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Abstract.

Climate change is one of the biggest challenges currently faced by society, with an impact on many systems, such as

the hydrological cycle. To assess this impact in a local context, Regional Climate Model (RCM) simulations are often used

as input for rainfall-runoff models. However, RCM results are still biased with respect to the observations. Many methods

have been developed to adjust these biases, but only during the last few years, methods to adjust biases that account for5

the correlation between the variables have been proposed. This correlation adjustment is especially important for compound

event impact analysis. As an illustration, a hydrological impact assessment exercise is used here, as hydrological models often

need multiple locally unbiased input variables to ensure an unbiased output. However, it has been suggested that multivariate

bias-adjusting methods may perform poorly under climate change conditions because of bias nonstationarity. In this study,

two univariate and four multivariate bias-adjusting methods are compared with respect to their performance under climate10

change conditions. To this end, the a
::::

case
:::::

study
::
is
:::::::::
performed

:::::
using

::::
data

::::
from

:::
the

::::::
Royal

::::::::::::
Meteorological

::::::::
Institute

::
of

::::::::
Belgium,

::::::
located

::
in

::::::
Uccle.

::::
The

:
methods are calibrated in the late 20th century (1970-1989) and validated in the early 21st century

(1998-2017), in which the effect of climate change is already visible. The variables adjusted are precipitation, evaporation

and temperature, of which the former two are used as input for a rainfall-runoff model, to allow for the validation of the

methods on discharge. Although not used for discharge modelling, temperature is a commonly-adjusted variable in both uni-15

and multivariate settings and we therefore also included this variablein our research. The methods are also evaluated using

indices based on the adjusted variables, the temporal structure, and the multivariate correlation. The Perkins Skill Score is used

to evaluate the full PDF. The results show a clear impact of nonstationarity on the bias adjustment. However, the impact varies

depending on season and variable: the impact is most visible for precipitation in winter and summer.
::
All

::::::::
methods

:::::::
respond

:::::::
similarly

::
to

:::
the

::::
bias

:::::::::::::
nonstationarity,

::::
with

::::::::
increased

:::::
biases

:::::
after

::::::::::
adjustment. This should be accounted for in both multivariate20

bias-adjusting methods and impact models. In the former because these do not always include seasonality; in the latter because

:::::
impact

:::::::
models:

:
incorrectly adjusted inputs or forcings will lead to predicted discharges that are biased

::
as

::::
well.
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1 Introduction

The influence of climate change is felt throughout many regions of the world, as becomes evident from the higher frequency25

or intensity of natural hazards, such as floods, droughts, heatwaves and forest fires (IPCC, 2012). As these intensified natural

hazards threaten society, it is essential to be prepared for them. Knowledge on future climate change is obtained by running

Global Climate Models (GCMs), creating large ensemble outputs such as in the Climate Model Intercomparison Project 6

(CMIP6) (Eyring et al., 2016). Although they are informative on a global scale, the generated data are too coarse for local

climate change impact assessments. To bridge the gap from the global to the local scale, Regional Climate Models have30

become a standard application (Jacob et al., 2014), using the output from GCMs as input or boundary conditions.

Although the information provided by both GCMs and RCMs is valuable, both are biased w.r.t. the observations, especially

for precipitation (Kotlarski et al., 2014). The biases can occur in any statistic and are commonly defined as “a systematic

difference between a simulated climate statistic and the corresponding real-world climate statistic" (Maraun, 2016). These

biases are caused by temporal or spatial discretisation and unresolved or unrepresented physical processes (Teutschbein and35

Seibert, 2012; Cannon, 2016). An important example of the latter is convective precipitation, which can only be resolved

by very high resolution models. Although the further improvement of models is an important area of research (Prein et al.,

2015; Kendon et al., 2017; Helsen et al., 2019; Fosser et al., 2020), such improved models are computationally expensive. As

such, it is still necessary practice to statistically adapt the climate model output to adjust the biases (Christensen et al., 2008;

Teutschbein and Seibert, 2012; Maraun, 2016).40

Many different bias-adjusting methods exist (Teutschbein and Seibert, 2012; Gutiérrez et al., 2019). They all calibrate a

transfer function using the historical simulations and historical observations and apply this transfer function to the future

simulations to generate future ‘observed values’ or an adjusted future. Of all the different methods, the quantile mapping

method (Panofsky et al., 1958) was shown to be the generally best performing method (Rojas et al., 2011; Gudmundsson et al.,

2012). Quantile mapping adjusts biases in the full distribution, whereas most other methods only adjust biases in the mean45

and/or variance.

An important problem with quantile mapping and most other commonly used methods is that they are univariate and do

not adjust biases in the multivariate correlation. Although quantile mapping can retain climate model multivariate correlation

(Wilcke et al., 2013), the ability of univariate methods to improve the climate model’s multivariate correlation has been ques-

tioned (Hagemann et al., 2011; Ehret et al., 2012; Hewitson et al., 2014). This is important for impact assessment, as local50

impact models often need multiple input variables and many high-impact events are caused by the co-occurrence of multiple

phenomena, the so-called ‘compound events’ (Zscheischler et al., 2018, 2020). For example, flood magnitude can be projected

by a rainfall-runoff model using evaporation and precipitation time series as an input. If the correlation between these variables

is biased w.r.t. the observations, then it can be expected that the model output is biased as well, which can further propagate

in the impact models. During the past decade, multiple methods have been developed to counter this problem. The first meth-55

2



ods focused on the adjustment of two jointly occurring variables, most often precipitation and temperature, such as those by

Piani and Haerter (2012) and Li et al. (2014). However, it became clear that adjusting only two variables would not suffice,

hence many more methods have been developed that jointly adjust multiple variables, including those by Vrac and Friederichs

(2015); Cannon (2016); Mehrotra and Sharma (2016); Dekens et al. (2017); Cannon (2018); Vrac (2018); Nguyen et al. (2018);

Robin et al. (2019). Yet, the recent growth in availability of such methods comes along with a gap in the knowledge on their60

performance. In some studies, these methods have been compared with one or two older multivariate methods to reveal the

improvements (Vrac and Friederichs, 2015; Cannon, 2018) or with univariate methods (Räty et al., 2018; Zscheischler et al.,

2019; Meyer et al., 2019). Each of the latter three studies comparing uni- and multivariate bias adjusting methods indicates that

these lead to different results, yet it is difficult to conclude whether uni- or multivariate methods perform best. According to

Zscheischler et al. (2019) multivariate methods have an added value. Räty et al. (2018) conclude that the multivariate methods65

and univariate methods perform similarly, while Meyer et al. (2019) could not draw definitive conclusions. These studies vary

in set-up, adjusted variables and study area, which all could have caused the difference in added value. In all three studies, the

same method, namely the Multivariate Bias Correction in n dimensions (MBCn) (Cannon, 2018) was the basis for compar-

ison. Only recently, the first studies comparing multiple multivariate bias-adjusting methods were published (François et al.,

2020; Guo et al., 2020). The study by François et al. (2020) focused on the different principles underlying the multivariate70

bias-adjusting methods and concluded that the choice of method should be based on the end user’s goal. Besides, they also

noticed that all multivariate methods studied fail in adjusting the temporal structure of a time series. In contrast to the focus

of François et al. (2020), Guo et al. (2020) studied the performance of multivariate bias-adjusting methods for climate change

impact assessment and concluded that multivariate methods could be interesting in this context. However, they also noticed

that the performance of the multivariate methods was lower in the validation period and
:::
the

::::::
authors

:
suggested that this could75

be caused by bias nonstationarity. As the use of multivariate bias-adjusting methods could be an important tool for climate

change impact assessment, this deserves more attention.

The bias stationarity - or bias time invariance - assumption is the most important assumption for bias correction. It implies

that the bias is the same in the calibration and validation or future periods and that the transfer function based on the calibration

period can thus be used in the future period. However, this assumption does not hold due to different types of nonstationarity80

induced by climate change, which may cause problems (Milly et al., 2008; Derbyshire, 2017). In the context of bias adjustment,

this problem has been known for several years (Christensen et al., 2008; Ehret et al., 2012), but has not received a lot of

attention. A few authors have tried to propose new types of bias relationships (Buser et al., 2009; Ho et al., 2012; Sunyer

et al., 2014; Kerkhoff et al., 2014). Recently, it has been suggested that it is best to assume a non-monotonic bias change

(Van Schaeybroeck and Vannitsem, 2016). Some authors suggested that bias nonstationarity could be an important source of85

uncertainty (Chen et al., 2015; Velázquez et al., 2015; Wang et al., 2018; Hui et al., 2019), but not all found clear indications

of bias nonstationarity (Maraun, 2012; Piani et al., 2010; Maurer et al., 2013).

The availability of new methods and more data enables a more coherent assessment of the bias (non)stationarity issue. By

comparing four bias-adjusting methods in a climate change context with possible bias nonstationarity, some of the remaining

questions in François et al. (2020) and Guo et al. (2020) can be answered. The four multivariate bias-adjusting methods90
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compared in this study are ‘Multivariate Recursive Quantile Nesting Bias Correction’ (MRQNBC, Mehrotra and Sharma

(2016)), MBCn (Cannon, 2018), ‘dynamical Optimal Transport Correction’ (dOTC, Robin et al. (2019)) and ‘Rank Resampling

for Distributions and Dependences’ (R2D2, Vrac (2018); Vrac and Thao (2020b)). These four methods give a broad view of

the different multivariate bias adjustment principles, which we will elaborate on in Section 3.3. As a baseline, two univariate

bias-adjusting methods will be used: Quantile Delta Mapping (QDM, Cannon et al. (2015)) and modified Quantile Delta95

Mapping (mQDM, Pham (2016). QDM is a classical univariate bias-adjusting method and is chosen for this analysis as it is a

robust and relatively common quantile mapping method, especially as one of the subroutines in the multivariate bias-adjusting

methods (Mehrotra and Sharma, 2016; Nguyen et al., 2016; Cannon, 2018). mQDM, on the other hand, is one of the so-called

‘delta change’ methods, which are based on an adjustment of the historical time series. Using these univariate bias-adjusting

methods, we can assess whether multivariate and univariate bias-adjusting methods differ in their response to possible bias100

nonstationarity.

The methods will be compared by applying them for the bias adjustment of precipitation, potential evaporation and tempera-

ture. The bias-adjusted time series will be used as inputs for a hydrological model in order to simulate the discharge. Discharge

time series are the basis for flood hazard calculation, but can also be considered as an interesting source of validation them-

selves (Hakala et al., 2018).
::::
Here,

:::
we

::::::
present

::
a
:::::::
detailed

::::
case

:::::
study.

:
The bias adjustment and discharge simulation are both105

assessed at one grid cell/location only. Although this does not allow for investigating the spatial extent and impact of nonsta-

tionarity, the focus on one location gives information on the influence of possible bias nonstationarity on local impact models

and may hence be a starting point for broader assessments. We will also not account for the differences between models, as

we only investigate a single GCM-RCM model chain. This allows for a precise investigation of the possible effects of bias

nonstationarity, although it does not allow for assessing other types of uncertainty. The change of some biases from calibration110

to validation time series will be calculated, to indicate the extent of the bias nonstationarity. Maurer et al. (2013) proposed the

R index for this purpose. Calculating the bias nonstationarity between both periods will give an indication of the impact of a

changing bias on climate impact studies for the end of the 21st century. As Chen et al. (2015) mentioned: “If biases are not

constant over two very close time periods, there is little hope they will be stationary for periods separated by 50 to 100 years"

2 Data and validation115

2.1 Data

The observational data used were obtained from the Belgian Royal Meteorological Institute (RMI) Uccle observatory. The most

important time series used is the 10-min precipitation amount, gauged with a Hellmann-Fuess pluviograph, from
:
1898 to 2018.

An earlier version of this precipitation dataset was described by
::::::::::::::
Demarée (2003) and analyzed in

::::::::::::::::::
De Jongh et al. (2006). Mul-

tiple other studies have used this time series (Verhoest et al., 1997; Verstraeten et al., 2006; Vandenberghe et al., 2011; Willems,120

2013). The 10-min precipitation time series was aggregated to daily level to be comparable with the other time series used.

For the multivariate methods, the precipitation time series was combined with a 2 meter
::::::
2-meter

:
air temperature and poten-

tial evaporation time series. The daily potential evaporation was calculated by the RMI from
:
1901 to 2019, using the Penman
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formula for a grass reference surface
:::::::::::::
(Penman, 1948) with variables measured at the Uccle observatory. Daily average temper-

atures were obtained using measurements from
:
1901 to

:
2019. As the last complete year for precipitation was 2017, the data125

were used from
:
1901 to 2017, amounting to 117 years of daily data. As Uccle (near Brussels) is situated in a region with small

topographic differences, it is assumed that the precipitation statistics within the grid cell are uniform. Hence, the Uccle data

can be used for comparison with the gridded climate simulation data discussed below.

For the simulations, data from the EURO-CORDEX project
::::::::::::::::
(Jacob et al., 2014) were used. The Rossby Centre regional

climate model RCA4 was used
::::::::::::::::::::
(Strandberg et al., 2015) as it is one of the few RCMs with potential evaporation as an output130

variable. This RCM was forced with boundary conditions from the MPI-ESM-LR GCM
::::::::::::::::
(Popke et al., 2013) and has a spatial

resolution of
:
0.11°, or 12.5 km. Historical data and scenario data for the grid cell comprising Uccle were respectively obtained

for 1970-2005 and 2006-2100. The former time frame is limited by the earliest available data from the RCM. The latter time

frame was only used until
:
2017, in accordance with the observational data. As climate change scenario, an RCP4.5 forcing was

used in this paper
::::::::::::::::::::
(van Vuuren et al., 2011). Since only ‘near future’ (from the model point of view) data were used, the choice135

of forcing does not have a large impact. However, when studying scenarios in a time frame further away from the present, using

an ensemble of forcings is more relevant to be aware of the uncertainty regarding future climate change impact. evaluations of

the RCA4 model have shown that there is a bias in precipitation, especially in winter , but this bias is in line with the biases

from other EURO-CORDEX models .

2.2 Time frames140

As mentioned in the introduction, it is important to assess bias-adjusting methods in a context they will be used in, i.e. under

climate change conditions. The time series used in this study were chosen accordingly: 1970-1989 was chosen as the ‘historical’

or calibration time period and 1998-2017 was chosen as the ‘future’ or validation time period. In this time frame, effects of

climate change are already visible (IPCC, 2013). Time series of 20 years were chosen here, although it is advised to use 30

years of data to have robust calculations (Berg et al., 2012; Reiter et al., 2018). However, as no climate model data prior to145

1970 are available, using 30 years of data would have led to overlapping time series.

2.3 Validation framework

An important aspect in bias adjustment is the validation of the methods. Different methods are available, of which a pseudo-

reality experiment (Maraun, 2012) is one of the most-used ones. In this method, each member of a model ensemble is in

turn used as the reference in a cross-validation. However, while such a set-up is useful when comparing bias-adjustment150

methods, it only mimics a real application context. When sufficient observations are available, a ‘pseudo-projection’ set-up

:::::::::::::
(Li et al., 2010) can be used. This set-up resembles a ‘differential split-sample testing’

:::::::::::::
(Klemeš, 1986) and is more in agree-

ment with a practical application of bias-adjusting methods. Differential split-sample testing has been used in a bias adjustment

context by Teutschbein and Seibert (2013), by constructing two time series with respectively the driest and wettest years. In

our case study, it is assumed that the two time series differ enough because of climate change. Consequently, the approach is155

simple, and as the validation is not set in the future, it is considered a ‘pseudo-projection’.
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Besides the choice of time frames and data, also the choice of validation indices is of key importance. Maraun and Widmann

(2018a) stress that these indices should only be indirectly affected by the bias adjustment, as only validating on adjusted indices

can be misleading. Such adjusted indices are the precipitation intensity, temperature and evaporation, which are used to build

the transfer function in the historical setting and should be corrected by construction. Under bias stationarity, this correction160

will be carried over to the future, possibly hiding small inconsistencies that may arise for extreme values. If the bias is not

stationary, the effect might be different between adjusted and indirectly affected indices. As such, besides the three adjusted

variables (indices 1 to 3 in Table 1) and their correlations (indices 4 to 12, which are directly adjusted by some of the methods),

also indices based on the precipitation occurrence and on the discharge Q are used. The occurrence-based indices (13 to 16)

allow for assessing how the methods influence the precipitation time series structure. The discharge-based indices (17 and 18)165

allow for the assessment of the impact of the different bias-adjusting methods on simulated river flow. The discharge-based

indices combine the information of the other indices by routing through the rainfall-runoff model. They are the most important

aspect of the assessment, as they indicate the natural hazard. As the percentiles focus mostly on the extremes, the Perkins Skill

Score (PSS)
::::::::::::::::::
(Perkins et al., 2007) is used to assess the adjustment of the full PDF of the variables. All indices are calculated

taking all days into account, instead of only calculating them on wet days, as some of the multivariate bias-adjusting methods170

do not discriminate between wet or dry days in their adjustment.

