::::
outcomesA,

::::::
defined

:::
by

:
a
:::::
single

::::::::
threshold

::
θ,

:
is also an α-cut of the fuzzy set of success265

Aµ. Then a single logistic regression for any success threshold θ is also the probability of belonging to the α-cut of the fuzzy

set of success defined by θ:

πθ (x1,x2) = P

(
pR

:
∈Aα

)
= P

(
pR

:
∈Aµ||µ

(
pR

:

)
≥ α

)
(8)

with α= µ(θ).

Following the interpretation of Huynh et al. (2007), the overall possibility Π of the random variable p
::
R

:
belonging to the270

fuzzy set Aµ can be given by the integral over α of the probabilities of success defined at every α-cut.

Π(x1,x2) = P

(
pR

:
∈Aµ

)
=

1∫
0P (p ∈Aµ | µ(p)≥ α)dα0P (R ∈Aµ | µ(R)≥ α)dα

::::::::::::::::::::::
(9)

And thus

Π(x1,x2) =

1∫
0

πµ−1(α) (x1,x2)dα (10)

The approximated logistic regression for a fuzzy set of success is therefore the average of the logistic regressions for all275

the associated α-cuts. With a uniform discretization of 10 alpha levels, the spacing of every α-cut, defined with θ = µ−1(α),

relies on the shape of the membership function. A linear shape of µ(p)
:::::
µ(R) leads to a uniform sampling of the α-cuts, while

a sigmoid shape
::::
error

:::::::
function

:
leads to a Gaussian sampling of α-cuts centered on θ

::::::::::::
θ∗ = µ−1(0.5) (Fig. 3

:
4).

Concept for α-cut sampling, sigmoid function
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2.2.2 Analytical approximation of the response function and fuzzy set intersection280

(a) Fuzzy set Aµ. (b) Fitting error set Sp. (c) Intersection between Aµ and Sp (shaded area). (d) resulting membership function

µR.

Instead of fitting a logistic function to the binary outcomes of success and failure, performance itself can be directly

approximated as an analytical response surface (eq. 3). The final outcome is then a direct mapping from the performance

approximation to a 0 1degree of success with the membership function of the fuzzy set of success Aµ (eq. 5). For every285

(x1,x2), a single approximated performance is given by p∗ = g∗(x1,x2), so the possibilistic response surface is defined by

µR(p∗). The membership function µ is modified as follows to account for the fitting error R.

To any value of p∗ is associated the membership degree µ between 0 and 1 depending on θ1 and θ2, 1 defining complete

success. The fitting error, or uncertainty around performance p∗ can be expressed as another set Sp, centered on any value p with

a 2R-sized support (Figure 4a). This set can also follow any shape depending on the user’s risk aversion. With a risk-averse290

attitude, a crisp set defines here R assuming a uniform possibility distribution. But an actual distribution of R around the

approximation could also be used.

The modified membership degree µR(p∗) should account for the 2R-large interval that represents the possibility domain

around p∗. So at any given p∗, the possible acceptability values are represented by the intersection between the sets Sp and Aµ,

given by the MIN operator. The resulting value µR(p∗) is the average over this intersection.295

The new membership function µR over the entire domain of performance is then the moving average of µ with 2R window

size (Figure 4b). A single possibility surface is thus obtained for any (x1,x2) coordinate (eq. 11).

µR(x1,x2) = µR(p∗) =
1

2R

p∗+R∫
p∗−R

µ (p∗)dp∗

2.2.2 Convex hulls as range of success and failure

The climate stress test seeks to identify accepted and rejected sub-spaces A and D within the exposure space. As seen in section300

2.1.1, gridded sampling can result in risk under-estimation. With an uncertain, noisy response function and a non-gridded

sampling of the exposure space, the sets A and D of accepted and rejected points do not form two cohesive, identifiable and

mutually exclusive sub-spaces. The methods described in sections 2.2.1 and 2.2.2 are regression or surface fits that incorporate

the remaining errors but are still approximations and might not represent all possibilities of success or failure. In a risk-averse

approach, decision-relevant outliers could also be considered, in order to prepare for the most unlikely, but possible failures.305

The question is which performance values should be attributed at any location between sampled points.

One simple way to conservatively identify a sub-space from a set of points is their convex hull, the smallest possible convex

space that contains the set. Convex hulls are extensively used in point process analysis and notably decision theory and risk

analysis (Harris 1971). They can be used to identify failure regions when a response surface is inadequate, e.g. in mechanical

engineering (Missoum et al., 2007).310
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Concept for largest convex ranges of success and failure

The underlying assumption is that, for any triangle of points contained in a set, any point within the triangle also belongs

to the set. Following further a possibility-centric approach, what is sought here is the largest convex range of failure (LCRF).

While less impactful for a risk-averse decision process, the largest range of success can also be expressed to further differentiate

the regions of the response function. With a deterministic response function a single threshold will discriminate a space between315

two complementary sub-spaces, accepted and rejected. With a noisy response and a crisp target, both sub-spaces will overlap,

creating a transition zone (Fig. 5).

Considering a fuzzy performance target we modify the definition of both accepted and rejected sub-spaces. The loosely

accepted sub-space is the convex hull of all performance values superior to the lower threshold. The loosely rejected sub-space

is the convex hull of all performance values inferior to the higher threshold.320

Said otherwise, because only the upper bound of possibility is sought for success and failure, the largest range of failure

(resp. success) is simply defined by the smallest convex set of points where p belongs to the smallest (resp. largest) α-cut of

Aµ also called core (resp. support).

This method gives more weight to outliers, as they define the convex hull. It is a simple measure of possibility, and does not

discriminate points within the transition zone. Different management rules are compared according to the relative position and325

overlap areas of their respective transition zones.

As decision-centric methods rely on large number of simulations, computing power parsimony is an applicability concern

(e.g. Whateley et al., 2016, Zatarain Salazar et al., 2017). The LRCF is only defined by its vertices, and only the border closer

to the success region matters for decision purposes. Large parts of the response surface could potentially be ignored, saving

computation time. An iterative sampling of the response function can thus complement the LCRF method.330

3 Application

A reservoir
:::::::::::
two-reservoir system in eastern Canada is used as

:
a
:
case study to illustrate the applicability of the possibilistic

response surfaces
:
.

3.1 Upper Saint-François River Basin features

The Upper Saint-François River Basin (USFRB) is located in the province of Quebec
::::::
Québec, Canada. The selected gauging335

point, near the agglomeration of Weedon, drains an area of 2940 km2 with an average annual flow of 2.1 billion cubic meters.

The system (Fig. 6
:
5) involves the Saint François River, controlled by two reservoirs Lake Saint-François and Lake Aylmer

with a combined storage capacity of 941 million cubic meters, and the uncontrolled affluent Saumon River.

Both reservoirs are managed by the
::::::
Québec

::::::
Water

::::::
Agency

::::::
which

::
is

:::
part

:::
of

:::
the Ministry of Environment and Fight against

Climate Change through the CEHQ water agency
::::::::
(Ministère

::
de

::::::::::::::
l’Environnement

::
et

::
de

::
la
:::::
Lutte

:::::
contre

:::
les

:::::::::::
changements

:::::::::
climatiques340

:
-
::::::::
MELCC). The main operational objectives are: (i) to protect the municipality of Weedon and several residential areas around

the lakes from floods, (ii) to ensure minimum river discharges and water levels in the lakes to preserve aquatic ecosystems, (iii)
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Figure 5. Layout of the Upper Saint-François River Basin, Québec, Canada.

to provide the downstream run off river power station with a reliable water discharge
::::::
regulate

:::
the

:::::
floods

:::
for

::::::::::
downstream

::::::
power

:::::
plants; and (iv) to maintain desired water levels in the lakes for recreational uses during the summer.

This multipurpose reservoir system thus follows a refill-drawdown cycle accordingly. With a snowmelt dominated
:::::::::::::::::
snowmelt-dominated345

flow regime, the reservoirs are emptied in winter, filled in spring and aim at a stable level in summer. Difficult snowpack volume

estimation and variable precipitations can lead to under or over-estimation of the spring flood, leading to either insufficient

summerlevels or frequent flooding of the downstream agglomeration of Weedon as experienced in 2018 and 2019.
:::::
during

:::
the

:::::
spring

::::
and

::::
kept

::
at
:::::::
constant

::::
pool

::::::::
elevation

::::::
during

:::
the

:::::::
summer.

:

3.2 Inflow time series350

Following
::
At

:::
the

::::::
request

:::
of

::::::
system

::::::::
operators

:::
we

:::
use

::::::::::
hydrologic

:::::::
stressors

::::::
instead

:::
of

:::::::
climatic

:::::
ones.

:::::
Other

::::::
authors

:::::
have

::::
also

::::
used

:::::::::
hydrologic

::::::::
stressors,

:::
see

:::
e.g. Nazemi et al.(,

:
2013), Borgomeo et al.(

:
, 2015), Herman et al.(

:
, 2016), Zeng et al.(

:
, 2017)

:
, or

Nazemi et al.(2020), we use streamflow stressors instead of climatic ones, as the present study does not aim at differentiating

between several sources of uncertainty – climate change, climate variability, run-off modelling – but proposes a method that

accommodates any of them.355

In Québec, the CEHQ water agency regularly produces projections of river discharges throughout the province as part of

the Hydroclimatic Atlas based on climate models (see Hydro-climatic Atlas, 2015, 2017). In this study, available time series

(MELCC, 2018) can be used as basis for synthetic streamflow generation,
:::::
2020.

:::::::
Readily

:::::::
available

::::::
inflow

::::
time

::::
series

:::::
from

:::::
GCM

::::::
weather

::::::::::
projections

:::
are

::::
used

::
to

:::::::
generate

:::::::::
additional

:::::::
synthetic

::::::::::
streamflow

:::::
series

::
as

::
in

::::::::
Vormoor

::
et

:::
al.,

:::::
2017.

