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Abstract. Predicting major floods during extreme rainfall events remains an important challenge. Rapid changes in flows

over short time-scales combined with multiple sources of model error makes it difficult to accurately simulate intense floods.

This study presents a general data assimilation framework that aims to improve flood predictions in channel routing models.

Hurricane Florence, which caused catastrophic flooding and damages in the Carolinas in September 2018, is used as a case

study. The National Water Model (NWM) configuration of the WRF-Hydro modeling framework is interfaced with the Data5

Assimilation Research Testbed (DART) to produce ensemble streamflow forecasts and analyses. Instantaneous streamflow

observations from 107 United States Geological Survey (USGS) gauges are assimilated for a period of one month.

The data assimilation (DA) system developed in this paper explores two novel contributions: (1) Along-The-Stream (ATS)

covariance localization and (2) spatially and temporally varying adaptive covariance inflation. ATS localization aims to mitigate

not only spurious correlations, due to limited ensemble size, but also physically incorrect correlations between unconnected and10

indirectly connected state variables in the river network. We demonstrate that ATS localization provides improved information

propagation during the model update. Adaptive prior inflation is used to tackle errors in the prior, including large model biases

which often occur in flooding situations. Analysis errors incurred during the update are addressed using posterior inflation.

Results show that ATS localization is a crucial ingredient of our hydrologic DA system, providing at least 40% more accurate

(RMSE) streamflow estimates than regular, Euclidean distance-based localization. Assessment of hydrographs indicates that15

adaptive inflation is extremely useful and perhaps indispensable for improving the forecast skill during flooding events with

significant model errors. We argue that adaptive prior inflation is able to serve as a vigorous bias correction scheme which

varies both spatially and temporally. Major improvements over the model’s severely underestimated streamflow estimates are

suggested along Pee Dee River in South Carolina and many other locations in the domain, where inflation is able to avoid filter

divergence and thereby assimilate significantly more observations.20
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1 Introduction

Affecting nearly a hundred million people worldwide per year, flooding is the most common natural disaster (Guha-Sapir

et al., 2013). Flooding impacts human life, livelihood, and property. Improved streamflow flood forecasts can benefit the public

in a variety of ways from planning to emergency management. The topic of flood forecasting remains an area of active of

research and operational development. This study contributes to improving short-term (hourly) streamflow flooding forecasts25

by minimizing error in their initial conditions through streamflow data assimilation. We focus on rainfall-driven streamflow

flooding caused by Hurricane Florence in 2018. Within the context of an operational and spatially distributed hydrologic model,

we examine the DA challenges of dominant errors (bias) arising from the precipitation boundary conditions (forcings) and of

improving information propagation from the observations into the model ensemble (background).

Streamflow is one of the most commonly observed hydrologic variables. Its earliest measurements date back to the late30

nineteenth century (Ashman et al., 2004). In more recent decades, the assimilation of streamflow observations into hydrologic

models has followed various DA approaches and covered the gamut of applications (e.g., Wood and Szöllösi-Nagy, 1978; Ki-

tanidis and Bras, 1980; Moradkhani et al., 2005; Weerts and El Serafy, 2006; Clark et al., 2008; Pauwels and De Lannoy, 2009;

Seo et al., 2009; DeChant and Moradkhani, 2012; Noh et al., 2013; McMillan et al., 2013; Rafieeinasab et al., 2014; Lee and

Seo, 2014; Sun et al., 2015; Ercolani and Castelli, 2017; Abbaszadeh et al., 2018; Ziliani et al., 2019, and references therein).35

Meanwhile, hydrologic models have evolved from lumped to high-resolution and spatially distributed given the increase in

computational resources and the availability of high-resolution terrain and forcing data.

While research studies have shown success of streamflow and even multivariate data assimilation, operational flood fore-

casting systems do not typically employ data assimilation (Emerton et al., 2016). Liu et al. (2012) detail the hurdles between

hydrologic forecasting research and operations. The authors provide a wealth of recommendations on transitioning DA into40

hydrologic forecasting. A primary reason DA research is not commonly applied in operational settings is that the methods can

perform poorly in the presence of large model errors. Probabilistic DA approaches are optimal only when the model is unbiased

(Dee, 2005). When large biases or systematic errors are present, the methods commonly result in "filter divergence," the case

when observations are unable to provide state updates to the model background (e.g., DeChant and Moradkhani, 2012). In ad-

vocating for the adoption of DA methods in operational hydrologic forecasting, Seo et al. (2009) and Liu et al. (2012) suggest45

blending DA procedures with other kinds of interventions in order to balance the need for operational robustness against the

multiple advantages (skill improvements, reproducibility, etc) offered by automated DA methods.

Divergence and other filter-related issues are often pronounced in rainfall-driven flooding systems. This is because the large

errors arising at the model boundary are often not part of the prognostic state of the system, have no memory and cannot be

constrained during the analysis. To overcome this, multiple bias correction strategies have been pursued in the context of DA50

for flood forecasting. Joint state-parameter estimation is often applied to help mitigate model errors (e.g., Abbaszadeh et al.,

2018). Multiplicative bias correction parameters, to adjust forcing errors, are sometimes estimated alongside the physical state

and parameters (e.g., Seo et al., 2003). Bias-aware Kalman filters are applied to estimate model and observation bias by imple-

menting a separate update for two moments, the mean and the bias (e.g., Drécourt et al., 2006; Rasmussen et al., 2016; Ridler
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et al., 2018). In addition, a conditional bias-penalized Kalman filter was developed for improved estimation and prediction of55

hydrologic extremes. The filter operates by minimizing a weighted sum of error variances and Type-II squared errors, different

from the conventional Kalman filter which is based on least square minimization (Seo et al., 2018; Lee et al., 2019; Jozaghi

et al., 2019). In a recent study, Emery et al. (2020a) proposed updating the boundary fluxes based on the differences between

observed and prior streamflow. The authors rerun the assimilation forecast step with the updated boundary conditions to pro-

duce a second prior without involving the streamflow state in the update. In this study, we explore the use of spatially and60

temporally varying adaptive covariance inflation (El Gharamti, 2018) as a way to mitigate bias, in the context of extreme flood

simulations. Inflation helps restore spread in the ensemble which can yield a better fit to the observations during the analysis.

In addition, spatially varying inflation can help enhance the rank of the sample background covariance matrix (El Gharamti,

2018). In soil and groundwater hydrology, using inflation was reported successful by multiple studies (e.g., Bauser et al., 2018;

Jamal and Linker, 2020). In surface water hydrology, however, the impact of inflation on streamflow predictions is not fully65

understood. This is the first study of its kind where spatially and temporally adaptive inflation is applied to streamflow fore-

casting. This study further explores the use of prior versus posterior inflation and investigates the effect of each scheme on the

performance of the flood prediction ensemble framework. We note that the approach of Emery et al. (2020a), a temporally-

fixed inflation parameter (scalar) as a means of tuning static background error covariances, is significantly different from the

temporally and spatially adaptive inflation applied to time evolving background error covariances in this paper.70

It is no surprise that many hydrologic and flood forecasting DA studies have highlighted the importance of estimating ac-

curate background error covariances. Model bias, as discussed above, and sampling error hinders proper estimation of error

covariances. The nonlinear relationship between variables in hydrologic modeling makes it further challenging to update un-

observed state variables. Filtering approaches only consider the instantaneous error covariances. Smoothers, on the other hand,

can be applied to remedy this problem (e.g., Pauwels and De Lannoy, 2006; Li et al., 2013). Even when employing an en-75

semble smoother for flood forecasting, Rakovec et al. (2015) concluded that the elimination of the strongly nonlinear relation

between soil moisture and discharge observations improved flood forecasts. Clark et al. (2008) commented that modeled er-

ror correlations were much larger than observed error correlations and that inadequacies in modelling the spatial variability

of hydrological processes hindered the transfer of observational information to ungauged basins. In this study, we revisit the

spatial basis for information propagation of observations via error covariances. We investigate updating distributed hydrologic80

states and propose a new topologically-based localization strategy for stream networks. The method is called along-the-stream

(ATS) covariance localization and it confines state updating to directly connected (defined below) hydrological states. Infor-

mation propagation to ungauged basins (e.g. Sivapalan et al., 2003) within our strategy requires such basins to be upstream of

observations.