The indices are all calculated on a seasonal basis for both the calibration and validation period. By comparing over these

periods, we can relate the performance to either the method itself or
:
to

:
bias (non)stationarity, on a seasonal basis. Besides, not

all methods adjust on a seasonal basis. As such, methods performing poorly in both periods might need a seasonal component

for bias adjustment. The seasons were defined as follows: winter (DJF), spring (MAM), summer (JJA) and autumn (SON).175

2.4 Bias nonstationarity

In a study on possible changes in bias, Maurer et al. (2013) proposed the R index:

R= 2
| biasf −biash |

| biasf |+ | biash |
, (1)

where biasf and biash are the biases in respectively the future and historical time series, calculated on the basis of the observa-

tions and raw climate simulations. The R index takes a value between 0 and 2. If the index is greater than one, the difference180

in bias between the two sets is larger than the average bias of the model and it is likely that the bias adjustment would degrade

the RCM output rather than improve it. The index is calculated for the indices used for validation in order to have an indication

of the influence of bias nonstationarity on these indices. Besides for the indices, the R index is also calculated for the average

and standard deviation of each variable, in order to be able to more easily visualise the changes in distribution.

2.5 Hydrological model185

Similar to
::::::::::::::
Pham et al. (2018), we use the Probability Distributed Model (PDM,

:::::::::::::::::::::::
Moore (2007); Cabus (2008)), a lumped con-

ceptual rainfall-runoff model to calculate the discharge for the Grote Nete watershed in Belgium. This model uses precipitation

and evaporation time series as inputs to generate a discharge time series. The PDM as used here was calibrated (RMSE = 0.9
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Table 1. Overview of the indices used

Nr Index Name

1 Px Precipitation amount percentile values, with x the percentile considered

2 Tx Temperature percentile values, with x the percentile considered

3 Ex Evaporation percentile values, with x the percentile considered

4 corrP,E Spearman correlation between the time series of P and E

5 corrP,T Spearman correlation between the time series of P and T

6 corrE,T Spearman correlation between the time series of E and T

7 crosscorrP,E,0 Lag-0 crosscorrelation between the time series of P and E

8 crosscorrP,T,0 Lag-0 crosscorrelation between the time series of P and T

9 crosscorrE,T,0 Lag-0 crosscorrelation between the time series of E and T

10 crosscorrP,E,1 Lag-1 crosscorrelation between the time series of P and E

11 crosscorrP,T,1 Lag-1 crosscorrelation between the time series of P and T

12 crosscorrE,T,1 Lag-1 crosscorrelation between the time series of E and T

13 PP00 Precipitation transition probability from a dry to a dry day

14 PP10 Precipitation transition probability from a wet to a dry day

15 Ndry Number of dry days

16 Plag1 Precipitation lag-1 auto-correlation

17 Qx Discharge percentiles, with x the percentile considered

18 QT20 20-year return period value of discharge

m3/h, see Pham et al. (2018) for more details) using the Particle Swarm Optimization algorithm (PSO,
::::::::::::::::::::::::
Eberhart and Kennedy (1995)

). As in
:::::::::::::::
Pham et al. (2018), it was assumed that the differences between meteorological conditions in the Grote Nete-watershed190

and Uccle are negligible, and that thus the adjusted data for the Uccle grid cell can be used as a forcing for the PDM. This

assumption is based on the limited distance of 50 km between the gauging stations used for the observations in Uccle and the

gauging station used for the PDM calibration. As mentioned before, the region has a flat topography and, hence, the climatol-

ogy can be considered
::
to

::
be

:
similar. Furthermore, the goal is not to make predictions, but to assess the impact of different bias

adjustment methods on the discharge values. To calculate the bias on the indices, observed, raw and adjusted RCM time series195

were used as forcing for this model. The discharge time series generated by the observations is considered to be the ’observed’

discharge, and biases are calculated in comparison with this time series.

2.6 Validation metrics

The residual biases relative to the observations and to the model bias are often used in this paper to graphically present and

interpret the results. These residual biases are based on the ‘added value’ concept (Di Luca et al., 2015) and enable a comparison200

based on two aspects. The first aspect is the performance in removing the bias, the second is the extent of the bias removal
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in comparison with
::::::
relative

::
to

:
the original value for the corresponding index for the observation time series

:
,
:::
the

::::::
second

::
is

:::
the

::::::::::
performance

::
in

::::::::
removing

::::
the

:::
bias. The use of the residual biases allows for a detailed study and comparison of the effect of

bias adjustment on the different indices.

The residual bias relative to the observations RBO for an index k is calculated as follows:205

RBO (k) = 1−
| biasraw(k) | − | biasadj(k) |

| obs(k) |
, (2)

with raw(k) the raw climate model simulations, adj(k) the adjusted climate model simulations and obs(k) the observed values

for index k.

The residual bias relative to the model bias RBMB for an index k is calculated as follows:

RBMB (k) = 1−
| biasraw(k) | − | biasadj(k) |

| biasraw(k) |
. (3)210

Absolute values are used in Eqs. (2) and (3) to compute the absolute difference between the raw and adjusted values, thus

neglecting a possible change of sign of the bias. If the values of these residual biases are lower than 1 for an index, the method

performs better than the raw RCM for this index. The best methods have low scores on both residual biases for as many indices

as possible.
:::
The

:::
low

::::::
scores

:::::
imply

:::
that

:::
the

::::
bias

:::::::::
adjustment

::
is

::::
both

:::::::
effective

:::
and

:::
has

::
a

::::
clear

::::::
impact

::::::
relative

::
to

:::
the

:::::::::::
observations.

::
If

::::
only

:::::
RBMB:::

has
:
a
::::
low

:::::
value

::
(<

::::
0.5),

::::
then

:::
the

:::
bias

::::::::::
adjustment

:::
was

::::::::
effective,

:::
but

:::
had

:
a
:::::::
limited

:::::
impact

:::::::
relative

::
to

:::
the

:::::::::::
observations.215

::
In

:::::::
contrast,

::
if

::::
only

::::
RBO:::

has
::
a

:::
low

:::::
value,

::::
then

:::
the

::::
bias

:::::::::
adjustment

::::
may

:::
be

::::::
limited,

:::
but

::::
even

::::
this

::::::
limited

::::
bias

:::::::::
adjustment

:::
had

:::
an

:::::
impact

:::::::
relative

::
to

:::
the

:::::::::::
observations.

3 Bias-adjusting methods

3.1 Occurrence-bias adjustment: Thresholding

One of the deficiencies of RCMs, especially in Northwest Europe, are the so-called ‘drizzle days’ (Gutowski et al., 2003;220

Themeßl et al., 2012; Argüeso et al., 2013), during which small amounts of precipitation are simulated while these days should

have been dry. This has an influence on the temporal structure of the simulated time series and should thus be adjusted (Ines and

Hansen, 2006). This is commonly done in an occurrence-bias-adjusting step before the main step, the intensity-bias adjustment.

In this study, we use the thresholding occurrence-bias-adjusting method, which is one of the most common occurrence-bias-

adjusting methods (e.g. Hay and Clark (2003); Schmidli et al. (2006); Ines and Hansen (2006)). This method is only applicable225

in regions where the assumption holds that the simulated time series has more wet days than the observed time series. This is the

case for Northwest Europe (Themeßl et al., 2012) and Belgium in particular. An advanced version of the thresholding method

is used here. To adjust the number of wet days, the total number of dry days in
:::
both

:
the observations and in the simulations are

calculated. The difference in dry days between the two periods, ∆N , is the number of days of the simulated time series that

have to be adapted. If ∆N days have to be converted to dry days, then the ∆N days with the lowest amounts of precipitation230

are changed to dry days. ∆N is computed for the past and applied in the future and consequently relies on the bias stationarity

assumption. However, as thresholding is used prior to all methods, the influence of possible bias nonstationarity on ∆N is

8



assumed to be negligible. Besides, as is shown in Section 4.1, the number of dry days is stationary for the time frames studied

in this paper.

In this advanced version of thresholding, some considerations are made. First, a day is considered wet if its simulated235

precipitation amount is above 0.1 mm, to account for measurement errors in the observations. Second, the adjustment is done on

a monthly basis, to account for the temporal structure in the observed time series. Third, both historical and future simulations

are adjusted, to ensure that the bias can be transferred from the historical to the future time periodwould be impaired.

3.2 Univariate intensity-bias-adjusting methods

3.2.1 Quantile Delta Mapping240

The
:
‘Quantile Delta Mapping

:
’
:
(QDM) method was first proposed by Li et al. (2010). Its main idea is to preserve the cli-

mate simulation trends: it takes trend nonstationarity (changes in the simulated distribution) into account to a certain de-

gree. Although it handles temperature adjustments well, it gives unrealistic values for precipitation and was therefore ex-

tended by Wang and Chen (2014) for precipitation adjustment. By combining the methods by Li et al. (2010) (Equidistant

CDF-matching
::::::::::
‘Equidistant

:::::::::::::
CDF-matching’) and Wang and Chen (2014) (Equiratio CDF-matching

::::::::
‘Equiratio

:::::::::::::
CDF-matching’),245

Cannon et al. (2015) developed the Quantile Delta Mapping
::::
QDM

:
method.

Mathematically, this method can be written as

xfa
i = xfs

i +F−1
xho

(
Fxfs

(
xfs

))
−F−1

xhs

(
Fxfs

(
xfs

))
(4)

in the additive case, and

xfa
i = xfs

i

F−1
xho

(
Fxfs

(
xfs

))
F−1
xhs (Fxfs (xfs))

(5)250

in the ratio or multiplicative case. The superscripts hs, ho, fs and fa indicate respectively the historical simulations, the

historical observations, the future simulations and the adjusted future. In this paper, the additive version is used for tem-

perature time series and the multiplicative one for precipitation and evaporation time series. This choice is based on the

work of
:::::::::::::::::::
Wang and Chen (2014), who have shown that using the additive adjustment for precipitation results in unrealistic

precipitation values and introduced a multiplicative adjustment. For evaporation, we follow the few available studies (e.g.255

::::::::::::::::::
Lenderink et al. (2007)) in using the same adjustment as for precipitation.

To ensure the consistency of the time series, a 91-day moving window is opted for, as suggested by and . This enables the

adjustment of each day based on 91days/year · 20years = 1820 days. These days were used to build
:::
For

::::::::::::
computational

:::::
ease,

an empirical CDF
:::
was

::::
used

::
in

:::
the

:::::
QDM

::::::::
equations

:
(as in Gudmundsson et al. (2012); Gutjahr and Heinemann (2013) , among

others
::
for

:::::
other

:::::::
quantile

::::::::
mapping

:::::::
methods). It is also important to note that for precipitation, Eq. (5) was applied only on the260

days considered wet, i.e. with a precipitation higher than 0.1 mm. For consistency, a threshold of 0.1 mm was also used for

evaporation. It is important to note that although QDM is only applied on wet days, it can still transform low-precipitation wet

days into days that are considered to be dry (e.g. with a precipitation amount < 0.1 mm) if the ratio in Eq. (5) is small enough.
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3.2.2 Modified Quantile Delta Mapping

Pham (2016) proposed another version of QDM, following the delta change philosophy (Olsson et al., 2009; Willems and Vrac,265

2011): the trend established by the RCM is assumed to be more thrust-worthy than the absolute value itself. When applying

this type of methods, the simulated change between the historical and the future is applied to the observations. Thus, instead

of the future simulations, the historical observations are adjusted to the future ‘observations’. As Johnson and Sharma (2011)

mention, this workflow could be problematic for future impact assessment, as it inherits the temporal structure of the historical

observations. This method is mathematically very similar to the QDM method, exchanging the roles of xfs and xho. Thus, it is270

named ‘modified Quantile Delta Mapping’ (mQDM), and can for the additive case be written as

xfa
i = xho

i +F−1
xfs

(
Fxho

(
xho

))
−F−1

xhs

(
Fxho

(
xho

))
. (6)

The ratio version is given by

xfa
i = xho

i

F−1
xfs

(
Fxho

(
xho

))
F−1
xhs (Fxho (xho))

. (7)

For the implementation, the same principles were used as for the QDM method: a 91-day moving window, empirical CDFs275

and a minimum value of 0.1 mm/day to be considered as a wet day.

3.3 Multivariate intensity-bias-adjusting methods

The increasing number of multivariate bias-adjusting methods throughout the 2010s urges the need to classify them according

to their properties. One possible classification was done by Vrac (2018), who proposed the ‘marginal/dependence’ versus the

‘successive conditional’ approach. The former approach separately adjusts the 1D-marginal distributions and the dependence280

structure and is applied in e.g. Vrac and Friederichs (2015), Cannon (2018) and Vrac (2018). These two components are then

recombined to obtain data that are close to the observations for both marginal and multivariate aspects. The latter approach

consists of adjusting a variable conditionally on the variables already adjusted. This procedure is applied successively to each

variable. Examples can be found in e.g. Piani and Haerter (2012), Li et al. (2014) and Dekens et al. (2017). Vrac (2018)

discusses the limitations of the ‘successive conditional’ approach and advocates for the use of the more robust and coher-285

ent ‘marginal/dependence’ approach. Hence, ‘successive conditional’ methods are not included in the present paper. Robin

et al. (2019) and François et al. (2020) extended the classification by introducing the ‘all-in-one’ approach, which adjusts the

marginal variables and the correlations simultaneously, ‘dynamical Optimal Transport Correction’ (dOTC) (Robin et al., 2019)

being such a method.

Another perspective on the multivariate bias-adjusting methods is to consider the amount of temporal adjustment that is290

allowed or applied by the method. This is important, as the amount of temporal adjustment is intrinsically linked with the main

goal, the adjustment of the multivariate distribution of the variables. This distribution, in which the dependence is characterised

by the underlying copula (Nelsen, 2006; Schölzel and Friederichs, 2008), can be estimated using the ranks. Thus, to adjust the

multivariate distribution, the ranks of the climate model are replaced by those of the observations, using methods such as

10



the ‘Schaake Shuffle’ (Clark et al., 2004; Vrac and Friederichs, 2015). This implies that the temporal structure and trends of295

the climate model will be altered, which may have a considerable impact (François et al., 2020). This impact is especially

large when multiday characteristics strongly matter, such as in applications as the hydrological example we use in this study

(Addor and Seibert, 2014). Vrac (2018) mentions this necessity to modify the temporal structure and rank chronology of the

simulations. Yet, he also mentions that the extent of this modification is still a matter of debate. Cannon (2016) describes this as

the ‘knobs’ that control whether marginal distributions, inter-variable or spatial dependence structure and temporal structure are300

more informed by the climate model or the observations. Thus, the choice between the temporal structure of the climate model

and unbiased dependence structures is a trade-off that has to be made. Some methods, such as those by Vrac and Friederichs

(2015), Mehrotra and Sharma (2016) and Nguyen et al. (2018) rely on the observations for their temporal properties, while

other methods try to find the middle ground (e.g. Vrac (2018) and Cannon (2018)). A last perspective, which is not limited

to multivariate methods, is that of trend preservation, i.e., the capacity of methods to preserve the changes simulated by the305

climate model, such as changes in mean, extremes and temporal structure. Although the amount of trend preservation or

adjustment has been a matter of debate (Ivanov et al., 2018). Maraun (2016) argues that it is sensible to preserve the simulated

changes and hence the climate change signal, if the model simulation is credible. As such, trend preservation interacts with

bias nonstationarity: non-stationarity can be seen as the divergence between the observed and simulated trends. Hence, in

a nonstationary context, trend-preserving methods may be disadvantaged, as they will assume that the simulated trend is310

trustworthy. In the univariate setting, QDM is an example of a trend-preserving method, as is ’Scaled Distribution Mapping’

by .

Our choice of multivariate bias-adjusting methods takes the above classification into account. The oldest method in the com-

parison is ‘Multivariate Recursive Quantile Nesting Bias Correction’ (MRQNBC) (Mehrotra and Sharma, 2016). This method

replaces the simulated correlations by those of the observations and is a ‘marginal/dependence’ method according to François315

et al. (2020). As QDM is used for the marginal distributions, the latter are preserved. However, MRQNBC does not preserve

the changes in dependence. ‘Multivariate Bias Correction in n dimensions’ (Cannon, 2018) is both a ‘marginal/dependence’

method and a method that tries to combine information from the climate model and the observations. Similar to MRQNBC,

it explicitly preserves the simulated changes in the marginal distributions by applying QDM for the marginal distributions. As

the simulated dependence structure is the basis for the adjustment, it will be slightly preserved. The ‘Rank Resampling for320

Distributions and Dependences’ (R2D2, Vrac (2018); Vrac and Thao (2020b)) method preserves the rank correlation of the ob-

servations, but allows the climate model to have some influence on the temporal properties. It is also a ‘marginal/dependence’

method: in the present paper, QDM is used as its univariate routine and thus the changes in marginal distributions are preserved

by R2D2. The most recent
:::
last

:
method, ‘dynamical Optimal Transport Correction’ (Robin et al., 2019) differs considerably

from the other two methods: it generalises the ‘transfer function’-principle using the ‘optimal transport’ paradigm (Villani,325

2008), thereby defining a new category of multivariate bias-adjusting methods: the above-mentioned all-in-one approach. It is

the only method that explicitly preserves the simulated changes in both the marginal distributions and the dependence structure.

