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Abstract.

Climate change is one of the biggest challenges currently faced by society, with an impact on many systems, such as the

hydrological cycle. To locally assess this impact, Regional Climate Model (RCM) simulations are often used as input for

hydrological rainfall-runoff models. However, RCM results are still biased with respect to the observations. Many methods

have been developed to adjust these biases, but only during the last few years, methods to adjust biases that account for the5

correlation between the variables have been proposed. This correlation adjustment is especially important for compound event

impact analysis. As a simple example of those compound events, hydrological impact assessment is used here, as hydrological

models often need multiple locally unbiased input variables to ensure an unbiased output. However, it has been suggested that

multivariate bias-adjusting methods may perform poorly under climate change conditions because of bias nonstationarity. In

this study, two univariate and three multivariate bias-adjusting methods are compared with respect to their performance under10

climate change conditions. To this end, the methods are calibrated in the late 20th century (1970-1989) and validated in the

early 21st century (1998-2017), in which the effect of climate change is already visible. The variables adjusted are precipitation,

evaporation and temperature, of which the former two are used as input for a rainfall-runoff model, to allow for the validation of

the methods on discharge. Although not used for discharge modelling, temperature is a commonly-adjusted variable in both uni-

and multivariate settings and therefore important to take into account. The methods are also evaluated using indices based on15

the adjusted variables, the temporal structure, and the multivariate correlation. For precipitation, all methods decrease the bias

in a comparable manner. However, for many other indices the results differ considerably between the bias-adjusting methods.

The multivariate methods often perform worse than the univariate methods, a result that is especially notable for temperature

and evaporation. As these variables have already changed the most under climate change conditions, this reinforces the opinion

that the multivariate bias-adjusting methods are not yet fit to cope with nonstationary climate conditions. Although the effect20

is slightly dampened by the hydrological model, our analysis still reveals that, to date, the simpler univariate bias-adjusting

methods are preferred for assessing climate change impact.
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1 Introduction

The influence of climate change is felt throughout many regions of the world, as becomes evident from the higher frequency25

or intensity of natural hazards, such as floods, droughts, heatwaves and forest fires (IPCC, 2012). As these intensified natural

hazards threaten society, it is essential to be prepared for them. Knowledge on future climate change is obtained by running

Global Climate Models (GCMs), creating large ensemble outputs such as in the Climate Model Intercomparison Project 6

(CMIP6) (Eyring et al., 2016). Although they are informative on a global scale, the generated data are too coarse for local

climate change impact assessments. To bridge the gap from the global to the local scale, Regional Climate Models have30

become a standard application (Jacob et al., 2014), using the output from GCMs as input or boundary conditions.

Although the information provided by both GCMs and RCMs is very valuable, both are biased with respect to the observa-

tions, especially for precipitation (Kotlarski et al., 2014). The biases can occur in any statistic and are commonly defined as “a

systematic difference between a simulated climate statistic and the corresponding real-world climate statistic" (Maraun, 2016).

These biases are caused by temporal or spatial discretisation and unresolved or unrepresented physical processes (Teutschbein35

and Seibert, 2012; Cannon, 2016). An important example of the latter is convective precipitation, which can only be resolved by

very high resolution models. Although the improvement of models is an important area of research (Prein et al., 2015; Kendon

et al., 2017; Helsen et al., 2019; Fosser et al., 2020), such improved models are computationally expensive. As such, it is still

necessary practice to statistically adapt the climate model output to adjust the biases (Christensen et al., 2008; Teutschbein and

Seibert, 2012; Maraun, 2016).40

Many different bias-adjusting methods exist (Teutschbein and Seibert, 2012; Gutiérrez et al., 2019). They all calibrate a

transfer function using the historical simulations and historical observations and apply this transfer function to the future

simulations to generate future ‘observed values’ or an adjusted future. Of all the different methods, the quantile mapping

method (Panofsky et al., 1958) was shown to be the generally best performing method (Rojas et al., 2011; Gudmundsson et al.,

2012). Quantile mapping adjusts biases in the full distribution, whereas most other methods only adjust biases in the mean45

and/or variance.

An important problem with quantile mapping and most other commonly used methods is that they are univariate and do

not adjust biases in the multivariate correlation. Although quantile mapping can retain climate model multivariate correlation

(Wilcke et al., 2013), the ability of univariate methods to improve the climate model’s multivariate correlation has been ques-

tioned (Hagemann et al., 2011; Ehret et al., 2012; Hewitson et al., 2014). This is important for impact assessment, as local50

impact models often need multiple input variables and many high-impact events are caused by the co-occurrence of multiple

phenomena, the so-called ‘compound events’ (Zscheischler et al., 2018, 2020). For example, floods can be characterised by a

rainfall-runoff model using evaporation and precipitation time series as an input. If the correlation between these variables is

biased with respect to the observations, then it can be expected that the model output is biased as well. This results in a higher

uncertainty when using these models and thus in the resulting assessment. During the past decade, multiple methods have been55

developed to counter this problem. The first methods focused on the adjustment of two jointly occurring variables, most often

precipitation and temperature, such as those by Piani and Haerter (2012) and Li et al. (2014). However, it became clear that ad-
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justing only two variables would not suffice, hence many more methods have been developed that jointly adjust more variables,

including those by Vrac and Friederichs (2015); Cannon (2016); Mehrotra and Sharma (2016); Dekens et al. (2017); Cannon

(2018); Vrac (2018); Nguyen et al. (2018); Robin et al. (2019). Yet, the recent growth in availability of such methods comes60

along with a gap in the knowledge on their performance. In some studies, these methods have been compared with one or two

older multivariate methods to reveal the improvements (Vrac and Friederichs, 2015; Cannon, 2018) or with univariate methods

(Räty et al., 2018; Zscheischler et al., 2019; Meyer et al., 2019). Each of these three studies indicates that the univariate and

multivariate methods lead to different results, yet it is difficult to conclude whether uni- or multivariate methods perform best.

According to Zscheischler et al. (2019) multivariate methods have an added value. Räty et al. (2018) conclude that the multi-65

variate methods and univariate methods performed similarly, while Meyer et al. (2019) could not draw definitive conclusions.

These studies vary in set-up, adjusted variables and study area, which all could have caused the difference in added value. In

all three studies, the same method, namely the Multivariate Bias Correction in n dimensions (MBCn) (Cannon, 2018) was the

basis for comparison. Only recently, the first studies comparing multiple multivariate bias-adjusting methods were published

(François et al., 2020; Guo et al., 2020). The study by François et al. (2020) focused on the different principles underlying the70

multivariate bias-adjusting methods and concluded that the choice of method should be based on the end user’s goal. Besides,

they also noticed that so far, all multivariate methods fail in representing the temporal structure of a time series. In contrast

to the focus of François et al. (2020), Guo et al. (2020) studied the performance of multivariate bias-adjusting methods for

climate change impact assessment and concluded that multivariate methods could be interesting in this context. However, they

also noticed that the performance of the multivariate methods was lower in the more recent validation period and suggested75

that this could be caused by bias nonstationarity. As the use of multivariate bias-adjusting methods could be an important tool

for climate change impact assessment, this deserves more attention.

The bias stationarity - or bias time invariance - assumption is the most important assumption for bias correction. It implies

that the bias is the same in the calibration and validation or future periods and that the transfer function based on the calibra-

tion period can consequently be used in the future period. However, this assumption does not hold due to different types of80

nonstationarity induced by climate change, which may cause problems (Milly et al., 2008; Derbyshire, 2017). In the context

of bias adjustment, this problem has been known for several years (Christensen et al., 2008; Ehret et al., 2012), but has not

received a lot of attention. A few authors have tried to propose new types of bias relationships (Buser et al., 2009; Ho et al.,

2012; Sunyer et al., 2014; Kerkhoff et al., 2014). Recently, it has been suggested that it is best to assume a non-monotonic

bias change (Van Schaeybroeck and Vannitsem, 2016). Some authors suggested that bias nonstationarity could be an important85

source of uncertainty (Chen et al., 2015; Velázquez et al., 2015; Wang et al., 2018; Hui et al., 2019), but not all found clear

indications of bias nonstationarity (Maraun, 2012; Piani et al., 2010; Maurer et al., 2013).

The availability of new methods and more data enables a more coherent assessment of the bias (non)stationarity issue. By

comparing three bias-adjusting methods in a climate change context with possible bias nonstationarity, some of the remaining

questions in François et al. (2020) and Guo et al. (2020) can be answered. The three multivariate bias-adjusting methods that90

will be compared in this study are ‘Multivariate Recursive Quantile Nesting Bias Correction’ (MRQNBC, Mehrotra and Sharma

(2016)), MBCn (Cannon, 2018) and ‘dynamical Optimal Transport Correction’ (dOTC, Robin et al. (2019)). These three
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methods give a broad view of the different multivariate bias adjustment principles, which we will elaborate on in Section 3.3.

As a baseline, two univariate bias-adjusting methods will be used: Quantile Delta Mapping (QDM, Cannon et al. (2015)) and

modified Quantile Delta Mapping (mQDM, Pham (2016). QDM is a classical univariate bias-adjusting method and is chosen95

for this analysis as it is a robust and relatively common quantile mapping method, especially as one of the subroutines in the

multivariate bias-adjusting methods (Mehrotra and Sharma, 2016; Nguyen et al., 2016; Cannon, 2018). mQDM, on the other

hand, is one of the so-called ‘delta change’ methods, which are based on an adjustment of the historical time series. Using

these univariate bias-adjusting methods, we can assess whether multivariate and univariate bias-adjusting methods differ in

their response to possible bias nonstationarity.100

The methods will be compared by applying them for the bias adjustment of precipitation, potential evaporation and tempera-

ture. The bias-adjusted time series will be used as inputs for a hydrological model in order to simulate the discharge. Discharge

time series are the basis for flood hazard calculation, but can also be considered as an interesting source of validation them-

selves (Hakala et al., 2018). Although temperature is not needed as an input for the hydrological model, it is, together with

precipitation, the most common variable to be adjusted in similar studies and therefore it is also included here. In order to105

mimic climate change context, the ‘historical’ or calibration time series runs from 1970 to 1989 and the ‘future’ or validation

time series runs from 1998 to 2017, which is only recent past. In the latter time frame, effects of climate change are already

visible (IPCC, 2013). The change of some biases from calibration to validation time series will be calculated, to indicate the

extent of the bias nonstationarity. Maurer et al. (2013) proposed the R index for this purpose (see Section 2.4). Calculating the

bias nonstationarity between both periods will give an indication of the impact of a changing bias on climate impact studies110

for the end of the 21st century. As Chen et al. (2015) mentioned: “If biases are not constant over two very close time periods,

there is little hope they will be stationary for periods separated by 50 to 100 years"

2 Data and validation

2.1 Data

The observational data used were obtained from the Belgian Royal Meteorological Institute (RMI) Uccle observatory. The115

most important time series used is the 10-min precipitation amount, gauged with a Hellmann-Fuess pluviograph, from 1898 to

2018. An earlier version of this precipitation dataset was described by Demarée (2003) and analyzed in De Jongh et al. (2006).

