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Abstract.

Climate change is one of the biggest challenges currently faced by society, with an impact on many systems, such as the
hydrological cycle. To leeally-assess this impact in a local context, Regional Climate Model (RCM) simulations are often
used as input for hydrelogical-rainfall-runoff models. However, RCM results are still biased with respect to the observations.
Many methods have been developed to adjust these biases, but only during the last few years, methods to adjust biases that
account for the correlation between the variables have been proposed. This correlation adjustment is especially important
for compound event impact analysis. As a-simple-example-of-those-compeund-events;-an illustration, a hydrological impact
assessment exercise is used here, as hydrological models often need multiple locally unbiased input variables to ensure an
unbiased output. However, it has been suggested that multivariate bias-adjusting methods may perform poorly under climate
change conditions because of bias nonstationarity. In this study, two univariate and three multivariate bias-adjusting methods
are compared with respect to their performance under climate change conditions. To this end, the methods are calibrated in
the late 20th century (1970-1989) and validated in the early 21st century (1998-2017), in which the effect of climate change
is already visible. The variables adjusted are precipitation, evaporation and temperature, of which the former two are used as
input for a rainfall-runoff model, to allow for the validation of the methods on discharge. Although not used for discharge
modelling, temperature is a commonly-adjusted variable in both uni- and multivariate settings and therefore-important-to-take
into-aceountwe therefore also included this variable in our research. The methods are also evaluated using indices based on the

adjusted variables, the temporal structure, and the multivariate correlation.

comparable-mannerThe Perkins Skill Score is used to evaluate the full PDE The results show a clear impact of nonstationarit

that-the-the impact varies depending on season and variable: the impact is most visible for precipitation in winter and summer.
This should be accounted for in both multivariate bias-adjusting methods are-not-yet-fit-to-cope-with-nonstationary-ctimate
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because these do not always include seasonality; in the latter because incorrectly adjusted inputs or forcings will lead to
redicted discharges that are biased.

Copyright statement. TEXT

1 Introduction

The influence of climate change is felt throughout many regions of the world, as becomes evident from the higher frequency
or intensity of natural hazards, such as floods, droughts, heatwaves and forest fires (IPCC, 2012). As these intensified natural
hazards threaten society, it is essential to be prepared for them. Knowledge on future climate change is obtained by running
Global Climate Models (GCMs), creating large ensemble outputs such as in the Climate Model Intercomparison Project 6
(CMIP6) (Eyring et al., 2016). Although they are informative on a global scale, the generated data are too coarse for local
climate change impact assessments. To bridge the gap from the global to the local scale, Regional Climate Models have
become a standard application (Jacob et al., 2014), using the output from GCMs as input or boundary conditions.

Although the information provided by both GCMs and RCMs is very-valuable, both are biased with-respeet-to-w.r.t. the ob-
servations, especially for precipitation (Kotlarski et al., 2014). The biases can occur in any statistic and are commonly defined
as “a systematic difference between a simulated climate statistic and the corresponding real-world climate statistic" (Ma-
raun, 2016). These biases are caused by temporal or spatial discretisation and unresolved or unrepresented physical processes
(Teutschbein and Seibert, 2012; Cannon, 2016). An important example of the latter is convective precipitation, which can only
be resolved by very high resolution models. Although the further improvement of models is an important area of research
(Prein et al., 2015; Kendon et al., 2017; Helsen et al., 2019; Fosser et al., 2020), such improved models are computationally
expensive. As such, it is still necessary practice to statistically adapt the climate model output to adjust the biases (Christensen
et al., 2008; Teutschbein and Seibert, 2012; Maraun, 2016).

Many different bias-adjusting methods exist (Teutschbein and Seibert, 2012; Gutiérrez et al., 2019). They all calibrate a
transfer function using the historical simulations and historical observations and apply this transfer function to the future
simulations to generate future ‘observed values’ or an adjusted future. Of all the different methods, the quantile mapping
method (Panofsky et al., 1958) was shown to be the generally best performing method (Rojas et al., 2011; Gudmundsson et al.,
2012). Quantile mapping adjusts biases in the full distribution, whereas most other methods only adjust biases in the mean
and/or variance.

An important problem with quantile mapping and most other commonly used methods is that they are univariate and do
not adjust biases in the multivariate correlation. Although quantile mapping can retain climate model multivariate correlation
(Wilcke et al., 2013), the ability of univariate methods to improve the climate model’s multivariate correlation has been ques-
tioned (Hagemann et al., 2011; Ehret et al., 2012; Hewitson et al., 2014). This is important for impact assessment, as local

impact models often need multiple input variables and many high-impact events are caused by the co-occurrence of multiple
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phenomena, the so-called ‘compound events’ (Zscheischler et al., 2018, 2020). For example, floeds-can-be-characterised-flood
magnitude can be projected by a rainfall-runoff model using evaporation and precipitation time series as an input. If the cor-
relation between these variables is biased withrespeet-to-w.r.t. the observations, then it can be expected that the model output
is biased as well-Thisresults-in-a-higher-uneertainty-when-using these-models-and-thus-in-the resulting-assessment, which can
further propagate in the impact models. During the past decade, multiple methods have been developed to counter this problem.
The first methods focused on the adjustment of two jointly occurring variables, most often precipitation and temperature, such
as those by Piani and Haerter (2012) and Li et al. (2014). However, it became clear that adjusting only two variables would
not suffice, hence many more methods have been developed that jointly adjust mere-multiple variables, including those by
Vrac and Friederichs (2015); Cannon (2016); Mehrotra and Sharma (2016); Dekens et al. (2017); Cannon (2018); Vrac (2018);
Nguyen et al. (2018); Robin et al. (2019). Yet, the recent growth in availability of such methods comes along with a gap in
the knowledge on their performance. In some studies, these methods have been compared with one or two older multivari-
ate methods to reveal the improvements (Vrac and Friederichs, 2015; Cannon, 2018) or with univariate methods (Rity et al.,
2018; Zscheischler et al., 2019; Meyer et al., 2019). Each of
methods-the latter three studies comparing uni- and multivariate bias adjusting methods indicates that these lead to different

results, yet it is difficult to conclude whether uni- or multivariate methods perform best. According to Zscheischler et al. (2019)

multivariate methods have an added value. Riity et al. (2018) conclude that the multivariate methods and univariate methods
performed-perform similarly, while Meyer et al. (2019) could not draw definitive conclusions. These studies vary in set-up,
adjusted variables and study area, which all could have caused the difference in added value. In all three studies, the same
method, namely the Multivariate Bias Correction in n dimensions (MBCn) (Cannon, 2018) was the basis for comparison. Only
recently, the first studies comparing multiple multivariate bias-adjusting methods were published (Francois et al., 2020; Guo
et al., 2020). The study by Francois et al. (2020) focused on the different principles underlying the multivariate bias-adjusting
methods and concluded that the choice of method should be based on the end user’s goal. Besides, they also noticed that se-far;
all multivariate methods fail-in-representing-studied fail in adjusting the temporal structure of a time series. In contrast to the
focus of Francois et al. (2020), Guo et al. (2020) studied the performance of multivariate bias-adjusting methods for climate
change impact assessment and concluded that multivariate methods could be interesting in this context. However, they also
noticed that the performance of the multivariate methods was lower in the merereeent-validation period and suggested that
this could be caused by bias nonstationarity. As the use of multivariate bias-adjusting methods could be an important tool for
climate change impact assessment, this deserves more attention.

The bias stationarity - or bias time invariance - assumption is the most important assumption for bias correction. It implies
that the bias is the same in the calibration and validation or future periods and that the transfer function based on the calibration
period can eensequently-thus be used in the future period. However, this assumption does not hold due to different types of
nonstationarity induced by climate change, which may cause problems (Milly et al., 2008; Derbyshire, 2017). In the context
of bias adjustment, this problem has been known for several years (Christensen et al., 2008; Ehret et al., 2012), but has not
received a lot of attention. A few authors have tried to propose new types of bias relationships (Buser et al., 2009; Ho et al.,

2012; Sunyer et al., 2014; Kerkhoff et al., 2014). Recently, it has been suggested that it is best to assume a non-monotonic
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bias change (Van Schaeybroeck and Vannitsem, 2016). Some authors suggested that bias nonstationarity could be an important
source of uncertainty (Chen et al., 2015; Veldzquez et al., 2015; Wang et al., 2018; Hui et al., 2019), but not all found clear
indications of bias nonstationarity (Maraun, 2012; Piani et al., 2010; Maurer et al., 2013).

The availability of new methods and more data enables a more coherent assessment of the bias (non)stationarity issue. By
comparing three-four bias-adjusting methods in a climate change context with possible bias nonstationarity, some of the re-
maining questions in Francois et al. (2020) and Guo et al. (2020) can be answered. The three-four multivariate bias-adjusting
methods thatwill-be-compared in this study are ‘Multivariate Recursive Quantile Nesting Bias Correction’ (MRQNBC, Mehro-
tra and Sharma (2016)), MBCn (Cannon, 2018)and-, ‘dynamical Optimal Transport Correction’ (dOTC, Robin et al. (2019))
four methods give a broad view of the different multivariate bias adjustment principles, which we will elaborate on in Sec-
tion 3.3. As a baseline, two univariate bias-adjusting methods will be used: Quantile Delta Mapping (QDM, Cannon et al.
(2015)) and modified Quantile Delta Mapping (mQDM, Pham (2016). QDM is a classical univariate bias-adjusting method
and is chosen for this analysis as it is a robust and relatively common quantile mapping method, especially as one of the sub-
routines in the multivariate bias-adjusting methods (Mehrotra and Sharma, 2016; Nguyen et al., 2016; Cannon, 2018). mQDM,
on the other hand, is one of the so-called ‘delta change’ methods, which are based on an adjustment of the historical time series.
Using these univariate bias-adjusting methods, we can assess whether multivariate and univariate bias-adjusting methods differ
in their response to possible bias nonstationarity.