Although far from complete, by comparing these four methods, a broad view of the different approaches in multivariate bias

adjustment can be obtained. The main principles of the bias-adjusting methods are summarized in Table 2.
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Table 2. Overview of the multivariate bias-adjusting methods

MBCn MRQNBC R2D2 dOTC

Category Marginal/dependenceMarginal/dependenceMarginal/dependenceAll-in-one

Temporal properties
::::::::
Statistical

::::::
method

Shuffle based on

observations

::::::
Iterative

:::::
partial

::::::::
matrix

:::::::::
recorrelation

:

Observed

:::::::::::
Autoregressive

:::::::
modeling

Shuffle based

on observations

:::::::::
Conditional

::::::::
resampling

Future, adjusted

::::::
Optimal

:::::::
transport

Dependence structure
::::::::
Timescale

Future, adjusted

based on

observations

::::
Daily

:::::::::
adjustment

::
by

:::::::
QDM

::::
+

::::::
Seasonal

::::::
shuffle

Observed

:::::::::
Combination

:
of
:::::

daily,
:::::::
monthly,

::::::
seasonal

:::::::
and

::::
yearly

:::::::::
adjustment

Observed
::::
Daily

::::::::
adjustment

:::::
by

::::
QDM

::
+
:::::::
Seasonal

::::::::
resampling

Future, adjusted

::::::
Seasonal

::::::::
adjustment

Trend preservation Marginal proper-

ties by the appli-

cation of QDM,

dependence struc-

ture partly

Marginal proper-

ties by the appli-

cation of QDM

Marginal proper-

ties by the appli-

cation of QDM

Marginal proper-

ties and depen-

dence structure

Statistical technique
:::::::::
Dependence

::::::::
structure

Iterative

partial matrix

recorrelation

:::::
Future,

::::::::
adjusted

::::
based

:::::::::
on

:::::::::
observations

Autoregressive

modeling

:::::::
Observed

Conditional

resampling

:::::::
Observed

Optimal transport

:::::
Future,

:::::::
adjusted

Timescale
::::::::
Temporal

::::::::
properties

Daily adjustment

by QDM +

full time series

::::::::
Rank-based

:
shuf-

fle

Combination of

daily, monthly,

seasonal and

yearly adjustment

:::::::
Observed

Daily adjustment

by QDM +

full time series

resampling

::::::::::::
Analogue-based

:::::
shuffle

Full time series

:::::
Future

12



3.3.1 Multivariate Recursive Quantile Nesting Bias Correction330

In 2016, Mehrotra and Sharma proposed a new multivariate bias adjustment method, named ‘Multivariate Recursive Quan-

tile Nesting Bias Correction’ (MRQNBC), based on a combination of several older methods by Johnson and Sharma (2012),

Mehrotra and Sharma (2012) and Mehrotra and Sharma (2015) and by incorporating QDM as the univariate routine for ad-

justing the marginals. The underlying idea of this method is to adjust on more than one timescale , and to nest the results

of the different timescales within each other. The adjustment on multiple timescales is almost never
:::::
rarely incorporated in335

bias-adjusting methods (Haerter et al., 2011). On each timescale, the biases in lag-0- and lag-1-auto and the
:::::
lag-0

:::
and

:::::
lag-1

::::::::::::
autocorrelation

::::
and

::::
lag-0

::::
and

::::
lag-1

:
cross-correlation coefficients, i.e. the persistence attributes, are adjusted, instead of focus-

ing on the mean or the distribution. The biases are adjusted by replacing the modeled persistence attributes with observed

persistence attributes, on the basis of autoregressive expressions. Besides replacing the simulated temporal properties with the

observed ones, this implies that the simulated dependence structure is also replaced by
::::
with the observed structure. As QDM340

is applied on each timescale, the marginal properties are preserved.

After adjusting all timescales, the final daily result is calculated by weighing all timescales. However, as the nesting method

cannot fully remove biases at all time scales, Mehrotra and Sharma (2016) suggested to repeat the entire procedure multiple

times. Yet, in our case multiple repetitions exacerbated the results. Non-realistic outliers created by the first repetition influenced

the subsequent repetitions, creating even more non-realistic values. This was most clearly seen for precipitation. As a bounded345

variable, precipitation is most sensitive for non-realistic values. Nonetheless, running the method just once yielded satisfactory

results
::
for

::::
most

::::::::
variables. A full mathematical description of the method can be found in Mehrotra and Sharma (2016).

3.3.2 Multivariate Bias Correction in n dimensions

In 2018, Cannon (2018) proposed the ‘Multivariate Bias correction in n dimensions’ (MBCn) method as a flexible multivariate

bias-adjusting method. The method’s flexibility has attracted some attention, and it has already been used in multiple studies350

(Räty et al., 2018; Zscheischler et al., 2019; Meyer et al., 2019; François et al., 2020). This method consists of three steps.

First, the multivariate data are rotated using a randomly generated orthogonal rotation matrix, adjusted with the additive form

of QDM, and rotated back until the calibration period model simulations converge to the observations. This convergence is

verified on the basis of the energy distance (Rizzo and Székely, 2016). Second, the validation period simulations are adjusted

using QDM, as this method preserves the simulated trends. As the last step, these adjusted time series are shuffled using the355

Schaake Shuffle (Clark et al., 2004) based on the rank order of the rotated dataset.
::::
This

::::::
shuffle

:::
can

:::::::
remove

:::::::
temporal

::::::::
structure

::
in

:::
the

::::::::
resulting

::::
time

::::::
series. A full mathematical description of the method can be found in Cannon (2018).

3.3.3 Rank Resampling for Distributions and Dependences

One of the most recent methods studied in this paper is the ‘Rank Resampling for Distributions and Dependences’ (R2D2)

method, which was designed by Vrac (2018) as an improvement of the older EC-BC method (Vrac and Friederichs, 2015).360

Recently, R2D2 was further extended for better multisite and temporal representation by Vrac and Thao (2020b) (R2D2 v2.0).
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This method is a marginal/dependence multivariate bias-adjusting method, which adjusts the simulated climate dependence by

resampling from the observed dependence. The resampling is applied through the search for an analogue for the ranks of a

simulated reference dimension in the observed time series, which makes this an application of the analogue principle (Lorenz,

1969; Zorita and Von Storch, 1999) in bias adjustment. A detailed mathematical description can be found in Vrac (2018) and365

Vrac and Thao (2020b).

In the present application of R2D2, QDM was used as the univariate bias-adjusting method to ensure consistency with the

other multivariate bias-adjusting methods. This ensures the preservation of the changes in the marginal distribution, besides

the preservation of some temporal properties, which is inherent to the method. Each variable (precipitation, evaporation and

temperature) was in turn used as the reference dimension. No other information was included, as
::
As

:
the present study was370

limited to one grid cell.
:
a
::::::
single

::::
grid

::::
cell,

:::
the

:::
use

:::
of

::::::::
additional

::::
data

::::
was

:::::::
limited.

::::::::
However,

:::
to

::::::
ensure

:::
that

::::
the

:::::::
selection

:::
of

::::::::
analogues

::
is

::::::
diverse

::::::::
enough,

:::
five

::::
lags

:::::
were

::::
used

::
to
::::::

search
:::

for
::::::::::

analogues,
::::
three

:::
of

:::::
which

:::::
were

:::::::
retained

::
in
::::

the
::::::::::
resampling.

::::::
Finally,

:::
the

::::::
results

:::
for

::
the

:::::
three

::::::::
variables

::::
were

::::::::
averaged

::
to

::::::
present

:::
the

::::
final

:::::
R2D2

::::::
result.

3.3.4 Dynamical Optimal Transport Correction

Recently, Robin et al. (2019) indicated that the notion of a transfer function in quantile mapping can be generalised to the375

theory of optimal transport. Optimal transport is a way to measure the dissimilarity between two probability distributions and

to use this as a means for transforming the distributions in the most optimal way (Villani, 2008; Peyré and Cuturi, 2019).

Optimal transport was used by Robin et al. (2019) to adjust the bias of a multivariate data set in the ‘dynamical Optimal

Transport Correction’ method (dOTC), which extends the ‘CDF-transform’ (CDF-t) bias-adjusting method (Michelangeli et al.,

2009) to the multivariate case. dOTC calculates the optimal transport plans from Xho to Xhs (the bias between the model and380

the simulations) and from Xhs to Xfs (the evolution of the model). The combination of both optimal transport plans allows

for bias adjustment while preserving the simulated changes in both marginal properties and the dependence structure. A full

mathematical description of the method can be found in Robin et al. (2019).

3.4 Experimental design

Prior to all intensity-bias-adjusting methods, the thresholding occurrence-adjusting method was applied. In the intensity-bias-385

adjustment step, a balance was sought between randomness and computational power for the calculation of the intensity-

bias-adjusting methods. Methods with randomised steps were repeated. As such, 10 calculations were made for dOTC. The

:::::::::::::
bias-adjustment

:::::::
methods

::::
were

::::::
always

::::::
applied

::::
with

:::::::
seasonal

:::::
input

::
to

:::::
ensure

::::::::::
consistency

::::::
among

::
all

::::::::
methods.

::::
Only

:::
for

::::::::::
MRQNBC,

:::::::
seasonal

::::
input

::::
was

:::
not

::::::::::
considered,

::
as

:::
this

:::::::
method

:::
has

:
a
:::::::
seasonal

::::::::::
component.

:::
As

:::::::::
MRQNBC

::
is

:::::::::
developed

::
to

::::
take

:::::::
multiple

::::
time

:::::
scales

:::
into

::::::::
account,

::
the

::::::::::
comparison

::::
with

:::
the

:::::
other

::::::::::
multivariate

:::::::::::
bias-adjusting

::::::::
methods

:::::
allows

::
to

::::::
discern

:::::::
whether

:::::::::
finetuning

:::
for390

::::::
seasons

::
or

::
a

::::
more

:::::::
general

:::::::::::::::
time-scale-focused

:::::::
method

::
is

:::
the

:::
best

::::::::
approach

::
to

::::
deal

::::
with

::::::::::::::::
seasonally-varying

:::::
biases.

:

:::
The

:
resulting values of each index were averaged for further comparison. Biases on the indices were always calculated as

raw or adjusted simulations minus observations, indicating a positive bias if the raw or adjusted simulations are larger than the

observations and a negative bias if the simulations are smaller.
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4 Results395

In this section, the results will be shown first for
:::
we

:::
will

::::
first

::::::
discuss

:
the R index calculations for bias change, and then for

:
.
::::
Next,

:::
we

::::
will

:::::::
discuss the validation indices. For the validation indices, first the indices based on the adjusted variables are

discussed, followed by an elaboration on the indices based on the derived variables. As the effect on discharge is the overarching

goal of this paper and the discharge indices are affected by all other indices, those will be discussed last.

4.1 Bias change400

The results for the R index vary considerably depending on the season: bias nonstationarity (R index values > 1) is present for

all variables, but the extent varies
::::::
(Tables

::
3

:::
and

::
4). For precipitation

:::::
(Table

::
3), bias nonstationarity is most clear in winter and

summer for the highest percentiles (P99 and P99.5). For temperature, winter, spring and summer all show some high R index

values, but while winter has high R index values for all percentiles, the nonstationarity is restricted to the lower to middle

percentiles (T5, T25, T50 and T75) for spring and the lower percentiles (T5 and T25) for summer. This is reflected in the mean405

and standard deviation: both are nonstationary for winter, whereas only the mean is nonstationary for spring and neither mean

nor
:::
the

:::::
mean

:::
nor

:::
the

:
standard deviation is nonstationary for summer. In autumn, the behavior is less clear: two percentiles

(P50 and P95) have an R index value of 2, but unlike the other seasons, there is no apparent pattern as these values are far

apart. However, the standard deviation has an R index value higher than 1 for autumn temperatures, indicating that some bias

nonstationarity could be present. For evaporation, spring has the clearest bias nonstationarity: almost all percentiles have an R410

index value higher than 1. For the other seasons, the nonstationarity is less striking, although present. For winter and autumn,

E75 has an R index value of 1 or higher and a clearly nonstationary standard deviation, while in summer, E25 and E50 have an

R index value higher than 1, although neither mean nor standard deviation is clearly nonstationary. For occurrence
:::::
(Table

:::
4),

the bias nonstationarity seems limited: only in spring and autumn, the R index value for precipitation lag-1 autocorrelation is

higher than 1. For correlation, the bias nonstationarity is also limited, although some of the correlations of evaporation and415

either temperature or precipitation have an R index value higher than 1, but this depends on the season
:::::::::::
(crosscorrE,T,0::::

and

::::::::::
crosscorrE,T,1::

in
::::::
spring,

:::::::::::
crosscorrE,T,1::

in
:::::::
winter,

:::::
corrE,T::

in
:::::::
summer

::::
and

:::::
corrP,E::

in
::::::::
autumn).

Many of the R index values thus indicate that the bias changes between the two periods considered here (1970-1989 versus

1998-2017) might already be large enough to have an effect on the bias adjustment. As these periods are only separated by 10

years, this is an important indicator for the bias adjustment of late 21st century data, just as Chen et al. (2015) mentioned. The420

results vary substantially among seasons, variables and distributions of the variables. Although this could give an indication of

the reason for poor performance for some of these indices, it is impossible to state exactly what causes the bias nonstationarities

purely based on these results. Possible causes could be that recent trends such as those in precipitation extremes (Papalexiou and

Montanari, 2019) are poorly captured by the models, that limiting mechanisms such as soil moisture depletion (Bellprat et al.,

2013) are poorly modelled or that natural variability (Addor and Fischer, 2015) influences the biases. However, discussing425

this in depth is out of the scope of the present study and deserves a separate study. In what follows, we will focus on the

performance of the bias-adjusting methods and whether or not there is a link with these nonstationarities.
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Table 3.
::
R

::::
index

:::::
values

:::
for

::
the

:::::::
variables

:::
for

::::::::
1970-1989

::
as

:::::::
historical

:::::
period

:::
and

::::::::
1998-2017

::
as
:::::
future

:::::
period

::::::
Indices

::::::
Winter

:::::
Spring

:::::::
Summer

:::::::
Autumn

::
P5: ::::

NaN
::::
NaN

::::
NaN

::::
NaN

:::
P25 :::

0.22
: :

0
: :::

0.67
: :::

0.67
:

:::
P50 :::

0.26
: :::

0.33
: :::

0.06
: :::

0.27
:

:::
P75 :::

0.45
: :::

0.33
: :::

0.26
: :::

0.09
:

:::
P90 :::

0.44
: :::

0.26
: :::

0.62
: :::

0.03
:

:::
P95 :::

0.94
: :::

0.05
: :::

0.92
: :::

0.21
:

:::
P99 :::

1.76
: :::

0.09
: :

2
: :::

0.83
:

::::
P99.5 :::

1.59
: :::

0.27
: :

2
: :::

0.46
:

::::
PMean: :::

0.46
: :::

0.20
: :::

0.49
: :::

0.09
:

::::
PStDev: :::

1.76
: :::

0.05
: :::

1.56
: :::

0.07
:

::
T5: :

2
: :

2
: :

2
: :::

0.43
:

:::
T25 :

2
: :

2
: :::

1.42
: :::

0.30
:

:::
T50 :::

1.73
: :

2
: :::

0.38
: :

2
:

:::
T75 :

2
: :

2
: :::

0.19
: :::

0.72
:

:::
T90 :

2
: :::

0.89
: :::

0.27
: :::

0.77
:

:::
T95 :::

1.38
: :::

0.94
: :::

0.14
: :

2
:

:::
T99 :

2
: :::

0.11
: :::

0.23
: :::

0.40
:

::::
T99.5: :

2
: :::

0.35
: :::

0.45
: :::

0.16
:

::::
TMean: :

2
: :

2
: :::

0.42
: :::

0.63
:

::::
TStDev: :

2
: :::

0.38
: :::

0.73
: :::

1.27
:

::
E5: :::

0.08
: :::

0.36
: :::

0.81
: :::

0.35
:

:::
E25 :::

0.51
: :::

1.37
: :::

1.17
: :::

0.19
:

:::
E50 :::

0.51
: :

2
: :::

1.48
: :::

0.76
:

:::
E75 :

1
: :

2
: :::

0.86
: :::

1.54
:

:::
E90 :::

0.71
: :

2
: :::

0.64
: :::

0.76
:

:::
E95 :::