Multiple other studies have used this time series (Verhoest et al., 1997; Verstraeten et al., 2006; Vandenberghe et al., 2011;

Willems, 2013). The 10-min precipitation time series was aggregated to daily level to be comparable with the other time series

used.120

For the multivariate method, the precipitation time series was combined with a 2 meter air temperature and potential evap-

oration time series. The daily potential evaporation was calculated by the RMI from 1901 to 2019, using the Penman formula

for a grass reference surface (Penman, 1948) with variables measured at the Uccle observatory. Daily average temperatures

were obtained using measurements from 1901 to 2019. As the last complete year for precipitation was 2017, the data were

used from 1901 to 2017, amounting to 117 years of daily data.125
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The IPCC report (IPCC, 2013) clearly states the influence of climate change on different variables. For Belgium, this is

illustrated by Fig. 1, in which the temperature and evaporation anomalies for the 21st century are all higher than the long-term

mean value. However, for precipitation, the effect of climate change is not yet visible.

Figure 1. Yearly mean temperature, precipitation and evaporation anomalies for 1901-2017, compared with long-term mean value from

1920-1980. Red points are 21st century values.

For the simulations, data from the EURO-CORDEX project (Jacob et al., 2014) were used. The Rossby Centre regional

climate model RCA4 was used (Strandberg et al., 2015) as it is one of the few RCMs with potential evaporation as an output130

variable. This RCM was forced with boundary conditions from the MPI-ESM-LR GCM (Popke et al., 2013). Historical data

and scenario data for the grid cell comprising Uccle were respectively obtained for 1970-2005 and 2006-2100. The former time

frame is limited by the earliest available data from the RCM. The latter time frame was only used until 2017, in accordance

with the observational data. As climate change scenario, an RCP4.5 forcing was used in this paper (Van Vuuren et al., 2011).

Since only ‘near future’ (from the model point of view) data were used, the choice of forcing does not have a large impact.135

However, when studying scenarios in a time frame further away from the present, using an ensemble of forcings is more

relevant to be aware of the uncertainty regarding future climate change impact. Evaluations of the RCA4 model have shown

that there is a bias in precipitation, especially in winter (Strandberg et al., 2015), but this bias is in line with the biases from

other EURO-CORDEX models (Kotlarski et al., 2014).

As Uccle (near Brussels) is situated in a region with small topographic differences, it is assumed that the conditions in Uccle140

can be applied anywhere within the climate model grid cell and the variance within this cell is about the same. This assumption
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can be made as long as the resulting adjusted data are not used for extremely localized studies, such as urban hydrology impact

assessment.

2.2 Time frames

As mentioned in the introduction, it is important to assess bias-adjusting methods in a context they will be used in, i.e. under145

climate change conditions. The time series used in this study were chosen accordingly: 1970-1989 was chosen as the ‘historical’

or calibration time period and 1998-2017 was chosen as the ‘future’ or validation time period. Time series of 20 years were

chosen here, although it is advised to use 30 years of data to have robust calculations (Berg et al., 2012; Reiter et al., 2018).

However, as no climate model data prior to 1970 are available, using 30 years of data would have led to overlapping time series.

2.3 Validation framework150

An important aspect in bias adjustment is the validation of the methods. Different methods are available, of which a pseudo-

reality experiment (Maraun, 2012) is one of the most-used ones. In this method, each member of a model ensemble is in

turn used as the reference in a cross-validation. However, while such a set-up is useful when comparing bias-adjustment

methods, it only mimics a real application context. When sufficient observations are available, a ‘pseudo-projection’ setup

(Li et al., 2010) can be used. This set-up resembles a ‘differential split-sample testing’ (Klemeš, 1986) and is more in agreement155

with a practical application of bias-adjusting methods. Differential split-sample testing has been used in a bias adjustment

context by Teutschbein and Seibert (2013), by constructing two time series with respectively the driest and wettest years. In

our case study, it is assumed that the two time series differ enough because of climate change. Consequently, the approach is

simple, and as the validation is not set in the future, it is considered a ‘pseudo-projection’.

Besides the choice of time frames and data, also the choice of validation indices is of key importance. Maraun and Widmann160

(2018a) stress that these indices should only be indirectly affected by the bias adjustment, as only validating on adjusted indices

can be misleading. Such adjusted indices are the precipitation intensity, temperature and evaporation, which are used to build

the transfer function in the historical setting and should be corrected by construction. Under bias stationarity, this correction

will be carried over to the future, possibly hiding small inconsistencies that may arise for extreme values. If the bias is not

stationary, the effect might be different between adjusted and indirectly affected indices. As such, besides the three adjusted165

variables (indices 1 to 3 in Table 1) and their correlations (indices 4 to 12, which are directly adjusted by some of the methods),

also indices based on the precipitation occurrence and on the discharge Q are used. The occurrence-based indices (13 to 16)

allow for assessing how the methods influence the precipitation time series structure. The discharge-based indices (17 and 18)

allow for the assessment of the impact of the different bias-adjusting methods on simulated river flow. The discharge-based

indices combine the information of the other indices by routing through the rainfall-runoff model. They are the most important170

aspect of the assessment, as they indicate the natural hazard. ETCCDI (Expert Team on Climate Change Detection and Indices)

precipitation indices (Zhang et al., 2011) have also been considered and calculated. However, these are not included in this

paper, as the differences in ETCCDI indices were minor and did not allow to clearly discern between the different methods. All
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indices were calculated taking all days into account, instead of only calculating them on wet days, as some of the multivariate

bias-adjusting methods do not discriminate between wet or dry days in their adjustment.175

Table 1. Overview of the indices used

Nr Index Name

1 Px Precipitation amount percentile values, with x the percentile considered

2 Tx Temperature percentile values, with x the percentile considered

3 Ex Evaporation percentile values, with x the percentile considered

4 corrP,E Spearman correlation between the time series of P and E

5 corrP,T Spearman correlation between the time series of P and T

6 corrE,T Spearman correlation between the time series of E and T

7 crosscorrP,E,0 Lag-0 crosscorrelation between the time series of P and E

8 crosscorrP,T,0 Lag-0 crosscorrelation between the time series of P and T

9 crosscorrE,T,0 Lag-0 crosscorrelation between the time series of E and T

10 crosscorrP,E,1 Lag-1 crosscorrelation between the time series of P and E

11 crosscorrP,T,1 Lag-1 crosscorrelation between the time series of P and T

12 crosscorrE,T,1 Lag-1 crosscorrelation between the time series of E and T

13 PP00 Precipitation transition probability from a dry to a dry day

14 PP10 Precipitation transition probability from a wet to a dry day

15 Ndry Number of dry days

16 Plag1 Precipitation lag-1 auto-correlation

17 Qx Discharge percentiles, with x the percentile considered

18 QT20 20-year return period value of discharge

2.4 Bias nonstationarity

In a study on possible changes in bias, Maurer et al. (2013) proposed the R index:

R = 2
| biasf −biash |
| biasf |+ | biash |

, (1)

where biasf and biash are the biases in respectively the future and historical time series, calculated on the basis of the observa-

tions and raw climate simulations. The R index takes a value between 0 and 2. If the index is greater than one, the difference180

in bias between the two sets is larger than the average bias of the model and it is likely that the bias adjustment would degrade

the RCM output rather than improve it. The index is calculated for the indices used for validation in order to have an indication

of the influence of bias nonstationarity on these indices. Besides for the indices, the R index is also calculated for the average

and standard deviation of each variable, in order to be able to more easily visualise the changes in distribution.
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2.5 Hydrological model185

Similar to Pham et al. (2018), we use the Probability Distributed Model (PDM, Moore (2007)), a lumped conceptual rainfall-

runoff model to calculate the discharge for the Grote Nete watershed in Belgium. This model uses precipitation and evaporation

time series as inputs to generate a discharge time series. The PDM as used here was calibrated by Cabus (2008) using the

Particle Swarm Optimization algorithm (PSO, Eberhart and Kennedy (1995)). As in Pham et al. (2018), it was assumed that

the differences between meteorological conditions in the Grote Nete-watershed and Uccle are negligible, and that thus the190

adjusted data for the Uccle grid cell can be used as a forcing for the PDM. Furthermore, the goal is not to make predictions,

but to assess the impact of different bias adjustment methods on the discharge values. To calculate the bias on the indices,

observed, raw and adjusted RCM time series were used as forcing for this model. The discharge time series generated by the

observations is considered to be the ’observed’ discharge, and biases are calculated in comparison with this time series.

2.6 Validation metrics195

The residual biases relative to the observations and to the model bias are often used in this paper to graphically present and

interpret the results. These residual biases are based on the ‘added value’ concept (Di Luca et al., 2015) and enable a comparison

based on two aspects. The first aspect is the performance in removing the bias, the second is the extent of the bias removal in

comparison with the original value for the corresponding index for the observation time series. The use of the residual biases

allows for a detailed study and comparison of the effect of bias adjustment on the different indices.200

The residual bias relative to the observations RBO for an index k is calculated as follows:

RBO (k) = 1− | biasraw(k) | − | biasadj(k) |
| obs(k) | , (2)

with raw(k) the raw climate model simulations, adj(k) the adjusted climate model simulations and obs(k) the observed values

for index k.

The residual bias relative to the model bias RBMB for an index k is calculated as follows:205

RBMB (k) = 1− | biasraw(k) | − | biasadj(k) |
| biasraw(k) |

. (3)

Absolute values are used in Eqs. (2) and (3) to compute the absolute difference between the raw and adjusted values, thus

neglecting a possible change of sign of the bias. If the values of these residual biases are lower than 1 for an index, the method

performs better than the raw RCM for this index. The best methods have low scores on both residual biases for as many indices

as possible.210

3 Bias-adjusting methods

3.1 Occurrence-bias adjustment: Thresholding

One of the deficiencies of RCMs, especially in Northwest Europe, are the so-called ‘drizzle days’ (Gutowski et al., 2003;

Themeßl et al., 2012; Argüeso et al., 2013), i.e. the simulation of a small amount of precipitation on days that are supposed
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to be dry. This has an influence on the temporal structure of the simulated time series and should thus be adjusted (Ines and215

Hansen, 2006). This is commonly done in an occurrence-bias-adjusting step before the main step, the intensity-bias adjustment.

In this study, we use the threshlding occurrence-bias-adjusting method. Thresholding is one of the most common occurrence-

bias-adjusting methods and has been in use for many years (e.g. Hay and Clark (2003); Schmidli et al. (2006); Ines and Hansen

(2006)). This method is only applicable in regions where the assumption holds that the simulated time series has more wet

days than the observed time series. This is the case for Northwest Europe (Themeßl et al., 2012) and Belgium in particular. An220

advanced version of the thresholding method is used here. To adjust the number of wet days, the frequencies of dry days in the

observations and in the simulations are calculated. The difference between the two frequencies, ∆N , is the number of days of

the simulated time series that have to be adapted. The simulated series is adapted by first sorting the wet days and thus only

changing the ∆N lowest days of the simulation time series by setting them to 0. ∆N is computed for the past and applied in

the future and consequently relies on the bias stationarity assumption. However, as thresholding is used prior to all methods,225

the influence of possible bias nonstationarity on ∆N is assumed to be negligible.

