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Abstract.

Climate change is one of the biggest challenges currently faced by society, with an impact on many systems, such as the

hydrological cycle. To locally assess this impact
:
in

::
a
::::
local

:::::::
context, Regional Climate Model (RCM) simulations are often

used as input for hydrological rainfall-runoff models. However, RCM results are still biased with respect to the observations.

Many methods have been developed to adjust these biases, but only during the last few years, methods to adjust biases that5

account for the correlation between the variables have been proposed. This correlation adjustment is especially important

for compound event impact analysis. As a simple example of those compound events,
::
an

:::::::::
illustration,

::
a
:
hydrological impact

assessment
::::::
exercise

:
is used here, as hydrological models often need multiple locally unbiased input variables to ensure an

unbiased output. However, it has been suggested that multivariate bias-adjusting methods may perform poorly under climate

change conditions because of bias nonstationarity. In this study, two univariate and three multivariate bias-adjusting methods10

are compared with respect to their performance under climate change conditions. To this end, the methods are calibrated in

the late 20th century (1970-1989) and validated in the early 21st century (1998-2017), in which the effect of climate change

is already visible. The variables adjusted are precipitation, evaporation and temperature, of which the former two are used as

input for a rainfall-runoff model, to allow for the validation of the methods on discharge. Although not used for discharge

modelling, temperature is a commonly-adjusted variable in both uni- and multivariate settings and therefore important to take15

into account
::
we

::::::::
therefore

::::
also

:::::::
included

:::
this

:::::::
variable

::
in

:::
our

:::::::
research. The methods are also evaluated using indices based on the

adjusted variables, the temporal structure, and the multivariate correlation. For precipitation, all methods decrease the bias in a

comparable manner
:::
The

::::::
Perkins

:::::
Skill

:::::
Score

::
is

::::
used

::
to

:::::::
evaluate

:::
the

:::
full

::::
PDF.

::::
The

::::::
results

::::
show

::
a
::::
clear

::::::
impact

::
of

:::::::::::::
nonstationarity

::
on

:::
the

::::
bias

:::::::::
adjustment. However, for many other indices the results differ considerably between the bias-adjusting methods.

The multivariate methods often perform worse than the univariate methods, a result that is especially notable for temperature20

and evaporation. As these variables have already changed the most under climate change conditions, this reinforces the opinion

that the
:::
the

::::::
impact

:::::
varies

:::::::::
depending

::
on

::::::
season

::::
and

:::::::
variable:

:::
the

::::::
impact

::
is

::::
most

::::::
visible

:::
for

::::::::::
precipitation

::
in
::::::
winter

:::
and

::::::::
summer.

::::
This

::::::
should

::
be

:::::::::
accounted

:::
for

::
in

::::
both

:
multivariate bias-adjusting methods are not yet fit to cope with nonstationary climate

conditions. Although the effect is slightly dampened by the hydrological model, our analysis still reveals that, to date, the

simpler univariate bias-adjusting methods are preferred for assessing climate change impact
:::
and

::::::
impact

:::::::
models.

::
In

:::
the

::::::
former25
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::::::
because

:::::
these

:::
do

:::
not

:::::::
always

::::::
include

:::::::::::
seasonality;

::
in

:::
the

:::::
latter

:::::::
because

::::::::::
incorrectly

:::::::
adjusted

::::::
inputs

::
or

:::::::
forcings

::::
will

::::
lead

:::
to

:::::::
predicted

:::::::::
discharges

::::
that

:::
are

:::::
biased.

Copyright statement. TEXT

1 Introduction

The influence of climate change is felt throughout many regions of the world, as becomes evident from the higher frequency30

or intensity of natural hazards, such as floods, droughts, heatwaves and forest fires (IPCC, 2012). As these intensified natural

hazards threaten society, it is essential to be prepared for them. Knowledge on future climate change is obtained by running

Global Climate Models (GCMs), creating large ensemble outputs such as in the Climate Model Intercomparison Project 6

(CMIP6) (Eyring et al., 2016). Although they are informative on a global scale, the generated data are too coarse for local

climate change impact assessments. To bridge the gap from the global to the local scale, Regional Climate Models have35

become a standard application (Jacob et al., 2014), using the output from GCMs as input or boundary conditions.