The methods will be compared by applying them for the bias adjustment of precipitation, potential evaporation and tempera-
ture. The bias-adjusted time series will be used as inputs for a hydrological model in order to simulate the discharge. Discharge

time series are the basis for flood hazard calculation, but can also be considered as an interesting source of validation them-

selves (Hakala et al., 2018). Although-temperature-is-not-needed-as-an-nputfor-The bias adjustment and discharge simulation
are both assessed at one grid cell/location only. Although this does not allow for investigating the spatial extent and impact of

the-atter-time-frame;effects-of climate change-are-already-visible-HPEC;2643)focus on one location gives information on the
influence of possible bias nonstationarity on local impact models and may hence be a starting point for broader assessments.
We will also not account for the differences between models, as we only investigate a single GCM-RCM model chain. This
allows for a precise investigation of the possible effects of bias nonstationarity, although it does not allow for assessing other

types of uncertainty. The change of some biases from calibration to validation time series will be calculated, to indicate the

extent of the bias nonstationarity. Maurer et al. (2013) proposed the R index for this purposefsee-Seetion2:4). Calculating the
bias nonstationarity between both periods will give an indication of the impact of a changing bias on climate impact studies
for the end of the 21st century. As Chen et al. (2015) mentioned: “If biases are not constant over two very close time periods,

there is little hope they will be stationary for periods separated by 50 to 100 years"



2 Data and validation

2.1 Data
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130 Uccle observatory. The most important time series used is the 10-min precipitation amount, gauged with a Hellmann-Fuess
pluviograph, from 1898 to 2018. An earlier version of this precipitation dataset was described by Demarée (2003) and analyzed

, 1997, Verstraeten et al., 2006; Vandenberghe et
- The 10-min precipitation time series was aggregated to daily level to be comparable with the other time series used.

For the multivariate methods, the precipitation time series was combined with a 2 meter air temperature and potential

135 evaporation time series. The daily potential evaporation was calculated by the RMI from 1901 to 2019, using the Penman
formula for a grass reference surface (Penman, 1948) with variables measured at the Uccle observatory, Daily average temperatures
&%&%@%@&WMMN
from 1901 to 2017, amounting to 117 years ' ipitati i '
WWWMMWM%EWMWW@%

140 is assumed that the precipitation statistics within the grid cell are uniform. Hence, the Uccle data can be used for comparison
with the gridded climate simulation data discussed below.

Meteorological Institute an

in De Jongh et al. (2006). Multiple other studies have used this time series (Verhoest et al.

145

As-in-Van-de-Velde-et-al2020)-For the simulations, data from the EURO-CORDEX (Jacob-et-at;20+4)-project (Jacob et al., 2014)
were used. The Rossby Centre regional climate model RCA4 was used (Strandberg-etal; 2645 )-with MPFESM-ER-GEM
Popke-et-al;2013)-boundary—conditions—RCA4—is—used—(Strandberg et al., 2015) as it is one of the few RCMs with po-

150 tential evaporation as an output variable. This RCM was forced with boundary conditions from the MPI-ESM-LR GCM
(Popke et al., 2013) and has a spatial resolution of 0.117, or 12.5 km. Historical data and scenario data for the grid cell
comprising Uccle were respectively obtained for 1970-2005 and 2006-2100. The former time frame is limited by the earliest
available data from the RCM. The latter time frame was only used until 2017, in accordance with the observational data. As
climate change scenario, an RCP4.5 forcing was used in this paper (van Vuuren et al., 2011), Since only ‘near future’ (from

155 the model point of view) data were used, the choice of forcing does not have a large impact. However, when studying scenarios
in a time frame further away from the present, using an ensemble of forcings is more relevant to be aware of the uncertainty.
regarding future climate change impact. evaluations of the RCA4 model have shown that there is a bias in precipitation,

especially in winter (Strandberg et al., 2015), but this bias is in line with the biases from other EURO-CORDEX models
(Kotlarski et al., 2014).
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2.2 Time frames

As mentioned in the introduction, it is important to assess bias-adjusting methods in a context they will be used in, i.e. under
climate change conditions. The time series used in this study were chosen accordingly: 1970-1989 was chosen as the ‘historical’
or calibration time period and 1998-2017 was chosen as the ‘“future’ or validation time period. In this time frame, effects of
climate change are already visible (IPCC, 2013). Time series of 20 years were chosen here, although it is advised to use 30
years of data to have robust calculations (Berg et al., 2012; Reiter et al., 2018). However, as no climate model data prior to

1970 are available, using 30 years of data would have led to overlapping time series.
2.3 Validation framework

An important aspect in bias adjustment is the validation of the methods. Different methods are available, of which a pseudo-
reality experiment (Maraun, 2012) is one of the most-used ones. In this method, each member of a model ensemble is in
turn used as the reference in a cross-validation. However, while such a set-up is useful when comparing bias-adjustment
methods, it only mimics a real application context. When sufficient observations are available, a ‘pseudo-projection’ setap
set-up (Li et al., 2010) can be used. This set-up resembles a ‘differential split-sample testing’ (Klemes, 1986) and is more in
agreement with a practical application of bias-adjusting methods. Differential split-sample testing has been used in a bias
adjustment context by Teutschbein and Seibert (2013), by constructing two time series with respectively the driest and wettest
years. In our case study, it is assumed that the two time series differ enough because of climate change. Consequently, the
approach is simple, and as the validation is not set in the future, it is considered a ‘pseudo-projection’.

Besides the choice of time frames and data, also the choice of validation indices is of key importance. Maraun and Widmann
(2018a) stress that these indices should only be indirectly affected by the bias adjustment, as only validating on adjusted
indices can be misleading. Such adjusted indices are the precipitation intensity, temperature and evaporation, which are used
to build the transfer function in the historical setting and should be corrected by construction. Under bias stationarity, this
correction will be carried over to the future, possibly hiding small inconsistencies that may arise for extreme values. If the
bias is not stationary, the effect might be different between adjusted and indirectly affected indices. As such, besides the three
adjusted variables (indices 1 to 3 in Table 1) and their correlations (indices 4 to 12, which are directly adjusted by some of the
methods), also indices based on the precipitation occurrence and on the discharge Q are used. The occurrence-based indices
(13 to 16) allow for assessing how the methods influence the precipitation time series structure;-an-inflaence-that-might-be
potentially-large-(Van-de-Velde-et-al5--2020). The discharge-based indices (17 and 18) allow for the assessment of the impact of
the different bias-adjusting methods on simulated river flow. The discharge-based indices combine the information of the other
indices by routing through the rainfall-runoff model. They are the most important aspect of the assessment, as they indicate the

natural hazard.

odsAs the percentiles focus mostly on the extremes
the Perkins Skill Score (PSS) (Perkins et al., 2007) is used to assess the adjustment of the full PDF of the variables. All indices
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were-are calculated taking all days into account, instead of only calculating them on wet days, as some of the multivariate
bias-adjusting methods do not discriminate between wet or dry days in their adjustment.

The indices are all calculated on a seasonal basis for both the calibration and validation period. By comparing over these

eriods, we can relate the performance to either the method itself or bias (non)stationarity, on a seasonal basis. Besides, not all

methods adjust on a seasonal basis. As such, methods performing poorly in both periods might need a seasonal component for

summer (JJA) and autumn (SON).

bias adjustment. The seasons were defined as follows: winter (DJF), s

Table 1. Overview of the indices used

Nr Index Name
1 P, Precipitation amount percentile values, with x the percentile considered
2 Te Temperature percentile values, with « the percentile considered
3 E. Evaporation percentile values, with x the percentile considered
4 COITP,E Spearman correlation between the time series of P and E
5 Corrp,T Spearman correlation between the time series of P and T
6 COITE,T Spearman correlation between the time series of £ and T
7 | crosscorrp,r,0 | Lag-0 crosscorrelation between the time series of P and E
8 | crosscorrp,T,0 | Lag-0 crosscorrelation between the time series of P and T
9 crosscorrg,T,0 | Lag-0 crosscorrelation between the time series of E and T’
10 | crosscorrp,r,1 | Lag-1 crosscorrelation between the time series of P and E
11 | crosscorrp,t,1 | Lag-1 crosscorrelation between the time series of P and T
12 | crosscorrg,T,1 | Lag-1 crosscorrelation between the time series of £ and T
13 Proo Precipitation transition probability from a dry to a dry day
14 Prio Precipitation transition probability from a wet to a dry day
15 Nary Number of dry days
16 Plag1 Precipitation lag-1 auto-correlation
17 Qz Discharge percentiles, with x the percentile considered
18 Q20 20-year return period value of discharge

2.4 Bias nonstationarity

In a study on possible changes in bias, Maurer et al. (2013) proposed the R index:

| bias¢ — biasy, |

= 1
| biasg | + | biasy, |’ M

R

where biasy and biasy, are the biases in respectively the future and historical time series, calculated on the basis of the observa-
tions and raw climate simulations. The R index takes a value between O and 2. If the index is greater than one, the difference

in bias between the two sets is larger than the average bias of the model and it is likely that the bias adjustment would degrade