In this advanced version of thresholding, some considerations are made. First, a day is considered wet if its simulated

precipitation amount is above 0.1 mm, to account for measurement errors in the observations. Second, the adjustment is done

on a monthly basis, to withhold a realistic temporal structure. This implies that to correct the number of wet days in month

m, all days of month m of the time series are selected. Third, both historical and future simulations are adjusted during the230

same calculation step, to ensure a sound comparison during the intensity phase of the adjustment. If only either the historical

or future time series would have been adjusted, the assumption that the bias can be transferred from the historical to the future

time period would be impaired. The thresholding method is summarized in Algorithm 1.
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Algorithm 1 Thresholding

Input:

Historical observations Xho

Historical simulations Xhs

Future simulations X fs

Output:

Adjusted historical Xhs
out and future simulations X fs

out

Initialization

for m= 1 : 12 do

Select data for month m: Xho
m , Xhs

m and X fs
m {Loop over months}

Calculate the percentage of dry days in month m for the historical observations

Calculate the percentage of dry days in month m for the historical simulations

Calculate ∆N for month m

{Adjustment of historical simulated time series}

Select and sort the wet days

Set the ∆N wet days with the lowest precipitation amount to 0

Restore the original order of the wet days of month m

Restore the full historical time series for month m

{Adjustment of future simulated time series}

Select and sort the wet days

Set the ∆N wet days with the lowest precipitation amount to 0

Restore the original order of the wet days of month m

Restore the full future time series for month m

{Reconstruction}

Replace the data in Xhs
out with the adjusted data for month m

Replace the data in X fs
out with the adjusted data for month m

end for

3.2 Univariate intensity-bias-adjusting methods

3.2.1 Quantile Delta Mapping235

The Quantile Delta Mapping (QDM) method was first proposed by Li et al. (2010). Its main idea is to preserve the climate sim-

ulation trends: it takes trend nonstationarity (changes in the simulated distribution) into account to a certain degree. Although

it handles temperature adjustments well, it gives unrealistic values for precipitation and was therefore extended by Wang and
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Chen (2014) for precipitation adjustment. A comparison with other quantile mapping methods by Cannon et al. (2015) showed

this method to perform best with respect to the preservation of trends. Cannon et al. (2015) bundled both the method by Li et al.240

(2010) (Equidistant CDF-matching) and Wang and Chen (2014) (Equiratio CDF-matching) under the name Quantile Delta

Mapping, because of the similarity with delta change methods (which are described in e.g. Olsson et al. (2009), Willems and

Vrac (2011) and Räty et al. (2014)).

Mathematically, this method can be written as

xfa
i = xfs

i +F−1
xho

(
Fxfs

(
xfs
))
−F−1

xhs

(
Fxfs

(
xfs
))

(4)245

in the additive case, and

xfa
i = xfs

i

F−1
xho

(
Fxfs

(
xfs
))

F−1
xhs (Fxfs (xfs))

(5)

in the ratio or multiplicative case. The superscripts hs, ho, fs and fa indicate respectively the historical simulations, the

historical observations, the future simulations and the adjusted future. In this paper, the additive version is used for tem-

perature time series and the multiplicative one for precipitation and evaporation time series. This choice is based on the250

work of Wang and Chen (2014), who have shown that using the additive adjustment for precipitation results in unrealistic

precipitation values and introduced a multiplicative adjustment. For evaporation, we follow the few available studies (e.g.

Lenderink et al. (2007)) in using the same adjustment as for precipitation.

To ensure the consistency of the time series, Themeßl et al. (2011) implemented a 61-day moving window. Here, a 91-day

moving window is opted for, as suggested by Rajczak et al. (2016) and Reiter et al. (2018). This enables the adjustment of255

each day based on 91days/year · 20years = 1820 days. These days were used to build an empirical CDF (as in Gudmundsson

et al. (2012); Gutjahr and Heinemann (2013), among others), because of the ease of application. The number of quantiles

implemented was determined automatically by the Matlab function ecdf, ranging between 200 and 400. It is also important

to note that for precipitation, Eq. (5) was applied only on the days considered wet, i.e. with a precipitation higher than 0.1 mm.

For consistency, a threshold of 0.1 mm was also used for evaporation. As no prior examples for evaporation adjustment were260

available, we assumed this consistency was the best option. It is important to note that although QDM is only applied on wet

days, it can still transform low-precipitation wet days into days considered dry (e.g. with a precipitation amount < 0.1 mm) if

the ratio in Eq. (5) is small enough.

3.2.2 Modified Quantile Delta Mapping

Pham (2016) proposed another version of QDM, following the delta change philosophy (Olsson et al., 2009; Willems and Vrac,265

2011): the trend established by the RCM is assumed to be more thrust-worthy than the absolute value itself. When applying

this type of methods, the simulated change between the historical and the future is applied to the observations. Thus, instead

of the future simulations, the historical observations are adjusted to the future ‘observations’. As Johnson and Sharma (2011)

mention, this workflow could be problematic for future impact assessment, as it inherits the temporal structure of the historical

observations. This method is mathematically very similar to the QDM method, exchanging the roles of xfs and xho. Thus, it is270
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named ‘modified Quantile Delta Mapping’ (mQDM), and can for the additive case be written as

xfa
i = xho

i +F−1
xfs

(
Fxho

(
xho
))
−F−1

xhs

(
Fxho

(
xho
))
. (6)

The ratio version is mathematically written as

xfa
i = xho

i

F−1
xfs

(
Fxho

(
xho
))

F−1
xhs (Fxho (xho))

. (7)

For the implementation, the same principles were used as for the QDM method: a 91-day moving window, empirical CDFs275

and a threshold of 0.1 mm/day to be considered as a wet day.

3.3 Multivariate intensity-bias-adjusting methods

The increasing number of multivariate bias-adjusting methods throughout the 2010s urges the need to classify them according

to their properties. One possible classification was done by Vrac (2018), who proposed the ‘marginal/dependence’ versus the

‘successive conditional’ approach. The former approach separately adjusts the 1D-marginal distributions and the dependence280

structure and is applied in e.g. Vrac and Friederichs (2015), Cannon (2018) and Vrac (2018). These two components are then

recombined to obtain data that are close to the observations for both marginal and multivariate aspects. The latter approach

consists of adjusting one given variable and then adjusting a second variable conditionally on the second variable: this pro-

cedure is applied successively to each variable. Examples can be found in e.g. Piani and Haerter (2012), Li et al. (2014) and

Dekens et al. (2017). According to Vrac (2018), the latter approach suffers from two main limitations. First, the adjustment285

is performed conditionally on the previously adjusted data. However, the adjustment is often applied in bins. As a result, for

each variable, the amount of data available for each bin decreases, thus decreasing the robustness of the adjustment. Second,

the ordering of the variables in the successive adjustments matters. For example, Li et al. (2014) point out that their ‘Joint Bias

Correction for temperature’ (JBCt) and ‘Joint Bias Correction for precipitation’ (JBCp) methods, which respectively first ad-

just temperature and precipitation, differ in performance. For these two reasons, Vrac (2018) advocates for the use of the more290

robust and coherent ‘marginal/dependence’ approach. Robin et al. (2019) and François et al. (2020) extended this classification

by introducing the all-in-one approach, which adjusts the marginal variables and the correlations simultaneously, ‘dynamical

Optimal Transport Correction’ (dOTC) (Robin et al., 2019) being such a method.

Another perspective on the multivariate bias-adjusting methods is to consider the amount of temporal adjustment that is

allowed or applied by the method. This is important, as the amount of temporal adjustment is intrinsically linked with the main295

goal, the adjustment of the multivariate distribution of the variables. This distribution, in which the dependence is characterised

by the underlying copula (Nelsen, 2006; Schölzel and Friederichs, 2008), can be estimated using the ranks. Thus, to adjust the

multivariate distribution, the ranks of the climate model are replaced by those of the observations, using methods such as

the ‘Schaake Shuffle’ (Clark et al., 2004; Vrac and Friederichs, 2015). This implies that the temporal structure and trends of

the climate model will be altered, which may have a considerable impact (François et al., 2020). This impact is especially300

large when multiday characteristics strongly matter, such as in applications as the hydrological example we use in this study

(Addor and Seibert, 2014). Vrac (2018) mentions this necessity to modify the temporal structure and rank chronology of the
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simulations. Yet, he also mentions that the extent of this modification is still a matter of debate. Cannon (2016) describes this as

the ‘knobs’ that control whether marginal distributions, inter-variable or spatial dependence structure and temporal structure are

more informed by the climate model or the observations. Thus, the choice between the temporal structure of the climate model305

and unbiased dependence structures is a trade-off that has to be made. Some methods, such as those by Vrac and Friederichs

(2015), Mehrotra and Sharma (2016) and Nguyen et al. (2018) rely on the observations for their temporal properties, while

other methods try to find the middle ground (e.g. Vrac (2018) and Cannon (2018)).

Our choice of multivariate bias-adjusting methods takes the above classification into account. The oldest method in the com-

parison is ‘Multivariate Recursive Quantile Nesting Bias Correction’ (Mehrotra and Sharma, 2016). This method completely310

replaces the simulated correlations by those of the observations and is a ‘marginal/dependence’ method according to François

et al. (2020). ‘Multivariate Bias Correction in n dimensions’ (Cannon, 2018) is both a ‘marginal/dependence’ method and a

method that tries to combine information from the climate model and the observations. The most recent method, ‘dynamical

Optimal Transport Correction’ (Robin et al., 2019) differs considerably from the other two methods: it generalises the ‘transfer

function’-principle using the ‘optimal transport’ paradigm (Villani, 2008), thereby defining a new category of multivariate bias-315

adjusting methods: the above-mentioned all-in-one approach. Although far from complete, by comparing these three methods,

a broad view of the different approaches in multivariate bias adjustment can be obtained.

3.3.1 Multivariate Recursive Quantile Nesting Bias Correction

In 2016, Mehrotra and Sharma proposed a new multivariate bias adjustment method, named ‘Multivariate Recursive Quantile

Nesting Bias Correction’ (MRQNBC), based on a combination of several older methods by Johnson and Sharma (2012),320

Mehrotra and Sharma (2012) and Mehrotra and Sharma (2015). The underlying idea of this method is to adjust on more than

one timescale, an idea that most bias-adjusting methods do not incorporate (Haerter et al., 2011). This adjustment on multiple

timescales is applied by adjusting the biases in lag-0- and lag-1-auto and the cross-correlation coefficients, i.e. the persistence

attributes, instead of focusing on the mean or the distribution.

As a first step in this method, QDM is applied separately on variables to adjust the empirical CDFs. This is followed by a325

multivariate bias adjustment to adjust the lag-0 and lag-1 auto and cross-correlation coefficients. This combination of univariate

and multivariate bias-adjusting methods is applied on all time scales. For the multivariate adjustment, two models are used: a

multivariate first-order autoregressive (AR(1)) model with constant parameters at the daily and yearly level, and a multivariate

AR(1) model with periodic parameters (Salas, 1980) at the monthly and seasonal level. All steps are applied to the different

types of data: historical observations of temperature, evaporation and precipitation (combined in the matrix Xho), historical330

climate model simulations of the three variables (the matrix Xhs) and climate model projections of the three variables (the

matrix Xfs), which have to be adjusted. All these datasets are of size T ×N , with T the number of time steps and N the

number of variables.