The development of the data assimilation framework in this paper begins from NOAA’s National Water Model (NWM)85

configuration of the WRF-Hydro hydrological framework (Gochis et al., 2020). The NWM is a spatially distributed hydrologic

model that produces operational forecasts and analyses of distributed hydrologic states, including streamflow, over the con-

tinental United States (more recently, also with separate implementations in various other regions). The operational products

are not evaluated in this study. However, the real-time NWM forcing fields from Hurricane Florence are run through a model
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configuration very close to the operational analysis configuration, providing an open loop (no DA) deterministic analysis very90

close to what the NWM would have produced in real-time (if such an open-loop run were operational). Using one-way fluxes

from this analysis, we drive a "channel+bucket" submodel of the NWM that includes streamflow and conceptual bucket storage

states. The reduced computational cost of this submodel, the perturbation of its parameters, and the time-varying perturbations

applied to the deterministic fluxes from the land surface model provide an ensemble basis for our DA experiments. The resulting

NWM channel+bucket modeling system is interfaced with the Data Assimilation Research Testbed (DART). DART, developed95

and maintained at the (United States) National Center for Atmospheric Research, is an open-source community facility that

provides software tools for data assimilation research, development, and education (Anderson et al., 2009). Streamflow obser-

vations from USGS gauges, retrieved from the (United States) National Water Information System (NWIS), are used to update

the spatially distributed ensemble states of streamflow and groundwater bucket head. The resulting analyses could serve as the

initial conditions for short term flood forecasts. The analyses are evaluated in terms of the assimilation priors (i.e., the one100

hour forecast). Hydrographs and other time-series assessment tools (including errors, bias, ensemble spread, etc) are utilized

to investigate the performance of the DA framework. Streamflow distribution in space resulting from DA is also studied and

compared to the model’s estimate.

The rest of the paper is organized as follows. Section 2 presents the Hurricane Florence subdomain, the NWM submodel

and its components, the uncertainties incorporated into the ensemble design and the USGS observations assimilated. DART105

is briefly introduced in Section 3 and then ATS localization and adaptive inflation are described in Sections 3.2 and 3.3,

respectively. Spatial assessment with particular focus on bias correction is given in Section 3.6. A summary of the findings and

further discussions are found in Section 4.

2 Hydrologic Model and Data

2.1 National Water Model Subdomain: Hurricane Florence110

In this study, we focus on a regional subdomain of the NWM CONUS domain affected by Hurricane Florence in September,

2018. Fig.1 shows this domain located over the states of North and South Carolina. Hurricane Florence reached Saffir-Simpson

category 4 strength on two separate dates prior to landfall. Though it weakened to category 1 by the time it made landfall, it

wreaked over $20 Billion US Dollars of damage largely attributed to inland freshwater flooding resulting from extreme rainfall.

Many of the largest flood peaks occurred after the dissipation of the hurricane on September 19, as water concentrated along115

its course to the sea. A time line of observed and modeled attributes is shown in Table 1.

Fig.1 shows the roughly 67,000 reaches of the NWM stream channel network in this subdomain. The NWM channel network

is based largely on USGS’s National Hydrography Dataset; namely NHDPlus version 2 (McKay et al., 2012). The rectangular

extent of the subdomain indicates the region over which atmospheric forcing data are used to drive the Noah-MP (Niu et al.,

2011) land surface model (1km) and its two-way coupling to lateral surface and subsurface flow routing schemes (250m; Gochis120

and Chen, 2003) used by the NWM Analysis and Short-Range Forecast configurations (https://water.noaa.gov/about/nwm). As
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Figure 1. Florence model domain showing the river network with locations of the main Cape Fear and Neuse Rivers in North Carolina.

The assimilated 107 gauges, from USGS, are denoted by grey dots. Twelve gauges displayed with red markers are used for diagnostic and

validation purposes. The borders between the states of Virginia, North Carolina and South Carolina are also shown in black. The thickness

of the river reaches denote the strength of streamflow (resulting from an open loop run and averaging over the month of September, 2018)

such that larger thickness means higher streamflow.

shown in Fig. 2, the lateral flow components are one-way coupled to the streamflow, reservoir and bucket models of the NWM.

Detailed description of this submodel can be found in following section.

All model code, domain data and parameter sets used in this study correspond to NWM version 2.0. The single exception is

the groundwater bucket model formulation and parameters which are based on NWM version 2.1. We run the equivalent of the125

NWM "standard analysis and assimilation" cycle without the streamflow nudging used by the NWM. This is the configuration

also used for the short and medium range forecast cycles. During the time of the study, the NWM extended analysis cycle had

not yet been implemented.
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Observed and Modeled Timeline

Modeled NLDAS2-based restart, advance with operational forcings August 1

Observed Hurricane forms at sea August 31

Modeled Hourly data assimilation starts September 1

Observed Hurricane landfall September 14

Observed Hurricane dissipates September 19

Modeled End of simulation October 15

Table 1. Hurricane Florence timeline, Carolinas, USA, 2018. NLDAS2 denotes the forcing data for phase 2 of the North American Land

Data Assimilation System.

The major rivers in this region are labeled in Fig. 1. To the west, the Pee Dee river has its headwaters between Charlotte and

Winston-Salem and flows from North Carolina into South Carolina. Its major tributary, the Lumber River, meets Pee Dee just130

before reaching the edge of the domain. The Cape Fear River, with its headwaters near Greensboro and joining the sea near

Wilmington, is seen in the center of the domain. Further to the East, Neuse river flows by Durham and Raleigh (the capital of

North Carolina) and flows in to the Pamlico Sound. The Tar River (not labeled except by its cluster of 3 gauges in the legend)

lies to the North of the Neuse, also flowing into the Pamlico Sound.

2.2 Channel + Bucket Submodel135

We run the so-called channel+bucket submodel of the NWM. Fig. 2 illustrates the one-way runoff fluxes to the streamflow and

groundwater bucket models from the "upstream" model components (land surface model, overland and subsurface routing, and

spatial aggregations). The fluxes are saved as forcing files for running the channel+bucket submodel used in our assimilation

approach. To generate these fluxes, the full NWM is first run once with its own set of atmospheric boundary conditions.

The use of the one-way coupled submodel means that no error covariances with the "upstream" components of the model will140

be considered (e.g. soil moisture, surface head, etc) and that the control vector will consist of two spatially distributed states,

streamflow and groundwater bucket head. Reservoir states, embedded in the stream network calculations, are not considered

in the state updating.

2.3 Forcings, Spinup and Simulation

The full model was run (with no data assimilation) using NLDAS2 (Xia et al., 2014) forcings from 2010-10-01 to 2018-07-01.145

This open loop run was then continued from 2018-07-01 through 2018-10-15 with the NWM operational analysis and assimi-

lation cycle forcings which were collected in real-time from NOMADS (NOAA Operational Model Archive and Distribution

System). This real-time forcing product is based on MRMS (Zhang et al., 2016) gauge-adjusted and radar-only observed precip-
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Figure 2. Streamflow data assimilation system overview. Vertical boxes on the left show the deterministic NWM model chain from forcing

through aggregation of (overland, subsurface, and column drainage) routing output fluxes. These output fluxes are the inputs to the data

assimilation system used in this paper, shown inside the dotted box. Random noise is applied to these inputs to generate ensemble forcings.

Ensembles are denoted by groups of three arrows (the ensemble size is much larger than 3). The ensemble fluxes drive the ensemble model

components (channel and reservoir model and groundwater bucket model) used in the assimilation. The depicted time-invariant a priori error

distribution of channel parameters provides a "multiphysics" streamflow ensemble. The groundwater states produce additional fluxes to the

channel and reservoir model. The spatially distributed streamflow and bucket head states comprise the "state" vector passed to DART for

updating by USGS streamflow observations.

itation products along with short-range RAP and HRRR products (Benjamin et al., 2016, see https://water.noaa.gov/about/nwm).

For the period 2018-08-01 through 2018-10-15, fluxes were saved for forcing the channel+bucket submodel in the data assim-150

ilation experiments. Fig. 2 shows these fluxes as inputs to the data assimilation system. Initial states for the data assimilation

experiments were also taken from the full model run on 2018-08-01.