205 the RCM output rather than improve it. The index is calculated for the indices used for validation in order to have an indication
of the influence of bias nonstationarity on these indices. Besides for the indices, the R index is also calculated for the average

and standard deviation of each variable, in order to be able to more easily visualise the changes in distribution.
2.5 Hydrological model

Similar to Van-de-Velde-et-al«2020)Pham et al. (2018), we use the Probability Distributed Model (PDM, Meore2007Moore (2007); Cabr

210 alumped conceptual rainfall-runoff model to calculate the discharge for the Grote Nete watershed in Belgium. This model uses

precipitation and evaporation time series as inputs to generate a discharge time series. The PDM as used here was calibrated by
Cabus2008)(RMSE = 0.9 m?/h, see Pham et al. (2018) for more details) using the Part
(PSO, Ebethart-an e-same-assumpti s-in-Pham-et-ak:

-e—Eberhart and Kennedy (1995)). As in Pham et al. (2018), it was assumed that the differences between meteorological con-

icle Swarm Optimization algorithm

215 ditions in the Grote Nete-watershed and Uccle are negligible, and thus-that-that thus the adjusted data for the Uccle grid cell

can be used as a forcing for the PDM. This assumption is based on the limited distance of 50 km between the gauging stations
used for the observations in Uccle and the gauging station used for the PDM calibration. As mentioned before, the region
has a flat topography and, hence, the climatology can be considered similar. Furthermore, the goal is not to make predictions,
but to assess the impact of different bias adjustment methods on the discharge values. To calculate the bias on the discharge

220 indices;both-the-indices, observed, raw and adjusted preeipitation-and-evaporation-RCM time series were used as forcing for
this model. The discharge time series generated by the observations is considered to be the “observed’ discharge. and biases
are calculated in comparison with this time series.

2.6 Validation metrics

The residual biases relative to the observations and to the model bias are often used in this paper to graphically present and
225 interpret the resultstVan-de-Velde-et-al52020). These residual biases are based on the ‘added value’ concept (Di Luca et al.,
2015) and enable a comparison based on two aspects. The first aspect is the performance in removing the bias, the second
is the extent of the bias removal in comparison with the original value for the corresponding index for the observation time

series. The use of the residual biases allows for a detailed study and comparison of the effect of bias adjustment on the different

indices.
230 The residual bias relative to the observations RBg for an index & is calculated as follows:
| biasraw(k) | — |biasadj(k) |
RBo(k)=1— , 2

with raw(k) the raw climate model simulations, adj(k) the adjusted climate model simulations and obs(k) the observed values
for index k.
The residual bias relative to the model bias RByg for an index £ is calculated as follows:

_ ‘ biasraw(k) | - |biasadj(k) |

235 RB k)y=1
s () | biasaw(k) |

3)
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Absolute values are used in Egs. (2) and (3) to compute the absolute difference between the raw and adjusted values, thus
neglecting a possible change of sign of the bias. If the values of these residual biases are lower than 1 for an index, the method
performs better than the raw RCM for this index. The best methods have low scores on both residual biases for as many indices

as possible.
3 Bias-adjusting methods

3.1 Occurrence-bias adjustment: Thresholding

One of the deficiencies of RCMs, especially in Northwest Europe, are the so-called ‘drizzle days’ (Gutowski et al., 2003;
ThemeBl et al., 2012; Argiieso et al., 2013), i-e i i .

to-be-during which small amounts of precipitation are simulated while these days should have been dry. This has an influ-
ence on the temporal structure of the simulated time series and should thus be adjusted (Ines and Hansen, 2006). This is

commonly done in an occurrence-bias-adjusting step before the main step, the intensity-bias adjustment. Altheugh-multiple

Thresholding-In this study, we use the thresholding occurrence-bias-adjusting method, which is one of the most common
occurrence-bias-adjusting methods and-has-been-inuseformany-years(e.g. Hay and Clark (2003); Schmidli et al. (2006); Ines

and Hansen (2006)). This method is only applicable in regions where the assumption holds that the simulated time series has

more wet days than the observed time series. This is the case for Northwest Europe (ThemeBl et al., 2012) and Belgium in
particular. An advanced version of the thresholding method is used here. To adjust the number of wet days, the frequencies
total number of dry days in the observations and in the simulations are calculated. The difference in dry days between the two
#requeﬂe}e%m AN, is the number of days of the simulated time series that have to be adapted. The-simulated-series-is

ine-If AN days have to be converted to dry days, then the AN lowest

dﬂy&ef—fhe—srmulaﬂeﬂﬂme—seﬂes—by—se&mg—fhem%e%da s with the lowest amounts of precipitation are changed to dry days.
AN is computed for the past and applied in the future and consequently relies on the bias stationarity assumption. However,

as thresholding is used prior to all methods, the influence of possible bias nonstationarity on AN is assumed to be negligible.

In this advanced version of thresholding, some considerations are made. First, a day is considered wet if the daity preeipitation
intensity-is-higher-than-its simulated precipitation amount is above 0.1 mm, to account for measurement errors in the obser-
vations. Second, the adjustment is done on a monthly basis, to account for the temporal structure in the observed time series.
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Third, both historical and future simulations are adjusted, to ensure that the bias can be transferred from the historical to the
future time period would be impaired.

3.2 Univariate intensity-bias-adjusting methods
3.2.1 Quantile Delta Mapping

The Quantile Delta Mapping (QDM) method was first proposed by Li et al. (2010). Its main idea is to preserve the climate sim-

ulation trends: it takes trend nonstationarity (changes in the simulated distribution) into account to a certain degree. Although

it handles temperature adjustments well, it gives unrealistic values for precipitation and was therefore extended by Wang

Mathematically, this method can be written as
xﬁa = xf—s + F;hi (mes (xfs)) — F;li (Frfs (xfs)) 4)

in the additive case, and

Fob (B (29))

fa fs " x
Fol (Foe (29))

in the ratio or multiplicative case. The superscripts hs, ho, fs and fa indicate respectively the historical simulations, the his-

torical observations, the future simulations and the adjusted future. The-In this paper, the additive version is used for temper-

window-to-time series and the multiplicative one for precipitation and evaporation time series. This choice is based on the
work of Wang and Chen (2014), who have shown that using the additive adjustment for precipitation results in unrealistic
precipitation values and introduced a multiplicative adjustment. For evaporation, we follow the few available studies (e.g.
Lenderink et al. (2007)) in using the same adjustment as for precipitation.

To ensure the consistency of the time series ~ :

on-wet-daysenby;, a 91-day moving window is opted for, as suggested by Rajczak et al. (2016) and Reiter et al. (2018). This
enables the adjustment of each day based on 91 days/year: 20 years = 1820 days. These days were used to build an empirical
CDF (as in Gudmundsson et al. (2012); Gutjahr and Heinemann (2013), among others). It is also important to note that for
precipitation, Eq. (5) was applied only on the days considered wet, i.e. with a precipitation fevaperation-higher than 0.1 mm.

10
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For consistency, a threshold of 0.1 mm /day—was also used for evaporation. It is important to note that although QDM is

only applied on wet days, it can still transform low-precipitation wet days into days that are considered to be dry (e.g. with a

recipitation amount < 0.1 mm) if the ratio in Eq. (5) is small enough.

3.2.2 Modified Quantile Delta Mapping

Pham (2016) proposed another version of QDM, following the delta change philosophy (Olsson et al., 2009; Willems and Vrac,
2011): the trend established by the RCM is assumed to be more thrust-worthy than the absolute value itself. When applying
this type of methods, the simulated change between the historical and the future is applied to the observations. Thus, instead
of the future simulations, the historical observations are adjusted to the future ‘observations’. As Johnson and Sharma (2011)
mention, this workflow could be problematic for future impact assessment, as it inherits the temporal structure of the historical
observations. This method is mathematically very similar to the QDM method, exchanging the roles of 2™ and z"°. Thus, it is

named ‘modified Quantile Delta Mapping’ (mQDM), and can for the additive case be written as

o =2l + F! (Fono (2™°)) = FuL (Fyno (2°)) (6)

i hs

The ratio version is mathematieally-written-as-given by

Fol (Fyno (27°))

fa ho ~ gfs
Tt =x; . 7
' COFL (Fyne (aM0)) @

For the implementation, the same principles were used as for the QDM method: a 91-day moving window, empirical CDFs

and a threshetd-minimum value of 0.1 mm/day to be considered as a wet day.
3.3 Multivariate intensity-bias-adjusting methods

The increasing number of multivariate bias-adjusting methods throughout the 2010s urges the need to classify them according
to their properties. One possible classification was done by Vrac (2018), who proposed the ‘marginal/dependence’ versus the
‘successive conditional’ approach. The former approach separately adjusts the 1D-marginal distributions and the dependence
structure and is applied in e.g. Vrac and Friederichs (2015), Cannon (2018) and Vrac (2018). These two components are then
recombined to obtain data that are close to the observations for both marginal and multivariate aspects. The latter approach
consists of adjusting ene-given—variable-and-then—adjusting-a—second-a_variable conditionally on the second—variable:—this
variables already adjusted. This procedure is applied successively to each variable. Examples can be found in e.g. Piani and
Haerter (2012), Li et al. (2014) and Dekens et al. (2017). Aecording-to—Vrac(2018)-thelatter-approach-suffersfromtwe
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Vrae(2048)-Vrac (2018) discusses the limitations of the ‘successive conditional’ approach and advocates for the use of the

more robust and coherent ‘marginal/dependence’ approach. Hence, ‘successive conditional’ methods are not included in the
present paper, Robin et al. (2019) and Frangois et al. (2020) extended this-the classification by introducing the ‘all-in-one’
approach, which adjusts the marginal variables and the correlations simultaneously, ‘dynamical Optimal Transport Correction’
(dOTC) (Robin et al., 2019) being such a method.