The quantile-mapped future GCM time series for time step t is denoted as Xfa
t . The standardised versions of this time series

and of the observed time series are denoted as X̆fa
t and X̆ho

t , respectively. Using the standardised time (zero mean and unit335

variance) series, the multivariate AR(1) model with constant parameters (MAR) for the observed and GCM multivariate time
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series can be expressed as (Mehrotra and Sharma, 2016):

X̆ho
t = CX̆ho

t−1 + Dεt (8)

and

X̆fa
t = EX̆fa

t−1 + Fεt , (9)340

with C and D the coefficient matrices of X̆ho
t , E and F the coefficient matrices of X̆fa

t and εt a white noise term. The coefficient

matrices are calculated using the N ×N lag-0 and lag-1 cross-correlation matrices M0 and M1. Using the standardised time

series, the elements of these matrices can be expressed as (Salas, 1980):

mi,j
0 =

1
T

T∑

t=1

xitx
j
t (10a)

mi,j
1 =

1
T − 1

T∑

t=1

xitx
j
t+1 , (10b)345

with i and j the column numbers of X̆t, referring to the variables whose correlation is calculated. This enables the calculation

of C and E as (Matalas, 1967):

C = Mho
1 Mho−1

0 , (11a)

E = Mfa
1 Mfa−1

0 , (11b)

and of D and F via350

DDT = Mho
0 −Mho

1 Mho−1
0 MhoT

1 (12a)

FFT = Mfa
0 −Mfa

1 Mfa−1
0 MfaT

1 , (12b)

which can be solved using the eigenvalues and eigenvectors of DDT or FFT:

D = V
√

SVT , (13a)

F = V
√

SVT , (13b)355

with V the matrix of eigenvectors and S a diagonal matrix with the corresponding eigenvalues.

The multivariate bias adjustment is then implemented by removing the lag-0 and lag-1 auto- and cross-correlations from the

future time series X̆fa
t (the matrices E and F) and applying the observed lag-0 and lag-1 auto- and cross-correlations (C and

D) to the future time series and thus creating a modified future time series, X̆′ fat . These steps are applied by first rearranging

and simplifying Eq. (9) for εt:360

εt = F−1
(
X̆fa
t −EX̆fa

t−1

)
, (14)

14

https://doi.org/10.5194/hess-2020-639
Preprint. Discussion started: 8 December 2020
c© Author(s) 2020. CC BY 4.0 License.



with εt now a standardised vector of N variables calculated by removing the lag-0 and lag-1 auto- and cross-correlations from

the X̆fa
t time series. This vector is plugged into Eq. (8) along with the matrices C and D in which X̆fa

t is used instead of X̆ho
t

to obtain the modified time series:

X̆′ fat = CX̆′ fat−1 + DF−1
(
X̆fa
t −EX̆fa

t−1

)
, (15)365

which can be rearranged as:

X̆′ fat = CX̆′ fat−1 + DF−1X̆fa
t −DF−1EX̆fa

t−1 . (16)

This model preserves the observed persistence attributes. As a last step, destandardising results in the bias-adjusted time series

X′ fat .

When using the multivariate AR(1) with periodic parameters (PMAR), the parameters are derived separately for each period370

to allow for periodicity. In this case, the vectors Xho
t,τ and Xfa

t,τ respectively represent the observed and quantile mapped GCM

time series. The subscript t refers to the year and the subscript τ to a specific period in the year.

The elements of the periodic version of M0 and M1 can be calculated as (Salas, 1980):

mi,j
0,τ =

∑Tτ
t=1

(
xit,τ − x̄iτ

)(
xjt,τ − x̄jτ

)

Tτsiτs
j
τ

(17a)

mi,j
1,τ =

∑Tτ
t=1

(
xit,τ − x̄iτ

)(
xjt,τ−1− x̄jτ−1

)

Tτsiτs
j
τ−1

, (17b)375

with Tτ the number of time steps of the period τ , x̄τ and x̄τ−1 the mean of periods τ and τ − 1 (for instance, if τ is summer,

than τ − 1 is spring) and sτ and sτ−1 the standard deviations of periods τ and τ − 1. The correlation matrices are calculated

in the same way as in the non-periodic steps. The only difference is that they are calculated for every period (e.g. separately

for every season or month). For every time step in period τ , the corresponding value can be adjusted as follows to preserve the

observed persistence attributes:380

X̆′ fat,τ = Cτ X̆′ fat,τ−1 + DτF−1
τ X̆fa

t,τ −DτF−1
τ Eτ X̆fa

t,τ−1 . (18)

The different time steps are combined with the nesting method proposed in Johnson and Sharma (2012) and Mehrotra and

Sharma (2015). First, QDM (as described in Section 3.2.1) is applied at a daily level, followed by MAR. These adjusted time

series are then aggregated and averaged to form a monthly time series, which is adjusted by QDM, standardised and adjusted

by PMAR. Note that the standardisation of the aggregated time series does not imply that the variables of a period τ of that time385

series have zero mean and unit variance. The results of the monthly adjustment are aggregated and averaged to form seasonal

time series, which are also adjusted using QDM, standardised and adjusted by PMAR. As a last nesting step, the results are

once more aggregated and averaged to build an annual time series, which is adjusted using QDM and MAR. The outcomes of
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all these steps are combined into a weighting factor that is used to modify the daily time series accordingly (Srikanthan and

Pegram, 2009):390

X′′fat,j,s,i =

(
Y′faj,s,i
Yfa
j,s,i

)(
Z′fas,i
Zfa
s,i

)(
A′fai
Afa
i

)
X′fat,j,s,i , (19)

with t the day, j the month, s the season, i the year, Y′faj,s,i the monthly adjusted value, Yfa
j,s,i the aggregated-averaged monthly

value, Z′fas,i the seasonal adjusted value, Zfa
s,i the aggregated-averaged seasonal value, A′fai the adjusted yearly value and Afa

i

the aggregated-averaged yearly value. The full procedure is summarised in Algorithm 2.

Algorithm 2 MRQNBC

Input:

Daily historical observations Xho

Daily historical simulations Xhs

Daily future simulations Xfs

Output:

Adjusted future simulations X′′fa

for #Timescales do

Apply QDM to calculate Xfa

Standardise Xho and Xfa

Calculate matrices C and D of X̆ho and E and F of X̆fa {The calculations of C, D, E and F depend on the periodicity

of the timescale}

Apply the persistence adjustment to calculate X̆′fa

Destandardise X̆′fa

Aggregate Xho and X′fa to the higher timescale {Except for the yearly timescale}

end for

Calculate weighting factors for all timescales except the daily timescale

Calculate the final adjusted daily value X′′fa

The nesting method cannot fully remove biases at all time scales, thus Mehrotra and Sharma (2016) suggested to repeat the395

complete procedure multiple times. However, in our case this seemed to exacerbate the results, so the method was run only

once.
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3.3.2 Multivariate Bias Correction in n dimensions

In 2018, Cannon (2018) proposed the ‘Multivariate Bias correction in n dimensions’ (MBCn) method as a flexible multivariate

bias-adjusting method. The method’s flexibility has attracted some attention, as it has already been used in multiple studies400

(Räty et al., 2018; Zscheischler et al., 2019; Meyer et al., 2019; François et al., 2020). This method consists of three steps.

First, the multivariate data are rotated using a randomly generated orthogonal rotation matrix, adjusted with the additive form

of QDM, and rotated back until the calibration period model simulations converge to the observations. This convergence is

verified on the basis of the energy distance (Rizzo and Székely, 2016). Second, the validation period simulations are adjusted

using QDM, as this method preserves the simulated trends. As the last step, these adjusted time series are shuffled using the405

Schaake Shuffle (Clark et al., 2004) based on the rank order of the rotated dataset.

Considering the j-th iteration of the method, denoted by the subscript [j], the first step consists of rotating the data sets

using an N ×N randomly generated orthogonal rotation matrix R[j]. This orthogonal rotation matrix was created using the

algorithm by Mezzadri (2007, pg. 597). This rotation is formulated as

X̃hs
[j] = Xhs

[j]R[j]

X̃fs
[j] = Xfs

[j]R[j]

X̃ho
[j] = Xho

[j]R[j]

(20)410

with X̃[j] the resulting rotated matrix. In the next step, additive quantile delta mapping is applied to each variable in X̃hs
[j] and

X̃fs
[j], using the corresponding variable in X̃ho

[j] as the target. The resulting matrices Xhc
[j] and Xfa

[j] are rotated back:

Xhs
[j+1] = Xhc

[j]R
−1
[j]

Xfs
[j+1] = Xfa

[j]R
−1
[j]

Xho
[j+1] = Xho

[j]

(21)

These steps have to be repeated until the multivariate distribution of Xhs
[j+1] matches Xho. The similarity is measured using

the (squared) energy distance (Székely and Rizzo, 2004, 2013; Rizzo and Székely, 2016), a measure of statistical discrepancy415

between two multivariate distributions. For two N -dimensional independent random vectors x and y with respective CDFs F

and G, this measure is given by:

D2 (F,G) = 2E [|| x−y ||]−E [|| x−x′ ||]−E [|| y−y′ ||]≥ 0 (22)
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with E the expected value, || . || the Euclidean norm and x′ and x and y′ and y i.i.d.. A practical way of calculating this

measure is as follows (Székely and Rizzo, 2013), with X = (X1, ...,Xn1) and Y = (Y1, ...Yn2):420

D (X,Y) =
2

n1n2

n1∑

i=1

n2∑

m=1

|Xi−Ym |

− 1
n2

1

n1∑

i=1

n1∑

j=1

|Xi−Xj |

− 1
n2

2

n2∑

l=1

n2∑

m=1

| Yl−Ym | ,

(23)

with i, j, l and m denoting the time steps.

As a last step, the preservation of trends of QDM has to be combined with the restoration of the multivariate ranks by

the transformations. To do this, first either the additive or multiplicative version of quantile delta mapping (depending on

the variable) has to be applied to each variable of the original data set Xfs, using Xhs and Xho as historical baseline data.425

As a final step, the elements of each column of Xfa are reordered following a method known as the ‘Schaake Shuffle’

(Clark et al., 2004; Vrac and Friederichs, 2015). In this method, the ranks of each variable of Xfa are swapped with the ranks

of the corresponding variables of Xfs
[j+1], thus reordering the time series’ structure according to the ranks of the observations.

The Schaake Shuffle can be mathematically formulated as follows (Clark et al., 2004). Let X be a vector of n time steps of a

variable, and χ be the sorted vector of X, that is:430

X = (x1,x2, ...xn) , and (24)

χ=
(
x(1),x(2), ...x(n)

)
, x(1) ≤ x(2)...≤ x(n) (25)

Let Y be a vector of n historical observations and γ be the sorted vector of Y:

Y = (y1,y2, ...yn) , and (26)

γ =
(
y(1),y(2), ...y(n)

)
, y(1) ≤ y(2)...≤ y(n). (27)435

B is then the vector of indices describing the original observation number that corresponds to the values in the ordered vector γ.

The main step of the Schaake Shuffle is to reconstruct the reordered vector Xss:

Xss = (xss
1 ,x

ss
2 , ...,x

ss
n ) (28)

where

xss
q = x(r), q = B [r] ,and r = 1, ...,n. (29)440

In MBCn, Xfa is sorted according to Xfs
[j+1] instead of respectively X and Y, resulting in a final adjusted data set Xfa′. To

account for ties in this procedure, a small random value is added before calculating the ranks of Xfs
[j+1]. The version of QDM
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applied in the step prior to the Schaake Shuffle is the same as in Section 3.2.1. As such, the shuffling procedure is the only

difference with the univariate bias-adjustment, implying that differences in performance can be related to it.