2.4 Muskingum-Cunge Streamflow Model

The NWM implements Muskingum-Cunge (M-C) streamflow routing with variable parameters (e.g., Ponce and Yevjevich,

1978) in a compound channel (Garbrecht and Brunner, 1991). M-C with variable parameters is a common approach to stream-155

flow routing over large watersheds and has been successfully applied in many instances. The compound channel (Fig. 3)

provides a lower trapezoidal channel and an upper rectangular channel section to simulate overbank flows. M-C is applied

to the stream channel network derived from NHDPlus version 2, shown in Fig. 1, with trapezoidal channel geometry and

Manning’s N (roughness) parameter values for each reach.
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The one-dimensional storage (S) relationship between inflow (I) and outflow (O) on a reach (spatial segment) is given by:160

S =K [XI + (1−X)O] , (1)

with storage coefficient K and weighting factor X . Formulated as a finite difference over a reach, this yields an explicit

solution:

Ok = C1Ik−1 +C2Ik +C3Ok−1 +C4L, (2)

for the current out flow (Ok, k denoting the time step index) as a function of previous and current inflows (Ik−1 and Ik,165

respectively), previous outflow (Ok−1), and the lateral inflows (combined overland and subsurface, L) to the reach. The coef-

ficients in equation (2) can be expressed as combinations of the Courant and Reynold’s numbers (e.g., Ponce and Lugo, 2001),

respectively:

C =
c∆t

∆x
=

∆t

K
, (3)

D =
q

sc∆x
= 1− 2X, (4)170

where ∆t is the time step, ∆x is the reach length, s is the reach slope, c is the celerity and q is the unit discharge (discharge

divided by the top width of the flow). Also shown are the relationships to K and X parameters.

The assumptions of M-C approach do not allow for backwater effects in the solution. However, the M-C variable parameter

approach allows nonlinear flood wave dynamics by accounting for the interdependence of the time-varying flow rate and its

geometry. Specifically, the celerity and unit discharge175

c=
dQ

dA
, (5)

q =
Q

b
, (6)

used for calculating the coefficients in Equation 2, depend on the flow (Q) and its area (A) and top width (b) which are mediated

by the channel geometry and roughness parameters in each reach. These parameters, some of which are shown in Fig. 3, are

described in more detail in Section 2.6. The equation for celerity can be solved from Manning’s equation for uniform flow.180

Garbrecht and Brunner (1991) solve the celerity equation for the case of the compound channel shown in Fig. 3. The variable

parameter approach is an iterative solution, updating the flow and its geometry in alternate steps, to converge on a physically

consistent discharge-geometry solution. The implementation in the NWM follows the "secant method" which takes a high and

a low departure from an initial water depth and iterates through the equations of geometry and flow until the calculated flow

rates converge within some threshold. Before the flow rates converge, their differences are used to reduce the discrepancy in185

the estimated water depths.

We note that the NWM makes a "short timestep approximation," Ik = Ik−1, to eliminate the spatial/topological dependence

at the current time and render the solution of the M-C method embarrassingly parallel.

Reservoir objects embedded into the NWM routing network accept fluxes from the streamflow network and from the over-

land and subsurface routing model on adjacent grid cells. Water is discharged to the stream network via equations for both190
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weir and orifice flow in the NWM "level pool" scheme. Because we do not include the reservoir level in the assimilation state

vector, the reader is referred to Gochis et al. (2020) for further details.

2.5 Groundwater Bucket Model

Even when lateral routing processes are included in hydrologic modeling, deficiencies in soil and aquifer data and model

process representations commonly lead to underestimation of the baseflow component of streamflow. The NWM employs195

a groundwater bucket model as a simple aquifer representation to mitigate this baseflow problem. This model accepts water

fluxes from the bottom of the land model’s soil columns. The spatial representation of the buckets is derived from the NHDPlus

(McKay et al., 2012) catchments. These map roughly on to the stream reaches (with certain exceptions). The buckets have an

average areal extent of∼ 3 km across the NWM CONUS domain and therefore accept fractions of discharge from multiple land

model columns. The mapping from the land surface model to the buckets is performed by "user defined mappings" capability200

of the model.

The bucket scheme is simple and highly conceptual. For this reason, calibration of its parameters is critical for reasonable

model simulations. The groundwater bucket model and its parameters are expressed by the following set of equations, which

are the only model components taken from NWM v2.1 (instead of v2.0). The current bucket head, zk, is solved from the

previous bucket head, zk−1, plus the change in head due to the bucket inflow Ĩk:205

zk = zk−1 +
Ĩk∆t

Ã
, (7)

where Ã is the bucket area. The finite capacity of the bucket is expressed in terms of a maximum head, zmax, a tunable

parameter. When the current head exceeds this threshold, the Qspill term becomes non-zero, discharging all excess head in a

single timestep.

if zk <= zmax then210

Qspill = 0

else
zspill = zk − zmax (8)

zk = zmax (9)

Qspill =
Ãzspill

∆t
(10)215

end if

Head up to and including the zmax results in bucket discharge following an exponential equation, containing two additional

tunable parameters, E (unitless) and G (m3/s):

Qexp =G

[
exp

(
E
zk
zmax

)
− 1

]
. (11)
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The spill discharge and the exponential bucket discharge are finally combined to give the total bucket outflow at the current220

time step (Õk) and the depth of water corresponding to Qexp is removed from the bucket.

Õk = Qspill +Qexp, (12)

zk+1 = zk −
Qexp∆t

Ã
(13)

Calibration of the bucket parameters (in advance of NWM version 2.1 calibration) yielded the following spatially uniform

bucket parameters used in this study: G= 0.005, E = 7.1244, and zmax = 15.6476 mm.225

2.6 Sources of Uncertainty: Ensemble Design

We construct an ensemble of 80 members. This number was selected to balance computational demands and statistical per-

formance. A more detailed justification on the choice of the optimal ensemble size can be found in Appendix A. Incorpo-

rating different sources of uncertainty into the ensemble is necessary to create variability and to obtain a good estimate of

the background error covariance. Background error covariances are considered amongst and between the spatially distributed230

streamflow and bucket states (Ok and zk, respectively). We produce error distributions in these states through a priori error

distributions on: 1) stream channel parameters, 2) forcing fluxes to the channel reaches and 3) forcing fluxes to the buckets.

Tcc

T

B

m

ncc

n

Figure 3. Schematic of the geometry and roughness parameters of the streamflow compound channel: top width (T ), bottom width (B), side

slope (z), Manning’s N (n), width of the compound channel (Tcc) and Manning’s N of the compound channel (ncc).

The error distribution imposed on the streamflow channel parameters is time invariant and unaffected by the state update.

This kind of error source is termed as "multiphysics" (Berner et al., 2011), meaning that each member runs a different physical

configuration of the model. The parameters shown in Fig. 3 describe the compound channel geometry used in the NWM v2.0:235

top width (T ), bottom width (B), side slope (m), Manning’s N (n), width of the compound channel (Tcc), and Manning’s N

of the compound channel (ncc). While the lower part of the compound channel is trapezoidal, the upper part of the channel is

assumed to be rectangular and therefore has no side slope parameter. These parameters vary in space and we define a scalar

multiplier for each parameter and ensemble member to generate a perturbed parameter vector from the existing NWM param-
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eter vector. The multipliers are sampled from uniform distributions and in the case of 3 parameters, we redraw the multiplier240

until the following physical constraints are satisfied: ncc > 1.5n, T > 1.2B and Tcc > 2T . For the geometric quantities we

draw multipliers from U [0.6,1.4]. For the Manning’s N parameters we draw multipliers from U [0.8,1.8] based on the prior

belief that the original values are somewhat too low.

Perturbations of the boundary fluxes to the streamflow and bucket models are applied at the hourly forcing time step. These

perturbations are uncorrelated (in space, time, and member) Gaussian samples with zero mean and standard deviation equal245

to 40% of the flux value at each location. When the perturbations are added to the fluxes, a minimum of zero flux is ensured.

Random noise generators are seeded as a function of datetime and ensemble member to ensure identical forcing distributions

are used across all experiments. Finally, perturbations are applied to the model initial states on September 1, 2018. However,

these ensemble initial conditions account for very little of the uncertainty in the overall experiment.

2.7 USGS Streamflow Observations250

Streamflow observations served by the USGS’s National Water Information System (NWIS) are used by the NWM in near

real-time. The observation files ingested by the NWM are provided along with its output in near-real-time on NOMADS.