Although the information provided by both GCMs and RCMs is very valuable, both are biased with respect to
::::
w.r.t. the ob-

servations, especially for precipitation (Kotlarski et al., 2014). The biases can occur in any statistic and are commonly defined

as “a systematic difference between a simulated climate statistic and the corresponding real-world climate statistic" (Ma-

raun, 2016). These biases are caused by temporal or spatial discretisation and unresolved or unrepresented physical processes40

(Teutschbein and Seibert, 2012; Cannon, 2016). An important example of the latter is convective precipitation, which can only

be resolved by very high resolution models. Although the
::::::
further improvement of models is an important area of research

(Prein et al., 2015; Kendon et al., 2017; Helsen et al., 2019; Fosser et al., 2020), such improved models are computationally

expensive. As such, it is still necessary practice to statistically adapt the climate model output to adjust the biases (Christensen

et al., 2008; Teutschbein and Seibert, 2012; Maraun, 2016).45

Many different bias-adjusting methods exist (Teutschbein and Seibert, 2012; Gutiérrez et al., 2019). They all calibrate a

transfer function using the historical simulations and historical observations and apply this transfer function to the future

simulations to generate future ‘observed values’ or an adjusted future. Of all the different methods, the quantile mapping

method (Panofsky et al., 1958) was shown to be the generally best performing method (Rojas et al., 2011; Gudmundsson et al.,

2012). Quantile mapping adjusts biases in the full distribution, whereas most other methods only adjust biases in the mean50

and/or variance.

An important problem with quantile mapping and most other commonly used methods is that they are univariate and do

not adjust biases in the multivariate correlation. Although quantile mapping can retain climate model multivariate correlation

(Wilcke et al., 2013), the ability of univariate methods to improve the climate model’s multivariate correlation has been ques-

tioned (Hagemann et al., 2011; Ehret et al., 2012; Hewitson et al., 2014). This is important for impact assessment, as local55

impact models often need multiple input variables and many high-impact events are caused by the co-occurrence of multiple
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phenomena, the so-called ‘compound events’ (Zscheischler et al., 2018, 2020). For example, floods can be characterised
::::
flood

::::::::
magnitude

::::
can

::
be

::::::::
projected

:
by a rainfall-runoff model using evaporation and precipitation time series as an input. If the cor-

relation between these variables is biased with respect to
::::
w.r.t.

:
the observations, then it can be expected that the model output

is biased as well. This results in a higher uncertainty when using these models and thus in the resulting assessment,
:::::
which

::::
can60

:::::
further

:::::::::
propagate

::
in

:::
the

:::::
impact

:::::::
models. During the past decade, multiple methods have been developed to counter this problem.

The first methods focused on the adjustment of two jointly occurring variables, most often precipitation and temperature, such

as those by Piani and Haerter (2012) and Li et al. (2014). However, it became clear that adjusting only two variables would

not suffice, hence many more methods have been developed that jointly adjust more
:::::::
multiple variables, including those by

Vrac and Friederichs (2015); Cannon (2016); Mehrotra and Sharma (2016); Dekens et al. (2017); Cannon (2018); Vrac (2018);65

Nguyen et al. (2018); Robin et al. (2019). Yet, the recent growth in availability of such methods comes along with a gap in

the knowledge on their performance. In some studies, these methods have been compared with one or two older multivari-

ate methods to reveal the improvements (Vrac and Friederichs, 2015; Cannon, 2018) or with univariate methods (Räty et al.,

2018; Zscheischler et al., 2019; Meyer et al., 2019). Each of these three studies indicates that the univariate and multivariate

methods
:::
the

:::::
latter

::::
three

::::::
studies

:::::::::
comparing

::::
uni-

::::
and

::::::::::
multivariate

::::
bias

::::::::
adjusting

:::::::
methods

::::::::
indicates

:::
that

:::::
these

:
lead to different70

results, yet it is difficult to conclude whether uni- or multivariate methods perform best. According to Zscheischler et al. (2019)

multivariate methods have an added value. Räty et al. (2018) conclude that the multivariate methods and univariate methods

performed
::::::
perform

:
similarly, while Meyer et al. (2019) could not draw definitive conclusions. These studies vary in set-up,

adjusted variables and study area, which all could have caused the difference in added value. In all three studies, the same