Another perspective on the multivariate bias-adjusting methods is to consider the amount of temporal adjustment that is
allowed or applied by the method. This is important, as the amount of temporal adjustment is intrinsically linked with the main
goal, the adjustment of the multivariate distribution of the variables. This distribution, in which the dependence is characterised
by the underlying copula (Nelsen, 2006; Scholzel and Friederichs, 2008), can be estimated using the ranks. Thus, to adjust the
multivariate distribution, the ranks of the climate model are replaced by those of the observations, using methods such as
the ‘Schaake Shuffle’ (Clark et al., 2004; Vrac and Friederichs, 2015). This implies that the temporal structure and trends
of the climate model will be altered, which may have a considerable impact (Van-de-Velde-et-al52020;: Francois-et-al;2020)
(Francois et al., 2020). This impact is especially large when multiday characteristics strongly matter, such as in applications
as the hydrological example we use in this study (Addor and Seibert, 2014). Vrac (2018) mentions this necessity to modify
the temporal structure and rank chronology of the simulations. Yet, he also mentions that the extent of this modification is still
a matter of debate. Cannon (2016) describes this as the ‘knobs’ that control whether marginal distributions, inter-variable or
spatial dependence structure and temporal structure are more informed by the climate model or the observations. Thus, the
choice between the temporal structure of the climate model and unbiased dependence structures is a trade-off that has to be
made. Some methods, such as those by Vrac and Friederichs (2015), Mehrotra and Sharma (2016) and Nguyen et al. (2018)
rely on the observations for their temporal properties, while other methods try to find the middle ground (e.g. Vrac (2018) and

Cannon (2018)). A last perspective, which is not limited to multivariate methods, is that of trend preservation, i.e., the capacity
of methods to preserve the changes simulated by the climate model, such as changes in mean, extremes and temporal structure.
Although the amount of trend preservation or adjustment has been a matter of debate (Ivanov et al., 2018), Maraun (2016)
argues that it is sensible to preserve the simulated changes and hence the climate change signal, if the model simulation is
credible. As such, trend preservation interacts with bias nonstationarity: non-stationarity can be seen as the divergence between
the observed and simulated trends. Hence. in a nonstationary context, trend-preserving methods may be disadvantaged, as they
will assume that the simulated trend is trustworthy. In the univariate setting, QDM is an example of a trend-preserving method,

as is ’Scaled Distribution Mapping’ by Switanek et al. (2017).
Our choice of multivariate bias-adjusting methods takes the above classification into account. The oldest method in the com-

parison is ‘Multivariate Recursive Quantile Nesting Bias Correction’ (MRQNBC) (Mehrotra and Sharma, 2016). This method
eompletely-replaces the simulated correlations by those of the observations and is a ‘marginal/dependence’ method accord-
ing to Frangois et al. (2020). As QDM is used for the marginal distributions, the latter are preserved. However, MRONBC
does not preserve the changes in dependence. ‘Multivariate Bias Correction in n dimensions’ (Cannon, 2018) is both a

‘marginal/dependence’ method and a method that tries to combine information from the climate model and the observations.

Fhe-Similar to MRQNBC, it explicitly preserves the simulated changes in the marginal distributions by applying QDM for the
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marginal distributions. As the simulated dependence structure is the basis for the adjustment, it will be slightly preserved. The
‘Rank Resampling for Distributions and Dependences’ (R?D?, Vrac (2018); Vrac and Thao (2020b)) method preserves the
rank correlation of the observations, but allows the climate model to have some influence on the temporal properties. It is also

a ‘marginal/dependence’ method: in the present paper, QDM is used as its univariate routine and thus the changes in marginal

distributions are preserved by R2D?, The most recent method, ‘dynamical Optimal Transport Correction’ (Robin et al., 2019)
differs considerably from the other two methods: it generalises the ‘transfer function’-principle using the ‘optimal transport’
paradigm (Villani, 2008), thereby defining a new category of multivariate bias-adjusting methods: the above-mentioned all-

in-one approach. It is the only method that explicitly preserves the simulated changes in both the marginal distributions and
the dependence structure. Although far from complete, by comparing these three-four methods, a broad view of the different

approaches in multivariate bias adjustment can be obtained. The main principles of the bias-adjusting methods are summarized

3.3.1 Multivariate Recursive Quantile Nesting Bias Correction

In 2016, Mehrotra and Sharma proposed a new multivariate bias adjustment method, named ‘Multivariate Recursive Quantile

Nesting Bias Correction’” (MRQNBC), based on a combination of several older methods by Johnson and Sharma (2012),

Mehrotra and Sharma (2012) and Mehrotra and Sharma (2015) and by incorporating QDM as the univariate routine for
adjusting the marginals. The underlying idea of this method is to adjust on more than one timescale, an—idea—that-mest

bias-adjusting-methods-do-netincorporate-(Haerteret-al5201)~This-and to nest the results of the different timescales within

each other. The adjustment on multiple timescales is applied-by-adjusting-almost never incorporated in bias-adjusting methods
Haerter et al., 2011). On each timescale, the biases in lag-0- and lag-1-auto and the cross-correlation coefficients, i.e. ~the

persistence attributes, are adjusted, instead of focusing on the mean or the distribution.
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Table 2. Overview of the multivariate bias-adjusting methods

MBCn MROQNBC R’D’ doTc
Category
Marginal/dependenc¢ Marginal/dependence Marginal/dependencg All-in-one

Temporal properties

properties by
the _application_of
QDM, dependence
structure partly

properties by
the _application_of
QDM

properties by
the _application_of
QDM

Shuffle_based on | Observed Shuffle_based on | Future, adjusted
observations observations

Dependence structure
Future, _ adjusted | Observed Observed Future, adjusted
based . on
observations

‘Trend preservation
Marginal Marginal Marginal Marginal

properties _ and
dependence

structure

Statistical technique

Iterative

partial _ matrix

recorrelation

Autoregressive
modeling

Conditional

resamplin

Optimal transport

Timescale

Daily _ adjustment
b DM + full

time series shuffle

Combination __of

daily, monthly,
seasonal and yearl

adjustment

Daily _ adjustment

b DM +
full time series
resampling

Full time series

Xhe — cXbo, + De,
and-
X —EXD 4 Fe,
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Fhe-After adjusting all timescales, the final daily result is calculated by weighing all timescales. However, as the nesting
method cannot fully remove biases at all time scales, thus-Mehrotra and Sharma (2016) suggested to repeat the eomplete
entire procedure multiple times. HoweverYet, in our case this-seemed-to-exacerbate-theresults;so-the-method-wasrun-only
enee-multiple repetitions exacerbated the results. Non-realistic outliers created by the first repetition influenced the subsequent
repetitions, creating even more non-realistic values. This was most clearly seen for precipitation. As a bounded variable,
precipitation is most sensitive for non-realistic values. Nonetheless, running the method just once yielded satisfactory results.

3.3.2 Multivariate Bias Correction in n dimensions

In 2018, Cannon (2018) proposed the ‘Multivariate Bias correction in n dimensions’ (MBCn) method as a flexible multivariate
bias-adjusting method. The method’s flexibility has attracted some attention, as-and it has already been used in multiple studies
(Rity et al., 2018; Zscheischler et al., 2019; Meyer et al., 2019; Francois et al., 2020). This method consists of three steps.
First, the multivariate data are rotated using a randomly generated orthogonal rotation matrix, adjusted with the additive form
of QDM, and rotated back until the calibration period model simulations converge to the observations. This convergence is
verified on the basis of the energy distance (Rizzo and Székely, 2016). Second, the validation period simulations are adjusted
using QDM, as this method preserves the simulated trends. As the last step, these adjusted time series are shuffled using the
Schaake Shuffle (Clark et al., 2004) based on the rank order of the rotated dataset. A therough-mathematical-explanation-full
mathematical description of the method can be found in Cannon (2018)and-Van-de-Velde-et-al(2026);-and-the implementation

1S,

3.3.3 Rank Resampling for Distributions and Dependences

One of the most recent methods studied in this paper is the ‘Rank Resampling for Distributions and Dependences’ (R?D?)
method, which was designed by Vrac (2018) as an improvement of the older EC-BC method (Vrac and Friederichs, 2015).
Recently, R’D? was further extended for better multisite and temporal representation by Vrac and Thao (2020b) (R’D? v2.0).
This method is a marginal/dependence multivariate bias-adjusting method, which adjusts the simulated climate dependence
by resampling from the observed dependence. The resampling is applied through the search for an analogue for the ranks
of a simulated reference dimension in the observed time series, which makes this an application of the analogue principle

Lorenz, 1969; Zorita and Von Storch, 1999) in bias adjustment. A detailed mathematical description can be found in Vrac (2018

and Vrac and Thao (2020b).

lication of R*D?

DM was used as the univariate bias-adjusting method to ensure consistency with the

other multivariate bias-adjusting methods. This ensures the preservation of the changes in the same-as—inthelatter—For-the
sake-of-elarity-marginal distribution, besides the preservation of some temporal properties, which is inherent to the method

In the present a
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is-summarised-in-Algorithm—22—method. Each variable (precipitation, evaporation and temperature) was in turn used as the
reference dimension. No other information was included, as the present study was limited to one grid cell.