The streamflow observations in these files are always "provisional" because they are near-real-time and they are subject to

revision until they have been thoroughly assessed. For this study, we collected NWM observation files as well as revised values

from the USGS’s NWIS many months after the time period of this study. As expected, there were significant revisions to the255

streamflow values in the months following Hurricane Florence. These revisions are for multiple reasons, not the least of which

is that existing rating curves do not typically extrapolate well to extreme and out-of-bank flows. We note that the difference

between these observation sets had a significant impact on our results and that the provisional data proved more challenging

for the assimilation methodology in this paper. It is extremely important to study the differences between such provisional and

approved data in order to bridge the gap between the methods offered in this paper and real-time data assimilation applications.260

Ultimately, one would want to assimilate provisional data and evaluate against revised data. There are multiple issues to

consider in this regard including observation gaps, uncertainty, and quality measures. In our study, we chose to use the revised

observations to evaluate the performance of our methodological innovations. This study could be extended to simulate real-time

streamflow assimilation.

Fig. 1 shows the 107 USGS streamflow gauges used for evaluation in this study in green and red. The names of the gauges265

in red are given in the caption as these locations are specifically called out in the results. All stream gauges considered in

this study have their contributing area entirely contained within this subdomain. Most gauges have a 15-minute reporting

frequency and the available observations in the previous hour are used for hourly assimilation. All experiments presented here

use the heteroskedastic error model of 20% of the observed flow for the observation error (m3/s). This is certainly a simplistic

approach, but the magnitude is roughly in line with previous studies (e.g. Coxon et al., 2015). We note that while important,270

the observation error plays a somewhat secondary role in the quality of the assimilation, particularly given the application of

inflation.
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3 Data Assimilation Framework and Results

3.1 DART

This study uses the Data Assimilation Research Testbed (DART, Anderson et al., 2009) to perform ensemble Kalman filtering275

for streamflow forecasting. Utilizing Bayes’ rule, the goal is to sequentially use streamflow gauge data to guide the trajectory of

the hydrologic model towards a better flood prediction. The procedure consists of successive forecast and analysis steps. During

the forecast, a set of model realizations of the state variables are integrated forward in time using the nonlinear hydrologic

model:

x
f(i)
k =M

(
x
a(i)
k−1,θ

(i),γ
(i)
k

)
, i= 1,2, . . . ,Ne (14)280

where xk = [Ok,zk]
T is the DART state consisting of the streamflow and the bucket. The superscript i is the number of the

ensemble member, Ne is the ensemble size, f denotes forecast (prior) and a is the analysis (posterior). The functionM refers

to the WRF-Hydro submodel. θ and γ denote a set of physical parameters and input model forcings (described in Section 2.6),

respectively. As the data become available, DART assimilates the observations serially and applies an EAKF update (Ensemble

Adjustment Kalman Filter, Anderson, 2003) as follows:285

∆x
(i)
j = σxyσ

−2
y ∆y(i), j = 1,2, . . . ,Nx (15)

x
a(i)
j,k = x

f(i)
j,k +α∆x

(i)
j . (16)

Given an observation, the prior ensemble members of the observed variable y are first updated. The observation space incre-

ments; ∆y(i) = ya(i)− yf(i) are computed using a scalar ensemble filter (Anderson, 2003). These increments are then used to

obtain the state-space increments, ∆x
(i)
j as shown in equation (15). σxy denotes the prior covariance of the observed variable,290

y, and the jth element in the state vector, x. The total number of elements in the state is denoted by Nx. The sample variance

of the observed variable is σ2
y . A localization coefficient, 0≤ α≤ 1 is used to limit the impact of spurious correlations in the

update. α is computed as a function of the distance between observation and state variables given a predefined correlation

structure (refer to Section 3.2).

Streamflow gauges are available at the location of the state variables, and assumed representative of the model element to295

which they are associated. This makes the (forward) observation operator linear and equal to the identity matrix, significantly

simplifying the implementation of the update step in DART. Variance underestimation is tackled through covariance inflation

such that the ensemble right after the forecast or analysis steps is inflated around its mean:

x
f |a(i)
j =

√
λ
(
x
f |a(i)
j −x

f |a
j

)
+x

f |a
j , (17)

where xj is the jth element of the ensemble mean and the notation f |a is used to refer to either forecast or analysis ensemble.300

The inflation factor
√
λ (typically larger than 1) yields a sample covariance matrix scaled by λ. The effects of prior versus

posterior inflation on the filtering performance is explored in details in Section 3.3.
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3.2 Along-The-Stream Localization

It is well-recognized that the use of small ensemble sizes produces imperfect sample covariance matrices (e.g., Houtekamer

and Mitchell, 2001). In fact, with a small ensemble the probability density function of the state remains only partially explored305

which can possibly yield loss of information and even filter divergence. In addition, the sample covariance would generally be

contaminated with spurious unrealistic correlations that may degrade the quality of the Kalman update.
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Figure 4. Illustration of the Along-The-Stream (ATS) localization strategy in the model domain using 3 different effective localization radii:

50 km (left panel), 100 km (middle panel) and 200 km (right panel). The resulting localization factor α is displayed for 5 different stream

gauges. The correlation function used to compute α is based on the Gaspari-Cohn (G-C) 5th order compactly supported Gaussian-like curve.

To overcome these issues, we resort to using covariance localization. The idea is to taper any spurious correlations between

variables that are physically far from each other and are possibly uncorrelated, using α in equation (16). Studies have shown

that given the Euclidean distance between different variables, a correlation function could be utilized to compute a localization310

factor, α. In the present study, a simple Euclidean distance could be inappropriate in many circumstances. For example, reaches

from two different watersheds could be physically close but be highly unrelated, particularly in terms of their error correlations.

To this end, a topologically based localization strategy that adheres to the river network structure is applied. We introduce the

Along-The-Stream Localization (ATS Localization) strategy. The idea is that only the reaches upstream and downstream from

a particular observation are considered during the update (Fig. 4). The localization factor, α, is computed using a selected315

functional form (e.g. Gaspari-Cohn, boxcar, or ramped-boxcar, see Table A1 and inset Fig. 6) which depends on the distance

between any two reaches and the tunable localization radius, r.

ATS localization highlights some key features: (i) Upstream from each observation, information flows up the network,

including through the bifurcations. Downstream from each observation, we assume that the flow of information only travels

downstream with the observed flow. As such, we obtain tree-like shapes where the number of close reaches upstream (tree320

canopy) of the observation is significantly larger than the number of close reaches in the downstream direction (tree trunk). Not

13



allowing information to “round the bend” or bifurcate back upstream below the gauge, we choose to only update flows which

contribute to the observation (upstream) and to which the observation contributes (downstream). This choice was made to be

distinct from Euclidean distance-based localization and out of caution, given a modestly sized ensemble, that observations near

the confluence of major tributaries might have undue influence on large flows with potentially low (true) error correlations.325

Allowing upstream bifurcations below the gauge could be a reasonable approach as well, pending choice of ensemble size and

understanding of correlated errors at major tributaries. (ii) The total number of close reaches does not necessarily increase as r

increases. For instance, as can be seen in Fig. 4 the number of close reaches to gauge ID 0210500 (�marker) using r = 50,100

and 200 km is 185, 646, and 1126 reaches, respectively. The same is not true for gauge ID 02082950 (/ marker) because of

the limited number of upstream reaches within the catchment. (iii) Observations in different catchments do not have common330

close reaches. Gauge IDs 02102500 and 02129000 for r = 200 km clearly demonstrate this feature.

The proposed localization method shares a lot of similarities with that of Emery et al. (E20, 2020b). The fundamental dif-

ference is that we are tackling sampling errors in the forecast error covariances with each assimilation cycle. Our sample

covariances are computed using the evolving ensemble unlike E20 in which the authors use time-invariant covariances. Given

that the hydrologic model used in E20 is linear, their system is technically an optimal interpolation with fixed error statistics.335

Localization in this context is used to address structural errors of the covariances and to compensate for time-invariant co-

variances. Another important difference is that our ATS localization approach can ensure that the impact of the observation

decreases as the distance from the observation, both upstream and downstream, increases. For example, the fifth-order poly-

nomial function of Gaspari and Cohn (1999) can be used to find the localization coefficients or other functional forms can be

used. In E20, on the other hand, all reaches that are close to the observation are assigned the same weight (i.e., α= 1).340
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Figure 5. Panels A-D: Time-series of hourly forecast RMSE of five DA experiments using ATS localization with Gaspari-Cohn function and

radius r = 50,75,00,150,200 km. For each gauge, the observations are plotted by black "x"s. The other curves show the RMSE of each

run. For example, the open loop (ensemble run with no DA) RMSE is given by the dashed gray curve. The time-averaged RMSE for each

run is reported in the legend. Panel E: Boxplots of the normalized prior RMSEs (Time-averaged RMSE divided by the temporal mean of the

actual observations at all the gauges) using all gauges as a function of the localization radius.
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3.2.1 Tuning localization parameters

We conduct five DA experiments to study the sensitivity of the chosen localization radius on the accuracy of the streamflow

estimates. The tested localization radii are: 50, 75, 100, 150 and 200 km. The performance of each experiment is assessed at four

different locations inside the Florence domain (refer Fig. 1). Time-series of hourly forecast root-mean-squared-errors (RMSE)

are displayed at each gauge in Fig. 5. As can be seen, all DA runs clearly outperform the open loop (i.e., no DA) especially345

during the main event at around Sep. 17. Concerning the localization radius, it is shown that DA runs using r = 50,75 km

produce the least accurate streamflow estimates. At Tar River (Tarboro) for example, the RMSE from these two experiments

is almost similar (∼ 160 cms) to that of the open loop on Sep. 25. This suggests that the Kalman update with such a small

localization radius may be inadequate. Larger localization radii, r = 150,200 km produce on average slightly better estimates.