The MBCn method was shown by Cannon (2018) to outperform many earlier multivariate bias-adjusting methods, such as445

the EC-BC (Vrac and Friederichs, 2015), the JBC (Li et al., 2014), MBCr and MBCp methods (Cannon, 2016). In contrast,

Cannon (2018) also pointed out some problems. Depending on the number of variables, the computational cost can get too

high and convergence speed too low, or overfitting might become an issue. The first problem can be tackled by implementing

sufficient time steps when having a lot of variables. Second, to address the convergence speed, Pitié et al. (2007) suggested

using a deterministic selection of rotation matrices that maximizes the distance between rotation axis sets instead of randomly450

generating them. It is also suggested by Cannon (2018) to use the most efficient form of quantile mapping and to limit the

use of an advanced quantile mapping method to the last step. Third, to avoid overfitting (and to reduce the computational

cost), early stopping is also suggested by Cannon (2018) (e.g. Prechelt (1998)). As the number of variables is limited in this

case, overfitting did not seem to be a problem. Yet, to reduce unnecessary computational costs, the similarity in consecutive

energy distances was used as a measure to stop the computation. A tolerance of 0.0001 was used: if the difference between455

two consecutively calculated energy distances was lower, the computation was halted. The full procedure is summarised in

Algorithm 3.

Algorithm 3 MBCn

Input:

Historical observations Xho

Historical simulations Xhs

Future simulations Xfs

Output:

Adjusted future simulations X′fa

Initialisation: tolerance ε and initial energy distance difference ∆D0

while ∆D > ε do

Randomly generate a rotation matrix R

Rotate Xho, Xhs and Xfs

Apply the additive form of QDM

Rotate Xho, Xhs and Xfs back

Calculate the energy distance D between Xhs and Xho

Calculate the decrease in energy distance ∆D

end while

Apply QDM to the original inputs to calculate Xfa

Apply the Schaake Shuffle based on the rotated future simulations to calculate X′fa
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3.3.3 Dynamical Optimal Transport Correction

Recently, Robin et al. (2019) indicated that the notion of a transfer function in quantile mapping can be generalised to the

theory of optimal transport. Optimal transport is a way to measure the dissimilarity between two probability distributions and460

to use this as a means for transforming the distributions in the most optimal way (Villani, 2008; Peyré and Cuturi, 2019).

Optimal transport was used by Robin et al. (2019) to adjust the bias of a multivariate data set in the ‘dynamical Optimal

Transport Correction’ method (dOTC), which extends the ‘CDF-transform’ (CDF-t) bias-adjusting method (Michelangeli et al.,

2009). dOTC calculates the optimal transport plans from Xho to Xhs (the bias between the model and the simulations) and

from Xhs to Xfs (the evolution of the model). The combination of both optimal transport plans allows for bias adjustment465

while preserving the trend of the model.

Figure 2. The different transport plans and transformations used in dOTC. Based on Robin et al. (2019).

Optimal transport is applied on the basis of an optimal transport plan. The optimal plan between Xho and Xhs is denoted

as γ. The second optimal plan between Xhs and Xfs is denoted as φ. The goal is to transform φ according to γ, defining a new

plan φ̃. This optimal plan estimates Xfa = φ̃
(
Xho

)
. Finally, Xfs is adjusted with respect to Xfa, creating the final adjusted

X′fa. These steps are summarised in Fig. 2.470

For the definition of the optimal plan, the ‘Optimal Transport Correction’ (OTC) (Robin et al., 2019) is used. First, the

empirical distributions P̂Xho and P̂Xhs have to be calculated. To achieve this, the subspace of RN that contains the data is

partitioned into regularly spaced cells, generically denoted c∗i , with N the number of variables of Xho and Xhs. Using this

notation, P̂Xho and P̂Xhs can be estimated using the relative frequencies pXho and pXhs as:

pXho,i =
1
m

m∑

k=1

1
(
Xho
k ∈ c∗i

)
, (30a)475

pXhs,i =
1
n

n∑

l=1

1
(
Xhs
l ∈ c∗i

)
, (30b)

with 1 the indicator function and m and n the total number of time steps of respectively Xho and Xhs. Thus, the distributions

are essentially estimated by counting the number of observations of each time series within each cell. The optimal plan γ

between Xho and Xhs can be estimated as:

γ̂ =
I,J∑

i,j=1

γi,j . (31)480
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The coefficients γi,j are the probabilities to transform an observation of Xho in cell c∗i into an observation of Xhs in cell c∗j
and I and J are the total number of cells containing observations of respectively Xho and Xhs. Note that from here on, c∗i and

c∗j denote only those cells containing observations of respectively Xho and Xhs and that ‘observation’ is used generically for

both observed and simulated time series. The coefficients are unknown, but obey the marginal properties:

J∑

j=1

γi,j = pXho,i (32a)485

and

I∑

i=1

γi,j = pXhs,j . (32b)

Central to the optimal transport theorem is the cost function C (Villani, 2008), which can here be approximated by

Ĉ (γ̂) =
I,J∑

i,j=1

|| ci− cj ||2 γi,j , (33)

with || · || the Euclidean norm and ci and cj the centres of the cells defined above. Finding γi,j comes down to solving the

problem defined by the constraints of Eqs. (32) and minimisation of Eq. (33). Here, Sinkhorn’s algorithm (Cuturi, 2013) is490

used to find the solution to this problem and thus the optimal plan γ. Using this optimal plan, a vector of probabilities with

length J can be defined for each cell c∗i of Xho, each element j corresponding to the probability that an observation in that

cell c∗i will be transformed into an observation in cell c∗j of Xhs. In the transformation, the vectors of probabilities are used to

introduce stochasticity, by sampling from these vectors the element j corresponding to cell c∗j . The stochastic transformation

of an observation of Xho into an observation of Xhs can be repeated to create an ensemble of results. This ensemble accounts495

for random weather effects and can thus be considered to be more similar to the true range of observations.

The optimal plan φ can be calculated analogously. This optimal plan φ transforms an observation of Xhs in cell c∗j into an

observation of Xfs in cell c∗k, with c∗k defined analogously to c∗i and c∗j . What distinguishes dOTC from OTC is the next phase,

in which φ is transformed according to γ, resulting in φ̃. This is conducted in three steps, the first being is the transformation of

φ into a vector. The vector vjk := ck−cj represents the climatic trend from an observation of Xhs in cell c∗j to an observation500

of Xfs in cell c∗k. The second step is the transfer according to γ. The result φ̃ can be defined by translating the observations of

Xho along their respective vectors vjk: an observation of Xfa is then given by Xho
t +vjk, with Xho

t the observation of Xho at

time step t. However, the translation of Xho
t along vector vjk does not always define an optimal transport plan: the vector has

to be adapted to Xho, which is the third step. In this step, a matrix factor D is introduced, which rescales the vector vjk. This

rescaling is actually the replacement of the scale of Xhs by that of Xho. A Cholesky decomposition of the covariance matrix505

has been proposed for this rescaling (Bárdossy and Pegram, 2012; Cannon, 2016). Denoting the covariance matrix as Σ, and

the Cholesky decomposition as Cho(Σ), Robin et al. (2019) proposed to multiply vjk by the following matrix:

D := Cho(ΣXho) ·Cho(ΣXhs)−1
. (34)
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Robin et al. (2019) remark that the Cholesky decomposition only exists if Σ is symmetric and positive-definite. Some covari-

ance matrices, such as those of highly correlated random variables, do not have this property. Σ must then be slightly perturbed510

to be positive-definite (Higham, 1988; Knol and ten Berge, 1989). It is also possible for the Cholesky decomposition to be

poorly estimated if the available data are too small compared to the dimension. In that case, it is suggested to replace the matrix

D by the diagional matrix of the standard devation: D = diag
(
σXhoσ−1

Xhs

)
.

An observation of Xfa is then given by Xho
t +D ·vjk. To finalize, the empirical distribution P̂Xfa can be calculated. Using

this distribution, OTC can be applied to Xhs and Xfa to generate X′fa. A more elaborate mathematical explanation can be515

found in Robin et al. (2019), a summary is given in Algorithm 4.

Algorithm 4 dOTC

Input:

Historical observations Xho

Historical simulations Xhs

Future simulations Xfs

Output:

Adjusted future simulations X′fa

Calculate the empirical distributions P̂Xho , P̂Xhs and P̂Xfs

Calculate the optimal plan γ between P̂Xho and P̂Xhs

Calculate the optimal plan φ between P̂Xfs and P̂Xhs

Calculate the Cholesky factor D

for all Xho
t do

Find cell ci containing Xho
t

Construct the vector of probabilities γ̂Xho
t

= (γi,1, . . . ,γi,J)/pXho,i

Sample j ∈ {1, ...,J} according to the probability vector γ̂Xho
t

Construct the vector of probabilities φ̂Xhs
t

= (φj,1, . . . ,γj,K)/pXhs,j

Sample k ∈ {1, ...,K} according to the probability vector φ̂Xhs
t

Calculate the vector vjk

Calculate Xfa
t = Xho

t + D ·vjk
end for

Calculate the empirical distribution P̂Xfa

Apply OTC between Xfa and Xfs to generate X′fa
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3.4 Experimental design

Prior to all intensity-bias-adjusting methods, the thresholding occurrence-adjusting method was applied. In the intensity-bias-

adjustment step, a balance was sought between randomness and computational power for the calculation of the intensity-bias-

adjusting methods. Methods with randomised steps were repeated. As such, 10 calculations were made for dOTC. The resulting520

values of each index were averaged for further comparison. Biases on the indices were always calculated as raw or adjusted

simulations minus observations, indicating a positive bias if the raw or adjusted simulations are larger than the observations

and a negative bias if the simulations are smaller.

4 Results

In this section, the results will be shown first for the R index calculations for bias change, and then for the validation indices. For525

the validation indices, first the indices based on the adjusted variables are discussed, followed by an elaboration on the indices

based on the derived variables. As the effect on discharge is the overarching goal of this paper and the discharge indices are

affected by all other indices, those will be discussed last. All observed values and biases of both raw and adjusted simulations

are presented in Table A1.

4.1 Bias change530

The R index values for the variable averages, standard deviations and all indices are given in Table 2. The results vary consid-

erably depending on the variable and/or index: for P, the bias can be considered almost stationary: only the 99.5th percentile

has an R index above one. In contrast, for E, the R index values are above 1 for the middle percentiles and for the standard

deviation, indicating some major changes in parts of the distribution, and consequently, the bias. For T, the mean and the lower

extremes are clearly influenced, although the bias on the higher extremes does not change. The different effects on the variables535

are linked with the effect on the (cross-)correlations. For example, the lag-1 cross-correlation between P and E has an R index

value of only 0.19, whereas the R index value for the cross-correlation between E and T is 1.20. Although the R index values

are low for P, this does not imply that the R index values for the precipitation occurrence indices are low. With an R index value

of 1.44, the auto-correlation bias clearly changes between both periods. However, this is not reflected by the other precipitation

occurrence indices, which all but one have R index values lower than one.540

Many of the R index values presented in Table 2 indicate that the bias changes between the two periods considered here

(1970-1989 versus 1998-2017) might already be large enough to have an effect on the bias adjustment. As these periods are

only separated by 10 years, this is an important indicator for the bias adjustment of late 21st century data, just as Chen et al.