method, namely the Multivariate Bias Correction in n dimensions (MBCn) (Cannon, 2018) was the basis for comparison. Only75

recently, the first studies comparing multiple multivariate bias-adjusting methods were published (François et al., 2020; Guo

et al., 2020). The study by François et al. (2020) focused on the different principles underlying the multivariate bias-adjusting

methods and concluded that the choice of method should be based on the end user’s goal. Besides, they also noticed that so far,

all multivariate methods fail in representing
::::::
studied

:::
fail

::
in

::::::::
adjusting the temporal structure of a time series. In contrast to the

focus of François et al. (2020), Guo et al. (2020) studied the performance of multivariate bias-adjusting methods for climate80

change impact assessment and concluded that multivariate methods could be interesting in this context. However, they also

noticed that the performance of the multivariate methods was lower in the more recent validation period and suggested that

this could be caused by bias nonstationarity. As the use of multivariate bias-adjusting methods could be an important tool for

climate change impact assessment, this deserves more attention.

The bias stationarity - or bias time invariance - assumption is the most important assumption for bias correction. It implies85

that the bias is the same in the calibration and validation or future periods and that the transfer function based on the calibration

period can consequently
::::
thus be used in the future period. However, this assumption does not hold due to different types of

nonstationarity induced by climate change, which may cause problems (Milly et al., 2008; Derbyshire, 2017). In the context

of bias adjustment, this problem has been known for several years (Christensen et al., 2008; Ehret et al., 2012), but has not

received a lot of attention. A few authors have tried to propose new types of bias relationships (Buser et al., 2009; Ho et al.,90

2012; Sunyer et al., 2014; Kerkhoff et al., 2014). Recently, it has been suggested that it is best to assume a non-monotonic

3



bias change (Van Schaeybroeck and Vannitsem, 2016). Some authors suggested that bias nonstationarity could be an important

source of uncertainty (Chen et al., 2015; Velázquez et al., 2015; Wang et al., 2018; Hui et al., 2019), but not all found clear

indications of bias nonstationarity (Maraun, 2012; Piani et al., 2010; Maurer et al., 2013).

The availability of new methods and more data enables a more coherent assessment of the bias (non)stationarity issue. By95

comparing three
:::
four

:
bias-adjusting methods in a climate change context with possible bias nonstationarity, some of the re-

maining questions in François et al. (2020) and Guo et al. (2020) can be answered. The three
:::
four multivariate bias-adjusting

methods that will be compared in this study are ‘Multivariate Recursive Quantile Nesting Bias Correction’ (MRQNBC, Mehro-

tra and Sharma (2016)), MBCn (Cannon, 2018)and
:
, ‘dynamical Optimal Transport Correction’ (dOTC, Robin et al. (2019))

. These three
:::
and

:::::
‘Rank

::::::::::
Resampling

:::
for

:::::::::::
Distributions

:::
and

::::::::::::
Dependences’

::::::
(R2D2,

::::::::::::::::::::::::::::::
Vrac (2018); Vrac and Thao (2020b)

:
).
::::::
These100

:::
four

:
methods give a broad view of the different multivariate bias adjustment principles, which we will elaborate on in Sec-

tion 3.3. As a baseline, two univariate bias-adjusting methods will be used: Quantile Delta Mapping (QDM, Cannon et al.

(2015)) and modified Quantile Delta Mapping (mQDM, Pham (2016). QDM is a classical univariate bias-adjusting method

and is chosen for this analysis as it is a robust and relatively common quantile mapping method, especially as one of the sub-

routines in the multivariate bias-adjusting methods (Mehrotra and Sharma, 2016; Nguyen et al., 2016; Cannon, 2018). mQDM,105

on the other hand, is one of the so-called ‘delta change’ methods, which are based on an adjustment of the historical time series.

Using these univariate bias-adjusting methods, we can assess whether multivariate and univariate bias-adjusting methods differ

in their response to possible bias nonstationarity.

The methods will be compared by applying them for the bias adjustment of precipitation, potential evaporation and tempera-

ture. The bias-adjusted time series will be used as inputs for a hydrological model in order to simulate the discharge. Discharge110

time series are the basis for flood hazard calculation, but can also be considered as an interesting source of validation them-

selves (Hakala et al., 2018). Although temperature is not needed as an input for
:::
The

::::
bias

:::::::::
adjustment

::::
and

::::::::
discharge

:::::::::
simulation

::
are

:::::
both

:::::::
assessed

::
at

:::
one

::::
grid

::::::::::
cell/location

:::::
only.