Such a performance, however, is inconsistent in space as can be seen at Tar River (Rocky Mount).350

Overall, the best performance is obtained using r = 100 km. This was confirmed not only at the diagnosed gauges but also

at the rest of the gauges in the domain as can be shown from the boxplots in panel E of Fig. 5. Our analysis indicates that larger

radii generally give rise to spurious correlations which could yield catastrophic streamflow estimates as the boxplot outliers

suggest for r = 200 km. On the other hand, smaller localization distances limit the amount of useful information yet they do

not severely degrade the quality of the streamflow estimates as in the case of r > 100 km.355

The effect of the choice of the correlation function, used in the ATS localization scheme, is also investigated. We compare 3

different functions: Gaspari-Cohn, simple Boxcar (similar to E20) and a Ramped-boxcar. The formulas used to compute α for

the different correlation functions are given in Table A1 of Appendix A. The resulting prior ensemble mean from each scenario

is evaluated at all 107 streamflow gauges in the domain and the results for r = 100 km are summarized in the Taylor plot

(Taylor, 2001) of Fig. 6. The diagram is useful to quantify the degree of correspondence between the gauge observations and360

the prior streamflow estimates in terms of 3 statistics: the Pearson correlation coefficient, centered root mean squared error, and

the standard deviation. We note that boxcar and ramped-boxcar estimates produced erroneous results at few (around 7) gauges

and these results had to be removed from the diagram for visual purposes. Averaging over all gauges, the correlation coefficient

resulting from Gaspari-Cohn, Boxcar and Ramped-Boxcar was found to be 0.83, 0.77 and 0.79, respectively. Gaspari-Cohn

function further yielded the lowest values, on average, for the other 2 statistics of the Taylor diagram.365

Boxcar and Ramped-Boxcar functions only outperform Gaspari-Cohn for small localization radii (e.g., r = 50 km), however,

the results produced with Gaspari-Cohn and r = 100 km have the best accuracy. This configuration, as a result, is selected and

used in all other results shown in this study.

3.2.2 ATS Comparison to Euclidean Distance-based Localization

This section compares the proposed topologically based ATS localization to the regular Euclidean distance-based localization.370

Instead of searching for close streams on the river network as in the previous section, the regular approach looks for close by

reaches with a circle given a prespecified localization radius. Five different localization radii; namely r = 1,2,5,10,20 km are

tested. The resulting streamflow estimates are summarized and compared to the ATS (100 km) run, for two gauges, in Table 2.
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Figure 6. Taylor diagram for hourly prior streamflow estimates using ATS localization with 3 different correlation functions: Gaspari-Cohn,

Boxcar and Ramped-Boxcar. The localization radius is set to 100 km. The shape of the functions are compared at the top of the plot. Ramped-

Boxcar decays linearly to 0 starting at half-width (i.e., 50 km) distance from the observation. Comparisons to all gauges in the domain is

performed, however, estimates with high errors and standard deviations, resulting from Boxcar and Ramped-Boxcar, are not shown for clarity.

The two gauges, shown in Fig. 1, are selected such that the performance is assessed at relatively low (i.e, Tar River at Tarboro)

and high (i.e., Deep River at Moncure) streamflow regimes.375

Among the five experiments that use regular localization, the best performance is suggested using r = 10 km. As r decreases

below 10, the quality of the prior and posterior streamflow estimates diminishes. For instance, the time-averaged prior RMSE

for r = 10 km and r = 1 km at Tar River is 8.86 cms and 34.323 cms, respectively. It is also noticeable that smaller localization

radii yield large prior and posterior ensemble spread. This happens because the tiny localization radius tends to limit the impact

of the data during the update and hence the shrinkage of the uncertainty around the ensemble mean gets restricted. For r = 20380

km, the performance strongly degrades at Tar River. For example, the posterior bias is shown to grow from -0.74 cms using

r = 10 km to -11.41 cms for r = 20 km. The reason for such a behavior is that with a radius of 20 km, streamflow gets

falsely updated with information from nearby basins. Although these basins are physically close, however, they are governed

by different flow regimes. The same is not true at Deep River and that is because the basin which Deep River belongs to is

16



Table 2. Comparison of ATS and regular (Reg) localization at Tar River and Deep River. The localization radius used in the ATS approach

is 100 km. For the regular localization approach, 5 different radii are tested; namely 20, 10, 5, 2 and 1 km. The metrics used to compare

the schemes are: prior and posterior RMSE, prior and posterior bias in addition to prior and posterior spread. The metrics (in cms) are all

averaged over the entire simulation period.

ATS (100 km) Reg (20 km) Reg (10 km) Reg (5km) Reg (2 km) Reg (1 km)

Ta
rR

iv
er

at
Ta

rb
or

o
(N

W
IS

02
08

35
00

)

Prior RMSE 5.579 18.541 8.860 33.459 41.607 34.323

Posterior RMSE 4.930 17.819 6.748 25.106 33.664 26.411

Prior Bias -1.130 -11.648 -1.706 -20.242 -18.091 -11.068

Posterior Bias -0.848 -11.410 -0.740 -20.373 -17.163 -10.005

Prior Spread 1.919 3.291 2.803 10.895 10.839 9.535

Posterior Spread 1.551 3.004 2.271 6.283 6.425 5.170

D
ee

p
R

iv
er

at
M

on
cu

re
(N

W
IS

02
10

20
00

) Prior RMSE 29.440 48.328 69.206 102.992 130.085 146.354

Posterior RMSE 22.749 36.163 38.009 38.169 38.159 63.991

Prior Bias -6.498 -14.880 -21.001 -38.676 -58.086 -75.678

Posterior Bias -3.328 -11.287 -6.914 -4.558 -4.075 -30.536

Prior Spread 15.598 22.425 36.784 60.877 77.549 70.834

Posterior Spread 11.867 16.812 19.645 21.434 22.038 25.595

much larger and thus a localization radius of 20 km cannot contaminate the streamflow as we described at Tar River. Increasing385

the localization radius beyond 20 km yielded catastrophic updates for the streamflow and the subsurface bucket state. In fact,

all DA experiments run with regular localization and r > 20 km failed at different stages (typically 2 weeks into the run).

Prior and posterior streamflow results obtained using ATS localization are significantly better than those with the regular

localization. Unlike regular localization, using the proposed ATS approach we are able to increase the effective search radius

because the algorithm adheres to the physical aspects of the streamflow problem. Compared to the 10 km regular localization390

run, ATS produces at least 40% more accurate (in terms of RMSE) streamflow estimates. This is consistent for all 107 gauge

locations. Because the algorithm allows the use of large localization radii, ATS scheme further yields more certain estimates

(smaller spread) than those that use regular localization.