::::::
Results

:::
are

:
then di-

rectly plotted on a response function
::
the

::::::::
exposure

:::::
space according to their own (x1,x2) coordinates, filling the response function360

without following a gridded sampling. Besides avoiding the spatial simplification entailed by gridded sampling (section 2.1.1.),
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such a method makes .
:::::
Such

:
a
:::::::
method

:::::
seeks

::
to

:::::
make a greater use of hydro-climatic future scenarios when many are already

available, providing an already high diversity of
:
to
::::::
obtain

:
a
::::::
higher

:::::::
diversity

::
of
::::::::
synthetic

:
times series (

:::::
based

::
on

:
different GCM

simulations, RCP scenarios and downscaling techniques), which can then be expanded with additional synthetic generation as

in Vormoor et al. , 2017.
:
.
:::
We

:::
first

:::::::
describe

:::
the

:::::::
initially

::::::::
available

::::
time

:::::
series,

::::
then

::::
how

::::
they

:::
are

::::::::
perturbed

::::
and

:::::
reused

::
to
::::::
create365

:::::::
synthetic

::::
time

::::::
series.

Historical daily measurements are available for the 2000-2014 period (MELCC, 2018). They include lakes inflows, levels

and reservoir releases, and river discharges from the tributary and at the basin outlet.

Streamflow scenarios are made available by the CEHQ
:::::::
provided

:::
by

:::::::
MELCC

:
through the Quebec Water Atlas 2015 (CEHQ,

2015, MELCC, 2018). These
:::::
Those

:
hydrologic projections are based on climatic projections from the Natural Resources370

Canada data base of GCM simulations (CMIP5, Hydro-climatic Atlas, 2015) that were downscaled by the CEHQ.

::::::
Québec

:::::
Water

:::::::
Agency.

:
A set of 501 time series was made available, spanning 30 years of daily inflows. The set contains 135

scenarios for a 1971-2000 reference period; and 366 scenarios for the 2041-2070 period. The 366 scenarios are based on 122

GCM projections, from which 3 different downscaling techniques were applied: without bias correction, with quantile mapping

or with delta quantile mapping (based on Mpelasoka and Chiew, 2009). In order to obtain the largest degree of variability, and375

find as many failure configurations as possible, all 501 time series are used indistinctively
:
,
:::
first

::::::::
perturbed

::
to
:::::::
increase

:::
the

:::::::
sample,

:::
then

:::::
used as input for the synthetic time series generation. The synthetic generator is the Kirsh-Nowak method (Nowak et al.,

2010, Kirsh et al., 2013), made available online as Matlabr code by Quinn et al. (2017b), employed e.g. in Quinn et al., 2017a.

In order to expand the sample of the exposure space and explore less favorable conditions, the perturbation of synthetic380

:::::::
available

:
inflows is performed by either modifying only the flow average without affecting the dispersion , or by affecting

:::
the

::::::
average

::::::
annual

:::::
flow,

:::
the

:::::::::
dispersion

::
of

:::::
daily

:::::
flows,

::
or

:
both. To increase the range of tested inflow volumes, a single change

factor is applied in the first case, arbitrarily increasing all flow values at every time step by 50%. In the second case (perturbed

dispersion)
::
To

:::::::
perturb

:::
the

:::::::::
dispersion, a varying factor multiplies flow values depending on their rank in the series distribution

(factor 1 for the lowest, factor 1.5 for the highest flow). There are then 4 categories of perturbation: volume only, dispersion,385

volume and dispersion, and none. Moreover each synthetic

::::
This

::::::::
expanded

::
set

:::
of

::::
time

:::::
series

::
is

::::
then

::::
used

::
as

:::::
input

::
of

:::
the

::::::::
synthetic

::::::::
generator.

::::
The

::::::::
generator

::
is

:::
the

:::::::::::
Kirsh-Nowak

:::::::
method

::::::
(Nowak

::
et
:::
al.,

:::::
2010,

:::::
Kirsh

::
et

:::
al.,

::::::
2013),

::::
made

::::::::
available

:::::
online

:::
as

::::::
Matlab

::::
code

::
by

::::::
Quinn

::
et

::
al.

::::::::
(2017b),

::::::::
employed

:::
e.g.

::
in

::::::
Quinn

:
et
::::

al.,
::::::
2017a.

::::
Each

::::::::
synthetic

:
generation is performed twice for each available time series. We then get 501× 4× 2 = 4008

synthetic
:::
501

::::::
(initial

:::
tie

::::::
series)

:::
×4

::::::::
(different

::::::::::::
perturbations)

:::
×2

:::::::::
(synthetic

::::::::::
realizations)

::
=
:::::

4008
::::::::
synthetic

:
time series, each390

containing 30 years of daily river discharges.

G=
1

N

(
N + 1− 2

∑N
i=1 (N + 1− i)qi∑N

i=1 qi

)
::::::::::::::::::::::::::::::::::

(11)

Similarly to other stress-test studies that generate inflow instead of climate time series (Feng et al., 2017), the selected driving

variables (axes x and y of the response function) are the total annual inflow volume and a measure of the intra-annual variability
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of streamflow. The intra-annual variability is here measured with the dispersion coefficient G, a measure also known as Gini395

coefficient in economics but employed too in hydrology (Masaki et al., 2014). It is similar to the variation coefficient used in

other studies
::::::::
coefficient

:::
of

:::::::
variation

:::::
used

::
in

:::
e.g.

:::::::
Nazemi

::
et
:::

al.
::::::
(2020)

:
but bound between 0 and 1, which offers convenient

interpretation: at G=0 all daily discharges in a year are equal, if G=1 the entire yearly run-off happens in a single day. Like the

variation coefficient it allows for a second variable statistically independent of the total annual run-off volume. Here qi are the

ordered daily discharges of a given year, N=365 days.400

G=
1

N

(
N + 1− 2

∑N
i=1 (N + 1− i)qi∑N

i=1 qi

)

3.3 Simulation and response surface

The model is built with HEC-ResSim, the Reservoir System Simulation software developed by the US Army Corps of En-

gineers (Klipsch and Hurst, 2007). It relies on a network of elements representing the physical system (reservoirs, junctions,

routing reaches), as well as the sets of operating rules. HEC-ResSim replicates the decision-making process applied to many405

actual reservoirs through a rule-based modeling of operational constraints and targets.

Hydrologic inputs consist of 30 years long, daily river discharges for each sub-basin. The main outputs are daily water levels

in lakes, reservoir releases, as well as the discharge
::::::::
discharges

:
at the outlet. A complementary Jython routine is developed in

order to run HEC-ResSim in a loop to systematically load a large set of different hydro-climatic scenarios. Dam characteristics

and operational rules were provided by the Quebec
::::::
Québec

:
Water Agency (MELCC, 2018).410

The model is developed with a first set of operating rules (rule 1) expected to mimic the current operation of the system.

It reproduces measured daily releases over the 2000-2014 period. 4008 simulations are then run, each taking an input of

synthetic daily flow series spanning 30 years. In order to increase the density of the un-gridded exposure space sampling,

results are divided in 5 years periods. Such decomposition is deemed acceptable based on the reservoir system, which storage

capacity is designed for seasonal regulation, not multi-year, mitigating the effects of boundary conditions. It leads to a sample415

of 24’048 points, each one representing a five-year simulation. Observation is independence not considered here, as the prime

objective is to maximize the diversity and noise of the sample.

Although the operating rules were designed taking into account all operating objectives, the present study focuses on the

flood control performance p
:
R. More specifically, it is the reliability (Hashimoto et al., 1982) of the system keeping the river

discharge at Weedon below 300 m3s−1. Mathematically, if F (t) is the state of flooding at time step t, then p
:
R
:
is given by:420

F (t) =

 0 if Q(t)≤ 300

1 if Q(t)> 300
(12)

pR
:

= 1− 1

T

T∑
t=1

F (t) (13)
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The response function is built by representing p
::::::::::
performance

:::
R as a function of the selected inflow characteristics (yearly

volume and dispersion). As developed in section 2, the
:::
We

:::::::
consider

:::
the

:::::
case

:::::
where

:::
the

:::::::::
threshold

:::::::
between

:::::::::
acceptable

::::
and425

::::::::::
unacceptable

:::::::::::
performance

::
is

:::
not

::::::
clearly

:::::::
defined,

:::
but

::
is

:::::::
bounded

:::::::
between

:::
θ1 :

=
::::
0.93

::::
and

::
θ2:

=
:::::
0.97.

:::
The

:
separation of the exposure subspace is first performed through a performance target θ set at p≥ 0.95. Alternatively

the acceptability condition is defined by the fuzzy set within the bounds
::::
space

::::::::
between

:::::::::
acceptable

:::
and

:::::::::::
unacceptable

:::::::
regions

:
is
:::::::::
calculated

::::::::
following

:::::::
section

::
2,

:::::::::
combining

:
a
:::::::

logistic
:::::::::
regression

::::
with

:
a
:::::
fuzzy

:::::::::::
acceptability

:::::::
domain,

:::
its

::::::
support

:::::
being

:
[0.93,

0.97
:
1]

:::
and

::
its

::::
core

:
[, considering a 0.02 tolerance

:::::
0.97,1]. Consequently, any given performance value p

::
R has a membership430

degree of 0 for p
::
R < 0.93, and equal to 1 for p

:
R
:
≥ 0.97. Two different rules sets are tested: rule 1 that replicates the

current management; and an instrumental set rule 2 which slightly alters the anticipation and emergency release algorithm of

the reservoirs. The current and alternative sets of operational rules are compared based on the aggregated logistic regression,
::
A

:::::::::::
counterfactual

:::::::
exercise

::
is
::::
also

:::
run

::::
with

:
a
:::::
crisp

:::::::
threshold

::::::::
θ∗=0.95,

:::::
where

:::
the

:::::::::
ambiguity

::
is

::::::
ignored

:::
and

::::
only

:::
the

:::::::
median

:::::::
between

::::::
bounds

::
is

:::::::
selected.