::::::::
Although

:::
this

::::
does

::::
not

::::
allow

:::
for

:::::::::::
investigating

:::
the

::::::
spatial

:::::
extent

::::
and

::::::
impact

::
of

::::::::::::
nonstationarity,

:
the hydrological model, it is, together with precipitation, the most common variable to be adjusted in similar

studies and therefore it is also included here. In order to mimic climate change context, the ‘historical’ or calibration time115

series runs from 1970 to 1989 and the ‘future’ or validation time series runs from 1998 to 2017, which is only recent past. In

the latter time frame, effects of climate change are already visible (IPCC, 2013)
::::
focus

::
on

::::
one

:::::::
location

::::
gives

::::::::::
information

:::
on

:::
the

:::::::
influence

:::
of

:::::::
possible

::::
bias

::::::::::::
nonstationarity

:::
on

::::
local

::::::
impact

::::::
models

::::
and

::::
may

:::::
hence

:::
be

:
a
:::::::
starting

::::
point

:::
for

:::::::
broader

:::::::::::
assessments.

:::
We

:::
will

::::
also

:::
not

:::::::
account

:::
for

:::
the

::::::::::
differences

:::::::
between

:::::::
models,

::
as

:::
we

::::
only

:::::::::
investigate

::
a
:::::
single

:::::::::::
GCM-RCM

:::::
model

::::::
chain.

::::
This

:::::
allows

:::
for

::
a

::::::
precise

:::::::::::
investigation

::
of

:::
the

:::::::
possible

::::::
effects

::
of

::::
bias

:::::::::::::
nonstationarity,

:::::::
although

::
it

::::
does

:::
not

:::::
allow

:::
for

::::::::
assessing

:::::
other120

::::
types

:::
of

:::::::::
uncertainty. The change of some biases from calibration to validation time series will be calculated, to indicate the

extent of the bias nonstationarity. Maurer et al. (2013) proposed the R index for this purpose(see Section 2.4). Calculating the

bias nonstationarity between both periods will give an indication of the impact of a changing bias on climate impact studies

for the end of the 21st century. As Chen et al. (2015) mentioned: “If biases are not constant over two very close time periods,

there is little hope they will be stationary for periods separated by 50 to 100 years"125
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2 Data and validation

2.1 Data

For the observations, the dataset made available by the
:::
The

:::::::::::
observational

::::
data

:::::
used

::::
were

::::::::
obtained

::::
from

:::
the

:
Belgian Royal

Meteorological Institute and described in Van de Velde et al. (2020) is also used in this study. This dataset comprises
:::::
(RMI)

:::::
Uccle

::::::::::
observatory.

::::
The

::::
most

:::::::::
important

::::
time

:::::
series

::::
used

::
is
::::

the
::::::
10-min

:::::::::::
precipitation

:::::::
amount,

::::::
gauged

::::
with

::
a
::::::::::::::
Hellmann-Fuess130

::::::::::
pluviograph,

::::
from

:::::
1898

::
to

:::::
2018.

:::
An

:::::
earlier

::::::
version

:::
of

:::
this

::::::::::
precipitation

::::::
dataset

::::
was

::::::::
described

::
by

:
Demarée (2003)

:::
and

::::::::
analyzed

::
in De Jongh et al. (2006).

::::::::
Multiple

::::
other

::::::
studies

::::
have

::::
used

:::
this

::::
time

:::::
series

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Verhoest et al., 1997; Verstraeten et al., 2006; Vandenberghe et al., 2011; Willems, 2013)

:
.
:::
The

::::::
10-min

:::::::::::
precipitation

::::
time

:::::
series

::::
was

:::::::::
aggregated

::
to

::::
daily

:::::
level

::
to

::
be

::::::::::
comparable

::::
with

:::
the

:::::
other

::::
time

:::::
series

::::
used.

:

:::
For

:::
the

::::::::::
multivariate

::::::::
methods,

::::
the

:::::::::::
precipitation

::::
time

:::::
series

::::
was

:::::::::
combined

::::
with

::
a
::
2

:::::
meter

:::
air

::::::::::
temperature

::::
and

::::::::
potential

:::::::::
evaporation

:::::
time

:::::
series.