0.72
: :::

1.97
: :::

0.56
: :::

0.79
:

:::
E99 :::

0.28
: :::

0.89
: :::

0.12
: :::

0.87
:

::::
E99.5: :::

0.05
: :

2
: :::

0.18
: :::

0.85
:

::::
EMean: :::

0.51
: :

2
: :::

0.93
: :::

0.56
:

::::
EStDev: :

2
: :::

0.13
: :::

0.02
: :

2
:
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Table 4.
::
R

::::
index

:::::
values

:::
for

::::::::
occurrence

:::
and

::::::::
correlation

:::
for

::::::::
1970-1989

::
as

:::::::
historical

:::::
period

:::
and

:::::::::
1998-2017

:
as
:::::

future
:::::
period

::::::
Indices

::::::
Winter

:::::
Spring

:::::::
Summer

:::::::
Autumn

:::
Plag1: :::

0.02
: :

2
: :::

0.16
: :

2
:

:::
PP00: :::

0.16
: :::

0.59
: :::

0.06
: :::

0.76
:

:::
PP10: :::

0.13
: :::

0.74
: :::

0.25
: :::

0.83
:

:::
Ndry: :::

0.12
: :::

0.71
: :::

0.17
: :::

0.50
:

:::::
corrE,T :::

0.21
: :::

0.11
: :

2
: :::

0.05
:

:::::
corrP,E :::

0.02
: :::

0.08
: :::

0.32
: :::

1.60
:

:::::
corrP,T :::

0.39
: :::

0.01
: :::

0.35
: :::

0.24
:

::::::::::
crosscorrE,T,0 :::

0.95
: :

2
: :::

0.62
: :::

0.33
:

::::::::::
crosscorrE,T,1 :::

1.38
: :::

1.44
: :::

0.06
: :::

0.48
:

:::::::::
crosscorrP,E,0: :::

0.44
: :::

0.16
: :::

0.41
: :::

0.30
:

:::::::::
crosscorrP,E,1: :::

0.09
: :::

0.08
: :::

0.08
: :::

0.35
:

:::::::::
crosscorrP,T,0: :::

0.03
: :::

0.17
: :::

0.13
: :::

0.19
:

:::::::::
crosscorrP,T,1: :::

0.28
: :::

0.23
: :::

0.12
: :::

0.16
:

4.2 Precipitation amount

The Perkins Skill Score (PSS) for precipitation (Table 5) indicates that the PDFs of the observations and adjusted simulations

agree rather well. These scores are very similar in the calibration and validation period. Only QDM and mQDM perform430

worse in every season, whereas the change
::::::::::
Nonetheless,

:::::
some

::::::
aspects

:::::::
deserve

:::::
more

::::::::
attention.

:::
By

:::::::
focusing

:::
on

:::
the

:::::::::
calibration

::::::
period,

:
it
::
is
:::::::
possible

:::
to

:::::::::
understand

:::
the

:::::
basic performance of the multivariate methodsdepends on the season. For dOTC, the

result is better in the validation period
:::::::
methods.

:::
By

:::::::::::
construction,

:::::::
mQDM

:::
has

:
a
::::
PSS

:::
of

:::::
100%.

::
A
:::::
more

:::::::
peculiar

::::::
aspect

::
is

:::
the

::::::
slightly

:::::
lower

::::
PSS

::
of

:::::::::
MRQNBC

::::
and

:::
the

::::::
clearly

:::::
lower

::::
PSS

::
of

::::::
dOTC:

:::
this

::::::::
indicates

::::
that

::::
these

::::::::
methods

:::
are

:::::
harder

::
to

::::::::
calibrate

:::::::
correctly

::::
and

::::
thus

:::
that

:::
the

::::::
results

:::::
might

:::
be

:::::::::
influenced

::
by

::
a
::::
poor

::::::::::
calibration.

::::::
Lastly,

:::
the

::::::
results

:::
for

:::::
QDM

::::
and

::::::
MBCn

:::
are

:::
the435

:::::
same.

::::
This

::::::::::
corresponds

::
to

:::
the

::::::::::
expectation,

::
as

:::
the

:::::::
marginal

:::::::
aspects

::
of

::::
both

:::::::
methods

:::
are

:::
the

::::
same

:::
by

:::::::::::
construction.

::::::
Moving

:::
on

::
to

::
the

:::::::::
validation

::::::
period,

::
it

:
is
:::::
clear

:::
that

:::
all

:::::::
methods

::::::::
generally

:::::::
perform

:::::
worse

:
than in the calibration period.

:::
This

:::
has

:::::
been

:::::::
reported

:::::
before

:::::
(e.g.,

::::::::::::::
Guo et al. (2020)

:
.
:::::
Based

:::
on

:::
the

::::
PSS

::::::
values

::::::
alone,

:
it
::

is
::::::::::

impossible
::
to

::::::::::
distinguish

:::
the

:::::
cause

::
of

::::
this

:::::::
decrease

:::
in

:::::::::::
performance.

::::
Note

:::
that

:::
the

:::::::::::
performance

::
of

::::::
dOTC

:::::::
increases

:::
or

:
is
:::::
rather

::::::
stable,

:::::::
making

:
it
:::::
more

:::::::
difficult

::
to

::::::
discuss

:::
this

:::::::
method.

:

The
:::::::
relatively

:
good performance for the full PDF contrasts with the bias adjustment of the extreme values. Figure 2 presents440

::::::
Figures

:
1
::::
and

:
2
::::::
present

:
the RBO and RBMB values for the highest P percentilesin the validation period. The lower percentiles (P5

to P50)are adjusted very well by all methods , but the performance of the methods for the higher percentiles differs considerably

between the
:
.
:::
The

::::::
lowest

:::::::::
percentiles

:::
are

:::
not

::::::::
included

::
in

::::
these

:::::
plots,

::
as

:::::
their

::::
RBO::

or
::::::
RBMB :::::

values
:::
are

:::
for

::::
most

::::::::
methods

:::::
lower

:::
than

::
0.
:::
In

:::
the

:::::::::
calibration

:::::
period

:::::
(Fig.

::
1),

:::
all

:::::::
methods

:::::::
perform

::::::::
relatively

::::
well.

::::
For

:::::
QDM,

:::::::
mQDM

:::
and

:::::::
MBCn,

:::
the

:::::::::
adjustment

::
is

:::::
nearly

::::::
perfect

:::
(as

::::
also

:::::::
indicated

:::
by

:::
the

::::
PSS

::::::
values),

:::
but

:::::
even

::
for

::::::
dOTC,

:::
the

:::::::::
adjustment

::
is
::::::::::
acceptable,

::::
with

:::
the

::::
RBO:::

and
::::::
RBMB445
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Table 5. PSS values for precipitation in the calibration (Cal) and validation (Val) periods (%).

Winter Spring Summer Autumn

Cal Cal Val Cal Cal Val Cal Cal Val Cal Cal Val

QDM 96.5 98.4 94.1
:::
92.3 97.2 99.0 95.0

:::
94.1 97.9 99.2 96.7 96.8 98.5 94.3

:::
95.2

mQDM 100.0 100.0 92.1
:::
92.5 100.0 100.0 93.4

:::
94.1 100.0 100.0 96.5

:::
96.3 100.0 99.8 94.8

:::
95.3

MBCn 94.1 98.4 89.9
:::
92.3 95.6 99.0 95.5

:::
94.1 92.6 99.2 97.3

:::
96.7 97.2 98.5 96.8

:::
95.2

MRQNBC 93.2 93.1 92.8 84.7 84.7 81.0 96.1 96.1 95.6 93.5 93.5 91.0

dOTC 64.6 85.7 73.8
:::
92.4 66.6 86.4 70.0

:::
81.8 62.2 86.0 91.6

:::
93.9 62.8 85.2 72.0

:::
84.8

R2D2 93.3 95.9 90.1
:::
93.5 94.0 97.2 93.1

:::
92.7 93.2 96.9 92.6

:::
95.9 94.1 96.2 93.8

:::
94.5

:::::
values

:::
for

:::::
many

::::::
indices

:::::
lower

:::::
than

::
1.

:::
The

:::::::
contrast

:::::
with

:::
the

::::::::
validation

::::::
period

::::
(Fig.

:::
2)

:::
can

:::
be

:::::
easily

::::
seen

:::
for

::::::
QDM,

:::::::
mQDM

:::
and

:::::::
MBCn.

::::::
Closer

:::::::::
inspection

:::::
yields

:::::
more

::::::
details

:::
on

:::::::::
differences

:::::::
among seasons. For winter (blue) and summer (yellow),

only P75 and P90 can be plotted in the validation period, whereas for spring and autumn all percentiles , from P75 to P99.5 can be

plotted for all methods. The poor adjustment of the high percentiles in winter and summer could be
:
is

::::::::
probably caused by bias

nonstationarity: the R index values for these percentiles are higher than 1, in contrast with the low and well-adjusted higher450

percentiles for spring and autumn precipitation. However, although P95 has an R index value lower than 1 for both winter and

summer, it is
:::
also

:
poorly adjusted. This illustrates that the R index gives an indication of the nonstationarity, but also hides

information on the size of the biases. For summer, the bias for P95 changes from 5.09 mm in the calibration period to 1.89 mm

in the validation period, a change of over 3 mm. For winter, the bias changes from 1.44 mm in the calibration period to 0.52 mm

in the validation period, a change of almost 1 mm. Yet, these differences have a very similar R index value. A comparison with455

the RBMB and RBO values of the calibration period (Fig

:::
The

::::::::::::
nonstationarity

::::
seen

::
in
::::
Figs. 1 ) illustrates that all methods perform well for every season, indicating that the nonstationarity

could be a cause of the diverging performances in the validation period between the winter/summer andspring/autumn pairs.

However, this nonstationarity
::
and

::
2
:
is not apparent from the PSS, as it only occurs in the tail of the distribution. This also

follows from the R index values for the mean and standard deviation in winter and summer. Only for standard deviation, the R460

index value indicates nonstationarity in winter and summer: the values are respectively 1.79 and 1.56. Thus, the nonstationarity

of the extremes and the standard deviation seem to be linked.

RBMB versus RB0 for the precipitation in the validation period. (a) QDM, (b) mQDM, (c) MBCn, (d) MRQNBC, (e) dOTC,

(f) R2D2. Winter: blue, spring: ochre, summer: yellow, autumn: purple.

RBMB versus RB0 for the precipitation indices in the calibration period. (a) QDM, (b) mQDM, (c) MBCn, (d) MRQNBC,465

(e) dOTC, (f) R2D2. Winter: blue, spring: ochre, summer: yellow, autumn: purple.

The methods seem to perform rather similarly in
:::::
within

:
every season. Although the RBMB values vary, indicating that for

some methods the bias is removed to a larger extent, the RBO values are similar, indicating that relative to the observations, the

influence of the difference in removed bias is low. However, there is a difference that should be acknowledged
::::
The

::::::::
similarity

::
in

::::
RBO :::::

values
::
is
::::::
related

::
to

:::
the

::::::::
observed

::::::
values,

:::::
which

:::::::
increase

:::::
more

::::
than

:::
the

:::::
biases

::::
with

:::::::::
increasing

:::::::::
percentiles.

:::::::
Hence,

::
the

:::::
RBO470
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Figure 1.
::::
RBMB:::::

versus
::::
RB0:::

for
::
the

::::::::::
precipitation

::::::
indices

::
in

:::
the

::::::::
calibration

::::::
period.

::
(a)

::::::
QDM,

::
(b)

:::::::
mQDM,

:::
(c)

::::::
MBCn,

::
(d)

:::::::::
MRQNBC,

:::
(e)

:::::
dOTC,

::
(f)

:::::
R2D2.

::::::
Winter:

::::
blue,

::::::
spring:

::::
ochre,

:::::::
summer:

::::::
yellow,

::::::
autumn:

::::::
purple.

Figure 2.
:::::
RBMB :::::

versus
::::
RB0 ::

for
:::
the

::::::::::
precipitation

::
in

::
the

::::::::
validation

::::::
period.

::
(a)

:::::
QDM,

:::
(b)

:::::::
mQDM,

::
(c)

::::::
MBCn,

:::
(d)

::::::::
MRQNBC,

:::
(e)

:::::
dOTC,

:::
(f)

:::::
R2D2.

:::::
Winter:

::::
blue,

::::::
spring:

:::::
ochre,

:::::::
summer:

:::::
yellow,

:::::::
autumn:

:::::
purple.

:::::
values

:::
are

:::::
often

:::::
higher

:::
for

::::::
higher

::::::::::
percentiles.

::::::::
Although

:::
the

:::::::
methods

:::::::
perform

::::::::
similarly

:::
on

:
a
:::::::
seasonal

:::::
basis,

:::::
small

::::::::::
differences

:::
may

::::::::::
accumulate

:::
on

:
a
::::::
yearly

::::
basis. For example, on a yearly basis, the mean number of heavy precipitation days (R10, one of
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the ETCCDI indices (Zhang et al., 2011)) is well presented by all adjusted simulations (Fig. 3), but the yearly variance clearly

depends on the method: MRQNBC overestimates the variance, whereas the other methods slightly underestimate it.

Figure 3. Box plot of the Annual number of days with precipitation higher than 10 mm (ETCCDI ’Heavy precipitation’ days, see

Zhang et al. (2011)Zhang et al. (2011)) in the validation period. (a) observations, (b) raw simulations, (c) QDM, (d) mQDM, (e) MBCn,

(f) MRQNBC, (g) dOTC, (h) R2D2.

:::
For

:::::::::::
precipitation,

:::
the

::::::
impact

::
of

::::
bias

:::::::::::::
nonstationarity

:::
can

::
be

::::::
clearly

::::
seen

:::
in

:::::::
summer

:::
and

::::::
winter

:::
for

:::
the

::::::
highest

:::::::::::
precipitation475

:::::::::
percentiles.

::::::::
Although

::
a

::::
high

::::::::::
precipitation

:::::
depth

::
is

:::
not

:::
the

::::
main

:::::
driver

::
of

::::::
floods

::
in

:::::::::::
northwestern

::::::
Europe

:::::::::::::::::::
(Berghuijs et al., 2019)

:
,
:
it
:::
can

:::
act

::
as

:
a
:::::::
trigger,

::::::::
especially

:::::
under

::::::
climate

:::::::
change

:::
and

:::
for

:::::
urban

:::::::::
catchments

:::::::::::::::::
(Sharma et al., 2018)

:
.
:::
As

::::
such,

::
it

::
is

::::::::
important

::
to

::::
study

::::
how

:::
the

::::
bias

::::::::::::
nonstationarity

::::::::::
propagates

::::::
towards

::::::::
discharge

::::::::::
assessment.

:

4.3 Temperature

Table 6 displays the PSS values for temperature. It can be seen that the univariate bias-adjusting methods have higher values480

than the multivariate methods for all seasons. Among the multivariate methods , the performance also varies: dOTC performs

best, whereas the performance for the other multivariate bias-adjusting methods depends strongly on the season. However, the

multivariate methods are much more robust between the calibration and validation period : the performance of the univariate

methods is worse in all seasons. Nonetheless, the univariate methods still perform better
::
In

:::::::
general,

:::
the

::::
same

::::::::::
conclusions

::::
can

::
be

::::::
drawn

::
as

:::
for

:::::::::::
precipitation

::::::
(Table

:::
5):

:::::
QDM,

:::::::
mQDM

::::
and

::::::
MBCn

:::::::
perform

::::
best

:::
in

::::
both

:::
the

:::::::::
calibration

::::
and

:::
the

:::::::::
validation485

::::::
period,

::::
with

:::::
R2D2

::::::::::
performing

::::
only

::::::
slightly

::::::
worse

:::
and

:::
all

:::::::
methods

::::::::::
performing

:::::
worse

::
in

:::
the

:::::::::
calibration

:::::::
period.

::::::::
However,

:::
for

::::::::::
temperature,

::::::
dOTC

::::::::
performs

::::::::
relatively

::::
well,

::::
and

:::::::::
MRQNBC

::::::::
performs

:::::
worst

:::
for

:::
all

:::::::
seasons.

:::::::::::
Additionally,

::::::
R2D2

::::::
shows

:::
the

:::::::
sharpest

:::::::
decrease

::
in

:::::::::::
performance

::::::::::
throughout

::
all

:::::::
seasons

:::::
from

:::
the

:::::::::
calibration

::::::
period

::
to

:::
the

:::::::::
validation

::::::
period.

::::
This

::::::::
decrease
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:
is
::::::::
probably

::::::
caused

:::
by

:::
the

:::::::
analogue

::::::::::
resampling,

::::::
which

::::
does

:::
not

::::
fully

:::::::::
reproduce

:::
the

:::::::
original

:::::::
marginal

:::::::::::
distribution,

:::::::
although

::
it

:::::
should

:::::::::::
approximate

:
it.490

Table 6. PSS values for temperature in the calibration (Cal) and validation (Val) periods (%).