(2015) mentioned. However, it does not suffice to calculate just a few of these R index values. The results vary substantially

among variables and even for the percentiles of a variable under consideration: while the 5th T percentile has an R index545

value of 2, the value for the 95th percentile is only 0.07. This could give an indication of why the methods perform more

poorly for some of these indices. However, purely based on these results, it is impossible to say exactly what causes the
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Table 2. R index values for 1970-1989 as historical period and 1998-2017 as future period

Precipitation Temperature Pot. Evaporation
Occurrence &

Correlation

Indices R index Indices R index Indices R index Indices R index

P5 NaN T5 2 E5 0.03 Plag1 1.44

P25 0 T25 2 E25 0.47 PP00 0.09

P50 0.10 T50 2 E50 1.47 PP10 0.41

P75 0.13 T75 0.87 E75 2 Ndry 0.29

P90 0.19 T90 0.31 E90 1.14 corrE,T 0.75

P95 0.17 T95 0.07 E95 1 corrP,E 0.20

P99 0.58 T99 0.19 E99 0.47 corrP,T 0

P99.5 1.02 T99.5 0.08 E99.5 0.20 crosscorrE,T,0 2

Pmean 0.18 Tmean 2 Emean 1.06 crosscorrE,T,1 0.90

Pstd 0.72 Tstd 0.50 Estd 2 crosscorrP,E,0 0.31

crosscorrP,E,1 0.13

crosscorrP,T,0 0.10

crosscorrP,T,1 0.09

bias nonstationarities. Possible causes could be that recent trends such as those in precipitation extremes (Papalexiou and

Montanari, 2019) are poorly captured by the models, that limiting mechanisms such as soil moisture (Bellprat et al., 2013) are

poorly modelled or that natural variability influences (Addor and Fischer, 2015) the biases. However, discussing this in depth550

is out of the scope of the present study and deserves a separate study. In what follows, we will focus on the performance of the

bias-adjusting methods and whether or not there is a link with these nonstationarities.

4.2 Precipitation amount

Figure 3 presents the RBO and RBMB values for the highest P percentiles. None of the residual bias values of the lower

percentiles can be plotted as either the observations are 0 mm (P5 and P25) or the RBO values are lower than zero (P50). The555

percentiles could also have been plotted for wet days only (e.g. days with P higher than 0.1 mm/day), but as some methods

change the number of dry days after the initial thresholding step, the dry days are also included in the calculation of the indices.

This influences the RBO and RBMB values: they are generally higher when the dry days are not included.

The RBO and RBMB values depict a very similar performance for QDM, mQDM and MBCn, but a different performance

for MRQNBC and dOTC. The similar performance of the former three is unsurprising, as their adjustments of P are all very560

similar. The only difference between QDM and MBCn versus mQDM is the time series to which the adjustment was applied,

as the latter is based on the historical time series. QDM, mQDM and MBCn are consistently the best methods out of the five

tested here, with the RBMB values for P75, P90, P95 and P99 all below 0.5 and the RBO values also below 0.5. The performances
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of MRQNBC and dOTC are worse, but not poor either: P75, P90, P95 and P99 all have RBO and RBMB values lower than 1, but

only for dOTC the majority of them (P75, P90 and P95) are below 0.5 for RBMB. For both MRQNBC and dOTC, no RBO values565

below 0.5 are obtained. As seen in Section 4.1, P was one of the few indices having almost all R index values below 1. This

might be linked to the generally good results for P illustrated in this section.

Figure 3. RBMB versus RB0 for the precipitation indices. (a) QDM, (b) mQDM, (c) MBCn, (d) MRQNBC, (e) dOTC.

A surprising result for P is the high RBMB value for P99.5 for MRQNBC. This percentile is too biased for all other methods

to be plotted. As the R index value was close to 1, it is possible that bias nonstationarity slightly influences the performance.

For MRQNBC, however, the combination of QDM with the focus on correlation seemingly improves the performance of this570

percentile. As heavy precipitation values are clustered in time, the performance of the respective indices might be improved by

the correlation. The good representation of heavy precipitation values in the MRQNBC-adjusted time series is also shown by

P99, for which MRQNBC has an RBMB value of 0.59, the best of all methods.

4.3 Temperature

For the temperature adjustment, the RBO and RBMB values indicate that all methods result in a performance better than the575

raw climate simulations, except for MRQNBC (Fig. 4). In contrast to all other methods, only the residual bias values of T90 of

MRQNBC are within the area delineated by the 1-1-lines. For all other indices, the bias is worse than in the climate simulations,

with absolute biases up to 7ºC. The results for MRQNBC are interesting, as T is the best understood variable (Shepherd, 2014)
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and should thus not be hard to adjust. One line of reasoning could be the implementation of model trend preservation. While

trend preservation is a prominent aspect in all other methods, the persistence preservation is at least as important in MRQNBC.580

The trade-off between both aspects of the bias adjustment thus seems to influence the result of MRQNBC, while the other

methods can more easily adapt to and adjust the simulated T.

When comparing the indices for the other methods, the results are rather similar. They all have RBO values close to 1,

indicating that the bias difference is small in comparison to the absolute T values. Besides that, for every method, the lower T

percentiles have RBMB values that are too high to be plotted. However, despite their similar behaviour, the methods show585

some notable differences. The highest percentiles have the lowest RBMB values for QDM and MBCn, which have the same

percentiles by construction, but this differs for the other methods. For example, T99.5 has an RBMB value of 0.09 for QDM

and MBCn, but only 0.43 for dOTC and 0.77 for mQDM. On the other hand, when considering all plotted percentiles, dOTC

generally performs best. The highest RBMB value for dOTC is 0.52 (T75), whereas 0.65 (T75) is the highest value for QDM

and MBCn and 0.77 (T99.5) for mQDM. Although broadly similar, the indices for QDM and mQDM display some interesting590

differences. Whereas for QDM T95, T99 and T99.5 have the lowest RBMB values, T75 has the lowest value for mQDM. In

contrast, QDM has the highest RBMB value for T75. This might imply that for the highest T values, it is better to follow the

simulations, while for slightly lower values, it is better to only use the climate change signal. Yet, QDM has the best RBMB

values and might thus be preferable.

Figure 4. RBMB versus RB0 for the temperature indices. (a) QDM, (b) mQDM, (c) MBCn, (d) MRQNBC, (e) dOTC.
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For the lowest T values, all methods seem unable to handle the change in bias (as seen in Table 2): the RBMB values are all595

higher than 1. This poor performance, combined with the high values for RBO, might imply that it is better not to adjust T and

work with the raw climate simulations. However, for the extreme T values, the absolute biases can be more than 1ºC. Thus,

depending on the research goal and the R index value, it might be important to consider whether or not T should be adjusted.

4.4 Potential evaporation

Figure 5 displays the RBO and RBMB values for the E indices. Only a few indices are shown for each method, or just one for600

dOTC, indicating that the performance after adjusting the bias is generally worse than the raw climate simulations. The indices

plotted are E25, E99 and E99.5. The index E5 also performs well, but cannot be plotted as its observed value is 0 mm. Thus, for

the lowest and the highest percentiles, the bias-adjusting methods perform well, but they fail to capture the nonstationarity at

the middle percentiles. These middle percentiles have high R index values: they are all greater than or equal to one. Only for

dOTC, it is possible to plot a percentile between E25 and E99: E95. However, for dOTC, this is also the only percentile for which605

it is possible to plot the RBO and RBMB values (respectively 1.00 and 0.86). For all other methods and all other percentiles,

both RBO and RBMB values are higher than 1. The poor performance of dOTC might be related to its trend preservation

characteristics. Of all methods, it is the one most explicitly designed to follow the simulated trend. This might thus imply that

the nonstationarity for E is caused by poor model performance, although this should be investigated more in depth.

The percentiles that are plotted all have a high RBO value, which is in this case caused by rather low biases to adjust. For610

example, E99.5 had an observed value of 5.24 mm/day and only a bias of 0.27 mm/day, or 5%. There is consequently not much

room for improvement, though the RBMB values imply that the bias-adjusting method could be improved, except for E99.5,

which consistently has an RBMB value lower than 0.5.

As in Section 4.3, there are interesting differences between QDM and mQDM. In contrast to the results for temperature,

mQDM performs better. For mQDM, the highest percentiles (E99 and E99.5) have lower RBMB values than for QDM. In this615

case, it thus seems better to only use the climate change signal. However, given the general poor performance of all methods,

these results should be considered with care.

Given that the percentiles with a high R index value have a larger bias than the raw simulations after adjustment, and the

added value for the other percentiles with respect to observed values is low, it can be advised not to adjust E. However, similar

to T, this should be evaluated on a case-by-case basis.620

4.5 Correlation

When considering the correlation (Fig. 6), the methods generally perform well: most of the correlation indices can be plotted.

However, there are some differences depending on the indices under consideration and the method. The indices that can

always be plotted are the lag-0 cross-correlation between P and T, the lag-1 cross-correlation between P and T, the lag-1

cross-correlation between P and E and the correlation between P and T. Except for dOTC, all methods also perform well625

for the lag-0 cross-correlation between P and E. Yet, for the indices that can be plotted, the RBO and RBMB values show a

considerable difference among the methods. For example, the lag-1 cross-correlation between P and E has RBO values ranging
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Figure 5. RBMB versus RB0 for the potential evaporation indices. (a) QDM, (b) mQDM, (c) MBCn, (d) MRQNBC, (e) dOTC.

from 0.29 (mQDM) to 0.69 (dOTC) and RBMB values ranging from 0.08 (mQDM) to 0.60 (dOTC). The best method varies

for each index: while dOTC does not perform well for most indices, it has the best performance for the correlation between P

and T. It is interesting that the performance of dOTC seems to be either very good, or very poor. As dOTC is built around630

the idea of trend preservation and all-in-one adjustment, it is possible that the adjustment performs very well when the trend

is properly modelled. Three out of the four correlations that dOTC adjusts well are based on T and P, the two variables that

are well understood in the time frame under consideration. All indices that are not or less frequently present in the plots have

one thing in common: they are based on the correlation between E and one of the other variables. The indices based on E thus

consequently perform worst, except for the aforementioned lag-1 cross-correlation between P and E.635

The correlation index performance seems to be related to the results of T (Section 4.3) and E (Section 4.4): correlations of E

with another variable generally perform worse, and the (cross-)correlation between T and E with another variable performs

the worst, in line with the R index values (Table 2). Although the multivariate bias-adjusting methods are supposed to adjust

correlation, they seem to be unable to do so, as they generally have larger biases (though not on all indices) than the univariate

bias-adjusting methods for the indices with the lowest residual bias values. This seems to indicate that the multivariate bias-640

adjusting methods, and especially MBCn and dOTC, are unable to adjust the correlation exactly because of the nonstationarity

in the correlation that has to be overcome. In contrast, the univariate bias-adjusting methods neglect the adjustment of corre-

lation and consequently do not have to overcome nonstationarity in the correlation bias. Yet, for the univariate bias-adjusting
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Figure 6. RBMB versus RB0 for the correlation indices. (a) QDM, (b) mQDM, (c) MBCn, (d) MRQNBC, (e) dOTC.

methods, the difference in adjustment of T and E seems to have an influence here as well, as illustrated by the different results

for QDM and mQDM. Except for the correlations that have high RBMB values for all methods, the results indicate that mQDM645

performs better. Thus, it might be better to use correlations of the observed time series than to adjust the simulated correlations.