:::::::::::
Performance

::
is

::::
also

:::::::::
calculated

:::
for

:
a
::::::
sub-set

:::
of

::::::::::
GCM-based

::::::::::
projections

::::::
deemed

:::::
more

::::::::::
trustworthy

:::
by the435

analytical approximation and the error-accounting membership function, or the relative position of the largest convex ranges

of failure.
::::::
CEHQ

:::::
(with

::::::
quantile

::::::::
mapping

:::::::::::
downscaling

::
for

:::
the

:::::::::
2041-2070

:::::::
period),

::::
each

::::
one

::::::
divided

:::
by

::::::
5-years

:::::::
periods.

:

Concept for an iterative sampling of the LCRF. Simulations are first run for available hydr-climatic scenarios (a), then for

successive random samples of synthetic time series (b).

The LRCF method is also tried through an iterative sampling to evaluate its potential for computational parsimony. The440

convex range of failure is thus first calculated on downscaled time series, including raw ones without bias correction (Fig. 7a).

Then each iteration expands the range by sampling pre-generated synthetic time series around its boundaries, and simulating

the water system with only those. Failure points constitute the new hull for the next iteration (Fig. 7b). Not finding failure

points is the exit condition. Results
:::::
These

::::
rules

:
are compared to the LRCF calculation on the full sample

::
an

:::::::::::
instrumental

:::
set

:::
rule

::
2

:::::
which

::::::
slightly

:::::
alters

:::
the

::::::::::
anticipation

::::
and

:::::::::
emergency

::::::
release

::::::::
algorithm

::
of

:::
the

:::::::::
reservoirs.445

4 Results

3.1 Simulations

The simulation is first run with 122 of the original time series made available by the CEHQ
::::::
Québec

:::::
Water

::::::
Agency. These are the

bias-corrected rainfall / run-off simulations considered as the most reliable
::
for

:::::::::::::
scenario-driven

:::::::::
adaptation

::::
plans, corresponding

to different radiative forcing scenarios. Taken by 5 year periods (thus 610 time series), all lead to flood control reliabilities450

superior to 0.97, above any considered performance target
::::::::::
acceptability

::::::::
threshold. So both rule sets are considered successful

in all these time series.

Response surface (rule 1). Performance p : flood control reliability

Simulations are then run for the much larger , and diverse , un-gridded
::
and

:::::::
diverse sample of 4008 synthetic time series.

The performance
:
R, measured as the reliability of flood control, is evaluated for each 5-years period contained in the 4008455

simulations of 30 years (24’048 evaluations), for each of the two operation rules. The color scale represents the performance
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Logistic regression: probability of success π for crisp target 0.95

Figure 6.
:::::::
Response

::::::
surface

::::
(rule

::
1).

::::::::::
Performance

::
R

:
:
::::
flood

:::::
control

::::::::
reliability

::::::::
(reliability

:::
R

::::::
against

::::::
floods) in Fig. 8

:
6 for each 5 year time series. Describing variables are

:::
The

::::
axes

:::
are

:::
the

::::::::
stressors

::::::
x1,x2:

::
the

:::::::
average

:
annual inflow volume at Lake Saint-François as x-axis and the dispersion of daily inflows (or Gini coefficient) as

y-axis. The large sample size and lack of gridded sampling reveal the noise of the response
:
of

:::
the

:::::
daily

:::::::
inflows.

:::
The

::::::::
response

:::::
shows

:::::::::::
considerable

::::
noise, although a north-east / south-west anisotropy or gradient can be visually noticed.460

3.1 Logistic surface aggregated over fuzzy target

The logistic regression is first performed with the response surface converted into crisp binary outcomes. Success is defined

by p ≥ 0.95, failure by p < 0.95. The logistic surface provides the probability of success π at any coordinates (Fig. 9).

Depending on the risk attitude of stakeholders or decision-maker, the surface can be divided in success and failure regions for

specific probabilities of success (π-cuts, eq. 9), like 0.95 or 0.99 as shown on the figure. The approximation was done with465

the Matlabsr function mnrfit. The deviance of the fit – an expression of likelihood of the model, 0 being a perfect model – is

0.0085.

As in Kim et al.(2019) probability cuts can be contrasted with the projection of downscaled time series from GCMs on the

response surface (Fig. 10). A way to compare the two management rules, besides the relative position of their π-cuts, is the

number of projections falling out the π-cuts. For rule 1, no GCM projection – taken as 5 year portions - falls out of the 0.99470

π-cut, i. e. the space in which π(p ≥ 0.95) ≥ 0.99. For rule 2, 17 projections fall out of the 0.99 π-cut, one of them falling too

out of the 0.95 π-cut.

4
::::::
Results

Compared logistic regressions, rules 1 and 2, vs GCM hydroclimatic scenarios. Crisp target : p ≥ 0.95
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While all these downscaled time series lead to successful performances, showing reliability values above 0.97 for any rule,475

their coordinates, thus their corresponding driving variables, can still fall outside of a π-cut. With rule 2, a scenario sharing the

same properties x1, x2 - yearly inflow volume and daily inflow dispersion – with a successful GCM projection could still lead

to failure.

Compared logistic surfaces, rule 1 (a) 0.95 crisp target (b) 0.93 0.97linear fuzzy target (c) 0.93 0.97sigmoid fuzzy target

The fuzzy performance target is then integrated to the calculation. Success is not anymore a set defined with the satisfaction480

of a crisp target of 0.95 for flood reliability, but with a fuzzy target between 0.93
::
An

:::::::::::
acceptability

:::::
value

:
µ
::
is

::::
then

:::::::::
associated

::
to

::::
each

:::
dot

:::::
(time

:::::
series)

:::
in

:::
the

::::::
sample

:::::::::
depending

::
on

:::
the

:::::
value

::
of

:::::::::::
performance

::::::::::
(reliability)

::
R

::::
(Fig.

::::
7.a).

::::
The

:::::::::::
acceptability

:::::
value

:
µ
::
is

:::
the

:::::::::::
membership

::::::
degree

::
of

::
R

::
to

:::
the

:::::
fuzzy

:::
set

::
of

:::::::::
acceptable

:::::::::
outcomes,

::::
with

:
[
::::
0.93,

::
1]

::
as

:::::::
support

:::
and

:
[
::::
0.97,

::
1]

::
as

::::
core

:::
(as

::
in

:::
Fig.

:::
2).

::::
The

::::::
sample

::
of

::::::::::
simulations

::::
thus

::::
leads

:::
to

::::::::::
acceptability

::::::
values

:::::::
between

::
0 and 0.97. Reliability values above 0.97 are

considered full success, and below 0.93 full failure. In between, the membership function can be either linear or sigmoid. For485

both cases, and for both rule sets, the
:
1
::
in

::::
Fig.

:::
7a.

::
To

:::::
solve

:::
the

::::::::
problem

::
of

:::::::::
combining

::::
two

:::::::::::
uncertainties

::::
that

:::
are

::::::::
different

::
in

::::::
nature

::::::::::
(probability

::
of

:::
to

::::
meet

::
a
::::::::
threshold

:::
vs

::::::::
possibility

::::
that

:::
this

::::::::
threshold

::
is

::::::::::
acceptable),

:::
the

::::::::::
aggregated

::::::
logistic

:::::::::
regression

::::::::
presented

::
in

::::::
section

:::::
2.2.1.

::
is

:::::::::
performed

:::
for

:::
the

::::
fuzzy

:::::::::
outcomes,

::::
thus

:::::::::
proposing

:
a
::::::::::
continuous

:::::::
mapping

:::
for

::
a
::::
case

:::::
where

:::
the

:::::::::
outcomes

:::
are

:::
not

::::::::
available

::
as

::::::
binary

:::::::::
categories.

:::
The

:
logistic regression is performed 10 times for 10 α-cuts corresponding to a uniform sampling of α-levels(see section 2.2.1.490

). .
:
The aggregated logistic regression at every coordinate is the average of the 10 logistic regressions, each one considering

a single α-cut as the crisp set over p that defines successful outcomes. Figure 11 compares the crisp logistic regression and

the aggregations over linear and sigmoid fuzzy targets. The averaging effect can be noted in the wider transition zone, which

becomes steeper at its center when applying a sigmoid fuzzy target.
:
R

::::
that

::::::
defines

:::::::::
acceptable

::::::::
outcomes.

:

Both rule sets can be compared through their aggregated possibility (
:
It
:::::::
provides

::
at
::::
each

:::::::::
coordinate

::
of

:::
the

::::::::
exposure

:::::
space

:::
(or495

::::
state

::
of

:::
the

::::::
world)

:
a
:::::::::
possibility

:::::
value

:
Π ) cuts, e.g. at 0.95 and 0.99 (fig 12) . With rule 1 applied, zero GCM projections fall

outside of the 0.95 possibility cut, and 8 fall out of the 0.99 cut. With rule 2, 6 projections fall out of the 0.95 cut, and 46 out

of the 0.99 cut.

compared possibility cuts (Π-cuts, rules 1 and 2) vs GCM hydro-climatic projections, sigmoid fuzzy target

4.1 Bivariate surface approximation500

The second method consists in computing analytical functions, one for each rule, to fit the available sample, in this case with a

bivariate quadratic approximation
:
of

:::
the

::::::::
outcome

:::::::::
(reliability

::::::
against

::::::
floods)

:::::
being

:::::::
deemed

::
as

:::::::::
acceptable

:::::
given

:::
the

:::::::::
realization

::
of

:::
the

::::
state

::
of

:::
the

::::::
world.

::::
This

::
–

:::::::::
conditional

::
–

:::::::::
possibility

:::::::
measure

::::::::
expresses

::::
both

:::
the

:::::::::
ambiguity

::
of

:::
the

:::::::::::
acceptability

::::::::
criterion,

:::
and

:::
the

:::::::::
probability

::
of

:::
an

:::::::::
acceptable

:::::::
outcome

::
at

:::
any

:::::::
location

:::
on

:::
the

:::::::
response

:::::::
surface.