3.3 Inflation

Variance underestimation in ensemble Kalman filters is a common issue that usually happens in the presence of large sampling395

errors and model biases (Furrer and Bengtsson, 2007). Sampling errors are the result of using a limited ensemble size. Model

biases are deficiencies in the model causing predictions to be far from the observations. Other sources of errors that might

degrade the performance of the filter include non-Gaussianity (Anderson, 2010), systematic errors in the observational operator

and representativity errors (Hodyss and Nichols, 2015). In practice, studies have shown that when model biases exist they tend

to dominate other errors in the system (e.g., El Gharamti, 2018) and thus, treating model errors is often prioritized.400
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In this section, we consider three approaches to deal with the issue of variance underestimation: prior inflation (PR-inf),

posterior inflation (PO-inf) and combined prior and posterior inflation (PP-inf). In PR-inf the prior ensemble is inflated while

in PO-inf the posterior ensemble is inflated. In PP-inf, before the update the prior ensemble is inflated and then the posterior

ensemble is inflated after the update. In their recent study, El Gharamti et al. (2019) compared the three approaches in an

atmospheric application. The authors argued that PR-inf is effective at mitigating model errors while PO-inf can only tackle405

sampling errors and other issues associated with the analysis such as non-Gaussianity. Combining both inflation schemes was

shown to produce the best results in application to atmospheric general circulation models.

The algorithm used to compute the inflation is adaptive in time, based on Bayes’ theorem as in eq. (18), and results in

spatially varying inflation fields.

p
(
λ|df |a

)
∝ p

(
df |a|λ

)
· p(λ) (18)410

The algorithm assumes the inflation to be a random variable with an inverse-gamma prior distribution p(λ). A Gaussian

likelihood function p
(
df |a|λ

)
is constructed using forecast or analysis innovations, df |a, the observation error variance, σ2

o ,

and the variance of the ensemble, σ2
yf|a :

p
(
df |λ

)
≈ N

[
E
(
df
)
,var

(
df
)]
,

=
1√
2π

exp

[
−
(

1√
2
df
)2(

σ2
o +λσ2

yf

)−1](
σ2
o +λσ2

yf

)− 1
2

. (19)415

Equation (19) assumes the forecast and the observation errors are uncorrelated; i.e., E
(
df
)

= 0 and E here denotes the expected

value. This is generally valid for most earth system models. In certain modeling scenarios, where forecast and observation errors

have nonzero correlations, one could decorrelate them before proceeding (c.f. Hoteit et al., 2015). The variance of the forecast

innovations, σ2
o +λσ2

yf , is estimated using observation-space diagnostics (Desroziers et al., 2005). In the case of posterior

inflation, the likelihood function is similar to eq. (19) except that the variance of the analysis innovations, var (da), is given as:420

σ2
o −λσ2

ya . The posterior distribution of the inflation is obtained by taking the product of the likelihood and prior densities of

λ as shown in equation (18). To find the updated value of the inflation, p
(
λ|df |a

)
is maximized and the resulting value is used,

in addition to the updated inflation variance, as the mode of the prior density for the next DA cycle. More details can be found

in El Gharamti et al. (2019).

The hydrographs in figures 7 and 8 compare the performance of PR-inf, PO-inf, PP-inf with a no inflation (NO-inf) case at425

two gauges along the Neuse River. At the upstream gauge (near Clayton, Fig. 7), the open loop shows a phase misalignment

with the observations where the model floods almost a week after the main event on the ∼Sep. 15th. The hydrograph resulting

from the NO-inf run is hugely biased as can be seen on Sep. 22nd. Because of the large discrepancies between the model

estimates and the observation, the filter rejected almost 60% of the data1. PO-inf estimates are slightly better than those of

the NO-inf run, however, almost half of the observations are still rejected. Using prior inflation (PR-inf) the majority of the430

observations are assimilated producing high quality streamflow estimates. As can be seen, the large biases between Sep. 14th

1Observation rejection (aka outlier threshold) in DART is applied when the distance between the ensemble mean and the observation is larger than 3 times

the total spread. The total spread is computed as the square-root of the sum of the prior variance and the observation error variance.
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Figure 7. Time-series of prior and posterior ensemble means, at the upstream gauge "Neuse River near Clayton", resulting from 4 different

DA runs: no inflation (top-left), prior inflation (top-right), posterior inflation (bottom-left) and prior and posterior inflation combined (bottom-

right). The open loop hydrograph (in cms) is also shown. Assimilated and rejected observations are shown in green and red asterisks,

respectively. The inflation mean time-series is plotted according the right y-axes. Time-averaged RMSE for each hydrograph is reported in

the legend. The average values of prior,
√
λf , and posterior,

√
λa, inflation are also given in the legend.

and Sep. 22nd are completely removed. Whenever the model prediction starts to deviate from the observations’ trajectory, the

adaptive inflation algorithm reacts immediately by restoring enough spread to bring the ensemble closer to the data during the

update. Once the model predictions become consistent with the observations, the inflation relaxes to smaller values. A value of

1 means no inflation is applied. The best fit to the observations is demonstrated by the PP-inf run. Its overall prior and posterior435

averaged RMSE values are slightly better than those obtained using the PR-inf run.

At the downstream gauge (near Goldsboro as shown in Fig. 8), the discharge is almost 4 times larger than the upstream

gauge and the overall model fit to the data looks better. Towards the end of the flooding event (around Sep. 30th), PO-inf

better delineates the data compared to the NO-inf case. However, a false modeled flood wave appears during this time in

both simulations. Similar to Fig. 7, PR-inf run clearly outperforms the NO-inf and PO-inf runs yielding an average prior and440
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Figure 8. Similar to Fig.7 but for the downstream gauge "Neuse River near Goldsboro."

posterior RMSE of 45 and 38.1 cms, respectively. On average, the PP-inf prior and posterior estimates are∼ 5% more accurate

than those of the PR-inf. Both PR-inf and PP-inf runs assimilate almost 80% of the available observations.

3.4 Choosing the best inflation

The results shown in figures 7 and 8 clearly demonstrate the usefulness of prior inflation at mitigating model biases. The

benefits of using posterior inflation are only minimal. To illustrate how important prior inflation is, one could check out the445

rising limb of the hydrograph at Neuse River near Goldsboro on Sep. 15th. With no inflation, the filter estimates are shown to

overestimate the observed discharge and follow the trajectory of the open loop. Although
√
λa is shown to increase to almost

1.2 in the PO-inf run, it is insufficient to bring the streamflow closer to the data. Assessing the PR-inf run, one could see that

as the prior innovations begin to increase the adaptive scheme counteracts this by increasing
√
λf to almost 4. As a result, the

posterior mean is kept close to the data and consequently the prior estimates improved in the proceeding DA cycles.450

Consistent with the findings of El Gharamti et al. (2019), adding posterior inflation on top of prior inflation further increased

the accuracy. This suggests that posterior inflation might be resolving other regression issues such as sampling noise and non-
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Figure 9. Similar to Fig.7 but for Tar River near Langley. Only the PR-inf (left-panel) and PP-inf (right-panel) results are shown. In addition to

the ensemble means, the prior and posterior members are also plotted. Discontinuities in the hydrograph means that there are no observations

to compare to.

Gaussianity. In fact, the gain from using posterior inflation on top of prior inflation is more pronounced at other gauges as

shown in Fig. 9. As can be seen, PR-inf completely misses the falling limb of the hydrograph starting from Sep. 22nd to Sep.

25th. Prior and posterior means are shown to overlap with the open loop discharge. In the PP-inf run, on the other hand, the455

falling limbs of the simulated hydrographs are more similar to the data. The recession happens almost 2 days earlier and this

in turn helps the filter reject less data (9.6% compared to PR-inf run’s 15.1%) and produce higher quality estimates. The same

behavior was observed at a few other gauge locations in the domain (not shown).

Computationally, combining both adaptive prior and posterior inflation schemes is more expensive than running each scheme

alone. Our experiments suggest that the extra wall-clock time required to perform a full PP-inf run is around 20% of the460

total computing time required by PR-inf or PO-inf. In the current framework, the higher complexity is not found prohibitive

especially when one takes into account the performance benefits that PP-inf provides. As a future study, it would be interesting

to run other PP-inf cases with smaller ensemble size - to match the cost of the PR-inf run - and investigate the performance.

3.5 Inflation in space

The adaptive inflation varies spatially. With each cycle a different inflation factor is assigned to each value in the state vector.465

Using cross-correlations in the joint covariance, inflation is therefore computed not only for streamflow but also for the bucket

portion of the state. Fig.10 maps the prior inflation for both streamflow and bucket obtained using PP-inf run. The displayed

inflation field is an average over all fields obtained during the flooding period; i.e., between Sep. 12 and Sep. 18. Because of

the localized update, the displayed inflation patterns generally follow the tree-like localization shapes (Fig. 4). Inflation values

tend to increase near the observation locations and decrease away from the gauges. This is why many reaches, especially in470

the north east part of the domain, have no inflation (i.e.,
√
λf = 1). Given the hourly assimilation of streamflow data, bucket
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inflation values are relatively smaller than the streamflow ones. Streamflow inflation at more than 90% of the reaches do not

exceed the value of 2. Reaches with very large inflation values are located in densely observed areas, the inflation helps restore

ensemble spread after multiple, sequential state updates results in loss of spread.
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Figure 10. Time-averaged prior inflation for streamflow (left panel) and the bucket (right panel) resulting from PP-inf run. The inflation is

averaged over all estimates between Sep. 12 and Sep. 18. Color (log-scale) and line thickness both indicate the inflation value. Gray reaches

have inflation value of 1.