::::
The

:::::
daily

::::::::
potential

::::::::::
evaporation

:::
was

:::::::::
calculated

:::
by

:::
the

:::::
RMI

::::
from

:::::
1901

::
to

:::::
2019,

:::::
using

::::
the

:::::::
Penman135

::::::
formula

:::
for

:
a
:::::
grass

::::::::
reference

::::::
surface (Penman, 1948)

::::
with

:::::::
variables

::::::::
measured

::
at
:::
the

:::::
Uccle

::::::::::
observatory.

:::::
Daily

:::::::
average

::::::::::
temperatures

::::
were

:::::::
obtained

:::::
using

::::::::::::
measurements

::::
from

:::::
1901

::
to

:::::
2019.

::
As

:::
the

:::
last

::::::::
complete

::::
year

:::
for

::::::::::
precipitation

::::
was

:::::
2017,

:::
the

:::
data

:::::
were

::::
used

::::
from

:::::
1901

::
to

:::::
2017,

:::::::::
amounting

::
to

:
117 years (1901-2017) of daily precipitation amount, daily average temperature and daily

potential evaporation
:::::
years

::
of

::::
daily

::::
data.

:::
As

:::::
Uccle

:::::
(near

::::::::
Brussels)

::
is

::::::
situated

::
in
::
a
:::::
region

::::
with

:::::
small

::::::::::
topographic

::::::::::
differences,

::
it

:
is
::::::::
assumed

:::
that

:::
the

:::::::::::
precipitation

:::::::
statistics

::::::
within

:::
the

::::
grid

:::
cell

:::
are

::::::::
uniform.

::::::
Hence,

:::
the

:::::
Uccle

::::
data

:::
can

:::
be

::::
used

:::
for

::::::::::
comparison140

::::
with

::
the

:::::::
gridded

::::::
climate

:::::::::
simulation

::::
data

::::::::
discussed

::::::
below.

The IPCC report (IPCC, 2013) clearly states the influence of climate change on different variables . For Belgium, this is

illustrated by Fig. ??, in which the temperature and evaporation anomalies for the 21st century are all higher than the long-term

mean value. However, for precipitation, the effect of climate change is not yet visible.

Yearly mean temperature, precipitation and evaporation anomalies for 1901-2017, compared with long-term mean value145

from 1920-1980. Red points are 21st century values.

As in Van de Velde et al. (2020),
:::
For

:::
the

::::::::::
simulations,

::::
data

::::
from the EURO-CORDEX (Jacob et al., 2014)

::::::
project (Jacob et al., 2014)

::::
were

:::::
used.

::::
The

::::::
Rossby

::::::
Centre

:::::::
regional

:::::::
climate

:
model RCA4 was used (Strandberg et al., 2015), with MPI-ESM-LR GCM

(Popke et al., 2013) boundary conditions. RCA4 is used (Strandberg et al., 2015) as it is one of the few RCMs with po-

tential evaporation as an output variable.
:::
This

:::::
RCM

::::
was

::::::
forced

:::::
with

::::::::
boundary

:::::::::
conditions

:::::
from

:::
the

::::::::::::
MPI-ESM-LR

::::::
GCM150

(Popke et al., 2013)
::
and

::::
has

::
a

::::::
spatial

::::::::
resolution

:::
of

::::::
0.11°,

::
or

::::
12.5

::::
km.

:::::::::
Historical

::::
data

::::
and

:::::::
scenario

:::::
data

:::
for

:::
the

::::
grid

::::
cell

:::::::::
comprising

:::::
Uccle

:::::
were

::::::::::
respectively

:::::::
obtained

:::
for

:::::::::
1970-2005

::::
and

::::::::::
2006-2100.

:::
The

::::::
former

::::
time

::::::
frame

::
is

::::::
limited

::
by

:::
the

:::::::
earliest

:::::::
available

::::
data

:::::
from

:::
the

:::::
RCM.

::::
The

::::
latter

:::::
time

:::::
frame

::::
was

::::
only

::::
used

::::
until

:::::
2017,

::
in
::::::::::

accordance
::::
with

:::
the

:::::::::::
observational

:::::
data.