Winter Spring Summer Autumn

Cal Cal Val Cal Cal Val Cal Cal Val Cal Cal Val

QDM 97.1 97.5 93.4
:::
91.7 95.8 96.7 86.8

:::
87.9 96.8 97.2 88.7

:::
89.0 96.5 98.0 91.4

:::
91.8

mQDM 99.3 99.1 94.0
:::
92.4 98.8 99.1 87.0

:::
87.8 99.1 99.1 89.8

:::
90.0 98.7 99.4 91.8

:::
91.7

MBCn 52.7 97.5 52.5
:::
91.7 78.6 96.7 77.1

:::
87.9 44.8 97.2 39.2

:::
89.0 77.9 98.0 79.3

:::
91.8

MRQNBC 78.7 78.7 76.6 90.6 90.1 75.3 58.9 58.9 61.7 87.1 87.1 80.7

dOTC 81.6 92.6 82.0
:::
89.1 81.8 90.1 83.0

:::
85.0 79.2 86.6 77.5

:::
82.0 80.3 91.7 83.3

:::
88.9

R2D2 71.7 92.9 69.7
:::
75.6 75.5 93.3 72.2

:::
76.3 63.6 95.0 59.22

:::
75.2 73.4 92.5 73.2

:::
81.0

Although the PDF of the adjusted simulations matches the observed PDF relatively well,
:
a
::::::::::
comparison

:::::::
between

:
the RBMB

and RBO values (Figure 5) show
::
of

:::
the

:::::::::
calibration

::::
(Fig.

::
4)

::::
and

::::::::
validation

:::::
period

:::::
(Fig.

::
5)

:::::
shows

:
some clear differences between

the seasonal bias adjustment:
:
.
::
In

:::
the

::::::::
validation

::::::
period,

:::
all

:::::::
methods

:::::::
perform

:::::
poorly

:
for winter (blue)all methods perform poorly,

whereas for the other seasons, at least some methods are able to adjust the raw simulations. For winter, the R index values are

high for all percentiles, which indicates that nonstationarity could be the
:
is
::::

the
:::::::
probable

:
cause for the poor performance.495

However, this is not clear-cut. When comparing the winter RBMB and RBO values of the validation period with those of the

calibration period (Fig. 4; blue), it can be seen that only QDM(panel (a)) performs much better and that mQDM, MRQNBC

and dOTC (respectively panels (b), (d) and (e)) perform slightly better in the calibration period. The better performance of

these methods is clearest for the lower percentiles (T5, T25 and T50). MBCn (panel (c)) and R2D2 (panel (f)) seem to perform

equally poor in both calibration and validation period
:::
This

::
is

:::::::::
especially

::::
clear

:::
for

::::::
QDM,

:::::::
mQDM

::::
and

::::::
MBCn

::::::
(upper

:::
half

:::
of500

::
the

::::::::
figures).

::::
The

::::::::::
performance

:::
of

::::::::::
MRQNBC,

:::::
dOTC

::::
and

:::::
R2D2

::::::
(lower

::::
half

::
of

::::
the

:::::::
figures),

::
is

::::
poor

:::
in

:::
the

:::::::::
calibration

::::::
period

::
as

::::
well.

::
In
::::

the
:::::::::
calibration

::::::
period,

:::::
some

:::::::::
percentiles

::::
have

::
a
:::::
larger

::::
bias

::::
after

:::
the

::::::::::
adjustment

:::
for

::::
these

:::::
three

:::::::
methods. The poor

performance of these two methods could be caused by the seasonal evaluation: both apply a shuffling algorithm over the full

time period. However, for the other methods, this is harder to explain: QDM, mQDM and MRQNBC all use seasonal time

windows, while dOTC does not. However, for QDMand mQDM, the moving time window used in the adjustment and the fixed505

seasonal window in the evaluation might cause a small mismatch. For MRQNBC, there is also the influence of the monthly

and yearly adjustment. For dOTC, the optimal transport and, hence, stochastic element might be better suited for seasonal

differences than the shuffling used by MBCn and
::::
This

::::::
cannot

::
be

::::::::
observed

:::
for

::::::
QDM,

:::::::
mQDM

:::
and

:::::::
MBCn,

:::::
which

:::::::::
illustrates

:::
that

::::
even

::
a
::::::::
relatively

:::::
small

:::::::::
difference

::
in

::::
PSS

:::::
value

:::::
(92.9

:::
for

:
R2D2 , but still does not seem optimal. Besides, the seasonal

variance is larger for temperature than for precipitation, which increases the susceptibility of the methods to differences in510

seasonal adjustment and evaluation. As a last reason, it should be considered that the RBMB and RBO values always depend on

respectively the original biases and the observations.
::::::
versus

::::
97.5

::
for

:::::::
MBCn)

:::
can

:::::
imply

::
a
:::::
poorer

::::
bias

::::::::::
adjustment.

:::::::::::
Nonetheless,
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::::
even

:::
for

::::
these

::::::::
methods

::::
there

::
is

:
a
:::::

clear
:::::::::
difference

::
in

:::::
visible

::::::
winter

::::::::
markers,

::::::::
indicating

::
a

:::
loss

:::
of

::::::::::
performance

:::::
from

:::::::::
calibration

::
to

::::::::
validation

::::::
period.

:

At first sight, in

Figure 4.
:::::
RBMB :::::

versus
:::
RB0:::

for
::
the

:::::::::
temperature

::::::
indices

:
in
:::
the

::::::::
calibration

:::::
period.

:::
(a)

:::::
QDM,

::
(b)

:::::::
mQDM,

::
(c)

::::::
MBCn,

::
(d)

:::::::::
MRQNBC,

::
(e)

::::::
dOTC,

::
(f)

:::::
R2D2.

::::::
Winter:

::::
blue,

:::::
spring:

:::::
ochre,

:::::::
summer:

:::::
yellow,

:::::::
autumn:

:::::
purple.

515

:::
For spring (ochre), most methods, with the exception of MBCn (panel (c)) and MRQNBC (panel (d)), seem to perform

relatively well. However, when comparing the biases of the validation period with those of the
::
the

:::::::::::
performance

::::
also

::::::::
decreases

::::
from

:::::::::
calibration

::
to

::::::::
validation

::::::
period,

::::::::
although

:::
not

::
as

::::::::::
extensively

::
as

:::
for

::::::
winter.

:::
For

::::::
spring,

:::
T5,

::::
T25,

:::
T50::::

and
:::
T75::

all
:::::
have

:::::
larger

:::::
biases

::::
after

:::::::::
adjustment

::::
than

::::::
before

::::::::::
adjustment.

::
In

::::::::
contrast,

::
in

:::
the calibration period, the adjustment of T5 by QDM, mQDM,

MRQNBC and dOTC (respectively panels (a), (b), (d) and (
::
in

::::::
spring

:::::
stands

:::
out

:::
as

::::
best

:::::::
adjusted

:::::::::
percentile

:::
for

::
all

::::::::
methods520

::::::
(except

::::::
dOTC,

:::
see

::::
panel

::
(e))is clearly poorer, whereas the highest percentiles (T99 and T99.5) perform similar to the calibration

period or better. For MBCn and R2D2, the performance is similarly. .
:

The poor performance
::
for

:::::
these

:::::
lower

::
T
::::::::::

percentiles

corresponds to the high R index value for T5::::
(i.e.,

::
2)

:::
for

:::
all

::
of

::::
these

::::::::::
percentiles

:::
for

:::::
spring. For summer, this is also observed,

although to a smaller extent: only QDM and mQDM were able to properly adjust T5 in the calibration period. In general, QDM,

MRQNBC and dOTC all perform slightly worse in the validation period in comparison with the calibration period for summer.525

mQDM performs similarly, whereas MBCn and R 2D2 perform poorly in both periods. In
::::
(with

::
R

:::::
index

:::::
value

::
2)

:::::
seems

::
to

:::
be

:::::::
affected.

:::
For

:
autumn, the performance is poor for all methods

:::::::
generally

:::::
worse

:
in the validation period . However, except for

QDM, the performance is poor
:::
than

:
in the calibration periodas well, and, hence,

::::
with

:::::
some

:::::::::
percentiles

::::::
having

::
a

:::::
larger

::::
bias

::::
after

:::::::::
adjustment.

:::::::::
However,

::::::
because

:::
of

:::
the

::::::
limited

:::::::::::::
nonstationarity, conclusions are hard

:::::
harder

:
to draw. However, based on the

R index values, which indicate limited nonstationarity, it could be assumed that the influence of the seasonality is larger than530
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Figure 5.
:::::
RBMB :::::

versus
:::
RB0:::

for
::
the

:::::::::
temperature

::::::
indices

::
in

::
the

::::::::
validation

:::::
period.

:::
(a)

:::::
QDM,

::
(b)

:::::::
mQDM,

::
(c)

::::::
MBCn,

::
(d)

:::::::::
MRQNBC,

::
(e)

::::::
dOTC,

::
(f)

:::::
R2D2.

::::::
Winter:

::::
blue,

:::::
spring:

:::::
ochre,

:::::::
summer:

:::::
yellow,

:::::::
autumn:

::::::
purple..

that of the nonstationarity
::::::::::
Nonetheless,

::
it
::::::
seems

:::
that

:::
the

::::::::::
percentiles

::::
with

:
a
:::::
high

::
R

:::::
index

::::
have

:::
the

:::::
worst

:::::::::::
performance.

:::
As

:::
an

:::::::
example,

:::
the

::::::
RBMB ::

for
::::
T95::

(R
:::::
index

::
2)

::
is
::::::
higher

::::
than

:
3
:::
for

:::
all

:::::::
methods.

Based on the results for winter and the lowest percentiles in spring and summer, it seems that the lower temperature values

are more susceptible nonstationarity. This should certainly be accounted for when estimating extremes such as cold spells.

::::::::
However,

:::
the

::::::
impact

:::
on

::::::::
discharge

::
is

::::::::
expected

::
to

:::
be

::::::
limited.

:::
A

:::::::
possible

::::::
impact

::
of

::::::::::
temperature

::::::
could

::
be

:::
the

::::::::
generally

:::::
high535

::::
rank

:::::::::
correlation

::::
with

:::::::::::
evaporation.

:::
As

:::
the

::::
rank

:::::::::
correlation

::
is
:::::::::
important

::
in

:::
the

::::::::::
multivariate

::::::::
methods,

:::
the

::::
bias

::
in
:::::::::::

temperature

::::
could

::::
thus

:::::::::
propagate

::
to

:::::::::
discharge.

::::::::
However,

:::
the

::::
bias

:::::::::::::
nonstationarity

:::
and

:::
its

::::::
impact

::
is

::::::
mostly

::::::
present

:::
for

::::::
lower

::::::::::
temperature

:::::::::
percentiles,

::::::
which

:::
are

::::::::
correlated

::::
with

:::::
lower

::::::::::
evaporation

::::::::::
percentiles.

:::
As

::::
such,

:::
the

:::::
poor

:::::::::
adjustment

::
of

::::::::::
temperature

::::::
biases

::::
seen

:::
here

::::
will

::::
have

::
a

::::::
limited

::::::
impact

::
on

:::
the

:::::::::
discharge.

RBMB versus RB0 for the temperature indices in the validation period. (a) QDM, (b) mQDM, (c) MBCn, (d) MRQNBC, (e)540

dOTC, (f) R2D2. Winter: blue, spring: ochre, summer: yellow, autumn: purple..

RBMB versus RB0 for the temperature indices in the calibration period. (a) QDM, (b) mQDM, (c) MBCn, (d) MRQNBC, (e)

dOTC, (f) R2D2. Winter: blue, spring: ochre, summer: yellow, autumn: purple.

4.4 Potential evaporation

The PSS values for potential evaporation (Table 7) show that the univariate bias-adjusting methods perform better than the545

multivariate bias-adjusting methods, when considering the full PDF. Similarly to
::
are

::::::
similar

::
to
:::::
those

:::
for temperature (Table 6)

the skill scores differ among the multivariate methods
::
and

:::::::::::
precipitation

::::::
(Table

::
5):

::::::
QDM,

:::::::
mQDM,

::::::
MBCn

:::
and

:::::
R2D2

:::
all

:::::::
perform
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::::
very

::::
well,

:::
but

:::::::
perform

:::::
worse

::
in
:::
the

:::::::::
validation

::::::
period

:::
than

:::
in

:::
the

:::::::::
calibration

:::::
period. However, in contrast to

:::
with

:::::::::::
precipitation

:::
and

:::::::::
especially temperature, dOTC performs much worse for potential evaporation; MRQNBC performs best. Similarly to

temperature, MBCn and R2D2 vary depending on the season. In comparison with the
:::::
poorly

::
in

:::
the

:::::::::
calibration

::::::
period.

::::::
Given550

::
the

:::::
poor

::::::::::
performance

::
in

:::
the calibration period, the univariate methods perform worse in

::::::
results

::
for

:
the validation period in every

season, whereas this varies for the multivariate methods: only in spring and summer, all multivariate methodsperform worse.

For spring, the difference is large, which could be related to the clear nonstationarity for this
::
for

:::::
dOTC

:::
are

:::
less

:::::::::::
interpretable

::::
than

::::
those

:::
for

:::::
other

::::::::
variables.

:::::::::
MRQNBC

::
is

::
in

:::::::
between

:::::
dOTC

::::
and

:::
the

::::
other

::::::::
methods,

::::
with

:::
the

::::
PSS

:::::
values

:::::::::
depending

::::::
heavily

:::
on

:::
the

season. For
:::::
spring

:::
and summer, the R index values are generally lower, which indicates less nonstationarity, but the difference555

in PSS between
::::::
change

:::::::
between

:::
the

:
calibration and validation period is also smaller. The large difference for springbetween

both periods is striking, as this was not as apparent for winter temperatures, despite the high R index values. This could be

explained by the R
:::::
larger

::::
than

:::::::
changes

:::
for

:::::::::::
precipitation

::
or

:::::::::::
temperature,

::
at

::::
least

:::
for

:::
the

::::
four

::::::::::::::
well-performing

:::::::
methods.

:::
As

:::
an

:::::::
example,

:::
for

::::::
spring,

:::
the

::::
PSS

:::::
value

:::::::
changes

:::
for

:::::
QDM

:::::
from

::::
99.2

::
to

:::::
83.4,

:::::
while

:::
for

:::::::
summer

:::
this

::::::
change

::
is
:::::
from

::::
98.7

::
to

:::::
85.5.

:::::::
Whereas

:::
the

::
R
:
index values for the mean and standard deviation: for potential evaporation in spring , only the bias in the560

mean changed a lot, whereas for temperature in winter, both the biases in mean and standard deviation changed a lot. The

combination of these bias changes could offset each other in the calculation of the PSS.
:::::
spring

::::::::::
evaporation

:::
are

::::::::
generally

:::::
high,

::::
with

::::
only

:
a
::::
few

::::::
below

::
1,

:::::
those

::
for

:::::::
summer

:::
are

::::
less

:::::::
extreme.

:

Table 7. PSS values for evaporation in the calibration (Cal) and validation (Val) periods (%).