3.3.4 Dynamical Optimal Transport Correction

Recently, Robin et al. (2019) indicated that the notion of a transfer function in quantile mapping can be generalised to the
theory of optimal transport. Optimal transport is a way to measure the dissimilarity between two probability distributions and
to use this as a means for transforming the distributions in the most optimal way (Villani, 2008; Peyré and Cuturi, 2019).
Optimal transport was used by Robin et al. (2019) to adjust the bias of a multivariate data set in the ‘dynamical Optimal
Transport Correction” method (dOTC), which extends the ‘CDF-transform’ (CDF-t) bias-adjusting method (Michelangeli et al.,
2009) to the multivariate case. dOTC calculates the optimal transport plans from X"° to X" (the bias between the model and
the simulations) and from X" to X (the evolution of the model). The combination of both optimal transport plans allows for
bias adjustment while preserving the trend-of-the-medel-
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3.4 Experimental design

565 Prior to all intensity-bias-adjusting methods, the thresholding occurrence-adjusting method was applied. As-in-Van-de-Velde-et-al-(2020)
In the intensity-bias-adjustment step, a balance was sought between randomness and computational power for the calculation
of the intensity-bias-adjusting methods. Methods with randomised steps were repeated. As such, 10 calculations were made for
dOTC. The resulting values of each index were averaged for further comparison. Biases on the indices were always calculated
as raw or adjusted simulations minus observations, indicating a positive bias if the raw or adjusted simulations are larger than

570 the observations and a negative bias if the simulations are smaller.

4 Results

In this section, the results will be shown first for the R index calculations for bias change, and then for the validation indices. For
the validation indices, first the indices based on the adjusted variables are discussed, followed by an elaboration on the indices

based on the derived variables. As the effect on discharge is the overarching goal of this paper and the discharge indices are
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affected by all other indices, those will be discussed last.

4.1 Bias change

R index vary considerably depending on the vari

%mwﬁ%m@wmmmm
for all variables, but the extent varies. For precipitation, bias nonstationarity is most clear in winter and summer for the highest
percentiles (Pog and Pog ;). For temperature, winter, spring and summer all show some high R index valuesare-above+-for-,
but while winter has high R index values for all percentiles, the nonstationarity is restricted to the lower to middle percentiles
WM&&WW mtdd%eﬁefeeﬂme%

mean and standard deviation: both are nonstationary for winter, whereas only the mean is nonstationary for spring and neither
mean nor standard deviation is nonstationary for summer. In autumn, the behavior is less clear: two percentiles (P5q and Pq

have an R index value of 2, but unlike the other seasons, there is no apparent pattern as these values are far apart. However.
the . . . .

standard deviation has an R index value higher than 1 for autumn temperatures, indicating that some bias nonstationarity could
be present. For evaporation, spring has the clearest bias nonstationarity; almost all percentiles have an R index value higher
than 1. For the other seasons, the nonstationarity is less striking, although present. For winter and autumn, E~s has an R index

value ofenly-0-19,—-whereas-the- 1 or higher and a clearly nonstationary standard deviation, while in summer, Eos and E
have an R index value

not-imply-that-higher than 1, although neither mean nor standard deviation is clearly nonstationary. For occurrence the bias
nonstationarity seems limited: only in spring and autumn, the R index Va}ue&fef&lepfeerpt&&&mmeeuﬁeﬂeeﬂidiees—afﬁew

nevalue for precipitation lag-1

autocorrelation is higher than 1. For correlation, the bias nonstationarity is also limited, although some of the correlations
of evaporation and either temperature or precipitation have an R index value higher than 1, but this depends on the season

(crosscorrg 1 and Crosscorrg 1, in Spring, Crosscortg r,; in winter, corrg r in summer and corrpg in autumn).
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Many of the R index values presented-in-Table-22-thus indicate that the bias changes between the two periods considered
here (1970-1989 versus 1998-2017) might already be large enough to have an effect on the bias adjustment. As these periods
are only separated by 10 years, this is an important indicator for the bias adjustment of late 21st century data, just as Chen et al.
(2015) mentioned. waeﬁkdeeﬁ%ﬁﬁﬁeﬁeﬁ}ﬁﬂa{ejtmﬁ%eweﬁfhese%ﬂm}ues‘The results vary substantlally
among ¥
vahie-of 2;-the-value-for-the O5th-percentile-is-only-0:07—This-seasons, variables and distributions of the variables. Although
this could give an indication of why-the-methods-perform-mere-poorty-for-the reason for poor performance for some of these

indices—However,-purely-based-on-these-results;—, it is impossible to say-state exactly what causes the bias nonstationarities
urely based on these results. Possible causes could be that recent trends such as those in precipitation extremes (Papalexiou

and Montanari, 2019) are poorly captured by the models, that limiting mechanisms such as soil moisture depletion (Bellprat
et al., 2013) are poorly modelled or that natural variability influences<(AddorandFischer, 2645)-(Addor and Fischer, 2015)
influences the biases. However, discussing this in depth is out of the scope of the present study and deserves a separate study.
In what follows, we will focus on the performance of the bias-adjusting methods and whether or not there is a link with these

nonstationarities.

4.2 Precipitation amount

Score (PSS) for precipitation (Table 3) indicates that the PDFs of the observations and adjusted simulations agree rather well.
These scores are very similar in the calibration and validation period. Only QDM and mQDM perform worse in every season,
whereas the change performance of the multivariate methods depends on the season. For dOTC, the result is better in the
validation period than in the calibration period.

Bo and RByp values lower-than-t-but-enlyfor- dOTC-the-majority
of-them—(Pfor the highest P percentiles in the validation period. The lower percentiles P2ss Pto P
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Table 3. PSS values for precipitation in the calibration (Cal) and validation (Val) periods (%).

Winter Spring Summer Autumn
mQDM | 1000 | 92.1 | 1000 | 934 | 1000 | 965 | 1000 | 9438

A-surprisingresult-for P-is-the-high- RByz—valuefor-50) are adjusted very well by all methods, but the performance of the
methods for the higher percentiles differs considerably between the seasons. For winter (blue) and summer (yellow), only Py

ercentiles, from P75 to Pyg 5 can be plotted for all methods. The poor adjustment of the high percentiles in winter and summer
could be caused by bias nonstationarity: the R index values for these percentiles are higher than 1, in contrast with the low and
well-adjusted higher percentiles for spring and autumn precipitation. However, although Pg= has an R index value was-¢close

to-lower than 1 for both winter and summer, it is pessible-that bias-nonstationarityalso-slightly influences-the performance:

4.3 Temperature

For the temperature adjustment; the RBpoorly adjusted. This illustrates that the R index gives an indication of the nonstationarity,
but also hides information on the size of the biases. For summer, the bias for Po; changes from 5.09 mm in the calibration period
to 1.89 mm in the validation period, a change of over 3 mm. For winter, the bias changes from 1.44 mm in the calibration
period to 0.52 mm in the validation period, a change of almost 1 mm. Yet, these differences have a very similar R index value.

A comparison with the RBgyvp and RBago values inédi

S

f the calibration period (Fig. 2?)—Jn-—contrastto-all-other methods-only-theresidual-bias

a W a a— atea—oy ST O O €
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2) illustrates that all methods perform
well for every season, indicating that the nonstationarity could be a cause of the diverging performances in the validation period
between the winter/summer and spring/autumn pairs. However, this nonstationarity is not apparent from the PSS, as it only.
oceurs in the tail of the distribution. This also follows from the R index values for the mean and standard deviation in winter
and summer. Only for standard deviation, the R index value indicates nonstationarity in winter and summer: the values are
respectively 1.79 and 1.56. Thus, the nonstationarity of the extremes and the standard deviation seem to be linked.

RBMB

Figure 1. RByp versus RBg for the precipitation in the validation period. (a) QDM, (b) mQDM, (¢c) MBCn, (d) MRQNBC, (e) dOTC
R2D?. Winter: blue, spring: ochre, summer: yellow, autumn: purple.

The methods seem to perform rather similarly in every season. Although the RBoyp values elose-to-tvary, indicating that for
some methods the bias is removed to a larger extent, the bias-difference-issmattincomparison-to-the-absolute T-values-Besides
thatforevery method; the Jower T-pereentileshave RBRBupo values thatare-too-high-te-be-plottedare similar, indicating that
relative to the observations, the influence of the difference in removed bias is low. However, despite-their similar behaviour,
there is a difference that should be acknowledged. For example, on a yearly basis, the mean number of heavy precipitation days
QMMMM@Q&M&%%%WMW&MW methods
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Figure 2. RByp versus RBy for the precipitation indices in the calibration period. (a) QDM, (b) mQDM, (c) MBCn, (d) MRQNBC, (e
dOTC, (f) R?D?, Winter: blue, spring: ochre, summer; yellow, autumn: purple.

A

values-and-might-thus-be-preferable—yearly variance clearly depends on the method: MRQNBC overestimates the variance
whereas the other methods slightly underestimate it.