:::
The

:::::::
surface

:::
can

::
be

:::::::
divided

::
in

:::::::::
acceptable

:::
and

:::::::::::
unacceptable

::::::
regions

:
(Fig. 13) . The resulting error R = 0.03 (selected here as the 95% quantile in the error distribution)is505

used to modify the membership function µ of the success fuzzy set Aµ, with a moving average with 2R-sized window (section

2.2.2. )
:
7)

:::::
based

:::
on

:::
any

:::::::
desired

::::
level

::
of

:::::::::
possibility

::::::
(Π-cut).
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Figure 7. quadratic approximation
::::::::::
Acceptability

:
of the response surface.

::::::
sampled

::::::::
outcomes

:::
and

::::::
logistic

::::::::
regressions

:::
(a)

::::
Fuzzy

::::::::
outcomes

:::
and

::::::::
possibility

:
of
::::::::

acceptable
::::::::::

performance
::
Π

::
(b)

::::::
Binary

:::::::
outcomes

:::
and

:::::::::
probability

:
of
:::::::::

acceptable
:::::::::
performance

::
π

::
As

::
a
::::::::::::
counterfactual,

:::
we

::::
also

::::::::
compute

:
a
:::

an
:::::::::
alternative

::::::
where

:::
the

::::::::
ambiguity

:::
of

:::
the

::::::::
threshold

::
is

:::::::
ignored

::::
with

:::
the

::::::::
response

::::::
surface

::::::::
converted

::::
into

:::::
binary

::::::::
outcomes

::
–

::::::::
acceptable

:::
or

::::::::::
unacceptable

:::::::::
frequency

::
of

:::::::
flooding

:
–
:::::
based

:::
on

:
a
:::::::
median

::::
crisp

::::::::
threshold

::
of

::::
0.95

::::
(Fig.

::::
7b).

::
A

::::::
simple

::::::
logistic

:::::::::
regression

::
is

:::::::::
performed

::
for

:::
the

::::::::::::
counterfactual

::::::
binary

:::::::::
outcomes,

::::::
leading

::
to

::
a

:::::::::
probability

::
π510

::
of

:::::::::
acceptable

:::::::
outcome.

:

With an explicit, deterministic function and a modified membership function µR, the membership degree to the fuzzy set AµR

allows to map success (white, membership degree 1) and failure (black, membership degree 0) sub-spaces with a continuous

transition (Fig. 14a).
:::
The

::::::::::::
approximation

::::
was

::::
done

::::
with

:::
the

::::::::
Matlabsr

:::::::
function

:::::
mnrfit

:
.
:::
The

:::::::::
McFadden

:::::::
pseudo

::
R2

:::
of

::
the

:::::::
median

:::::::
threshold

:::::::
logistic

:::::::::
regression

:
is
:::::::
0.7531.

::::
The

::::::
relation

:::::::
between

::::::::::
explanatory

::::::::
variables

::
is

::::
kept

:::::
linear,

::
as
::::::::::

introducing
:::
an

:::::::::
interaction515

::::
term

::::
only

::::::::
increased

:::
the

::::::
pseudo

:::
R2

::
to

::::::
0.7562.

:

GCM time series , again, while by themselves showing fully accepted performances (membership degree equal to 1), are

partially located in the 9th decile of the response surface .

Comparison between operation rules seems however less conclusive in this case
:::::
Π-cuts

:::::::::
producing

:::::::
frontiers

:::::::
between

:::::::::::
acceptability

::::::
regions

:::
can

:::
be

::::::::
contrasted

:::::
with

:::
the

:::::::
mapping

::
of

:::::
time

:::::
series

::::
from

:::::
GCM

::::::::::
projections

::
on

:::
the

::::::::
response

::::::
surface

:
(Fig. 14b), at least520

around the GCM-based projections. No projection falls out of the 0.95 Π-cut
::
8). 4 projections fail to meet the 0.99 Π-cut for

rule 1, 6 for rule 2 (rule 1 thus being slightly better). For rule 1, 44 projections do not reach an aggregated membership of 1,

40 for rule 2, swapping positions in this case. It can be noted that, while both rules are similar in the vicinity of GCM-based

projections, rule 1 performs better in the low inflow, high dispersion zone, and rule 2 in the high inflow, low dispersion. The

20



Figure 8. Possibilistic surface, quadratic approximation
::::::
Logistic

::::::::
regressions

:::
and

:::::
GCM

::::::::
projections (a) Π-cuts, rule 1

::
for

:::::
fuzzy

:::::::
outcomes

:
(b)

compared Π-cuts vs GCM hydro-climatic projections
::

for
:::::
binary

:::::::
outcomes

method allows however for a non-linear relation between
:::::
While

:::
all

:::::
these

::::::::::
downscaled

::::
time

::::::
series

::::
lead

::
to

:::::
fully

:::::::::
acceptable525

:::::::::::
performances,

::::::::
showing

::::::::
reliability

:::::
values

::::::
above

::::
0.97,

::::
their

::::::::::
coordinates,

::::
thus

::::
their

::::::::::::
corresponding

::::
state

::
of

:::
the

::::::
world,

:::
can

::::
still

:::
fall

:::::
below

:
a
::::::
Π-cut.

::::
This

:
is
:::::::
because

:::
for

:::
any

::
of

:::::
these

::::::::::
projections,

:::
the

::::::::
evaluated

:::::::
sequence

::
is
::::
one

::::::::
realization

:::
of

::::
those

:::::::::
conditions x1, x2variables and

performance, as opposed to .
:::::::::
Assuming the logistic regression . Dispersion has a varying effect on performance depending on

total inflow, with an increasing slope as yearly inflow grows
:::::
model

::
is

::::::::
accurate,

::::
with

:::::::::
possibility

::::
1-Π,

:::::::::
alternative

::::::::::
realizations

::
of530

::::
those

:::::::::
conditions

::::
may

:::
not

::
be

::::
seen

::
as

::::::::::
satisfactory.

::
A

:::::::
scenario

:::::::
sharing

::
the

:::::
same

::::::::
properties

:::
x1,

:::
x2 :

-
:::::
yearly

::::::
inflow

::::::
volume

:::
and

:::::
daily

:::::
inflow

:::::::::
dispersion

:
–
::::
with

::
a
::::::::::
satisfactory

:::::
GCM

::::::::
projection

:::::
could

::::
still

::::
lead

::
to

:::::::::::
unacceptable

::::::::
frequency

::
of
::::::::

flooding
:
if
:::
its

:::::::::
possibility

::
of

:::::::::
acceptable

:::::::
outcome

::
Π

::
is

:::::
below

:::
the

:::::::::
acceptable

::::
level.

4.1 Largest convex range of failure (LCRF)

The third approach to identify accepted and rejected sub-spaces for each management rule is the comparison of respective535

convex hulls, each hull representing a possibility sub-space of success/failure of the system respective to flood reliability. It

heavily relies on outliers and thus represents an upper possibility bound, here called the maximum convex range of success or

failure (LCRF). It answers the question “where can the system possibly fail or succeed” given a sample of points. Figure 15a

shows the maximum range of success (dashed line) for both rule 1 (blue)and rule 2 (red) , that includes all values with flood

reliability superior or equal to
:::::::::::
Respectively,

:::
the

:::::
binary

::::::::::::
counterfactual

::::::
model

::::
(Fig.

::::
8b),

:::::::
provides

:
a
::::::
degree

::
of

::::::::::
probability

:
π
::
of

:::
an540
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::::::::::
unacceptable

::::::::
outcome

:::
for

:::
the

:::::
same

::::
state

::
of

:
the acceptability threshold, 0.95, here considered as a crisp value. The solid line

hulls represent the maximum range of failure, containing all values with flood reliability inferior to 0.95. The overlap between

maximum ranges is a transition zone. With
:::::
world,

:::
as

::
in

:::
the

:::::::
previous

:::::::
studies

:::::
using

:::
the

::::::
logistic

::::::::::
regression.

:::
Fig

::
8.

:::::::::
illustrates

::
the

:::::::::::::
straightforward

:::::::::
difference

:::::::
between

::::::::
adapting

::
to

:::
the

:::::::::
ambiguity

::
of

:::
the

:::::::::::
acceptability

:::::::
criterion

:::::
(Fig.

:::
8a)

:::
and

::::::::
ignoring

:
it
:::::
(Fig.

:::
8b).

:::
For

::::
any

:::::
given

::::
state

::
of

:::
the

:::::
world

:::::::::::
(coordinate)

:::
x1,

:::
x2,

:::
the

:::::::::
aggregated

::::::
logistic

:::::::::
regression

:::
not

::::
only

::::::::
considers

:::
the

::::::::::
probability545

::
of

:
a
:::::::::
realization

:::::::
leading

::
to

:
a
::::::
certain

:::::::::::
performance,

:::
but

::::
also

:::
the

:::::::::
possibility

::::
that

::::
such

:::::::::::
performance,

:::
the

:::::::::
reliability

::::::
against

::::::
floods,

:::::
would

::
be

::::::::::
considered

::
an

:::::::::
acceptable

::::::::
outcome.

:::::::::
Accepting

:
a
:::::
fuzzy

:::::::::::
acceptability

:::::::
criterion

::::
thus

:::::::::::
mechanically

:::::::
widens

:::
the

:::::
range

::
of

::
the

::::::::::
continuous

::::::::
transition

:::::::
resulting

:::::
from

::
the

:::::::
logistic

::::::::::
regressions.

::
A

::::
state

::
of

:::
the

:::::
world

::::
with a similar range of failure and a larger

range of success, the rule set 2 (red) would this time be considered as superior to the rule set 1.
:::::
100%

:::::::::
probability

::
of

:::::::
meeting

::
a

::::
0.95

::::::::
reliability

::::::::
threshold

:::::
might

:::
still

:::::
have

:
a
:::::::::
possibility

::
of

:::
this

::::::::
threshold

:::
not

:::::
being

:::::::
actually

:::::::
accepted.

:
550

Compared largest convex ranges of success (LCRS) and failure (LCRF) vs GCM hydro-climatic projections (a) for crisp

target 0.95 (b) for fuzzy target 0.93 0.97.