This is confirmed by the results for MRQNBC. Together with mQDM, this is the only method to have six indices with RBMB

values lower than one. Besides, it is also the only multivariate bias-adjusting method to have an RBMB value for corrE,T lower

than one, although it is only slightly lower.

4.6 Precipitation occurrence650

Figure 7 displays the RBO and RBMB values for the precipitation occurrence indices. When comparing these values, large

differences among the methods and among the indices can be noted. The best-performing method seems to be QDM, as all

the RBMB values are lower than 0.5 and some RBO values are close to 0.5. When comparing the other methods, there is no

clear difference between the univariate and multivariate bias-adjusting methods. The other univariate method, mQDM, and one

multivariate method, MRQNBC, also perform better than the raw climate simulations for all indices. The other two methods,655

MBCn and dOTC, have respectively only one and two indices with both RBO and RBMB values below 1.

Interestingly enough, the indices with RBO and RBMB values below 1 are not the same for all methods. For the three best-

performing methods, the dry-to-dry transition probability has very low RBMB values (ranging from 0.3 to 0.18), while this
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Figure 7. RBMB versus RB0 for the precipitation occurrence indices. (a) QDM, (b) mQDM, (c) MBCn, (d) MRQNBC, (e) dOTC.

index is absent from the MBCn and dOTC plots. The differences between those two plots are also notable. For MBCn, only the

number of dry days has a very low RBMB value (0), as the number of dry days is unaffected after the thresholding, whereas the660

lag-1 P auto-correlation and the wet-to-dry transition probability are more biased than the raw climate simulations. For dOTC,

it is the other way around: the number of dry days is more biased after the application of dOTC, and the auto-correlation and

the wet-to-dry transition probability perform well, with RBMB values 0.50 or lower.

Another peculiar result that can be seen from Fig. 7 is the difference in dry day bias. Although all methods start with the

same number of dry days, there are large differences among the RBO and RBMB values for the number of dry days. The RBO665

values range from 0.58 to 1.04 and the RBMB values from 0 to 1.09. QDM and MBCn perform best (RBMB = 0), as the number

of dry days is unaffected after the thresholding. For mQDM (RBMB = 0.25), this holds by construction: instead of adjusting the

threshold-adjusted climate model simulations, this method adjusts the observations. For MRQNBC (RBMB = 0.63) and dOTC

(RBMB = 1.09), the results seem to imply that the multivariate framework of these methods has an influence on the number of

dry days.670

What the difference in transition probabilities implies for the time series, becomes more clear in Fig. 8. Although all adjusted

simulations and the observations have more short wet spells than long ones, MBCn pronounces the short wet spell length more

than the other methods, while the probability of longer wet spell lengths is lowered in comparison with other methods. Closest

to the observations is mQDM. QDM and MRQNBC also perform well, a conclusion similar to that of Fig. 7.
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Figure 8. Wet spell length probability mass function for all adjusted simulations, the raw RCM simulations and the observations.

The difference in performance between QDM and the other methods seems to demonstrate that most strategies for retaining675

a certain temporal structure or adjusting the temporal structure do not perform well. MRQNBC and mQDM depend heavily

on the temporal structure of the observations, and MBCn and dOTC have an important shuffling or recalculation aspect, all

of which lead to less reliable results at the end of the process. The poor performance of dOTC and MBCn for the temporal

structure was also discussed by François et al. (2020). As for mQDM and MRQNBC, it is notable that the temporal structure

does not change much from the calibration time series to the validation time series. At least, this is suggested by their relatively680

good performance, which is based on using the observed time series (mQDM) and observed persistence statistics (MRQNBC).

Yet, this is no guarantee that these methods will be able to realistically adjust climate model simulations for the end of the

century.

Figure 7 also suggests that despite the high R index value, the P lag-1 auto-correlation is not necessarily poorly adjusted.

For QDM, this index has relatively low RBO and RBMB values. This could imply that the performance still depends on the685

robustness to the bias nonstationarity of the methods under consideration. Or, as the other indices illustrate, the effect of bias

(non-)stationarity is not as large as the effect induced by the methods themselves. An example of this is the number of dry

days: though it has a low R index value, the performance varies substantially among the methods.
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4.7 Discharge

All bias-adjusting methods perform better for the discharge percentiles compared to most other indices (Fig. 9). Although690

the discharge is influenced by a combination of many effects, these appear to be small in the end result. For example, the

poor performance of E (Fig. 5) does not result in large discharge biases. Thus, it is the integration of precipitation amount,

precipitation occurrence and evaporation, and the routing effect that ultimately defines the resulting discharge. Generally,

many indices perform well, though there are some differences among the methods. The best-performing methods are QDM

and mQDM, as all indices have RBMB values lower than 0.5 and some indices have RBO values near to zero. For mQDM, the695

20-year return period even has an RBO value of -0.05. For MBCn, the results are also good. Most extreme values have RBO and

RBMB values lower than 0.5; only the 5th percentile has an RBO value of 0.96 and an RBMB value of 0.89. As the only difference

between QDM and MBCn is the adjustment of occurrence, the results for discharge illustrates the importance of occurrence

adjustment. This variability in values seems to be a difference between the univariate and multivariate bias-adjusting methods.

For the two worst performing methods, i.e. MRQNBC and dOTC, some indices have RBO and RBMB values close to or higher700

than 1 and some values between 0.5 and 1. These methods are thus unable to correctly adjust the bias for all indices. However,

although MRQNCB and dOTC seem to perform similarly, the indices with the worst RBO and RBMB values are different. For

MRQNBC, the 99.5th percentile and the 20-year return period have the highest values, whereas for dOTC, the 5th and 25th

percentile perform worse than the raw climate simulations. From the point of view of extreme discharges, dOTC is thus the

better method of these two. This might indicate that although not all occurrence indices of dOTC had lower RBMB values than705

those of MRQNBC, those that had (Plag1 and PP10), had a larger influence on the extreme discharge values. Both indices are

partly based on the occurrence of wet days, and thus indicate that those need to be at the correct place in the time series for

extreme floods to be correctly simulated.

5 Discussion

In the previous section, the results for the bias adjustment by different methods and under climate change conditions were710

reported. The effect of climate change on the bias was evaluated through the R index, which showed that the bias for some

indices cannot be considered stationary. For some of the indices (the lower percentiles of T and especially the middle percentiles

of E) the methods performed poorly, which could often be linked with the R index values. The methods clearly handle this

bias nonstationarity differently. It seems that the univariate bias-adjusting methods are far more robust: even for indices with

high R values, they are sometimes able to perform very well, with low RBO and RBMB values. This good performance thus715

seems to imply that the more indices a bias-adjusting method directly adjusts, the more susceptible it is to problems related to

bias nonstationarity. However, this does not imply that QDM and mQDM are similar: while they are almost as good for many

variables, the poorer performance of mQDM for the precipitation occurrence indices is an indication that assuming that the

temporal structure of the past can be used for the future might be dangerous, as Johnson and Sharma (2011) and Kerkhoff et al.

(2014) already mentioned. Given that mQDM performed worse for two time periods separated by 10 years only, it is unlikely720

that it is safe to use this method, or other delta change-based methods, for impact assessments targeting the end of the 21st
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Figure 9. RBMB versus RB0 for the discharge percentiles and the 20-year return period value. (a) QDM, (b) mQDM, (c) MBCn, (d)

MRQNBC, (e) dOTC.

century and depending on the temporal structure of time series. Yet, for some other indices, especially the correlation, mQDM

performed better. Consequently, the exact choice should depend on the goals of the end user.

The results of the multivariate bias-adjusting methods too are not without nuance: though they are generally worse than the

univariate bias-adjusting methods, their performance depends heavily on the variable under consideration and on the method725

itself. A clear example of this dependence on variables is the contrasting performance of dOTC to adjust T (Fig. 4) versus E

(Fig. 9): the adjustment of E is much worse. This is a reminder that in a multivariate context, the multivariate methods are

far less robust and can perform relatively good and poor at the same time for different variables. Therefore, there seems to be

an interplay between the modelling of the variables and the method of calculation. Except for P, for which the results were

similar, the methods performed differently for each variable. MRQNBC performed best in the context of temporal structure,730

for which it was designed (Fig. 7). For T, MBCn and dOTC performed better (Fig. 4). This could be related to their trend-

preserving properties, which are more pronounced for those methods than for MRQNBC. For E (Fig. 5) and correlation (Fig. 6),

dOTC displayed the most different results. For the former, the all-in-one and trend-preservation method did not seem robust

enough. For the latter, it depended heavily on the type of correlation under consideration. These results seem to imply that the

difference under bias-nonstationary conditions is not clear-cut for the different types of multivariate bias-adjusting methods.735

For the ‘marginal/dependence’ vs. the ‘all-in-one’ approach, consequently no clear conclusions can be drawn. For the amount

of temporal alteration, it depends on the index under consideration. MRQNBC, which replaces the simulated correlations by
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those of the observations performs well for the temporal structure, but performs worse for many other indices. For MBCn and

dOTC, the effect of the difference in temporal alteration is less distinct and other properties, such as trend preservation, seem

to have more influence.740

To have a better view of how these results should be interpreted, the perspective of the end user should be considered (Maraun

et al., 2015; Maraun and Widmann, 2018b). We used discharge as an example, using the relatively simple PDM. Although the

residual bias values for all methods for E (Fig. 5) indicate a poor performance, the influence thereof on the discharge seems

to be negligible (Fig. 9). Discharge is the variable that is of the highest importance for hydrological impact modelling, and the

results indicate that most methods are able to adjust the forcing variables sufficiently in order to have a good simulation of745

discharge. However, the small differences between the methods should still be taken into account. Overall, QDM and mQDM

perform best in adjusting the variables such that the discharge rates are the least biased in comparison with the observations.

This is also important considering that bias adjustment can be applied for many different types of impact assessment. In other

impact assessments, the differences could affect the result more than the discharge considered here. For example, forest fires

(a typical compound event, discussed in a bias adjustment context in e.g. Yang et al. (2015), Cannon (2018), Zscheischler et al.750

(2019)) depend more heavily on T and E to simulate fire weather conditions. Besides such compound events, other applications

are ecosystem functioning (Sippel et al., 2016), agriculture (Galmarini et al., 2019), or climate zone classification (Beck et al.,

2018). In such studies the effect of bias nonstationarity can even be worse, whereas in other studies, depending more on P

or other (so far) less-affected variables, the need for a bias nonstationarity-proof bias-adjusting method is less compelling.

Anyway, the inability of some methods to adjust the biases in nonstationary conditions implies that a thorough assessment of755

possible bias nonstationarity should be made before bias-adjusting. If not done, the risk of reporting a wrong future projection

is likely increased. Given the knowledge of bias nonstationarity, such uncertainties can be better characterised.