4.3 Temperature

Table 4 displays the PSS values for temperature. It can be seen that the univariate bias-adjusting methods have higher values
than the multivariate methods for all seasons. Among the multivariate methods, the performance also varies: dOTC performs
hest, - . : o

important-to-consider whether-or not T-should-be-adjusted—whereas the performance for the other multivariate bias-adjusting
methods depends strongly on the season. However, the multivariate methods are much more robust between the calibration and
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Figure 3. Box plot of the Annual number of days with precipitation higher than 10 mm (ETCCDI ’Heavy precipitation’ days, see
Zhang et al. (2011)) in the validation period. (a) observations, (b) raw simulations, (¢) QDM, (d) mQDM, (e) MBCn, (f) MRQNBC,

700 validation period: the performance of the univariate methods is worse in all seasons. Nonetheless, the univariate methods still
erform better.

4.4 Petential-evaporation

Table 4. PSS values for temperature in the calibration (Cal) and validation (Val) periods (%).

Winter Spring Summer Autumn
mQDM | 993 | 940 | 988 | 870 | 99.1 | 898 | 987 | 91§
Figure-22-displays-the-Although the PDF of the adjusted simulations matches the observed PDF relatively well, the RBy

and RBg values (Figure 4) show some clear differences between the seasonal bias adjustment: for winter (blue) all methods
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perform poorly, whereas for the other seasons, at least some methods are able to adjust the raw simulations. For winter, the
R index values are high for all percentiles, which indicates that nonstationarity could be the cause for the poor performance.
However, this is not clear-cut. When comparing the winter RBoys and RBaso values for-the-E-indices:Only-afew-indiees
are-shown-for-each-method;-or just-onefor d0TEof the validation period with those of the calibration period (Fig. 3; blue),

it can be seen that only QDM (panel (a)) performs much better and that mQDM, MRQNBC and dOTC (respectively panels

b), (d) and (e)) perform slightly better in the calibration period. The better performance of these methods is clearest for the

lower percentiles (T, Tos and Tsg). MBCn (panel (c)) and R?D? (panel () seem to perform equally poor in both calibration

and validation period. The poor performance of these two methods could be caused by the seasonal evaluation: both apply a
shuffling algorithm over the full time period. However, indicati e e

methods, this is harder to explain: QDM, mQDM and MRQNBC all use seasonal time windows, while dOTC does not. How-
ever, for d6FE;-this- QDM and mQDM, the moving time window used in the adjustment and the fixed seasonal window in
the evaluation might cause a small mismatch. For MRONBC, there is also the onty-pereentileforwhich-it-is-possible-to
plot-the RBo-and-RBinfluence of the monthly and yearly adjustment. For dOTC, the optimal transport and, hence, stochastic
element might be better suited for seasonal differences than the shuffling used by MBCn and R”D?, but still does not seem
optimal. Besides, the seasonal variance is larger for temperature than for precipitation, which increases the susceptibility of the

; - —At first sight, in spring (ochre), most methods, with the exception of MBCn (panel (c
and MRQNBC (panel (d)), seem to perform relatively well. However, when comparing the biases of the validation period with
those of the calibration period, the adjustment of Ts by QDM, mQDM, MRQNBC and dOTC (respectively panels (a), (b), (d

and (e)) is clearly poorer, whereas the highest percentiles (ETgg and ETgg 5) have-lower RByp-vatues-than-for- QDMIn-this
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Given-that-the-pereentiles-with-a-perform similar to the calibration period or better. For MBCn and R2D?, the performance
is_similarly. The poor performance corresponds to the high R index value have-alarger-bias-thantherawsimulations-after

745 E-Heoweversimilar-tofor T--this-should-be-evaluated-on-a-case-by-case-basis—

. For summer, this is also observed, although to a smaller extent: only QDM and mQDM were able to properly adjust Ts in the

calibration period. In general, QDM, MRQNBC and dOTC all perform slightly worse in the validation period in comparison

750 with the calibration period for summer, mQDM performs similarly, whereas MBCn and R2D? perform poorly in both periods.
In autumn, the performance is poor for all methods in the validation period. However, there-are-some-differences-dependingon

755
QDM, the performance is poor in the calibration period as well, and, hence, conclusions are hard to draw. However, based on
the R index values, which indicate limited nonstationarity, it could be assumed that the influence of the seasonality is larger

Based on the results for winter and the fag

760

765
the lower temperature values are more susceptible nonstationarity. This should certainly be accounted for when estimating
extremes such as cold spells.

770 ton-
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Figure 4. RByp versus RBy for the eorrelation-temperature indices in the validation period. (a) QDM, (b) mQDM, (c) MBCn, (d) MRQNBC,

(e) dOTCM. Winter: blue, spring: ochre, summer: yellow, autumn: purple..
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Figure 5. RByg versus RBy for the temperature indices in the calibration period. (a) QDM, (b) mQDM, (c) MBCn, (d) MRQNBC, (¢) dOTC
R?D?. Winter: blue, s

ring: ochre, summer: yellow, autumn: purple.

4.4 Potential evaporation
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The PSS values for potential evaporation (Table 5) show that the univariate bias-adjusting methods perform better than the mul-

biases{thoughnotonallindices)thanthe-univariate-bias-adjusting methodsfor the-indices-with-thelowestresidual-bias-values:
Thfs—seems%&mdiea{eﬂaaﬁhe—mu}mfaﬂatebﬁs-adﬁ}s&ﬂgmethods and-espectally MBCn-and-dOTC-are-unable-to-adjust-the

stwhen considering the
full PDE. Similarly to temperature (Table 4) the skill scores differ among the multivariate methods. However, in contrast to

temperature, dOTC performs much worse for potential evaporation; MRQNBC performs best. Similarly to temperature, MBCn

and R%2D? vary depending on the season. In comparison with the calibration period, the univariate bias-adjusting-methods

ods perform worse in the validation period in every season, whereas this varies for the multivariate methods: only in spring
and summer, all multivariate methods perform worse. For spring, the difference is large, which could be related to the clear
nonstationarity for this season. For summer, the R index values are generally lower, which indicates less nonstationarity, but
the difference in PSS between calibration and validation period is also smaller. The large difference for spring between both
periods is striking, as this was not as apparent for winter temperatures, despite the high R index values. This could be explained

by the R index values for the e

deviation: for potential evaporation in spring, only the bias in the mean changed a lot, whereas for temperature in winter, both

the biases in mean and standard deviation changed a lot. The combination of these bias changes could offset each other in the
calculation of the PSS,

4.5 Preeipitation-oeeurrenee

Table 5. PSS values for evaporation in the calibration (Cal) and validation (Val) periods (%).

Winter Spring Summer Autumn
mQDM | 1000 | 90.5 | 1000 | 834 | 1000 | 877 | 1000 | 924
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Figure22-displaysthe The RByg and RBo and-RBymsresults for potential evaporation in the validation period are displayed
in Figure 6. For every season, all methods perform rather poorly, although there are differences between the method’s performances
800 and in the extent of nonstationarity. Based on the R index values and Table 5, it would seem that spring is most influenced
by bias nonstationarity, as many percentiles have an R index value higher than 1 and the PSS values differ considerably for
spring. Figure 6 shows that only Es (for QDM, mQDM, MRQNBC and R?D?, respectively panels (a). (b), (d) and (f)). Ego (for
&Wm@mmmwlwﬁ
m@g&wmm&a@m@wm tpi

805
s-percentiles that
have an R index value lower than 1. For mQDM and MBChn, there-is-no-clear-difference-between-the-untvariate-and-multivariate

810

except for mQDM, all methods perform poorly in the calibration period. For MBCn, dOTC and R2D?2, which perform the

worst in the rav

two-indices—with-both- RBoand RByp—valuesbelow—t-—calibration period, this could be related to the absence of a seasonal

component, whereas this is less clear for QDM, mQDM and MRQNBC, as discussed in Section 4.3. Nonetheless, the latter

815 three methods are all able to adjust Eo5 and Ex(, two percentiles that cannot be adjusted by any method in the validation period.

820 ©O3-methods behave similarly to spring: most of the multivariate methods perform as poorly in the calibration period as in the
validation period (except MRQNBC, to i i i i

torrandsome extent). The poor performance
of the multivariate methods in the calibration period indicates that the absence of a seasonal component might have a large

825 impact, as was also discussed in Section 4.3. This is confirmed by the results for the full year (not shown), which show that all
methods perform well in the calibration period.