Winter Spring Summer Autumn

Cal Cal Val Cal Cal Val Cal Cal Val Cal Cal Val

QDM 94.8 99.6 86.1
:::
91.4 93.3 99.2 82.5

:::
83.4 97.3 98.7 88.6

:::
85.5 94.1 99.0 91.0

:::
92.1

mQDM 100.0 100.0 90.5
:::
91.1 100.0 100.0 83.4

:::
82.7 100.0 100.0 87.7

:::
87.0 100.0 100.0 92.4

:::
92.5

MBCn 48.5 99.6 52.0
:::
91.4 78.6 99.2 70.8

:::
83.4 52.7 98.7 48.4

:::
85.5 79.5 99.0 83.6

:::
92.1

MRQNBC 89.1 89.1 84.5 91.4 91.4 74.1 80.2 80.2 78.0 85.1 85.1 88.6

dOTC 58.7 60.0 52.4
:::
52.3 67.4 69.5 57.5

:::
54.0 63.9 66.0 56.0

:::
46.8 60.5 65.0 57.0

:::
64.2

R2D2 80.4 96.4 79.3
:::
83.1 69.1 96.0 59.5

:::
71.0 66.5 95.3 63.9

:::
72.0 78.6 95.2 76.5

:::
76.3

The RBMB and RBO results for potential evaporation in the validation period are displayed in Figure 7.
:::
Figs

::
6
:::
and

::
7.
::::

We

:::
will

:::::
focus

::::
here

:::
on

:::::
QDM,

::::::::
mQDM,

::::::
MBCn

:::
and

::::::
R2D2,

::
as

:::
the

::::
PSS

::::::
results

:::
for

:::
the

:::::::::
calibration

::::::
period

::::::
indicate

::
a
::::::::
generally

::::::
poorer565

::::::::::
performance

:::
for

:::::::::
MRQNBC

::::
and

::::::
dOTC. For every season, all methods perform rather poorly , although there are differences

between the method’s performances and in the extent of nonstationarity
::
in

:::
the

::::::::
validation

::::::
period

:::
and

:::::
worse

::::
than

::
in

:::
the

:::::::::
calibration

::::::
period,

::::
with

:::::
QDM,

::::::::
mQDM,

::::::
MBCN

:::
and

::::::
R2D2

:::::::::
performing

::::::::
similarly. Based on the R index values and Table 7, it would seem

that spring is most influenced by bias nonstationarity, as many percentiles have an R index value higher than 1 and the PSS val-

ues differ considerably for spring. Figure 7 shows that only E5 (for QDM, mQDM,
::::::
MBCn, MRQNBC and R2D2, respectively570

panels (a), (b), (d) and (f)), E99 (for mQDM and MBCn ,
:::::
QDM,

:::::::
mQDM,

::::::
MBCn

::::
and

:::::
R2D2,

::::::::::
respectively panels (

::
a),

:
(b) and (cf))

and E99.5 (for
:::::
QDM, mQDM and MBCn, panels (

:::
a),

:
(b) and (c)) have RBMB and RBO values lower than 1. Except for E99.5,
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this corresponds to the percentiles that have an R index value lower than 1. For mQDM and MBCn, it cannot be ruled out that

the good performance for E99.5 is by accident. However, bias nonstationarity alone does not explain the poor performance:

when comparing the biases in the calibration (Fig. 6) and validation periods, it can be seen that, except formQDM, all methods575

perform poorly in the calibration period. For MBCn, dOTC and R2D2, which perform the worst in the calibration period,

this could be related to the absence of a seasonal component, whereas this is less clear for QDM, mQDM and MRQNBC, as

discussed in Section 4.3. Nonetheless, the latter three methods are all able toadjust
:::::::
However,

:::
the

::::::
RBMB :::

and
::::
RBO::::::

values
::
for

:
E25

and E50, two percentiles that cannot be adjusted by any method in the validation period.

In the other seasons, the methods behave similarly to spring: most of the multivariate methods perform as poorly in the580

calibration period as in the validation period (except MRQNBC, to some extent). The poor
:::99.5:::

are
:::::
close

::
to

::
1
:::
for

:::
the

:::::
three

:::::::
methods

:::::::::
mentioned

::::
here.

::::
The

:
performance of the multivariate methods in the calibration period indicates that the absence of

a seasonal component might have a large impact, as was also discussed in Section 4.3. This is confirmed by the results for

the full year (not shown), which show that all methods perform well in the calibration period
:::
bias

:::::::::
adjustment

:::::::
methods

:::
for

::::
this

::::::::
percentile

:::
can

::::
thus

:::
not

:::::::::
considered

::
to

:::
be

:::::
good,

:::
but

::
at

:::
the

::::
least

:
it
::
is
:::
not

:::::
worse

::::
than

:::
the

::::
raw

::::::
climate

::::::::::
simulations.585

Despite the poor performance of some methods in the calibration period, even for these

Figure 6.
:::::
RBMB :::::

versus
:::
RB0:::

for
::
the

:::::::
potential

:::::::::
evaporation

::::::
indices

:
in
:::
the

::::::::
calibration

::::::
period.

::
(a)

:::::
QDM,

:::
(b)

::::::
mQDM,

:::
(c)

:::::
MBCn,

:::
(d)

:::::::::
MRQNBC,

::
(e)

:::::
dOTC,

:::
(f)

:::::
Winter:

::::
blue,

::::::
spring:

:::::
ochre,

:::::::
summer:

:::::
yellow,

:::::::
autumn:

:::::
purple.

:::
For

:::
the

::::
other

:
seasons some differences between the calibration and validation period are worth discussing

::
as

:::
well. In winter

(blue), where nonstationarity mostly affected the standard deviation, the performance of all methods for all indices is slightly

worse in comparison with the calibration period. Only the lower percentiles (E5 and
:
E25) can be adjusted well by almost

every method,
::::::::

although
::::
this

::::::
cannot

::
be

::::
seen

::
in
:::

the
::::

plot
:::
for

:::
E5::

as
::::
this

:::::::::
percentiles

::::::::::
corresponds

::::
with

::
a
:::::::
potential

::::::::::
evaporation

:::
of590
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Figure 7.
:::::
RBMB :::::

versus
:::
RB0:::

for
:::
the

::::::
potential

:::::::::
evaporation

::::::
indices

::
in

::
the

::::::::
validation

:::::
period.

:::
(a)

:::::
QDM,

:::
(b)

::::::
mQDM,

:::
(c)

:::::
MBCn,

:::
(d)

:::::::::
MRQNBC,

::
(e)

:::::
dOTC,

:::
(f)

:::::
R2D2.

::::::
Winter:

::::
blue,

:::::
spring:

:::::
ochre,

:::::::
summer:

:::::
yellow,

:::::::
autumn:

:::::
purple.

:
0
::::
mm

::
in

::::::
winter. In summer (yellow), where the R

:
index values indicated some nonstationarity for the lower E percentiles,

the performance is poorer in the validation period for all percentilesexcept
::::
most

::::::::::
percentiles,

::::
with

::::
only E99 and E99.5 (and E90

for
:::::
clearly

::::::::::
performing

::::
well

:::
for

:::
all

:::::::
methods

::::::
(except

:
dOTC). However, the impact seems to be smaller for MBCn, dOTC and

R2D2. In autumn (purple), the R index values indicated the largest impact on the standard deviation. As in winter, the best

performance is obtained for the lowest percentiles and , for the univariate methods, for the
::
for

:::
the highest percentiles (E99 and595

E99.5). Despite the seemingly larger impact on the univariate methods in these three seasons, their adjustment is still better than

the adjustment by the multivariate methods.

The results for potential evaporation have to be considered in comparison to the effective bias values for the original simu-

lations and the adjusted simulations: the original biases were relatively small (not shown). Hence, even a small change in bias

will have a large impact. Nonetheless, even these small changes and relatively small biases have an impact, which
:::
This

:
is re-600

flected by the RBO values. On the other hand, when considering the PSS values, which reflect the full PDF instead of focusing

on the extremes, the impact is limited, although this depends on the method and season, as was shown for spring
:::::
These

:::
are

::::
high,

:::::
which

::::::::
indicates

::::
that

::
the

::::
bias

:::::::::
adjustment

::
is
::::::
limited

:::::::
relative

::
to

:::
the

:::::::::::
observations.

:::::::::::
Nonetheless,

:::
the

:::
bias

::::
and

:::::
failure

::
to
::::::
adjust

::
the

::::
bias

:::::
could

::::
have

:::
an

:::::
impact

:::
on

::::::::
discharge

::::::
biases.

::::::::::
Evaporation

::
is

::
an

:::::
input

::
for

:::
the

::::::
model

::::
used

::
in

:::
this

:::::
paper

:::
and

::::
has

::
an

::::::::
influence

::
on

::::
soil

:::::::
moisture

:::::::
storage.

:::
As

::::
soil

:::::::
moisture

::
is
::

a
:::::
major

::::::
driver

:::
for

:::::
floods

:::
in

:::::::::::
northwestern

::::::
Europe

:::::::::::::::::::
(Berghuijs et al., 2019)

:
,
::
it

::
is605

::::::::
important

::
to

:::::::::
understand

::::
how

::::::::::
evaporation

:::::
biases

:::::::::
propagate

::
to

:::
the

::::::
impact

:::::
model.

RBMB versus RB0 for the potential evaporation indices in the validation period. (a) QDM, (b) mQDM, (c) MBCn, (d)

MRQNBC, (e) dOTC, (f) R2D2. Winter: blue, spring: ochre, summer: yellow, autumn: purple.
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RBMB versus RB0 for the potential evaporation indices in the calibration period. (a) QDM, (b) mQDM, (c) MBCn, (d)

MRQNBC, (e) dOTC, (f) Winter: blue, spring: ochre, summer: yellow, autumn: purple.610

4.5 Correlation

For correlation (Fig. 8), all methods perform relatively well in the validation period. Both the univariate and the multivariate

bias-adjusting methods can adjust the simulated biases well. The univariate methods will adopt the dependence structure of

:::::
either the raw simulations

::::::
(QDM)

::
or

:::
the

:::::::::::
observations

::::::::
(mQDM), whereas the multivariate methods are specifically designed to

adjust the dependence structure, and both strategies seem to work well.
::::::::
Although

:::
the

::::::::::
multivariate

:::::::
methods

:::::
could

::::
not

::::::
always615

::
be

:::::
easily

:::::::::
calibrated

:::
for

:::
the

::::::::
variables

:::::
under

:::::
study,

:::::
these

::::::
results

:::::::
indicate

::::
that

::::
they

:::::::
perform

::::
well

:::
for

:::
the

::::::::::
correlation,

::::::
which

::
is

::::
their

::::
main

::::::::
purpose. However, it should be noted that some of the biases in correlation are very small in the raw simulations

(not shown) and that for those correlations, the good adjustment by univariate methods is trivial: they
:::::
results

:::
for

::::::
QDM

:::
are

:::::
trivial:

::::
this

::::::
method

:
will adopt the correlation of the simulationsand only slightly adjust this by adjusting the marginals. This is

linked with an issue raised by Zscheischler et al. (2019): in situations with low biases in the correlation, the univariate methods620

will almost always outperform the multivariate bias-adjusting methods, as specifically adjusting the dependence structure

sometimes results in an increase of the bias.

Figure 8.
:::::
RBMB :::::

versus
:::
RB0:::

for
::
the

:::::::::
correlation

:::::
indices

::
in

:::
the

:::::::
validation

::::::
period.

::
(a)

:::::
QDM,

:::
(b)

::::::
mQDM,

:::
(c)

::::::
MBCn,

::
(d)

:::::::::
MRQNBC,

::
(e)

::::::
dOTC,

::
(f)

:::::
R2D2.

::::::
Winter:

::::
blue,

:::::
spring:

:::::
ochre,

:::::::
summer:

:::::
yellow,

:::::::
autumn:

:::::
purple.

The good performance for the validation period indicates that the impact of nonstationarity is limited, as was also shown by

the small R
:
index values (Section 4.1). This is confirmed by the biases in the calibration period (not shown), which are similar

to those in the validation period. However, for some values, the R index value was higher than 1, thus it is important to know625
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what caused this. For corrE,T in summer, the difference between the validation and calibration period is negligible
::
are

::::::
limited,

although only for QDM
:::::
dOTC

:
this value is well adjusted in both periods. However, the bias for the original simulations is

lower than 0.10% in both the calibration and validation period, and switches in sign, which inflates the R index value. For

crosscorrE,T,0 and crosscorrE,T,1, the same effect occurs. Besides, it seems that the bias of these three correlations is too small

to be corrected by any method and that trying to adjust this automatically inflates the results. As discussed earlier, this shows630

that while the R index can be a valuable tool for some variables, it does not always tell the full story.

RBMB versus RB0 for the correlation indices in the validation period. (a) QDM, (b) mQDM, (c) MBCn, (d) MRQNBC,

(e) dOTC, (f) R2D2. Winter: blue, spring: ochre, summer: yellow, autumn: purple.
:::
The

::::::::
generally

:::::
good

::::::
results

::
for

::::::::::
correlation

::::::
indicate

::::
that

:::
the

::::::
biases

::
in

:::
the

::::::::
variables,

::::
and

::::::::
especially

:::::
those

:::::::
induced

:::
by

:::::::::::::
nonstationarity,

::::
will

::::::::
generally

:::
not

::::::::
propagate

:::
to

:::
the

::::::::
discharge

::
by

::::::
biases

::
in

:::
the

::::::::::
correlation.

::
If

:::
the

:::::::::
correlation

:::::
would

:::
be

::::::
biased,

:::::
there

:::::
would

:::
be

:::::::
multiple

::::::::
pathways

:::
for

:::::::::::
propagation:635

:::::
either

:::
the

:::::::
marginal

:::::::::::
distributions

::::::::::
themselves

::::
(e.g.,

::::
the

:::::
biased

:::::
large

:::::::
summer

:::::::::::
precipitation

::::::
depth)

::
or

::
a
::::::::
mismatch

::::::::
between

:::
the

:::::::
variables

:::::
(e.g.,

:
a
::::
high

:::::::::::
precipitation

:::::
depth

::
in

::::::::::
combination

::::
with

:::
an

::::::::::::
unrealistically

::::
high

:::::::::::
evaporation).

4.6 Precipitation occurrence

Figure 9 shows that the bias-adjusting methods are able to adjust the precipitation occurrence well in most seasons. Especially

the univariate bias-adjusting methods perform well. Although the multivariate bias-adjustment always results in at least one640

index that is better than the raw climate simulations (except for MRQNBC in spring: panel (d), ochre) , most indices are

not, or only slightly better than the raw climate simulations.This is a disadvantage inherent to the current generation of

multivariate bias-adjusting methods : as discussed in Section 3.3, the dependence adjustment will always influence the temporal

structure (François et al., 2020; Vrac and Thao, 2020b). Nonetheless, on a seasonal level, the temporal structure is sometimes

remarkably well adjusted, such as in summer (yellow) and autumn (purple).645

The R
:::
are

::::
able

::
to

:::::
adjust

:::
the

:::::::::::
precipitation

:::::::::
occurrence

:::::
well

::
in

::::
most

::::::::
seasons.

:::
The

::
R
:
index values indicated that there might

be some nonstationarity in spring and autumn (Section 4.1): the value for Plag1 is
:
2, and for the other indices the values are

clearly higher than those in winter and summer. In contrast to other situations of bias nonstationarity, this does not result in a

poorer, but actually a
::::::
results

::
in

:
a better performance for these two seasons (calibration period not shown). Winter and summer,

for which no nonstationarity could be detected, perform similarly in both the calibration and validation period. However, in all650

seasons mQDM (panel
:

(b)) performs worse in the validation than in the calibration period. As this method uses the observed

structure, the temporal structure is by construction perfect in the calibration period. The poorer result in the validation period

might imply that using the observed temporal structure does not suffice for future impacts, which might be important when

using delta methods for impact assessment.

When comparing the methods, some differences related to their structure can be noticed. In general, QDM (panel
:
(a)in655

Fig. 9) has the best performance of all methods for the occurrence, indicating once more the impact of the shuffling and similar

algorithms of the multivariate bias-adjusting methods. Only in autumn (purple), MRQNBC (panel(d,
:::::::
mQDM

::::::
(panel

::
(b)) and

R2D2 (panel
:::::
R2D2

:::::
(panel

:
(f)) perform as well as QDM. However, mQDM (panel (b) also performs well in all seasons, despite

the poorer fit. There are also differences among the different multivariate bias-adjusting methods. In all seasons,
:::
best.

::::::
These
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Figure 9.
:::::
RBMB ::::

versus
::::
RB0::

for
:::
the

:::::::::
precipitation

:::::::::
occurrence

:::::
indices

::
in

::
the

::::::::
validation

:::::
period.

:::
(a)

:::::
QDM,

::
(b)

:::::::
mQDM,

::
(c)

::::::
MBCn,

::
(d)

:::::::::
MRQNBC,

::
(e)

:::::
dOTC,

:::
(f)

:::::
R2D2.

::::::
Winter:

::::
blue,

:::::
spring:

:::::
ochre,

:::::::
summer:

:::::
yellow,

:::::::
autumn:

:::::
purple.

::::
three

:::::::
methods

:::
all

::::
have

:::
the

:::::
same

::::
basic

:::::::::
structure,

:::
but

:::
this

::::
does

:::
not

:::::::
explain

::
all

::::::::::
differences

::::
with

:::
the

::::
other

::::::::
methods.

:::::
Both MBCn660

(panel
:
(c)) and R2D2 (panel (f)) are able to reduce the bias of the number of dry days, whereas this varies for MRQNBC

and dOTC (panel (e))
::::
R2D2

:::
are

::::::::::::::::::
marginal/dependence

::::::::::
multivariate

::::::::::::
bias-adjusting

::::::::
methods,

:::
but

::::::
R2D2

::::::
clearly

::::::::
performs

:::::
better

:::
than

::::::
MBCn

:::
for

:::::::::
dry-to-dry

::::::::
transition

:::::::::
probability.

:::::::::
However,

::
the

::::::::
methods

::
to

:::::
adjust

:::
the

::::::::::
dependence

:::::
differ:

::
a

:::::::::
rank-based

::::::
shuffle

::
in

:::::
MBCn

::::::
versus

:::
an

:::::::::::::
analogue-based

::::::
shuffle

::
in

:::::
R2D2.

::
It
::::::
seems

::::
here

:::
that

:::
the

:::::::::::::
analogue-based

::::::
shuffle

::::::::
performs

:::::
better

:::
for

::::::::
temporal

::::::::
properties.