In Fig. 15b, sub-spaces are defined with a fuzzy performance target, with a +/- 0.02 tolerance and bounds defined as 0.93,

0.97in section 2.1.2. The largest range of success now accepts candidate values that are partially accepted (partial successes,

p ≥ 0.93) , so it considers success as the largest α-cut of Aµ. The shape of
::::
Such

::::::::::
differences

:::
are

::::
more

:::::::::
noticeable

::
in

::::
this

::::
case555

::::
study

:::::
when

:::::
using

:::::
GCM

::::::::::
projections

::
as

::::::
ex-post

:::::::
weights.

:::::
With

:
a
:::::
fuzzy

::::::
target,

::
46

::::::::::
projections

::::::
(6.3%)

:::
fall

:::
out

::
of

:
the membership

function has no influence here. Respectively the largest convex range of failure considers as success the smallest α-cut of Aµ,

it now accepts candidate values considered as partial failures of the system (p<0.97)
:::
0.99

::::::
Π-cut,

:::
i.e.

:::
the

::::::::
sub-space

::::::
where

:::
the

::::::::
possibility

::
of
:::::::::
acceptable

::::::::
outcome

::
is

::
at

::::
least

::::
0.99.

::::
Said

:::::::::
otherwise,

::::
there

::
is
::
a

::::::::
possibility

:::
of

:
at
:::::
least

::::
0.01

:::
that

:
a
:::::::::
realization

:::::::
leading

::
to

:::
the

::::
same

:::::
state

::
of

:::
the

:::::
world

:::::::::::
(coordinates)

::::::
would

:::::::
produce

::
an

::::::::
flooding

::::::
pattern

:::::::::
considered

::
as

::::::::::::
unacceptable,

:::::::::
according

::
to

:::
the560

:::::::::
aggregated

::::::
logistic

::::::::::
regression.

::::
With

::
a
::::
crisp

:::::::::::::
simplification,

::::
thus

::::
with

::::
less

::::::::::
information,

:::
17

:::::::::
projections

:::::::
(2.3%)

:::
fall

:::
out

:::
of

:::
the

::::
0.99

::::
π-cut.

::::
There

::
is
::
a
:::::::::
probability

::
of

::
at
:::::

least
::::
0.01

::::
that

:
a
:::::::::
realization

:::::::
leading

::
to

:::
the

:::::
same

::::
state

::
of

:::
the

::::::
world

:::::
would

:::::::
produce

:::
an

::::::::::
unacceptable

::::::::
outcome.

:

Figure 15 also highlights (black dots)
::::
These

::::::::
frontiers

::
are

:::::::
specific

::
to

:
a
::::::::
reservoir

::::::::
operation

::::
rule.

:::::
When

:::::
using

:
a
::::::::
stress-test

::::
with

::
a

:::::::
response

:::::::
surface,

:::::::::
alternative

::::
rules

:::
are

::::::::
compared

:::::
based

:::
on

::
the

:::::::
relative

:::::::
position

::
of the position of the downscaled, bias-corrected565

hydro-climatic scenarios based on GCM projections. Again in this case, even if none of such time series is considered as

even partial failure (flood reliability p>0.97 for all of them), with a fuzzy definition of target performance some of these time

series can fall within a maximum range of failure
:::::::
frontiers

:::::::
between

:::::::::
acceptable

:::
and

:::::::::::
unacceptable

:::::::
regions.

::::
Two

::
of

:::::
them

:::
are

::::
here

::::::::
compared:

:::
an

::::::::::::
approximation

::
of

::::::
current

::::::::
reservoir

:::::::::
operations

::::
(rule

::
1)

:::
and

:::
an

:::::::::
alternative,

:::::::::::
instrumental

::
set

::
of

:::::
rules

::::
(rule

:::
2).

:::
Fig.

::
9

::::::::
compares

:::
the

:::
two

:::::
rules

:::::
based

::
on

:::::::
selected

::::::
Π-cuts

::::
(Fig.

::::
9a).

::::
The

::::::::::::
counterfactual

:::::::::
calculation

::::
with

::::::
binary

::::::::
outcomes

:::
and

::::::
π-cuts

::
is570

:::
also

::::::::
provided

::::
(Fig.

:::
9b).

Figure 15b shows a varying relative performance of both rules depending
:::
Fig.

:
9
::::::
shows

:
a
::::::::

situation
:::::::
partially

::::::
similar

:::
to

:::
the

::::::::
theoretical

::::::::
situation

::
of

::::
Fig.

::
2,

::::::
where

:::
the

::::::
relative

:::::::::
advantage

:::
of

::::
each

::::
rule

:::::::
depends on the location in

::
on the exposure space .

Rule 1 has a larger maximum range of success. Maximum ranges of failure for both rule sets sometimes switch their relative

position: rule
:::
and

:::
the

::::::::
preferred

::::
level

::
of

:::::::::
possibility.

::::
With

::
a

:::::
fuzzy

::::::::::
acceptability

:::::::
criterion

:::::
(Fig.

:::
9a),

::::
rule 2 usually performs worse,575
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but not systematically. Here again the GCM projections allow for an additional weighting, pointing at the priority region to

analyze. In this case rule 1 shows a better performance in the vicinity of climate projections. 60 segments of climate projections

out of 610 (9.8%)fall within the maximum space of failure with rule
::
is

::::::::
preferred

::
to

::::
rule

:
1
:::
for

::::
high

:::::::::
possibility

:::
of

:::::::::
acceptable

:::::::
outcome

::::
(Π≥

:::::
0.95),

:::::::
because

:::
the

::::::
region

::::::
defined

::
by

::::
this

::::::
frontier

:::
for

::::
rule 2 while it is only the case for 12 of them with rule 1 (

::
is

:::::
larger

::::
than

::
for

::::
rule

::
1.

::
It

:::::
means

::::
that

:::
rule

:
2 %) .

::::
leads

::
to

:::::::::
acceptable

::::::::
outcomes

::
in
::
a
:::::
larger

:::::
range

::
of

:::::
states

::
of

:::
the

:::::
world

::::
than

::::
rule

::
1.580

::::::::
However,

:::
for

:::
low

::::::::::
possibilities

::
of

:::::::::
acceptable

::::::::
outcome

::::::
(below

:::::
0.05),

:::
the

::::::::::
comparison

:::::::
depends

:::
on

:::
the

:::::::
stressors

:::
x1,

:::
x2.

::::
Rule

::
2
::
is

:::::::
preferred

:::
for

::::
very

::::
high

:::::
daily

:::::
inflow

:::::::::
dispersion

:::
(or

::::
Gini

::::::::::
coefficient,

:
y
::::
axis)

::::
but

::::::::
moderate

:::::
yearly

::::::
inflow

::
(x

:::::
axis),

:::::
while

:::
rule

::
1
::
is

:::::::
preferred

:::
for

::::
low

::::::::
dispersion

::::
and

::::
very

::::
high

:::::
yearly

:::::::
inflows

:::::
(again

::::::::
assuming

:::
the

:::::::
logistic

::::::::
regression

::::::
model

::
is

::::::::
accurate).

Given that a limited number of outliers define the maximum ranges, an ex-post sampling algorithm is tested to see if the

number of simulations can be reduced and reach similar results. Only the range of failure is tried here. Starting from the585

original 3006 time series from 501 available run-off simulations (including those based on raw downscaled rainfall models

without bias correction), the convex range of failure is calculated then “stretched” by iterative sampling. At each iteration, a

new random sample of 1000 synthetic time series is selected within a normalized radius of 0.5 from both the previous hull

and the bias-corrected scenarios. New failure points are added to the previous set of failures and constitute the new range

of failure, other points are discarded. The number of bias-corrected scenarios included in the final hull is an evaluation of590

the quality of the algorithm; the closer to the result obtained with the full sample of synthetic time series the better.
:::::
Using

::
a

:::::::::::
counterfactual

::::
with

::::::
binary

::::::::
outcomes

::::
(Fig

:::
9b),

::::
and

:::
thus

:::::::
frontiers

:::::::
defined

::::
only

::
by

:::::::::::
probabilities,

:::::::
modifies

:::
the

:::::
above

::::::
results.

::::::
While

:::
rule

::
2

::::::
remains

:::::::::
preferable

:::
for

::::
high

::::::::::
probabilities

:::
of

:::::::::
acceptable

::::::::
outcomes,

::
it

:::::::
becomes

::::::
worse

::::
than

:::
rule

::
1

:::
for

:::
low

::::::::::::::
probability-cuts,

:::
this

::::
time

::::::::::::
independently

::
of

:::
the

:::::::
location

::
on

:::
the

::::::::
exposure

:::::
space.

:

Iterative sampling of the LCRF, rule 1.595

Figure 16 shows an example of how the range of failure grows at each iteration with rule 1. Three iterations are enough in

this caseto reach 11 GCM scenarios within the range of failure. It is the same number as obtained with the full sample (Fig.

15b) so it is the best possible result for the algorithm. The number of required 5-year simulations of the water system is 6006,

3006 for the first guess plus 3000 from the iterations, compared to
::
If

:::
the

:::::::::::::
decision-makers

::::::
choose

:::
to

:::
use

:::::
GCM

:::::::::
projections

:::
as

::::::
ex-post

:::::::
weights,

:::
the

:::::::::
preference

::::
order

:::
for

::::
low

::::::::
possibility

:::::
levels

::::::::
becomes

:::
less

:::::::::
important.

:
It
:::::::
narrows

:::
the

::::::::
relevance

::
of

:::
the

::::::::
exposure600

::::
space

::
to
:::
the

:::::::
vicinity

::
of

:
the 24048 from the full synthetic sample. Figure 17 shows a sensitivity analysis with 100 runs for both

rules. While a majority of runs reach a number of GCM scenarios within failure range that is close to the full sample (10-11 for

rule 1
:::::::::
projections,

::::
thus

::
to

::::
high

::::::::::
possibilities

::
of

:::::::::
acceptable

:::::::::
outcomes.