3.6 Overall Assessment475

Prior to the the hurricane landfall on Sep. 14, streamflow estimates of the model appeared relatively good. The major differences

between observed and modeled streamflows resulted from the hurricane. The impact of DA prior to the hurricane is marginal.

To investigate this further, we show posterior streamflow maps on Sep. 13, 15 and 17 in Fig. 11 (top row panels). We also

show the difference between the posteriors and the open loop estimates (bottom row panels). Before flooding took place, the

highest flow was observed along Pee Dee, Cape Fear and Neuse Rivers as shown on Sep. 13. The difference between the DA480

result and the open loop is confined to Cape Fear River and is equal to ∼ 200 cms. Predicted streamflow on more than 70% of

the reaches in both runs is identical and hence the difference is shown to be 0 cms. The differences grow near Neuse River on

Sep. 15 to around 1000 cms. The posterior estimate of the streamflow in the rest of the domain on Sep. 15 is generally larger

than the open loop (mostly bluish in color). It is notable that streamflow in the domain increased by a factor of 7 before (i.e.,

maximum of 308 cms on Sep. 13) and after (i.e., maximum of 2170 cm on Sep. 15) landfall. On the 17th of Sep. the spatial485

flow distribution changed considerably especially near the north-western side of Pee Dee River in which posterior streamflow

increased to nearly 7000 cms. Open loop streamflow estimates are surprisingly small in that area unlike the rest of the flooded

domain.
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Figure 11. Top row panels: Posterior streamflow ensemble mean maps resulting from a PP-inf run on Sep. 13th at 3 PM (left), Sep. 15th at

5 PM (middle) and Sep. 17th at 7 PM (right). Bottom panels: Similar maps but for the difference between the Posterior means and the open

loop estimates. Reaches with 0 cms flow are shown in gray color. Color (log-scale) and line thickness both indicate the magnitude value.

In order to understand the huge discrepancy between the posteriors and the open loop results, we study the streamflow

evolution at Rocky River (just north of Pee Dee) in Fig. 12. On top of streamflow, we display the mean areal precipitation rates490

that are used to force the hydrologic model upstream of the gauged streamflow point. As can be seen, the open loop hydrograph

severely underestimates the observed discharge on Sep. 17. While the observed discharge reaches 3000 cms, the open loop

estimate does not surpass 100 cms. The reason for this huge bias is mainly attributed to the inaccurately specified rainfall

rates which do not exceed 10 mm/hr during this time. Before this period, on Sep. 10, the forcings also falsely simulate heavy

rainfall (around 40 mm/hr) prior to the hurricane’s landfall. It is surprising how well the DA prior and posterior estimates are495

given these errors in the precipitation forcing. In fact, by looking at the RMSE values one finds that the prior and the posterior

estimates are 56% and 90% more accurate than the open loop. Such a significant enhancement is obtained due to a massive

inflation that gets applied to the prior streamflow ensemble. As shown in the right panel of Fig. 12, the inflation mean on Sep.

17 grows to 15. This growth was accompanied with a sizable increase in the inflation standard deviation. This further illustrates

how powerful the adaptive inflation algorithm in tackling large biases in the model. It is important to note that if the inflation500

variance was fixed in time, then the inflation mean will not have the room to grow as much and hence the fit to the observed

23



discharge will not be as good. The posterior inflation mean values during the flood (not shown) were ranging between 1 and

2. In terms of ensemble spread, due to inflation the DA estimates are almost 2 orders of magnitude larger than the open loop

during the flood. The posterior ensemble spread is consistently smaller than the prior given the continuous hourly shrinkage

caused by the Kalman update.505
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Figure 12. Left panel: Open loop, prior and posterior hydrographs obtained at the Rocky River near Norwood. Precipitation rates computed

at that gauge are plotted according the right y-axis. Right panel: Open loop, prior and posterior ensemble spread (in cms) time-series are

displayed in log-scale. Evolution of prior inflation mean and standard deviation (SD) is also shown. RMSEs, average ensemble spread and

average inflation mean and standard deviation values are reported in the legends.

The rank histogram is a useful statistical approach to visualize the behavior of the model and the priors along Pee Dee

River. The observed streamflow is binned with respect to the open loop and prior ensemble members at a single gauge near

Bennettsville, SC. The resulting probability bar diagrams are shown in Fig. 13. If the observation at all times falls within the

span of the ensemble members then one would expect to get a flat rank histogram. This is in fact exactly what we obtain for

the prior streamflow ensemble (bottom panel), making the observed discharge statistically indistinguishable from the ensemble510

members. As for the open loop, the rank histogram suggests that the probability of the observation falling outside the open loop

ensemble is larger than 50%. The rank histogram for the open loop is heavily skewed to the right indicating that the observations

are most frequently much larger than the ensemble members, consistent with our previous analysis. The high probability in the

first bin of the histogram reflects the open loop’s overestimation of the observed streamflow during the no-flood period.

To further assess the performance of the presented DA framework, we run an additional PP-inf experiment and instead515

of assimilating all 107 gauges we withhold 3 gauges for validation. By withholding gauges, we can infer the impact of the

assimilation methods on ungauged points within the domain. The regime at the withheld gauges ranges between relatively low

flow at the Buffalo Creek, moderate flow at Lumber River and high flow at Cape Fear River. Linear regression is performed

to validate the streamflow estimates obtained using the open loop, PP-inf (assimilate all 107 gauges), and PP-inf-w (withhold

3 gauges) at the withheld gauges. The resulting analysis is shown in Fig. 14. The PP-inf run is presented as the best case520
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Pee Dee River near Bennettsville (NWIS 021305561)
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Figure 13. Rank histograms for the open loop and the prior streamflow obtained at Pee Dee River near Bennettsville. The histograms have

been normalized to show probability instead of the observation count. The arrow in last bin of the top panel indicate that the probability is

large (∼ 0.5).

scenario. We check if PP-inf-w can outperform the open loop and how well it approximates PP-inf. Compared to the open

loop, the performance of PP-inf-w at the withheld gauges is considerably more accurate. At Lumber River, for instance, the

open loop shows a strong overestimation of the observed discharge strongly improved in both assimilation runs. For all 3

gauges, the estimates from PP-inf-w are able to reasonably mimic those of the PP-inf. Overall, PP-inf-w yields better RMSE

and more desirable R2 (coefficient of determination) values than the open loop. This result indicates that the streamflow at525

unobserved locations is significantly improved by the assimilation.

4 Summary and Discussion

NOAA’s National Water Model configuration of the WRF-Hydro framework is coupled to the Data Assimilation Research

Testbed (DART) to improve ensemble streamflow forecasts under extreme rainfall conditions during Hurricane Florence in

Sep. 2018. Streamflow and bucket head states are simulated using a channel+bucket submodel of the NWM. These states are530

then updated through data assimilation (DA) using streamflow observations collected from 107 USGS gauges. The system

uses 80 ensemble members, incorporating multiphysics uncertainty (each ensemble member assumes different channel model

parameters) and time-varying uncertainty in the forcing fluxes to the channel and the bucket models.

This study presents two main contributions within a generalized ensemble DA framework for hydrologic systems, par-

ticularly those defined on irregular grids such as a stream network. First, a topologically based "along-the-stream" (ATS)535

localization is shown to improve information propagation during the model state. Localizing the impact of the update miti-
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Figure 14. Cross plots of the streamflow at 3 withheld gauges. The results are shown for the open loop, the PP-inf (where all 107 gauges are

assimilated) and PP-inf-w (where only 104 gauges are assimilated). The best fit line is denoted by a black dashed line. Average RMSE value

and the coefficient of determination (R2) are computed and reported in the legends.

gates sampling errors due to undersampling as well as other analysis errors. Moreover, ATS localization specifically eliminates

error-covariances between unconnected streams. The algorithm requires tuning of a localization radius and we do not attempt

to diagnose a physical basis for estimating the optimal radius a priori (as such a discussion should probably include estimation

of temporal error covariances not considered in this study). However, ATS localization was found to produce results signifi-540

cantly better than the regular Euclidean distance-based approach. The improved results stem in part from a larger localization

radius under the ATS approach, indicating more effective propagation of the observations in the update along the stream than

through Euclidean space. While the ATS approach does not further the cause of "predictions in ungauged basins", it indicates

that further research into novel localization strategies for streamflow DA may bear additional fruit. On this point, we note that

the impact of the ATS localization strategy on the results of this study relative to the impact of adaptive inflation and bias545

correction is remarkably larger than would be expected in application to atmospheric DA.