Despite the poor performance of some methods in the calibration period, even for these seasons some differences between
the calibration and validation period are worth discussing. In winter (blue), where nonstationarity mostly affected the standard
deviation, the performance of all methods for all indices is slightly worse in comparison with the calibration period. Only the

830 lower percentiles (E5 and Eo5) can be adjusted well by almost every method. In summer (yellow), where the R index values
indicated some nonstationarity for the lower E percentiles, the performance is poorer in the validation period for all percentiles
except Eqgg and Eqq 5 (and Eqg for dOTC). However, the impact seems to be smaller for MBCn, dOTC and R?D?. In autumn
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urple), the R index values indicated the largest impact on the standard deviation. As in winter, the wet-to-dry—transition

with- RBymp—values0-50-ortower—best performance is obtained for the lowest percentiles and, for the univariate methods, for
the highest percentiles (Eq9 and Eqgg 5). Despite the seemingly larger impact on the univariate methods in these three seasons
their adjustment is still better than the adjustment by the multivariate methods.

ndThe results for potential evaporation have to be
considered in comparison to the effective bias values for the original simulations and the adjusted simulations: the original
biases were relatively small (not shown). Hence, even a small change in bias will have a large impact. Nonetheless, even these
small changes and relatively small biases have an impact, which is reflected by the RByp-vatuesfor the-number-of dry days:

on-the-namber-of-dry-days—values. On the other hand, when considering the PSS values, which reflect the full PDF instead of
focusing on the extremes, the impact is limited, although this depends on the method and season, as was shown for spring.
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Figure 6. RByz versus RBy for the potential evaporation indices in the validation period. (a) QDM, (b) mQDM, (c) MBCn, (d) MRONBC,
e) dOTC,

R2D2. Winter: blue, spring: ochre, summer:
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Figure 7. RBys versus RBy for the potential evaporation indices in the calibration period. (a) QDM, (b) mQDM, (c) MBCn, (d) MRQNBC,

e) dOTC, (f) Winter: blue, spring: ochre, summer: yellow, autumn: purple.
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4.5 Correlation

the-poor-performanee—of E-For correlation (Fig. 22

8), all methods perform relatively well in the validation period. Both the univariate and the i =

in-values-seems-to-be-a-difference-between-the-univariate-multivariate bias-adjusting methods can adjust the simulated biases

well. The univariate methods will adopt the dependence structure of the raw simulations, whereas the multivariate methods are
specifically designed to adjust the dependence structure, and both strategies seem to work well. However, it should be noted
that some of the biases in correlation are very small in the raw simulations (not shown) and that for those correlations, the good

adjustment by univariate methods is trivial: they will adopt the correlation of the simulations and only slightly adjust this b

adjusting the marginals. This is linked with an issue raised by Zscheischler et al. (2019): in situations with low biases in the

correlation, the univariate methods will almost always outperform the multivariate bias-adjusting methods—Fer-the-twe-werst
i i di Bvg—vatueseloseto-or-, as specifically adjustin

nerformimo—saethod a  MRONDR nd R n [2
0 < 1V N D

the dependence structure sometimes results in an increase of the bias.

The good performance for the validation period indicates that the impact of nonstationarity is limited, as was also shown
by the small R index values (Section 4.1). This is confirmed by the biases in the calibration period (not shown), which are
similar to those in the validation period. However, for some values, the R index value was higher than land-some valies

between0-5-, thus it is important to know what caused this. For corrg t in summer, the difference between the validation and
calibration period is negligible, although only for

DM this value is well adjusted in both periods. However, the bias for the
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inflates the R index value. For crosscorrg to and crosscorrg 11, the same effect occurs. Besides, it seems that the bias of these

three correlations is too small to be corrected by any method and that trying to adjust this automatically inflates the results. As

discussed earlier, this shows that while the R index can be a valuable tool for some variables, it does not always tell the full

story.
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Figure 8. RByp versus RBy for the diseharge-pereentiles-and-correlation indices in the 20-yearreturn-validation periodvatue. (a) QDM, (b)
mQDM, (c) MBCn, (d) MRQNBC, (e) dOTC,JQBf/QE. Winter: blue, spring: ochre, summer: yellow, autumn: purple.

5 Diseuassion
4.1 Precipitation occurrence

Figure 9 shows that the bias-adjusting methods are
able to adjust the precipitation occurrence well in most seasons. Especially the univariate bias-adjusting methods perform well.
Although the multivariate bias-adjustment always results in at least one index that is better than the raw climate simulations

htly better than the raw climate simulations.

, most indices are not, or only sli

anel (d), ochre)

This is a disadvantage inherent to the current generation of multivariate bias-adjusting methods: as discussed in Section 3.3, the
dependence adjustment will always influence the temporal structure (Francois et al., 2020; Vrac and Thao, 2020b). Nonetheless,
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on a seasonal level, the temporal structure is sometimes remarkably well adjusted, such as in summer (yellow) and autumn
(purple).

The R index values -

indicated that there might be some nonstationarit

in spring and autumn (Section 4.1): the value for Py, is 2, and for the other indices the values are clearly higher than those
in winter and summer. In contrast to other situations of bias nonstationarity, this does not rmp}yfha%QBl\/{ﬂﬁdﬁQBMﬂfe

of the-end-user-resultin a poorer, but actually a better performance for these two seasons (calibration period not shown). Winter
and summer, for which no nonstationarity could be detected, perform similarly in both the calibration and validation period.
However, in all seasons mQDM (panel (b)) performs worse in the validation than in the calibration period. As this method
uses the observed structure, the temporal structure is by construction perfect in the calibration period. The poorer result in the
validation period might imply that using the observed temporal structure does not suffice for future impacts, which might be
important when using delta methods for impact assessment.

239) has the best performance of all methods
for the occurrence, indicating once more the impact of the shuffling and similar algorithms of the multivariate bias-adjustin

methods.
AW@%%GW%@W(MWQ@ dOTC-displayed-the-mest-different resulis—For
the-fermer. MRQNBC (panel (d)) and R°D? (panel (f)) perform as well as QDM. However, mQDM (panel (b) also performs
well in all seasons, despite the poorer fit. There are also differences among the different multivariate bias-adjusting methods.
In all seasons, MBCn (panel (c)) and R?D? (panel (f)) are able to reduce the bias of the number of dry days, whereas this

36



955

960

965

varies for MRQNBC and dOTC (panel (e)). The good performance for this index for MBCn and R?D? is based on the use of

thresholding and QDM for the marginal adjustment: these methods are able to perfectly adjust the number of dry days, and

any remaining bias can be related to the combination of temporal shuffling and seasonal evaluation. However, dOTC adjusts

P01 and Ppiy well in every season. This implies that it is able to differentiate in the adjustment between zero and non-zero

values, whereas longer series of zeros are harder to adjust. The incorrect series of zeros is probably also linked with one of the

deficiencies of dOTC: it sometimes creates nonphysical precipitation values, which have to be corrected by thresholding.
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Figure 9. RBys versus RBy for the precipitation occurrence indices in the validation period. (a) QDM, (b) mQDM, (c) MBCn, (d) MRONBC,
¢) dOTC,

R2D?2. Winter: blue, spring: ochre, summer: yellow, autumn: purple.

4.2 Discharge

The Perkins Skill Score values for discharge (Table 6) show that the univariate bias-adjusting methods generally perform best

conditions-is-not-clear-eut-for-the-different-types-of-multivariate bias-adjusting methods -

on the season. However, all methods perform poorly for spring. The PSS values for evaporation clearly show the impact of
nonstationarity, which seems to be propagating to the discharge PDF. This is illustrated when comparing with the PSS values
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for the calibration period: only in spring, all methods perform worse in the validation period than in the calibration period. For
970 the other seasons, the impact is much more mixed.

Table 6. PSS values for discharge in the calibration (Cal) and validation (Val) periods (%).

Winter Spring Summer Autumn
mQDM 99.6 | 853 | 100.0 | 60.8 | 100.0 | 76.8 | 100.0 | 86.2

The impact on the PDF for spring discharge does not clearly appear when comparing the RByg and RB( values: for all meth-

975  ods ferE-(Fig—2?)-indicate-a-poorperformance;-the-influence-thereof-on-the-discharge-seems-to-be-negligible-and seasons, the

980

comparing these results with the residual biases in the

a H SEnV pa a

985

period (Fig. 11), it becomes clear that the results for winter and summer are much worse in the validation period. This
corresponds with the poor performance for precipitation adjustment in these seasons, which was probably linked with bias

990  nonstationarity.
The bias-adjusting method-islesscompelting—Anyway-methods seem to respond similarly to the nonstationarity. In winter

blue), QDM (panel (a)) performs slightly better, whereas in summer (yellow), R?D? (panel (f)) performs relatively good.

In spring (ochre), the i
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methods also perform similarly, although QDM performs slightly better for and dOTC (panel (e)) performs worse than the

other methods. As such, whether or not the methods take seasonality explicitly into account does not seem to matter for the
impact on discharge. This also follows from the structure of the hydrological model: precipitation is a more important driver
than potential evaporation. Seasonality in the bias adjustment had a larger impact on potential evaporation, but this impact
disappears when using these variables as inputs to the hydrological model. Besides, it can also be seen that if an important
forcing variable for an impact model shows large nonstationarity, this nonstationarity will propagate through the model. This
helps explaining the differences between the PSS and the RB values: the impact of nonstationarity on potential evaporation
propagates as an influence on the PDF structure, but is less visible in the final bias, as the amount of precipitation has a much
larger impact in the hydrological model. Hence, the final bias is more influenced by precipitation nonstationarity,

the higher percentiles: and Q10001000T20 are all well adjusted in the eensidered-percentileForMBECn;-calibration
eriod by QDM, mQDM, dOTC and R?D?, but are much worse adjusted in the validation period. In summer, the 5%h—pefeeﬂfﬂe

5 Discussion and conclusions

The goal of this paper was to assess how five-six bias-adjusting methods handle a climate change context with possible bias
nonstationarity. Fhree-Four of the methods were multivariate bias-adjusting methods: MRQNBC, MBCnand-dOFc-, dOTC and
R?D?. The two other the-bias-adjusting-methods-ones were univariate: one was a traditional bias-adjusting method (QDM),
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Figure 10. RBy versus RBy for the discharge percentiles and the 20-year return period value in the validation period. (a) QDM, (b) mQDM,
¢) MBCn, (d) MRQNBC, (e) dOTC, (f) R>D?, Winter: blue, spring: ochre, summer: yellow, autumn: purple,
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Figure 11. RByg versus RBy for the discharge percentiles and the 20-year return period value in the calibration period. (a) QDM, (b) mQDM,
¢) MBCn, (d) MRQNBC, (e) dOTC, (f) R>D?, Winter: blue, spring; ochre, summer: yellow, autumn: purple.dr
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while the other was almost the same method, but modified according to the delta change paradigm (mQDM). These univariate
methods were used as a baseline to-compare-the-multivariate-bias-adjusting-metheds-withfor comparison. The climate change
context, using 1970-1989 as calibration time period and 1998-2017 as validation time period, allowed us to calculate the change
1030 in bias between the periods, or the extent of bias stationaritynonstationarity, using the R index. Al-methods-were-caleulated

and-The results of all methods were compared using different indices, for which the residual biases relative to the observations

and model bias were calculated. Although the study was limited in spatial scale and climate models used, this yielded some
results that could be valuable starting points for future research.