::
In

:::
this

::::
case, 59-60

:
8
::::::::
scenarios

:
for rule

:
2
::::::
(1.1%)

:::
fall

::::::
below

::
the

:::::
0.99

:::::
Π-cut

::::::::
(meaning

:::::
other

::::::::::
realizations

::::
have

:
a
::::
0.01

:::::::::
possibility

:::
of

:::::::::::
unacceptable

::::::::
outcome),

:::::::
against

::
46

::::::::
scenarios

:::
for

::::
rule

::
1

::::::
(6.3%).

::::::
Again,

::
all

:::::::::::
GCM-based

:::::::
scenario

::::
lead

::
to

::::
fully

:::::::::
acceptable

::::::::
outcomes

::::
(R≥

::::::
0.97).

::::
Rule 2 ), a considerable number of runs605

falls short, although still far from switching performance between the two rules. Numbers on top of columns show the range

of required iterations, between 3 and 9 overall. The iterative process can thus divide the overall simulation time by 2 to 4.

Sensitivity test of the iterative LCRF: normalized search radius 0.05, 1000 simulations by iteration. Numbers on columns

give the range of required iterations. (a) rule 1 (b) rule 2.
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Figure 9. Logistic possibility cuts
::::::::
Compared

::::::
logistic

::::::::
regressions, sigmoid fuzzy target vs LCRF

:::
rules

::
1
:::
and

::
2,

:::
and

::::
GCM

:::::::::
projections. (a) rule

1
::
for

:::::
fuzzy

:::::::
outcomes

:
(b) rule 2.

::
for

:::::
binary

:::::::
outcomes

:

Finally, Fig. 18 combines the largest convex ranges of failure with the fuzzy logistic surfaces. As the logistic regression is610

itself a sigmoid approximation that cannot take values of 0 or 1,
:::::
would

::::
then

::
be

::::::::
preferred

::
to

::::
rule

::
1,

:::
but

:::::
there

:::::
would

::::
still

::
be

::
a

::::::::
possibility

:::
of

:::::::::::
unacceptable

:::::::
outcome

:::::::
superior

::
to
::::
0.01

:::::
with

:::
this

::::
rule,

:::
for

:::
the

:::::
same

:::::
states

::
of

:
the LCRF can be a complement to

remind the actual position of the point of failure that is
:::::
world

:::::::::::
(coordinates

:::
x1,

:::
x2)

:::::::
sampled

:::
by

:
the farthest on the gradient

line. An empirical distribution projected on the gradient line of the logistic regression would reach a value of 1 at that

point
::::::::::
GCM-based

::::::::
scenarios.

:
615

:::::
Using

::::
only

::::::
binary

:::::::::
outcomes,

:::
thus

:::::
only

::::::::::::::
probability-based

::::::::
frontiers,

::::::::
produces

::
a

::::::
slightly

::::::::
different

:::::
result.

:::::
Rule

:
2
::

is
::::
not

::::
only

:::::::
preferred

:::
in

:::
the

::::::
vicinity

:::
of

:::
the

:::::
GCM

::::::::::
projections,

:::
but

::::
also

:::
no

::::
such

:::::::::
projection

::::
falls

:::::
below

::::
the

::::
0.99

:::::
π-cut.

::::
The

:::::::::
probability

:::
of

::::::::::
unacceptable

::::::::
outcome

::
is

:::
thus

::::
less

::::
than

::::
0.01

::
at

:::
the

::::::
vicinity

::
of

::::
any

:::::
GCM

:::::::::
projection.

:::::
Based

:::
on

::::
such

::::::::::
projections,

:::
rule

::
2
:::::
would

:::
be

::::::
adopted

::::
with

::::
less

::::::::::
reservations

::::
with

:
a
::::::
binary

::::::
model

:::
than

:::::
with

:
a
:::::
fuzzy

:::::
model.

5 Discussion620

By itself, the
:
a stress-test approach is

:::
can

::
be

::::
seen

:::
as a departure from a probabilistic framework towards a possibilistic one.

It asks what situations lead to a system failure
:::
The

:::::::::
stress-test

::
of

:
a
:::::
water

:::::::
system,

:::::::
through

:
a
::::::::
response

::::::
surface,

::::
asks

::::::
which

:::::
states

::
of

:::
the

:::::
world

:::::
could

:::::::
possibly

::::
lead

::
to
:::

an
:::::::::::
unacceptable

::::::::
outcome, instead of evaluating the system for the most probable future.
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Since response surfaces are not deterministic, further information of irreducible uncertainty must be incorporated through e.g.

the use of logistic regression (Kim et al., 2019).
::::::::::
performance

::::
with

:
a
:::::
given

::::::::::
probability.625

In this paper, we further consider that the threshold employed to define success might be itself
::::::::
acceptable

::::::::
outcomes

::::::
might

::
be ambiguous or contentious. The fuzzy or possibilistic framework (Zadeh 1965, 1978; Dubois and Prade, 1988), often used in

decision-making analysis
:
, provides the analytical tools to incorporate an uncertainty that is not probabilisticin nature, the am-

biguity of a decision target
::::::::
threshold, within the

::::::::::
increasingly popular stress-test toolthat itself seeks to depart from probabilistic

approaches.630

Applying a fuzzy target
::::::::
threshold would be straightforward for a deterministic response surface, each performance value on

the exposure space being mapped to a degree of success
::::::::::
acceptability

:
between 0 and 1. This study explores how to combine

::::
solve

:::
the

:::::::
problem

::
of
::::::::::
combining a fuzzy definition of success or failure

::::::::::
acceptability

:
with the remaining hydro-climatic uncer-

tainty of the response surface , and compares different methods and interpretations.

As a first option, the
::::
itself.

::::
The

::::
two

::::::
sources

:::
of

:::::::::
uncertainty

:::
are

::::::::
different

::
in

::::::
nature:

::::
one

::::::
applies

::
to
::::

the
::::::::::
performance

:::
of

:::
the635

::::::
system,

:::
the

:::::
other

::
to

:::
the

:::::::::::
qualification

::
of

:::
this

:::::::::::
performance

::
as

:::::::::
acceptable

:::
or

:::
not.

:::
To

:::::::
integrate

:::::
them

::
in

::
a

::::
same

::::::::
response

:::::::
surface,

::
the

::::::::::::
methodology

:::::
relies

::
on

::::
the

:::::::
concept

::
of

:::::::::
alpha-cuts

::
to

:::::::
produce

:::
an aggregated logistic regression measures within a single

possibility value the probabilistic information of the regressions and the fuzzy definition of the performance target. The shape

of the membership function also affects how the α-cuts are sampled, thus allowing for different interpretations of ambiguity

and decision theories. A linear membership function translates a form of neutrality towards marginal gains or losses within the640

fuzzy boundary. A sigmoid shape gives more weight to the median α-cut , corresponding to a degree of success of 0.5, and

diminishing marginal improvement or loss the further the α-cut is from the median, which can be thought as based on prospect

theory (Kahneman and Tversky, 1979). The relative performance of the compared rules, however, is not here altered by the

inclusion of the fuzzy target, so the resulting decision is not affected. It still might be
::::
from

::
a

::::::::::
membership

::::::::
function.

:::
The

::::
case

::::::
study

::
of

:::
the

::::::
Upper

:::::::::::::
Saint-François

::::::::
reservoir

::::::
system

:::::::::
illustrates

:::
the

::::::::::::::
implementation

::
of

:::
the

::::::::::
aggregated

:::::::
logistic645

::::::::
regression

::::
and

:
the case when the response surfaces have different slopes and gradient directions depending on the tested

alternative
:::::::::
conceptual

:::::::::
framework

::::::
behind

::
it.

::::
Just

:::
like

:::
for

:::::::
previous

::::
uses

::
of

:::::::
logistic

:::::::::
regression,

::
in

:::
the

::::::
present

::::::
method

:::
the

::::::::
response

::::::
surface

::::
does

:::
not

::::
show

::
a

:::::
single

::::::
frontier

::::
that

::::::
divides

:::
the

:::::::
exposure

:::::
space

:::::::
between

:::::::::
acceptable

:::
and

:::::::::::
unacceptable

:::::::
flooding

:::::::::
outcomes,

:::
but

:::::
rather

::
a

:::::::::
parametric

:::::::
frontier

:::::::::
depending,

::
in
::::

this
:::::
case,

::
on

::
a
:::::::
desired

::::
level

::
of
::::::::::

possibility.
::::::
While

:::::::::
possibility

:::
and

::::::::::
probability

:::::
levels

::::::
cannot

::
be

:::::::
directly

:::::::::
compared

:::
(the

::::
first

:::::::::
comprises

:::
the

::::::
latter),

:::::
their

::::::::
difference

::
is
:::::::::

illustrated
:::
by

:::
the

:::::
wider

::::::
spread

:::
of

:::
the650

::::::::
transition

::::
zone

::
in

:::
the

::::::::
response

:::::::
function.

:::::
This

:::::
wider

::::::
spread

:
is
:::

to
::
be

::::::::
expected

::
as

:::::
more

::::::
sources

:::
of

::::::::
ambiguity

:::
are

::::::::::
considered

::
in

::
the

:::::::::::
possibilistic

::::::::
approach,

:::
and

::
a

::::::::::
consequence

::::
can

::
be

:::
that

::::::
GCM

:::::::::
projections

::::
may

:::
fall

:::::
below

:::
an

::::::::::
acceptability

:::::::
frontier

:::::
when

::::
they

::
do

:::
not

:::
for

:
a
:::::::::::
probabilistic

::::::
logistic

:::::::::
regression.

The analytic approximation by a quadratic function similarly proposes a continuous measure of possibility over the exposure

space, but has the advantage of identifying non-linearity between describing variables, which the logistic regression cannot.655

Possible drawback are that , while the logistic regression considers equally all results that fall out of
:::::::
Although

:::
the

:::::
main

::::
goal

::
of

:::
this

:::::
study

::
is

::
to

:::::::
propose

:
a
:::::::
practical

:::::::::
adaptation

::
to

::
a
:::::::::::::::
stakeholder-driven

:::::::::
constraint

:::
(the

:::::::
absence

::
of

::
a

::::
clear

:::::::::
threshold),

::::::
results

::::
also

::::::
explore

:::
the

:::::
effect

::::
that

::::::::
threshold

:::::::::
ambiguity

:::
can

::::
have

:::
on

::::
final

:::::::::
decisions.