:::
As

::
a

:::::
better

:::::::
temporal

::::::::::
adjustment

:::
was

::::
one

::
of

:::
the

::::
goals

:::
of

::
the

:::::::::::::
analogue-based

::::::
shuffle

::::::::::::::::::::
(Vrac and Thao, 2020b)

:
,
:::
this

::
is665

::
no

:::::::
surprise. The good performance for this index for MBCn and R2D2 is based on the use of thresholding and QDM for the

marginal adjustment: these methods are able to perfectly adjust the number of dry days, and any remaining bias can be related

to the combination of temporal shuffling and seasonal evaluation. However, dOTC adjusts Plag1 and PP10 wellin every season.

This implies that it is able to differentiate in the adjustment between zero and non-zero values, whereas longer series of zeros

are harder to adjust . The incorrect series of zeros is probably also
::
of

:::::::
mQDM

::::::
implies

:::
that

::::::::
applying

:::
the

:::::::
temporal

::::::::
structure

::
of

:::
the670

::::::::::
observations

::
in

::::::
general

::::
still

:::::
works

:::
for

:::
the

:::::::
‘future’

::::::
setting

:::::::::
considered

::::
here.

::::::::
However,

::::
care

::::::
should

::
be

:::::
taken

:::::
when

:::::::
applying

:::::
delta

::::::
change

:::::::
methods

::
on

:::::::
settings

::::
that

:::
are

::::
more

:::::::::
influenced

:::
by

::::::
climate

:::::::
change,

::
as

:::::::::
illustrated

::
by

:::
the

::::
poor

:::::::::::
performance

::
of

::::::::::
MRQNBC.

::::
This

::::::
method

:::::
takes

:::::::
temporal

:::::::
aspects

::
on

:::::::
different

::::
time

:::::
steps

::::
into

::::::
account

::::
and

:
it
::::::
seems

:::
that

::::
this

:::::
causes

:::
too

:::::
much

:::::::
reliance

:::
on

:::
the

:::::::::::
observations.

:::::
Lastly,

::::::
dOTC

:::
also

::::::::
performs

::::::::
relatively

::::
well,

:::
but

::
is

:::
not

::::
able

::
to

:::::::
correctly

::::::
adjust

::
the

:::::::::
dry-to-dry

::::::::
transition

::::::::::
probability.

::::
This

::::
poor

:::::::::
adjustment

::
is

::::::::
probably linked with one of the deficiencies of dOTC: it sometimes creates nonphysical precipitation675

values, which have to be corrected by thresholding.
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RBMB versus RB0 for the precipitation occurrence indices in the validation period. (a) QDM, (b) mQDM, (c) MBCn, (d)

MRQNBC, (e) dOTC, (f) R2D2. Winter: blue, spring: ochre, summer: yellow, autumn: purple.
::::::::
Although

:
a
::::
poor

::::::::::
adjustment

::
of

:::::::
temporal

:::::::::
properties

:::::
might

::::
lead

::
to

::::::::
discharge

:::::
biases

:::
by

::::::::
increased

::
or

:::::::::
decreased

::::::::::
precipitation

::::
over

:::
an

::::::
amount

:::
of

::::
time,

:::
the

::::::
biases

::
are

::::::::
adjusted

::::::::
relatively

::::
well

::
in

::::
this

:::::
study.

:::::
Only

:::::
some

::
of

:::
the

::::::::::
multivariate

::::::::
methods

:::::
adjust

:::
the

:::::::::
dry-to-dry

::::::::
transition

::::::::::
probability680

::::::
poorly,

:::
but,

::
in

::::::::::
comparison

::::
with

:::::
biases

::
in
:::
the

:::::::::
variables,

:::
the

:::::
impact

::
is
::::::::
probably

:::::::
limited.

4.7 Discharge

The Perkins Skill Score values for discharge (Table 8) show that the univariate bias-adjusting methods generally perform best,

whereas the performance of the multivariate bias-adjusting methods depends on the season. However, all methods perform

poorly for spring. The PSS values for evaporation clearly show the impact of nonstationarity, which
:::::::::
application

::
of

:::
an

::::::
impact685

:::::
model

::::::
heavily

::::::
affects

:::
the

:::::
biases

::::
and

:::
that

:::
the

::::::
impact

::
of

:::
bias

:::::::::::::
nonstationarity

:::
can

::
be

::::::::::
propagated

::
by

:::
the

::::::
impact

::::::
model.

:::
The

:::::::
general

:::::
trends

:::
that

:::::
were

::::::
present

:::
for

:::
the

:::::::
marginal

:::::::
aspects

::::::
(Tables

::::
5–7)

:::
can

:::
no

::::::
longer

::
be

::::::::::::
distinguished.

::
In

:::::::
general,

:::
the

::::::::::
performance

::::
still

::::::::
decreases

:::::::
between

:::
the

:::::::::
calibration

:::
and

::::::::
validation

::::::
period,

:::
but

:::
for

::::
both

::::::
winter

:::
and

:::::::
autumn,

:::::
dOTC

::::
and

:::::
R2D2

:::::::
perform

:::::
better

::
in

:::
the

::::::::
validation

::::::
period

::::
than

::
in

:::
the

:::::::::
calibration

::::::
period.

::::::::::::
Unexpectedly,

:::::::::
MRQNBC

::::::::
performs

::::
best

::
in

::::::
winter

:::
and

::::::::
summer,

:::
but

::::::::
performs

::::
worst

:::
in

:::::
spring

::::
and

:::::::
autumn.

::::::::
However,

:::::
given

::
all

:::::::
seasons,

::::::
QDM

:::
and

:::::::
mQDM

:::::::
perform

::::
best,

::::
with

::::::
MBCn

::::
and

:::::
R2D2

::::::::::
performing690

::::
only

::::::
slightly

::::::
worse.

:::
The

::::::
impact

:::
of

:::
bias

:::::::::::::
nonstationarity seems to be propagating to the discharge PDF. This is illustrated when

comparing with the PSS values for the calibration period: only in spring, all methods perform worse
:::
the

:::::
largest

:::
in

::::::
spring.

:::
All

:::::::
methods

:::::::
perform

::::::
poorly in the validation periodthan in the calibration period. For the other seasons, the impact ismuch more

mixed,
:::

the
::::::

largest
::::
PSS

:::::
value

::
is

::::
only

:::::
65%.

::
In

::::::
spring,

::::::::::
evaporation

::::
was

::::
most

:::::::
affected

:::
by

:::
bias

:::::::::::::
nonstationarity,

::::
and

:::
this

::::::
seems

::
to

::
be

::::::::::
propagating

::
to

:::
the

::::::::
discharge

:::::
PDF.

:::
The

::::::::
decrease

::
in

:::
PSS

:::::
value

::
is

:::
15

::
to

::::
20%,

:::::::::
depending

:::
on

:::
the

::::::
method.695

Table 8. PSS values for discharge in the calibration (Cal) and validation (Val) periods (%).

Winter Spring Summer Autumn

Cal Cal Val Cal Cal Val Cal Cal Val Cal Cal Val

QDM 85.9 90.0 90.0
:::
87.5 87.4 88.6 67.0

:::
63.0 90.8 90.9 81.5

:::
80.0 92.4 94.3 86.6

:::
88.2

mQDM 99.6 1 85.3
:::
86.0 100.0 100.0 60.8

:::
65.0 100.0 100.0 76.8

:::
78.2 100.0 100.0 86.2

:::
85.9

MBCn 49.5 85.1 50.7
::
80 87.4 89.6 51.0

:::
58.4 41.8 84.6 64.3

:::
71.9 74.3 87.6 80.0

:::
88.4

MRQNBC 92.2 92.1 86.4
:::
85.2 67.3 66.6 38.6

:::
38.0 89.1 92.0 85.1

:::
88.4 57.7 69.7 49.8

:::
57.8

dOTC 70.0 81.9 85.4
:::
90.9 48.2 78.1 25.0

:::
46.7 42.3 78.9 58.3

:::
86.1 68.5 77.1 72.4

:::
77.7

R2D2 75.0 89.7 78.0
:::
90.9 73.1 82.5 42.8

:::
58.1 43.2 86.5 40.0

:::
71.2 69.3 83.9 63.8

:::
88.1

The
:::
RBO::::

and
:::::
RBMB::::::

values
:::
are

:::::
shown

::
in
::::
Fig.

:::
10

:::
and

::::
Fig.

:::
11,

::::::::::
respectively.

::::
The impact on the PDF for spring discharge does

not clearly appear when comparing the RBMB and RB0 :
is
:::
not

::::::
clearly

:::::
seen

:::::
when

:::::::::
comparing

::::
these

:
values: for all methods and

seasons, the bias adjustment seems to result in an agreeable representation of the discharge in the validation period(Fig. 11).

However, when comparing these results .
::::
Yet,

::::
even

::
a
:::::
small

::::
shift

:::
can

:::::
result

::
in
::

a
::::::
poorer

:::::::::::
performance,

::
as

::::::::
indicated

:::
by

:::
the

::::
PSS

::::::
values.700
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::::::
Clearer

::::::::
decreases

::
in

:::::::::::
performance

:::
can

::
be

:::::
found

:::
for

:::::::
summer

:::
and

::::::
winter.

:::::
When

:::::::::
comparing

:::
the

::::::
results

:::
for

:::
the

::::::::
validation

::::::
period

with the residual biases in the calibration period (Fig. 10), it becomes clear that the results for winter and summer are much

worse in the validation period. This corresponds with the poor performance for precipitation adjustment in these seasons, which

was probably linked with bias nonstationarity.

The bias-adjusting methods seem to respond similarly to the nonstationarity. In winter(blue), QDM (panel (a)) performs705

slightly better, whereas in summer (yellow), R2D2 (panel (f)) performs relatively good. In spring (ochre), the methods also

perform similarly, although QDM performs slightly better for
:::
For

::::::
winter,

::::
the

::::
RBO::::

and
:::::
RBMB::::::

values
:::
are

::::::::
generally

::::::
lower

::
for

:::
all

::::::::
methods.

::::::::
However,

::::
only

:::
for

:::
the

::::::
highest

::::::::
discharge

:::::::::
percentiles

:
(Q99 and dOTC (panel (e) ) performs worse than theother

methods. As such, whether or not the methods take seasonality explicitly into account does not seem to matter for the impact on

discharge . This also follows from the structure of the hydrological model: precipitation is a more important driver than potential710

evaporation. Seasonality in the bias adjustment had a larger impact on potential evaporation, but this impact disappears when

using these variables as inputs to the hydrological model. Besides, it can also be seen
:::::
Q99.5)

::::
and

:::
the

:::::::
20-year

:::::
return

::::::
period

:::::
index,

:::
the

::::
bias

::
is

:::::
worse

:::::
after

:::::::::
adjustment

::::
than

::::::
before

::::::::::
adjustment.

:::::
This

:::
can

:::::
seem

:::::::::
negligible,

:::
but

:::::
these

::::::::
discharge

::::::::::
percentiles

:::::::::
correspond

::::
with

::::::
floods.

:::
For

::::::::
summer,

:::
the

::::
bias

::::
after

:::::::::
adjustment

::
is
::::
still

:::::
lower

::::
than

::::
that

::
of

:::
the

::::
raw

::::::
climate

::::::::::
simulations,

:::
but

::::
has

:::::
clearly

::::::::
increased

:::
in

:::::::::
comparison

::::
with

:::
the

:::::::::
calibration

:::::::
method.

::::
For

::
all

::::::::
methods,

:::
the

::::
bias

::
of

:::
the

::::::
highest

::::::::
discharge

:::::::::
percentiles

::::
was715

:::::::::
completely

:::::::
adjusted

::
in

:::
the

:::::::::
calibration

::::::
period

:::
and

:::::
could

:::
no

::::::
longer

::
be

:::::::
plotted,

:::
but

:::
has

::::::
shifted

:::::::
towards

::::::
slightly

::::::
higher

::::
RBO::::

and

:::::
RBMB::::::

values.
:

Figure 10.
::::
RBMB:::::

versus
::::
RB0 ::

for
:::
the

:::::::
discharge

::::::::
percentiles

:::
and

:::
the

::::::
20-year

::::
return

:::::
period

:::::
value

:
in
:::
the

::::::::
calibration

:::::
period.

:::
(a)

:::::
QDM,

::
(b)

:::::::
mQDM,

::
(c)

::::::
MBCn,

::
(d)

:::::::::
MRQNBC,

::
(e)

::::::
dOTC,

::
(f)

:::::
R2D2.

::::::
Winter:

::::
blue,

:::::
spring:

:::::
ochre,

:::::::
summer:

::::::
yellow,

::::::
autumn:

:::::::
purple.dr
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Figure 11.
::::
RBMB:::::

versus
::::
RB0::

for
:::
the

:::::::
discharge

:::::::::
percentiles

:::
and

::
the

::::::
20-year

:::::
return

:::::
period

::::
value

::
in

::
the

::::::::
validation

:::::
period.

:::
(a)

:::::
QDM,

::
(b)

:::::::
mQDM,

::
(c)

::::::
MBCn,

::
(d)

:::::::::
MRQNBC,

::
(e)

::::::
dOTC,

::
(f)

:::::
R2D2.

::::::
Winter:

::::
blue,

:::::
spring:

:::::
ochre,

:::::::
summer:

::::::
yellow,

::::::
autumn:

::::::
purple.

::
In

:::::::
general,

:::
the

:::::
results

:::
for

::::::::
discharge

::::::::
illustrate

:
that if an important forcing variable for an impact model shows large nonsta-

tionarity, this nonstationarity will propagate through the model. This helps explaining the differences between the PSS and the

RB values
:::::
There

:::
are

::::::
various

:::::
ways

:::
for

:::
this

::::::::::
propagation: the impact of nonstationarity on potential evaporation propagates as an720

influence on the PDF structure, but is less visible in the final bias, as the
:
.
:::
The

:
amount of precipitation has a much larger impact

in the hydrological model. Hence, the final bias is more influenced by precipitation nonstationarity.
::::::::
Although

::::
they

::::
may

:::
also

:::
be

::::::
biased,

:::
the

::::::::
influence

::
of

::::::
aspects

::::
less

:::::::
affected

::
by

::::
bias

:::::::::::::
nonstationarity,

::::
such

:::
as

:::::::::
occurrence

::
or

::::::::::
correlation,

:::::::
appears

::
to

::
be

:::::::
smaller

:::
than

:::
the

::::::
impact

::
of
:::::::::::
precipitation

:::
and

:::::::::::
evaporation.

The impact of bias nonstationarity varies between winter ( blue) and summer (Fig. 11, yellow). In winter, the impact is more725

clearly visible on the higher percentiles: Q99, Q99.5 and QT20 are all well adjusted in the calibration period by QDM, mQDM,

dOTC and R2D2, but are much worse adjusted in the validation period. In summer, the impact seems to be similar for all the

percentiles.

RBMB versus RB0 for the discharge percentiles and the 20-year return period value in the validation period. (a) QDM, (b)

mQDM, (c) MBCn, (d) MRQNBC, (e) dOTC, (f) R2D2. Winter: blue, spring: ochre, summer: yellow, autumn: purple.730

RBMB versus RB0 for the discharge percentiles and the 20-year return period value in the calibration period. (a) QDM, (b)

mQDM, (c) MBCn, (d) MRQNBC, (e) dOTC, (f) R2D2. Winter: blue, spring: ochre, summer: yellow, autumn: purple.dr
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5 Discussion and conclusions

The goal of this paper was to assess how six bias-adjusting methods handle a climate change context with possible bias

nonstationarity.
::::
What

::
is
:::::::::

presented
::::
here

::
is

::::
only

::
a
::::
case

:::::
study

:::
for

::::::
Uccle,

::::::::
Belgium,

:::
but

:::
the

::::::::::
framework

:::::::
provided

::::::
yields

::::::
results735

:::
that

:::
can

:::
be

::::::::
expanded

:::::
upon.

:
Four of the

:::::::::::
bias-adjusting

:
methods were multivariatebias-adjusting methods: MRQNBC, MBCn,

dOTC and R2D2. The two other ones were univariate: one was a traditional bias-adjusting method (QDM), while the other
:::
one

was almost the same method, but modified according to the delta change paradigm (mQDM). These univariate methods were

used as a baseline for comparison. The climate change context, using 1970-1989 as calibration time period and 1998-2017 as

validation time period, allowed us to calculate the change in bias between the periods, or the extent of bias nonstationarity,740

using the R index. The results of all methods were compared using different indices, for which the residual biases relative to

the observations and model bias were calculated. Although the study was limited in spatial scale and climate models used, this

yielded some results that could be valuable starting points for future research.

The calculated R index values generally demonstrated that the bias of some of these indices is not stationary under climate

change conditions, although the extent of bias nonstationarity depended on the variable and index under consideration. The bias745

nonstationarity could be clearly linked to the poor performance of bias-adjusting methods for precipitation, and to some extent

for temperature and potential evaporation. For both precipitation and evaporation, it could be observed that the nonstationarity

propagated through the rainfall-runoff model used for impact assessment, and that the propagation was different for these

variables.