Returning to the discharge, it might be interesting to discuss whether or not the adjustment of E is truly needed. On the

one hand, this variable is the most affected by bias nonstationarity. On the other hand, discharge is far less influenced by this

variable than by P or temporal structure. The discharge has been calculated for this setting with raw E, the result of which is760

shown in Fig. 10. The results depend on the method: for QDM and mQDM, raw E data slightly exacerbate the results, while

for dOTC the percentiles are all improved. Only for MRQNBC and MBCn, the results are highly dependent on the considered

percentile. For MBCn, the 5th percentile and the 20-year return period value (with RBO ≤ 0) are improved, whereas the 95th

and 99th percentile RBO and RBMB values are deteriorated. For MRQNBC, the results are opposite: the 5th percentile RBO

and RBMB values are deteriorated, and the 95th and 99th values are improved.765

The results for raw E seem to imply that, on the one hand and depending on the bias-adjusting method used, a well-considered

choice of variables to adjust can give optimal results. On the other hand, the results demonstrate once more that the univariate

methods are far more robust than the multivariate methods. Although the RBO and RBMB values are slightly deteriorated for

QDM and mQDM in comparison with the discharge based on adjusted E, all values, and especially the values for the highest

percentiles, still indicate a good bias adjustment. In general, an assessment like this can be done for the other types of impact770

studies discussed above, so that the influence of adjusting bias-nonstationary variables can be better understood.
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Figure 10. RBMB versus RB0 for the discharge percentiles and the 20-year return period value, calculated with raw evaporation. (a) QDM,

(b) mQDM, (c) MBCn, (d) MRQNBC, (e) dOTC.

6 Conclusions

The goal of this paper was to assess how five bias-adjusting methods handle a climate change context with possible bias

nonstationarity. Three of the methods were multivariate bias-adjusting methods: MRQNBC, MBCn and dOTC. The two other

the bias-adjusting methods were univariate: one was a traditional bias-adjusting method, while the other was almost the same775

method, but modified according to the delta change paradigm. These univariate methods were used as a baseline to compare the

multivariate bias-adjusting methods with. The climate change context, using 1970-1989 as calibration time period and 1998-

2017 as validation time period, allowed us to calculate the change in bias between the periods, or the extent of bias stationarity,

using the R index. All methods were calculated and compared using different indices, for which the residual biases relative to

the observations and model bias were calculated.780

The calculated R index values differed depending on the variable and variable index under consideration, but generally

demonstrated that the bias of some of these indices is not stationary under climate change conditions. These changes could in

some cases be clearly linked to the poor performance of bias-adjusting methods, such as for the lower percentiles of T or the

middle percentiles of E. The performance was often poorer for the multivariate bias-adjusting methods, which corroborates the

conclusions of Guo et al. (2020) that bias nonstationarity influences the performance of multivariate bias-adjusting methods.785

Although these methods have been developed during the last few years as a means to better adjust the biases, it seems that their

35

https://doi.org/10.5194/hess-2020-639
Preprint. Discussion started: 8 December 2020
c© Author(s) 2020. CC BY 4.0 License.



more complex calculations make them more vulnerable to bias nonstationarity. Thus, the univariate bias-adjusting methods,

computationally less complex and not taking (potentially changing) correlations into account, seem to be more robust. Although

effective difference in climate change impact is weakened by the hydrological model we used, the univariate methods still

perform best. Studying other types of climate change impacts, the effect of bias nonstationarity could possible be even larger790

than discussed here.

The validation results could only be obtained by analysing and comparing a broad combination of indices. Considering only

the mean or other standard statistics would have hidden many of the results seen. For example, in contrast to the results for the

mean, the inclusion of both high and low extremes highlighted some problems with bias nonstationarity for some variables. As

such, this study does not contradict earlier studies such as Maraun (2012), where the mean-based biases were found to be rather795

stable. Even a broader set of indices, such as the ETCCDI indices, was not enough to clearly discern between the methods. As

such, we repeat the advice by Maraun and Widmann (2018a) to use indices not directly affected by bias-adjusting methods and

to analyse the user needs before deciding upon the bias adjustment validation method. An important limitation is that we only

used one GCM-RCM-combination. Using a model ensemble will be more informative, but could hide a single model’s poor

performance. On the other hand, similar assessments could also be used to discard poor-performing models (expanding upon800

methods such as those used in e.g. Brunner et al. (2019) or Tokarska et al. (2020)), based on the R index (also suggested by

Maurer et al. (2013)) or the remaining bias after adjustment.

The results for the multivariate bias-adjusting methods assessed here are in line with François et al. (2020), especially for the

problematic adjustment of occurrence. François et al. (2020) consequently state that the different multivariate bias-adjusting

methods are based on different assumptions, and thus, the end user should make well-grounded choices on the method used.805

This also became clear in our assessment. However, François et al. (2020) did not study the effect of climate change and

bias (non)stationarity and instead focused on model trend preservation, or trend nonstationarity. The results presented and

discussed here, such as the contrasting results of MRQNBC and dOTC, imply that whether trend preservation was the focus

of a method or not, can have an influence on the bias adjustment. However, it is yet unclear how trend nonstationarity and bias

nonstationarity influence each other and how the most appropriate methods can be discerned, although it has been suggested to810

use trend-preserving methods whenever we can assume the models to correctly simulate the atmospheric processes (Maraun,

2016).

Although critical of their use, the results of this paper do not imply that multivariate bias-adjusting methods are not helpful.

Many of the methods developed during the past few years can also be used for spatial bias adjustment, in which case the loca-

tions can be used as extra variables (see e.g. Vrac (2018)). A similar set-up has not been tested here, but the study by François815

et al. (2020) has proven the multivariate bias-adjusting methods to be very informative and robust for spatial adjustment: the

spatial characteristics that influence local weather the most, such as orography.

Nonetheless, the results discussed in this paper indicate that many methods, and especially the multivariate bias-adjusting

methods, fail in handling climate change and its resulting bias nonstationarity correctly. As authors have mentioned before

(Ehret et al., 2012; Maraun, 2016; Nahar et al., 2017), this foremost implies that climate models have to become better at820

modelling the future: we need to be able to trust them as fully as possible. As long as this is not the case, bias adjustment
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methods have to be developed that are more robust and that are able to help us assessing the future correctly. Yet, impact

assessment cannot wait for new methods to be developed and/or tested: we need to prepare ourselves for the future as soon as

possible. As was shown here, we can state for the current generation of methods that the fewer assumptions and calculations a

method needs, the more robust it is when used in a climate change context. Given this statement, we advise to use univariate825

bias-adjusting methods, until it becomes more clear how it can be ensured that multivariate methods certainly perform well in

a climate change context.
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Appendix A: Appendix A

Table A1: Observed values, and biases for the raw and adjusted climate simulations.

Bias

Index Observed value
Raw

climate simulations
QDM mQDM MBCn MRQNBC dOTC

P5 (mm) 0.00 0.00 0.00 0.00 0.00 -0.40 0

P25 (mm) 0.00 0.08 0.00 0.00 0.00 0.00 0.42

P50 (mm) 0.10 1.01 0.05 0.10 0.05 0.27 0.83

P75(mm) 2.70 1.83 -0.18 -0.17 -0.18 -0.84 0.76

P90(mm) 7.40 1.99 -0.26 -0.30 -0.26 -1.36 -0.23

P95 (mm) 11.42 2.38 -0.61 -0.60 -0.61 -1.44 -0.65

P99 (mm) 21.80 2.36 -1.86 -1.73 -1.86 1.38 -1.55

P99.5 (mm) 29.09 1.56 -4.20 -3.97 -4.20 0.02 -4.02

T5 (ºC) 0.40 -0.31 -0.70 -1.43 -0.70 -0.63 -0.94

T25 (ºC) 6.30 -0.08 -0.68 -1.55 -0.68 -3.00 -0.73

T50 (ºC) 11.40 -0.40 -0.81 -0.88 -0.81 -3.24 -0.70

T75(ºC) 16.10 -0.70 -0.46 0.09 -0.46 -1.07 -0.37

T90(ºC) 19.40 -1.07 -0.35 0.31 -0.35 1.02 0.12

T95 (ºC) 21.30 -1.17 -0.01 0.37 -0.01 2.59 0.25

T99 (ºC) 24.95 -1.85 -0.16 -0.75 -0.16 5.95 0.46

T99.5 (ºC) 25.90 -1.80 0.16 -1.39 0.16 7.01 0.77

E5 (mm) 0.00 0.20 0.00 0.00 0.00 -0.04 0

E25 (mm) 0.52 0.15 -0.09 -0.10 -0.09 -0.16 -0.52

E50 (mm) 1.42 0.05 -0.27 -0.28 -0.27 -0.38 -0.77

E75(mm) 2.69 -0.02 -0.34 -0.35 -0.34 -0.58 -0.65

E90(mm) 3.65 0.10 -0.27 -0.27 -0.27 -0.47 -0.18

E95 (mm) 4.21 0.15 -0.30 -0.28 -0.30 -0.41 0.125

E99 (mm) 5.02 0.21 -0.16 -0.13 -0.16 -0.17 0.69

E99.5 (mm) 5.24 0.27 -0.10 -0.02 -0.10 -0.07 1.03

corrP,E (-) -0.18 -0.04 -0.06 0.02 0.19 0.17 0.57

corrP,T (-) -0.16 0.18 0.14 0.09 0.16 0.16 0.04

corrE,T (-) 0.82 -0.02 -0.03 -0.09 -0.84 0.02 -0.45
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Table A1: (continued)

crosscorrP,E,0(-) 0.30 0.06 -0.04 -0.02 0.05 -0.03 0.12

crosscorrP,E,1(-) 0.24 0.19 0.08 -0.01 0.10 0.05 0.11

crosscorrP,T,0 (-) 0.36 0.15 0.05 0.01 0.02 -0.03 0.06

crosscorrP,T,1 (-) 0.38 0.13 0.02 -0.01 0.02 -0.04 0.08

crosscorrE,T,0 (-) 0.93 -0.00 -0.02 -0.05 -0.29 -0.02 -0.21

crosscorrE,T,1 (-) 0.91 0.01 -0.01 -0.04 -0.27 -0.01 -0.24

PP00 (-) 0.65 -0.10 -0.00 -0.02 -0.17 0.00 -0.37

PP10 (-) 0.32 -0.15 0.00 -0.05 0.16 -0.13 -0.07

Ndry (-) 3470.00 -1466.00 0.00 -373.00 0.00 -923.00 -1604.20

Plag1 (-) 0.33 0.11 0.02 0.07 -0.12 0.08 0.05

Q5 (m3/s) 2.30 0.92 -0.32 -0.18 0.82 -0.40 1.50

Q25 (m3/s) 3.36 1.45 0.02 -0.12 0.29 -0.23 1.50

Q50 (m3/s) 4.39 1.53 0.08 0.02 -0.20 -0.42 1.33

Q75 (m3/s) 5.72 2.52 -0.08 -0.03 -0.72 -0.81 1.51

Q90 (m3/s) 7.83 4.76 -0.36 -0.07 -1.66 -1.37 2.12

Q95(m3/s) 10.09 9.22 -1.00 -0.33 -2.78 -1.78 2.94

Q99 (m3/s) 18.71 18.58 -1.65 -0.78 -3.21 4.77 5.77

Q99.5 (m3/s) 23.90 19.70 0.84 -1.77 -0.57 13.81 6.61

QT20 (m3/s) 48.69 54.61 8.36 -3.41 -10.40 52.45 25.03
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