:::::::::
Compared

::::::::
response

:::::::
surfaces

:::::
show

:::
that

::::::::
ignoring

:::
the
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::::::::
ambiguity

::
of

::
a
:::::::
criterion

:::
can

::::
alter

:::
the

::::::::::
comparison

:::::::
between

:::::::
options,

:::::
either

:::::
based

:::
on

:::
the

::::
size

::
of

:::::::::
acceptable

:::::::
domains

::
or

:::::
based

:::
on

::
the

:::::::
position

::
of

:::::
GCM

::::::::::
projections

::
in

:::
the

:::::::
response

:::::::
surface.

:::::
While

:::::::
applying

::::::::::
specifically

:::
for

:
a
:::::
fuzzy

::::::::
approach

::::
with

::::::
varying

:::::::
degrees660

::
of

:::::::::::
acceptability,

:::
this

::::
type

::
of

:::::
result

::
is

::::::::::
comparable

::
to

:::::
more

::::::
general

:::::::::
sensitivity

::::::
studies

::::
over

:::::
binary

:::::::::
thresholds

::
as

::
in
::::::::::::
Hadjimichael

:
et
:::
al.

::::::
(2020).

::::
Not

:::::::::
accounting

:::
for the fuzzy target, extreme performance values here shape the fitted surface and might have an

influence that they do not have in the decision process. And of course, the sample might be unadapted to any fitting attempt.

As for comparing options, the method remains less conclusive, in the vicinity of GCM projections both rules cannot be easily

sorted out. Importantly, it confirms however the possibility of diverging slopes and directions, as the preference between the665

two rules can switch
:::::::
criterion

::::::::
ambiguity

::::
may

::::
thus

::::
lead,

:::
in

::::
some

:::::
cases

:::
and

:::
for

:::::
some

::::::
actors,

::
to

:::::
worse

::::::::
perceived

::::::
floods

::::
with

:::
the

::::::
selected

::::::
option

::::
than

::::
with

:::
the

::::::::
discarded

::::::
option.

:

::::::
Results

:::::
show

:::
that

:::
the

:::::::::
preference

:::::::
between

::::::
options

::::
can

::::::
change depending on the position in the exposure space, and therefore

that considering fuzzy targets could very well alter the preference between rules. Varying preference depending on the exposure

space is also a case for adaptive management.670

The largest convex ranges of success or failure provide an upper possibility bound and thus easily integrate the fuzzy target

by either maximizing or minimizing the α-cut of the fuzzy set of success. The shape of the membership function has no

impact here, only its bounds. An advantage of the method is its consistency: if the whole philosophy of a stress test is asking

where the system can possibly fail, then it is good to look and to prepare for the least probable cases of failure, those in a

region where success is almost guaranteed
::::::::
possibility

::::
level

:::
(a

::::::
feature

:::
that

::::
that

:::
may

::::
also

:::
be

:::::
found

:::
the

::::::::::::::
probabilistic-only

:::::::
logistic675

::::::::::
regressions).

::::::
When

:
it
::::::::

happens,
::::::::

selecting
:::
the

::::::::::
appropriate

:::::
level

::
is

::::::
highly

:::::::::::
consequential

::::
and

:::::::
depends

:::
on

:::
the

::::::::
involved

::::::
actors.

:::::::
Previous

::::::
studies

:::::
have

:::::
linked

::::
this

::::::
choice

::
to

:::::::
degrees

::
of

::::
risk

:::::::
aversion

:::::::
(Quinn

::
et

:::
al.,

::::::
2018).

::
In

:::
the

:::::::
present

::::
case,

:::
the

::::::
choice

:::
of

::
the

:::::
right

:::::::::
possibility

::::
level

::::
also

:::::::
depends

:::
on

:::
the

:::::::::::
qualification

::
of

::::
what

::::::
degree

:::
of

::::::::::
performance

::
is
::::::::::
acceptable.

::::
The

::::::::
ambiguity

::::
can

::::::::
expresses

:::
that

:::::
some

:::::
might

::::::::
consider

::::
0.93

::
as

:::::::::
acceptable,

:::::
while

::::::
others

:::::
would

::::
only

:::::
settle

:::
for

:::::
0.97.

:::
The

::::::::
trade-off

::
is

::::
thus

:::::::
between

:::::::
selecting

:::
the

:::::
most

:::::
robust

::::
rule

:::
for

:::::::
different

:::::::
degrees

::
of

::::::::::::
performance.

:::::::::
Analogous

::
to

::::
risk

:::::::
aversion,

::::
this

::::::::
trade-off

:::
can

::::::
instead

:::
be680

:::::
linked

::
to

::::
loss

:::::::
aversion

:::
as

:::::::::
developed

::
by

::::::::::
Kahneman

:::
and

:::::::
Tversky

::::::
(1979)

:::
in

:::::::
prospect

::::::
theory.

::::::
While

:::
this

:::::
study

:::::::
focuses

:::
on

:::
the

:::::::
practical

:::::::::
integration

::
of

:::::::::
ambiguity

::
as

::
a

::::::::
real-world

:::::::::
constraint,

::::::
further

:::::::::
theoretical

::::::::
research

:::::
should

:::::
focus

:::
on

::::::
linking

::::
risk

:::
and

::::
loss

:::::::
attitudes

::
to

::::::::::::
hydro-climatic

::::::::
response

::::::::
functions.

However,
:::
The

::::
loss

:::::::
aversion

::::::::
function

:::::
would

:::
be

:
a
::::::
useful

:::::::
concept

::
to

:::::
shape

:::
the

::::::::::
membership

::::::::
function,

::::::
which

::::::
affects

::::
how

:::
the

:::::
α-cuts

:::
are

::::::::
sampled,

:::
and

::::
thus

:::
the

:::::::
position

::
of

::::::::::
boundaries

:::::::
between

::::::
regions

::
in

:::
the

::::::::
response

::::::
surface.

::::::
When

::::::::::
maximizing

:::
the

:::::
range685

::
of

:::::
states

::
of

:
the convex hulls are obviously highly reliant on the generation of synthetic scenarios, which has its intrinsic

randomness. The largest convex range of failure focuses on a very limited number of vertices as hydro-climatic situations of

interest, the least probable, but still possible, configurations of failure; but this limited set also entails a strong sensitivity to

a specific realization, with a specific generator. More generally, the impact of the choice of synthetic generator is a growing

concern (Nazemi
::::
world

::::
that

:::::
meet

:
a
:::::::::::

performance
::::::::

criterion,
::::::::

selecting
::::::

either
:
a
::::::

higher
::::::::
threshold

:::
or

:
a
::::::

lower
::::::::
threshold

::::::
would690

:::::::::
correspond

::
to

::::::::
different

::::::
shapes

::
of

::::
loss

:::::::
aversion

:::::::::
functions,

:::
i.e.

:::
the

:::::::
weights

:::::::::
attributed

::
to

:
a
:::::::

smaller
::
or

::::::
larger

::::
loss.

::
A

::::::::
centered

::::::
sigmoid

::::::
shape

::::
gives

:::::
more

::::::
weight

::
to

:::
the

::::::
median

::::::
α-cut,

::::::::::::
corresponding

::
to

:
a
::::::
degree

::
of

:::::::
success

::
of

::::
0.5,

:::
and

::::::::::
diminishing

::::::::
marginal

:::::::::::
improvement

::
or

::::
loss

:::
the

::::::
further

:::
the

:::::
α-cut

::
is

::::
from

::::
the

:::::::
median,

:::::
which

::
is

:::::::::::
characteristic

:::
of

::::::
neutral

::::
loss

:::::::
aversion

:::::::::
functions,

:::
but
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:::::::::
loss-averse

:::::
actors

::::::
might

::::::
express

::
a
::::
more

::::::::::
asymetrical

:::::::::::
membership

::::::::
function.

:::::
Other

::::::
studies

::::
have

::::::
linked

:::::::::::
membership

::::::::
functions

::
for

:::::
fuzzy

::::
sets

:::
and

::::::::
prospect

::::::
theory

::::
(e.g.

:::
Liu

:
et al.,

::::
2014,

::::::::
Andrade

::
et

:::
al.,

:::::
2014,

:::
Gu

::
et

:::
al.,

:
2020)and should be further studied,695

possibly integrating the potential differences within a possibilistic approach.

The fact that they are defined by a very small number of points could allow for much shorter simulation times with the right

sampling method. However a first trial with a simple search algorithm shows for now an important spread in results for limited

computational gains. Convex hulls also remain a straightforward tool in spatial or point process analysis and , like the logistic

regression, are not always suited for non-linear relations between describing variables. Refinements would be needed, possibly700

at the cost of more degrees of freedom or assumptions if more parameters are needed, like in alpha-shapes or more advanced

clustering tools. The time series that constitute the vertices of the hulls can be further perturbed, to see if the range of success or

failure can be “stretched” and look for a physical possibility (where is it physically possible for the system to succeed or fail).

:::::::
Defining

:::
the

::::::::::
membership

:::::::
function

::::
does

::::::::
introduce

:::
an

::::::::
additional

:::::
layer

::
of

:::::::::
complexity

::
in

:::
the

::::::::
modelling

:::::::
process.

::
It

::
is

::::::::
ultimately

:::
up

::
to

:::
the

:::::::
modeler

:::
and

::::::::::
stakeholders

:::
to

:::::
decide

::
if

::
it

:
is
::
a
::::::::
necessary

:::::::::
translation

::
of

:::
the

:::::
social

::::::
reality,

:::::::
keeping

::
in

:::::
mind

::::
how

:
it
::::
can

:::::
affect705

::
the

:::::::
results.

:::
The

::::::::::
elaboration

::
of

::::::::::
membership

::::::::
functions

:::::
from

:::::::
linguistic

::::::::::
information

::
is
::::
well

::::::
studied

::
in
:::::
many

:::::
fields

:::::::::::::
(Zimmermann,

:::::
2001;

::::::::
Garibaldi

:::
and

:::::
John,

::::::
2003;

::::::::
Sadollah,

::::::
2018),

::::::::
including

::
in

:::::
water

::::::::
resources

:::::::::::
management

:::::::::
(Khazaeni

::
et
:::

al,
::::::
2012).