The calculated R index values generally

1035 demonstrated that the bias of some of these indices is not stationary under climate change conditions—Fhese-changes—could

in-some-eases, although the extent of bias nonstationarity depended on the variable and index under consideration. The bias
nonstationarity could be clearly linked to the poor performance of bias-adjusting methods ;sueh-as-for-for precipitation, and
to some extent for temperature and potential evaporation. For both precipitation and evaporation, it could be observed that the
nonstationarity propagated through the rainfall-runoff model used for impact assessment, and that the propagation was different

1040 for these variables.

In the context of nonstationarity, it is important to discuss how well the methods performed. Some observations could be

made. First, the

1045

nenstationarity—Thus;—the-methods are relatively robust. Although there always is an impact when bias nonstationarity is
present, the univariate bias-adjusting methods ;eomputationally lesscomplex-and-nottaking(potentially-changing)ecorrelation:

> St g v g

specifically designed to alter the marginal distributions. As already discussed in Section 4.5, it was pointed out by Zscheischler et al. (2019
that the multivariate bias-adjusting methods were made with other principal goals, such as spatial and dependence adjustment.
As itis not assessed in this study, we cannot comment on the spatial adjustment. Nonetheless, the study by Francois et al. (2020).

1050

—can be very informative and robust for spatial
1055 adjustment, Concerning the dependence adjustment, it was shown in Section 4.3 that the multivariate methods all perform well
for the area and model chain studied here. Second, while QDM and mQDM seem to respond similarly, it should be taken into
account that mQDM is designed to have a perfect fit in the calibration period. However, the poorer performance of mQDM for
the precipitation occurrence indices is an indication that assuming that the temporal structure of the past can be used for the
future might be dangerous, as Johnson and Sharma (2011) and Kerkhoff et al. (2014) already mentioned. Given that mQDM
1060  performed worse for two time periods separated by 10 years only. it is unlikely that it is safe to use this method, or other delta
change-based methods, for impact assessments targeting the end of the 21st century that depend on the temporal structure of
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time series. Yet, for some other indices, especially the correlation, mQDM performed better. Consequently, the exact choice
should depend on the goals of the end user. Third, the methods with seasonal components do not always perform similarly.
MRQNBC is able to address seasonal effects, but its performance varies strongly depending on the variable. Even in the
situation where the univariate methods perform well, MRQNBC sometimes performed much worse, such as for temperature
in autumn or in winter (Fig 4, panel (d), respectively purple and blue). Although these three observations can be made, it is
impossible to fully discuss the method performance based on the set-up considered. The most important cause is the seasonality.
of the bias nonstationarity: while the bias nonstationarity shows clear differences between the seasons, some of the multivariate
bias-adjusting methods are not yet equipped to handle seasonality. When there are large seasonal differences for the variables,
for example for E and T, this causes a relatively poor performance in the calibration period, and a similar poor performance
in_the validation period. It is thus unclear whether the poor seasonal performance obfuscates the effect of nonstationarity,
or if the similar performance is a sign of robustness. An earlier study (Guo et al., 2020) indicates the former, but this could
also be location- and method-dependent. Hence, the set-up does not allow to clearly discern between the various categories
of multivariate bias-adjustment, such as the ‘marginal/dependence’ or ‘all-in-one’ categories. To fully address the question
on performance under bias nonstationarity, a better seasonal performance for the multivariate bias-adjusting methods seems
crucial. However, not only seasonal differences in bias nonstationarity should be acknowledged: for variables other than P, T or
E. or for other regions, bias nonstationarity might be better discernible on a monthly timescale, on a yearly timescale, or even on

longer timescales. Only a few multivariate bias-adjusting methods specifically address multiple timescales, such as MRQNBC

Mehrotra and Sharma, 2016), or more recently, ‘Multivariate Frequency Bias Correction’ (MFBC) (Nguyen et al., 2018) or

‘3DBC’ (Mehrotra and Sharma, 2019). Yet, the varying performance of MRQNBC shows that the implementation of the

seasonality can have a large impact. As such, the question about seasonality is not easy to answer.
The validation results could only be obtained by analysing and comparing a broad combination of indices. Considering only

the mean or other standard statistics would have hidden many of the results seen. For example, in contrast to the results for the
mean, the inclusion of both high and low extremes highlighted some problems with bias nonstationarity for some variables.
As such, this study does not contradict earlier studies such as Maraun (2012), where the mean-based biases were found to
be rather stable.

methods—As-sueh;"Thus, we repeat the advice by Maraun and Widmann (2018a) to use indices not directly affected by bias-

adjusting methods and to analyse the user needs before deciding upon the bias adjustment validation method. An important
limitation is that we only used one GCM-RCM-combination. Using a model ensemble will-would be more informative, but
could hide a single model’s poor performance. On the other hand, similar assessments could also be used to discard poor-

performing modelste , based

on the R index (also suggested by Maurer et al. (2013)) or the remaining bias after adjustment. However, the used indices can

still be improved. Although the R index provides a lot of insight into the bias nonstationarity, it has been shown to over- or
underestimate the effect of bias nonstationarity depending on the size and sometimes even the sign of the original bias. Other

criteria also exist, such as the ‘signal-to-noise ratio’ (SNR) used by Hui et al. (2020). The different criteria or indices should

be compared and maybe new tools are needed, so that the issue of bias nonstationarity can be more thoroughly explored.
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methods-are-based-on-different-assumptions;-and-thus;—the-To have a better view of how these results should be interpreted
for impacts and compound events, the perspective of the end user should makeﬂve}}-gfemﬂe&eheiee&eﬁfh&mefheéﬂseek

mm&m%%mmmwﬁww%w
example, using the relatively simple PDM. Even for this model, it could be observed that bias nonstationarity can propagate
in multiple ways. The influence of the nonstationarity in precipitation was most clear in summer and winter. As precipitation
is the driving variable for the PDM, even the limited nonstationarity, mostly in the precipitation extremes, had an influence
on the bias-adjustment.discharge simulation, as could be seen for the discharge in winter and summer (Fig. 11, respectively
Mﬂmmmw%mw&%mmmmmwever it wmamwm

effect on the full PDF in spring, as could be observed from the PSS value for discharge (Table 6). In spring, no nonstationarit
could be observed for precipitation, which allowed the influence of evaporation to be larger, although it has-been—suggested-te

locations-can-be-used-as-extra—variables{seetheoretically has a smaller influence than precipitation on the discharge. The
different propagation of bias nonstationarity, observed here for the extremes versus the full PDF, can be important considering.
that bias adjustment can be applied for many different types of impact assessment, However, the assessment in this study is
relatively simple. For other impact studies, the results may vary considerably. For example, forest fires (a typical compound
event, discussed in a bias adjustment context in e.g-Vrae(2048))- Yang et al. (2015), Cannon (2018), Zscheischler et al. (2019)

depend more heavily on T and E to simulate fire weather conditions. Besides such compound events, other types of application
can use a wide variety of variables and, hence, the bias nonstationarity may differ. In all of these studies, the propagation of bias
nonstationarity will depend on the timescales considered in the impact assessment, the timescales on which nonstationarity is
present, the variables considered and the spatial scale. Although this last aspect is limited in this study, it can be assumed that if
bias nonstationarity is present in one grid cell, it will also be present in neighbouring grid cells with similar climatic conditions.

Neﬂefhe}essl‘ovggggygiq the results discussed in this paper indicate that mﬂﬂyhmefheds—aﬂd—espeera}}y&wmulﬁvaﬂafe
ybias nonstationarity can
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have an important influence on the bias adjustment and the propagation of biases in impact models. Depending on the extent

of nonstationarity (spatial, temporal and the variables affected), such propagation should be taken into account far more when
studying future impacts. As authors have mentioned before (Ehret et al., 2012; Maraun, 2016; Nahar et al., 2017), this foremost

implies that climate models have to become better at modelling the future: we need to be able to trust them as fully as possible.
As long as this is not the case, bias adjustment methods have to be developed that are more robust and that are able to help us
assessing the future correctly. As such, the issue of seasonality as raised here is very important. Yet, impact assessment cannot
wait for new methods to be developed and/or tested: we need to prepare ourselves for the future as soon as possible. As-was

shownhereFor now, we can state

that for a robust bias adjustment under bias-nonstationa
conditions, accounting for seasonality is crucial. Given this statement, we advise to use univariate bias-adjusting methods, until

it becomes more clear how it can be ensured that multivariate methods certainly perform well in-a-climate-change-eontextunder
bias nonstationarity.

Code and data availability. The code for the computations is publicly available at https://doi.org/10.5281/zenodo.4247518 (Hydro-Climate
Extremes Lab — Ghent University, 2020). All methods were implemented in Matlab, except R2D2, for which the R package "R2D2" was
used (Vrac and Thao, 2020a). The RCA4 data are downloaded and are available from the Earth System Grid Federation data repository. The
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