In the context of nonstationarity, it is important to discuss how well the methods performed. Some observations could750

be made. First, the univariate bias-adjusting methods are relatively robust. Although there always is an impact when bias

nonstationarity is present, the
::
all

::::::::
methods

:::::::
perform

:::::
rather

::::::::
similarly,

:::::::::
especially

:::::
under

::::::::::::::
nonstationarity.

::::::::
Although

:::
the

:::::::
general

::::::::::
performance

:::
for

:::::
some

:::::::
methods

:::
was

:::::
lower

:::::::::
depending

:::
on

:::
the

::::::
studied

:::::
aspect

::::
and

::::::
season,

::
as

:::::::::
illustrated

::
by

:::::::::
MRQNBC

::::
and

::::::
dOTC,

::::
their

:::::::
response

:::
to

::::
bias

::::::::::::
nonstationarity

::::
was

:::::::
broadly

::::::
similar

::
to

:::::
other

::::::::
methods.

::::
That

:::::
these

::::
two

:::::::
methods

::::::::::
sometimes

:::::::::
performed

:::::
worse

::::
than

:::::
other

:::::::
methods,

::::::::
depends

::
on

:::
the

:::::::
specific

:::::
case.

::::
Even

::::::
within

::::
this

:::::
study,

:::::::::
MRQNBC

::::::
proved

::
to
:::

be
:::::
rather

::::::
robust

:::::
when755

:::::::::
considering

:::::::::
discharge,

::::::::
although

:::
this

::::
was

:::::::::::::::
season-dependent.

:::::::
Second,

:::::
when

:::::
taking

:::::::::
everything

::::
into

:::::::
account,

:::
the univariate bias-

adjusting methods still perform bestwhen considering the PSS values, i. e. the full PDF
:::::::::
performed

::::
best,

:::::::
although

:::
the

:::::::::
difference

::::
with

::::::
MBCn

:::
and

::::::
R2D2

::::
was

:::::
small.

:::::
This

::::
was

::::::
clearly

:::::::::
illustrated

::
by

::::
the

::::
PSS

::::::
values.

::::
For

:::
the

::::::::
marginal

::::::
aspects

:::
(P,

::
T

::::
and

:::
E),

::
the

:::::::::::
performance

:::
of

:::::
QDM

:::
and

:::::::
mQDM

:::
on

:::
the

::::
one

::::
hand

::::
and

::::::
MBCn

::::
and

:::::
R2D2

:::
on

:::
the

:::::
other

::::
hand

::::
was

:::::::
similar.

:::::
When

::::::
taking

:::::::::
occurrence,

::::::::::
correlation

:::
and

:::
the

::::::::
resulting

::::::::
discharge

::::
into

:::::::
account,

:::
the

:::::::::
univariate

:::::::
methods

:::::::::
performed

:::::::
slightly

:::::
better. However,760

the methods are specifically designed to alter the marginal distributions. As already discussed in Section 4.5, it was pointed out

by Zscheischler et al. (2019) that the multivariate bias-adjusting methods were made with other principal goals, such as spatial

and dependence adjustment. As it is not assessed in this study, we cannot comment on the spatial adjustment. Nonetheless,

the study by François et al. (2020) illustrated that the multivariate bias-adjusting methods can be very informative and robust

for spatial adjustment. Concerning the dependence adjustment, it was shown in Section 4.5 that the multivariate methods all765

perform well for the area and model chain studied here. Second, while QDM and mQDM seem to respond similarly, it should
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be taken into account that mQDM is designed to have a perfect fit in the calibration period. However, the poorer performance

of mQDM for the precipitation occurrence indices
:::::
Third,

:::::::
although

:::
the

:::::::::
MRQNBC

:::::::
method

:::::::::
performed

::::
well

::
for

::::::::::
dependence

::::
and

:::::::::::
precipitation,

:
it
:::::
often

:::::::::
performed

:::::
worst

:::
for

::::::::::
temperature,

:::::::::::
evaporation,

:::::::::
occurrence

::::
and

::::::::
discharge

:::::::
indices.

:::::::::
MRQNBC

::::::
adjusts

:::
on

:::::::
multiple

:::::::::
timescales.

::::::::
Although

:::
this

:::::::
method

:::
has

:::::
value,

::
it

::::::
appears

::
to
:::
be

::::
hard

::
to

:::::::
calibrate

::::::::
correctly.

::
In

::::::::
addition,

:::
the

:::::
heavy

:::::::
reliance770

::
on

:::::::::::
observations

:::::
might

:::::::::
exacerbate

:::
the

::::::
results.

::::
This

:
is an indication that assuming that the temporal structure of the past can be

used for the future might be dangerous, as Johnson and Sharma (2011) and Kerkhoff et al. (2014) already mentioned. Given

that mQDM performed worse for two time periods separated by 10 years only, it is unlikely that it is safe to use this method,

or other delta change-based methods, for impact assessments targeting the end of the 21st century that depend on the temporal

structure of time series. Yet, for some other indices, especially the correlation, mQDM performed better. Consequently, the775

exact choice should depend on the goals of the end user. Third, the methods with seasonal components do not always perform

similarly. MRQNBC is able to address seasonal effects, but its performance varies strongly depending on the variable. Even in

the situation where the univariate methods perform well, MRQNBC sometimes performed much worse, such as for temperature

in autumn or in winter (Fig 5, panel (d), respectively purple and blue) . Although these three observations can be made, it is

impossible to fully discuss the method performance
::::
Last,

:::::::
although

:::
the

::::::::::
differences

:::::::
between

::::::
MBCn

::::
and

:::::
R2D2

:::
are

::::::
small,

:::
the780

::::
latter

::
is

:::::
better

:::::
suited

::
to

::::
take

:::
into

:::::::
account

::::::::
temporal

:::::::::
properties.

::::
This

:::::
could

::
be

::::
seen

::
in

::::
Fig.

:
9
:::
and

::::::::
suggests

:::
that

:::::
recent

:::::
work

::
to

::::
take

:::
into

:::::::
account

::::::::
temporal

::::::::
properties

:::
in

::::
bias

:::::::::
adjustment

:::::
(e.g.,

:::::::::::::::::
François et al. (2021)

:
)
::
is

:::::
worth

:::::::::
pursuing.

:::::
These

::::
four

:::::::::::
observations

::::::
suggest

::::
that

:::
the

::::::
choice

::
of

::::::
method

::::::
should

:::
be

:
based on the set-up considered. The most important cause is the seasonality of

the bias nonstationarity: while the bias nonstationarity shows clear differences between the seasons, some of the multivariate

bias-adjusting methods are not yet equipped to handle seasonality. When there are large seasonal differences for the variables,785

for example for E and T, this causes a relatively poor performance in the calibration period, and a similar poor performance

in the validation period. It is thus unclear whether the poor seasonal performance obfuscates the effect of nonstationarity,

or if the similar performance is a sign of robustness. An earlier study (Guo et al., 2020) indicates the former, but this could

also be location- and method-dependent. Hence, the set-up does not allow to clearly discern between the various categories

of multivariate bias-adjustment, such as the ‘marginal/dependence’ or ‘all-in-one’ categories. To fully address the question790

on performance under bias nonstationarity , a better seasonal performance for the multivariate bias-adjusting methods seems

crucial. However, not only seasonal differences in bias nonstationarity should be acknowledged: for variables other than P, T or

E, or for other regions, bias nonstationarity might be better discernible on a monthly timescale, on a yearly timescale, or even on

longer timescales. Only a few multivariate bias-adjusting methodsspecifically address multiple timescales, such as MRQNBC

(Mehrotra and Sharma, 2016), or more recently, ‘Multivariate Frequency Bias Correction’ (MFBC) (Nguyen et al., 2018) or795

‘3DBC’ (Mehrotra and Sharma, 2019). Yet, the varying performance of MRQNBC shows that the implementation of the

seasonality can have a large impact. As such, the question about seasonality is not easy to answer.

::::::
studied

:::::::
problem

:::
or

::::::
impact

::::
type,

:::
as

:::
the

::::::
impact

::
of
::::

bias
:::::::::::::

nonstationarity
::
is
:::::
much

::::::
larger

::
on

::::
the

::::
final

:::::
result

::::
than

::::::::::
differences

:::::::
between

::::::::
individual

::::::::
methods.

:
The validation results could only be obtained by analysing and comparing a broad combination

of indices. Considering only the mean or other standard statistics would have hidden many of the results seen. For example, in800

contrast to the results for the mean, the inclusion of both high and low extremes highlighted some problems with bias nonsta-
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tionarity for some variables. As such, this study does not contradict earlier studies such as Maraun (2012)
::::
(e.g.,

:::::::::::::
Maraun (2012)

:
), where the mean-based biases were found to be rather stable. Thus, we repeat

::::
echo

:
the advice by Maraun and Widmann

(2018a) to use indices not directly affected by bias-adjusting methods and to analyse the user needs before deciding upon the

bias adjustment validation method. An important limitation is that we only used one GCM-RCM-combination. Using a model805

ensemble would be more informative, but could hide a single model’s poor performance. On the other hand, similar assessments

could also be used to discard poor-performing models, based on the R index (also suggested by Maurer et al. (2013)) or the

remaining bias after adjustment. However, the used indices can still be improved. Although the R index provides a lot of insight

into the bias nonstationarity, it has been shown to over- or underestimate the effect of bias nonstationarity depending on the

size and sometimes even the sign of the original bias. Other criteria also exist, such as the ‘signal-to-noise ratio’ (SNR) used810

by Hui et al. (2020). The different criteria or indices should be compared and maybe new tools are needed, so that the issue of

bias nonstationarity can be more thoroughly explored.

::
An

:::::::::
important

:::::::::
limitation

::
is

::::
that

:::
we

::::
only

:::::
used

::::
one

:::::::::::::::::::::
GCM-RCM-combination.

::::::
Using

::
a
::::::
model

::::::::
ensemble

::::::
would

:::
be

:::::
more

::::::::::
informative,

:::
but

:::::
could

::::
hide

:
a
::::::
single

:::::::
model’s

::::
poor

:::::::::::
performance,

::
as

:::
the

::::::::::
differences

:::::
within

:::::::::::
GCM-RCM

::::::::
ensembles

::::
can

::
be

:::::
large

:::::::::::::::::
(Vautard et al., 2021).

:::::::::::
Nonetheless,

::::
this

:::::
study

:::
has

:::::
value

:::
in

:::::::::
illustrating

:::::::
possible

:::::::
impacts

:::
of

::::
bias

:::::::::::::
nonstationarity.

:::
To

:::::::
broaden815

::
the

::::::
scope,

::
it

:::::
helps

::
to

:::::::
compare

:::
the

::::::::::
GCM-RCM

:::::::::::
combination

::::
used

::
in

::::
this

:::::
study

::::
with

:::
the

:::
full

:::::
range

::
of

:::::::::::::::
EURO-CORDEX

::::::
model

:::::::::::
combinations

:::::::::::::::::
(Vautard et al., 2021)

:
.
:::
For

::::::
winter

:::::::::::
temperatures,

::::::
where

:::
the

::::::
impact

::
of

::::
bias

::::::::::::
nonstationarity

::::
was

:::::
large,

::::::::::
MPI-RCA4

:
is
:::::::::
positively

::::::
biased

::
in

:::
the

::::
area

:::::
under

:::::
study,

:::
but

::
is
::::

not
:::
the

::::
most

::::::
biased

:::::::::::::::
EURO-CORDEX

::::::
model.

::
In

::::::::
contrast,

:::
for

::::
both

::::::
winter

:::
and

:::::::
summer

:::::::::::
precipitation,

:::
the

::::::
biases

::
in

::::::::::
MPI-RCA4

:::
are

::::::
among

:::
the

::::::
largest

::::::
within

:::
the

:::::::::::::::
EURO-CORDEX

::::::::
ensemble.

:::::::::
However,

:::
this

::::
only

::::::::
concerns

::
the

:::::
mean

::::
bias

:::
and

::::::::::
conclusions

::::
can

:::
thus

:::
not

:::
be

:::::
easily

::::::::::
generalized

:::
for

::
the

:::::::::
extremes,

:::::
where

:::
the

::::::
impact

::
of

::::
bias820

::::::::::::
nonstationarity

::::
was

::::::
largest.

:::
In

:::::::
general,

:::
the

::::::::::
MPI-RCA4

::::::::::
combination

:::::
does

:::
not

:::::
stand

:::
out

::
in

:::
the

:::::
study

:::
of

:::::::::::::::::
Vautard et al. (2021)

:
:
:
it
::::::

shows
:::::
some

:::::
biases

::::
and

::
is

::::
thus

:::
not

:::
the

::::
best

::::::
model

:::::::::::
combination,

:::
but

::::
can

:::
not

:::
be

:::::::::
considered

::
to

:::
be

:::
the

::::::
worst.

::::
This

::::::
allows

::
to

::::::::
generalize

:::
the

::::::
results

::::
seen

::::
here

:::
to

::::
other

::::::
model

::::::::::::
combinations.

:::
Yet,

::::
they

::::::
should

::::
still

::
be

::::::::::
considered

::
on

::
a
:::::::::::
case-by-case

:::::
basis,

:::::
taking

::::
into

::::::
account

:::
the

::::
area

:::::
under

:::::
study,

:::
the

::::::
studied

:::::::
impact,

:::
and

::
so

:::
on.

::::
The

:::::::::
framework

::::::::
presented

::::
here

:::::
could

::
be

::::
used

::
to
:::::::
discard

:::::::::::::
poor-performing

:::::::
models,

:::::
based

:::
on

::
the

::
R
:::::
index

::::
(also

:::::::::
suggested

::
by

:::::::::::::::::
Maurer et al. (2013)

:
)
::
or

:::
the

::::::::
remaining

::::
bias

::::
after

::::::::::
adjustment.825

To have a better view of how these results should be interpreted for impacts and compound events, the perspective of the

end user should be considered (Maraun et al., 2015; Maraun and Widmann, 2018b). We used discharge as an example, using

the relatively simple PDM. Even for this model, it could be observed that bias nonstationarity can propagate in multiple ways.

The influence of the nonstationarity in precipitation was most clear in summer and winter. As precipitation is the driving830

variable for the PDM, even the limited nonstationarity, mostly in the precipitation extremes, had an influence on the discharge

simulation, as could be seen for the discharge in winter and summer (Fig. 10, respectively blue and yellow). In contrast, the

nonstationarity in evaporation propagated much less. However, it had an effect on the full PDF in spring, as could be observed

from the PSS value for discharge (Table 8). In spring, no nonstationarity could be observed for precipitation, which allowed the

influence of evaporation to be larger, although it theoretically has a smaller influence than precipitation on the discharge. The835

different propagation of bias nonstationarity, observed here for the extremes versus the full PDF, can be important considering
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that bias adjustment can be applied for many different types of impact assessment. However, the assessment in this study is

relatively simple. For other impact studies, the results may vary considerably. For example, forest fires (a typical compound

event, discussed in a bias adjustment context in e.g.
:
, Yang et al. (2015), Cannon (2018), Zscheischler et al. (2019)) depend

more heavily on T and E to simulate fire weather conditions. Besides such compound events, other types of application can840

use a wide variety of variables and, hence, the bias nonstationarity may differ. In all of these studies, the propagation of bias

nonstationarity will depend on the timescales considered in the impact assessment, the timescales on which nonstationarity is

present, the variables considered and the spatial scale. Although this last aspect is limited in this study, it can be assumed that if

bias nonstationarity is present in one grid cell, it will also be present in neighbouring grid cells with similar climatic conditions.

To conclude, the results discussed in this paper indicate that bias nonstationarity can have an important influence
::::::
impact845

on the bias adjustment and the propagation of biases in impact models. Depending on the extent of nonstationarity (spatial,

temporal and the variables affected), such propagation should be taken into account far more when studying future impacts.

As authors have mentioned before (Ehret et al., 2012; Maraun, 2016; Nahar et al., 2017), this foremost implies that climate

models have to become better at modelling the future: we need to be able to trust them as fully as possible. As long as this

is not the case, bias adjustment methods have to be developed that are more robust and that are able to help us assessing the850

future correctly. As such, the issue of seasonality as raised here is very important. Yet, impact assessment cannot wait for

new methods to be developed and/or tested: we need to prepare ourselves for the future as soon as possible. For now, we

can state that for a robust bias adjustment under bias-nonstationary conditions, accounting for seasonality is crucial. Given

this statement, we advise to use univariate bias-adjusting methods , until it becomes more clear how it can be ensured that

multivariate methods certainly perform well under bias nonstationarity
:::
was

::::::::
discussed

::
in

::::
this

:::::
paper,

::
all

::::::::
methods

:::::
suffer

::::
from

::::
bias855

::::::::::::
nonstationarity,

:::::::::
increasing

:::
the

::::::::::
uncertainty

::
of

:::::
future

:::::::
impacts.
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