::::::
Future

:::::
works

::::::
should

::::::
further

::::::
explore

::::
how

::
to

::::::::
elaborate

:::::::
adapted

::::::::::
membership

::::::::
functions

:::::::
specific

::
to

:::
the

::::::::
linguistic

:::::
inputs

::::
that

::::::::::
characterize

:::::::::
satisfaction

:::::::::
thresholds

::
in

:::
the

::::
case

::
of

::::
flood

:::::::
control

:::::::
systems,

::::::
notably

:::::::
linking

::
the

:::::::::::
membership

:::::::
function

::
to

::::
risk

:::
and

:::
loss

::::::::
attitudes.

:

::
An

:::::::::
important

::::::
caveat

::
is

:::
that

::::
the

:::::::
response

:::::::
surface

:::::
relies

::
on

::
a
:::::::
specific

:::
set

::
of

::::::::::
realizations

:::::
from

:
a
::::::::

synthetic
:::::::::
generator

:::
and

::
a710

::::::
starting

::::
data

::
set

::::
that

::
is

::::::::
perturbed

:::
and

::::::::::
re-shuffled.

:::
The

:::::::
choices

:::
and

::::::::::
assumptions

::::
that

:::
lead

::
to

::
a

:::::::::
realization

::::::
deserve

::::::
further

:::::::
scrutiny

::
in

:::::
future

::::::
works.

:
Un-griddedand un-aggregated

:
,
::::::::
on-the-fly

:
sampling here allows exploring more comprehensively

:::::
freely the

variability of the response, which can be more consistent with the whole stress test approach for certain systems. It also makes

use of existing streamflow scenarios, but it has drawbacks. One advantage of usual stress-tests is their scenario-neutral property

(Prudhomme et al., 2010): the extensive computation of the response surface only needs to be done once, further information715

on future conditions can be projected directly on it. Here stream-flow scenarios, based on GCM projections, were used to

generate synthetic time series in order to obtain the granular, non-gridded response. This creates a link between downscaled

scenarios and the response that is usually avoided. The underlying assumption is that between the number of scenarios,
::
as

::
the

:::::
focus

:::
of

:::
the

::::
study

::
is
:
the different types of bias correction (or lack of thereof) and the imposed perturbations, the diversity

of the synthetic time seriesleads to a relative independence from the initial bias of GCM simulations. Besides, the generation720

of synthetic time series always relies on available data on one way or another; a “scenario-neutral” generation could rely on

historical observations and be skewed towards a conservative bias in face of for example, brutal climate shifts. The present

generation method prioritizes sample diversity, but its assumptions could
:::::::
diversity

::
of

:::::::::
outcomes

:::
for

:
a
:::::
given

::::::::::
coordinate.

::::
The

:::::::
sampling

::::::
should

:::
be

::::::::
improved

::
to
:::::

cover
:::::

more
::::::
evenly

:::
the

::::::::
exposure

::::::
space,

:::
but

:::::::
without

::::::::::
constraining

::::
too

:::::
much

:::
the

:::::::
diversity

:::
of

::::
time

:::::
series.

::::
The

::::::
impact

::
of

:::
the

::::::
choice

::
of

:
a
:::::
given

::::::::
synthetic

::::::::
generator,

:::
of

::
the

:::::::
sample

:::
size

::::
and

:::
the

::::::::::
perturbation

::::::
process

::::::
should

:
be725

further examined, such as the lack of independence between observations and thus the applicability of the logistic regression.

Likewise, the choice of describing variables was not the focus of the study but should be subject to an initial comparison of
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predicting values within
:::::
among a larger number of predictors.

::::::::
candidate

:::::::::
predictors,

:::
and

:::
the

::::::
quality

::
of

:::
the

:::::::
logistic

:::::
model

::::::
should

::
be

::::::
further

:::::::
analysed

::::
and

::::::::
integrated

::
as

::::::::::
uncertainty.

:

Another trade-off from such synthetic generation is the uneven sampling, denser at the vicinity of available streamflow730

scenarios from downscaled rainfall series. The tool to generate un-gridded sampling should ideally ensure a balanced sample

density over the response surface . This study used like others the streamflow scenarios from GCM projections as a prioritization

tool and focuses on their vicinity, thus paying less attention to the sampling density in other areas.
:
A
::::::::::
possibilistic

::::::::::
framework

::::
could

::::::::
integrate

:::::
within

::
a
:::::::
response

:::::::
surface

::::
many

:::::
more

::
of

::::
such

:::::::::::
uncertainties

:::::
when

::::::::::
probabilities

:::
are

:::
not

::::::::
relevant,

::
as

::::
done

::
in

:::::
other

::::
water

:::::::::::
management

::::::
studies

:::::::::::
(El-Baroudy

:::
and

::::::::::
Simonovic,

:::::
2004,

::::::
Afshar

::
et

:::
al.,

:::::
2011,

::::
Jun

::
et

:::
al.,

:::::
2013,

:::
Qiu

::
et
:::
al.,

::::::
2018,

:::::
Wang

::
et735

::
al.,

::::::
2020).

::::
One

::::::::::
particularly

:::::::
suitable

:::
use

::
of

:::::
fuzzy

:::::
logic

::::::
should

::
be

::
to

:::::::
consider

:::
as

:::::
fuzzy

:::::
values

:::
the

:::::::
ex-post

:::::
expert

:::::::::
judgement

:::
on

::
the

:::::::::
possibility

:::
or

::::::::
likeliness

::
of

:::
the

:::::::
obtained

::::::::
synthetic

::::
time

::::::
series

::
in

:
a
:::::
given

::::
river

::::::
basin.

:::
The

::::::::
synthetic

::::::::
generator

::::::::
explores

::::
time

:::::
series

:::::::::::
configurations

::::
but

::::
those

::::
may

:::
not

::::::
always

::::::::::
correspond

::
to

:::
the

:::::
range

::
of

::::::::
outcomes

:::::::
expected

:::
in

:
a
:::::::::
watershed.

:

The integration of uncertainty and ambiguity quantification within the response surface tool could allow for further aggre-

gation options in a multi-objective problem (like in Poff et al., 2016, Kim et al., 2019), while easily controlling its two separate740

components, response uncertainty and target ambiguity. Other sources of uncertaintycould also be added and combined, like

ambiguity about the streamflow threshold that defines a state of flooding, the goodness of fit for the approximations, or the

expert judgement or trust on data quality
:::::::
threshold

:::::::::
ambiguity.

::::::::::
Importantly,

:::
the

:::::::
response

:::::::
surface

::
is

::::
here

:::::::::
considered

::
as

::
a

::::::
generic

::::
tool

:::
for

::::::::::::::
decision-making

:::::
under

::::
deep

::::::::::
uncertainty,

:::
but

::
it

::
is

::::
used

:::::
within

:::::
more

::::::::
complex

::::::::::
frameworks.

:::::::
Further

:::::::
research

::::::
should

::::
also

:::::::
analyse

::::
how

:::::
fuzzy

:::::::::
thresholds

:::
can

::
be

:::::::
inserted

::::::
within

::
a745

::::
more

::::::::
complete

:::
set

::
of

::::::::
methods,

:::::
along

::::
with

:::
e.g.

:::::::
scenario

::::::::
discovery

:::
or

:::::::
adaptive

:::::::::
approaches.

6 Conclusions

We explore in this study how to integrate fuzzy performance targets
:::::::::
ambiguous

:::::::::::
acceptability

:::::::::
thresholds within uncertain

response surfaces in decision-centric vulnerability assessments. Three methods are proposed
:::
We

:::::::
propose

:
a
:::::::
method to produce

a possibilistic surface
::::
when

:::
the

:::::
fuzzy

::::::::
threshold

:
is
:::::::
applied

::
to

::
an

::::::::
uncertain

::::::
surface. Aggregating logistic regressions over α-cuts750

combines probability of success and target ambiguity
::::::::::
incorporates in a single measure . Using a quadratic approximation of

the response surface itself allows for non-linear relations. The largest convex ranges seek upper bounds for the possibility of

success or failure. Two possible management rules are compared for the
::
the

:::::::::
ambiguity

::
of

:::
the

:::::::::::
acceptability

::::::::
threshold

::::
and

:::
the

:::::::::
probability

::
to

:::::
meet

::::
such

:::::::::
threshold,

:::
for

:
a
:::::
given

:::::
state

::
of

:::
the

::::::
world.

::::
The

:::::::
method

::
is

::::::::
illustrated

:::::
with

:::
the Upper Saint-François

reservoir system in Canada. Aggregated logistic regression and largest range of failure show complementary ways to integrate755

fuzzy targets and differentiate failure domains, with respective advantage and limitations. For continuous approximations,

fit quality could be integrated in the final uncertainty measure. The largest convex range method can be refined by further

perturbation of the streamflow series on the vertices, in order to find a physical boundary to success and failure
:::
We

::::
show

::::
how

::
a

::::
fuzzy

::::::::
threshold

::::::
shapes

:::
the

::::::::
response

::::::
surface,

::::
and

::::
how

::
the

::::
way

::::
this

::::::::
ambiguity

::
is

::::::
treated

:::
can

:::::
affect

:::
the

:::::::::::
vulnerability

:::::::::
assessment.
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Challenging old probabilistic assumptions, notably in a climate crisis context, brings new tools that also imply new choices760

and degrees of arbitrariness. How to transparently elaborate fuzzy targets
::::::::
thresholds

:
jointly with stakeholders, or the choice of a

synthetic scenario generator, are necessary research continuations. The presented approach enables further work on
:::::::::
stakeholder

:::::::
attitudes,

:
multi-objective problems and aggregation choices. The framework here introduced to solve a practical challenge can

be consolidated from a more theoretical perspective, from both possibility theory and decision making under deep uncertainty.
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