The second major contribution of our study is to demonstrate utility of spatially and temporally varying adaptive inflation

(El Gharamti, 2018) in hydrologic applications, particularly to help control model bias. Prior and posterior adaptive inflation

is shown to mitigate model biases and sampling errors, respectively. Results during major flooding events illustrate that severe

model biases can be effectively reduced using adaptive prior inflation. Because the method is spatially varying, different550

degrees of bias in different parts of the stream network can be efficiently tackled. Posterior inflation was not found as effective

as prior inflation, however, combining both inflation schemes yielded the highest streamflow accuracy. Overall, inflation plays

an indispensable bias correction role, without which, the quality of the ensemble streamflow prediction would best be described

as poor.

To validate the results of the presented DA system, a variety of diagnostics are presented. Hydrographs at different locations555

in the domain were investigated. Prior and posterior streamflow estimates were compared to the open loop result. The largest
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streamflow improvements were found along Pee Dee River in South Carolina after landfall, during which the observed stream-

flow was strongly underestimated by the open loop. Improvements due to assimilation were also demonstrated using a rank

histograms at a gauge along Pee Dee River. Streamflow and inflation spatial maps were also analyzed. It was found that stream-

flow inflation values are larger than those of the bucket state, given that streamflow is directly observed. The overall changes to560

the bucket state after DA were minimal. To test the impact of DA at non-observed locations, 3 gauges were withheld from the

assimilation and the resulting prior estimates were verified against the data. Linear regression tests revealed that observations

at nearby gauges are able to improve the streamflow at the location of the withheld gauges, eventually reducing the systematic

biases of the open loop.

The most challenging aspect of the hydrologic DA is the problem of model biases or errors. These biases are usually565

associated with inaccurate boundary conditions (e.g. precipitation), uncertain parameters (e.g. channel roughness and slope)

or model physics deficiencies. This study has shown that adaptive inflation can prove effective at handling biases in the data

assimilation. Apart from inflation, a handful of other techniques can be performed to mitigating bias issues. Jointly estimating

highly uncertain model parameters alongside the state is an approach commonly found in hydrology (e.g. Vrugt et al., 2006;

Gharamti et al., 2015; Abbaszadeh et al., 2018; Ziliani et al., 2019). Updating parameters often increase the complexity of the570

DA framework (nonlinearity often increases in state-parameters estimation problems) and the computational cost may become

prohibitive, especially for spatially varying parameters. Yet, such an approach may yield improvements to the analyses of this

study. The multiphysics approach considered here aims to incorporate uncertainty in the fixed boundary condition (geometry,

roughness parameters) into the ensemble in order to better model the background error covariance. A combined multiphysics

and joint parameter estimation approach might also be pursued. Uncertainty of updated parameters tends to dissipate in time575

and may be more appropriate for certain kinds of conceptual model parameters instead of those considered in our multiphysics

approach. Further up the model chain, not considered in this study, running WRF-Hydro with a land surface model would

allow for updating of soil moisture and surface head states. Instead of treating deterministic fluxes with parameterized noise,

introducing these prognostic variables would provide the ability to adjust the fluxes coming to the channel. Many studies have

tried this and remarked on the problematic updating of soil moisture from streamflow due to the highly nonlinear relationship580

between the states, particularly for flood forecasting applications (Rakovec et al., 2015). While expanding the prognostic states

of the model may potentially improve aspects of the flood prediction problem, such as overland and subsurface fluxes to the

channel routing configuration, it is possible that shifting the boundary conditions up the model chain may result in a similar

bias issue with more degrees of freedom in the state vector. Coupled atmospheric and hydrologic DA would be a further step

towards updating the prognostic states causing hydrologic errors in the state vector. These are ideas to be pursued in future585

studies.

An essential DA ingredient this study did not cover is Gaussian anamorphosis (Simon and Bertino, 2009; Gharamti et al.,

2017). Streamflow, being strictly non-negative, is a nonGaussian variable. Since the Kalman update is linear and assumes

Gaussian statistics, it becomes more appropriate to transform streamflow to a Gaussian space where the update is performed and

then it can be pulled back to the physical space. This is well known in hydrological applications (e.g. Clark et al., 2008). Such a590

transform guarantees that the updated streamflow does not consist of any unphysical (i.e., negative) values. The transformation
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is often conducted using empirical functions or analytical ones such as the natural logarithm. This will be investigated in a

follow-up study.

Finally, one-hour ahead (prior) forecasts of flooding event were the focus of this study. Future research will study the impact

of DA in the whole forecast time window up to 18 hours in the short-range forecasts, and expand the DA application to595

medium- and long-range forecasts including additional hydrologic components and observations. The functionality of the ATS

localization and inflation may change in different forecasting modes. For instance, longer localization radii could be found

more desirable in a long range forecast.

Code availability. The data assimilation code used in this study is openly available as part of the DART repository (main branch) on GitHub;

https://github.com/NCAR/DART/tree/main/models/wrf_hydro. The model code is also freely available and can be ac-600

cessed through GitHub; https://github.com/NCAR/wrf_hydro_nwm_public.

Appendix A: Ensemble Optimization and Localization Correlation Functions

Fig. A1 shows the prediction skill score (PSS) for 3 different data assimilation experiments using 40, 80 and 160 ensemble

members. For a perfect prediction skill, one would expect to get a PSS = 1. As can be seen from the plot, the larger the ensemble

size the better the PSS. However, the improvements obtained using 160 members over 80 are relatively marginal (PSS is 0.6605

and 0.62 for 80 and 160 members, respectively). Decreasing the ensemble size to 40 degrades the quality of streamflow and

yields a PSS 0f 0.43. On top of the forecast skill, the total run time and number of processors needed to run the experiments

are also plotted. As shown, there is quite an exponential increase in computational time and demand when going from 80 and

160 ensemble members. For instance, the time needed to finish the experiment using 40, 80 and 160 members is 5,5 1
2 , and 9

hours, respectively. Similarly, the number of CPUs required by these respective ensemble runs is 360, 720 and 1440. Based on610

this analysis, we figured that 80 members will give us high enough accuracy without having to utilize a lot of computational

power and time. This ensemble size is fixed to 80 members for all experiments described in this study.
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Figure A1. Prediction Skill Score (PSS; in black) obtained for 3 different WRF-Hydro and DART assimilation experiments where the

ensemble size is varied; namely Ne = 40,80,160 members. Also plotted as function of the ensemble size are the experiment execution time

(right red axis) and the total number of processors needed to run the experiments (right green axis). The shaded region indicates the optimal

ensemble size configuration we select in this study. PSS is computed as follows: 1−MSEDA/MSEREF where MSE denotes mean squared

errors, DA means a data assimilation run and REF is a reference run (the open loop in this case).

Table A1. Localization factor α for different correlation functions is given as function of the absolute distance between the observation gauge

and the streamflow reaches, ξ, and the localization radius, r. The distance, ξ is computed along the river network and is equal to the sum of

lengths of the reaches separating the observation gauge and the link that is subject to the update. The parameter Ω, used in the Gaspari-Cohn

function, is defined as
2ξ

r
.

Type Correlation Function

Gaspari-Cohn α(ξ,r) =


1− 1

4
Ω5 +

1

2
Ω4 +

5

8
Ω3− 5

3
Ω2 0≤ ξ < r

2
1

12
Ω5− 1

2
Ω4 +

5

8
Ω3 +

5

3
Ω2− 5Ω + 4− 2

3
Ω−1 r

2
≤ ξ < r

0 ξ ≥ r

Boxcar α(ξ,r) =

 1 0≤ ξ < r

0 ξ ≥ r

Ramped-Boxcar α(ξ,r) =


1 0≤ ξ < r

2

2
r− ξ
r

r

2
≤ ξ < r

0 ξ ≥ r
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