:::
As

::::::
climate

::::::
change

::::::::
scenario,

::
an

:::::::
RCP4.5

:::::::
forcing

:::
was

:::::
used

::
in

:::
this

:::::
paper

:
(van Vuuren et al., 2011)

:
.
:::::
Since

::::
only

::::
‘near

:::::::
future’

:::::
(from

::
the

::::::
model

::::
point

:::
of

:::::
view)

:::
data

:::::
were

::::
used,

:::
the

::::::
choice

::
of

::::::
forcing

::::
does

:::
not

::::
have

::
a
::::
large

:::::::
impact.

::::::::
However,

::::
when

::::::::
studying

::::::::
scenarios155

::
in

:
a
::::
time

:::::
frame

::::::
further

:::::
away

:::::
from

:::
the

:::::::
present,

::::
using

:::
an

::::::::
ensemble

::
of

:::::::
forcings

::
is
:::::
more

:::::::
relevant

::
to

:::
be

:::::
aware

::
of

:::
the

::::::::::
uncertainty

::::::::
regarding

:::::
future

:::::::
climate

::::::
change

:::::::
impact.

::::::::::
evaluations

::
of

::::
the

:::::
RCA4

::::::
model

:::::
have

::::::
shown

:::
that

:::::
there

::
is
::

a
::::
bias

::
in

::::::::::::
precipitation,

::::::::
especially

::
in

::::::
winter

:
(Strandberg et al., 2015)

:
,
:::
but

::::
this

::::
bias

::
is

::
in
::::

line
:::::

with
:::
the

::::::
biases

::::
from

:::::
other

:::::::::::::::
EURO-CORDEX

:::::::
models

(Kotlarski et al., 2014)
:
.
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2.2 Time frames160

As mentioned in the introduction, it is important to assess bias-adjusting methods in a context they will be used in, i.e. under

climate change conditions. The time series used in this study were chosen accordingly: 1970-1989 was chosen as the ‘historical’

or calibration time period and 1998-2017 was chosen as the ‘future’ or validation time period.
::
In

::::
this

::::
time

::::::
frame,

:::::
effects

:::
of

::::::
climate

::::::
change

:::
are

:::::::
already

::::::
visible

:::::::::::
(IPCC, 2013)

:
. Time series of 20 years were chosen here, although it is advised to use 30

years of data to have robust calculations (Berg et al., 2012; Reiter et al., 2018). However, as no climate model data prior to165

1970 are available, using 30 years of data would have led to overlapping time series.

2.3 Validation framework

An important aspect in bias adjustment is the validation of the methods. Different methods are available, of which a pseudo-

reality experiment (Maraun, 2012) is one of the most-used ones. In this method, each member of a model ensemble is in

turn used as the reference in a cross-validation. However, while such a set-up is useful when comparing bias-adjustment170

methods, it only mimics a real application context. When sufficient observations are available, a ‘pseudo-projection’ setup

:::::
set-up (Li et al., 2010) can be used. This set-up resembles a ‘differential split-sample testing’ (Klemeš, 1986) and is more in

agreement with a practical application of bias-adjusting methods. Differential split-sample testing has been used in a bias

adjustment context by Teutschbein and Seibert (2013), by constructing two time series with respectively the driest and wettest

years. In our case study, it is assumed that the two time series differ enough because of climate change. Consequently, the175

approach is simple, and as the validation is not set in the future, it is considered a ‘pseudo-projection’.

Besides the choice of time frames and data, also the choice of validation indices is of key importance. Maraun and Widmann

(2018a) stress that these indices should only be indirectly affected by the bias adjustment, as only validating on adjusted

indices can be misleading. Such adjusted indices are the precipitation intensity, temperature and evaporation, which are used

to build the transfer function in the historical setting and should be corrected by construction. Under bias stationarity, this180

correction will be carried over to the future, possibly hiding small inconsistencies that may arise for extreme values. If the

bias is not stationary, the effect might be different between adjusted and indirectly affected indices. As such, besides the three

adjusted variables (indices 1 to 3 in Table 1) and their correlations (indices 4 to 12, which are directly adjusted by some of the

methods), also indices based on the precipitation occurrence and on the discharge Q are used. The occurrence-based indices

(13 to 16) allow for assessing how the methods influence the precipitation time series structure, an influence that might be185

potentially large (Van de Velde et al., 2020). The discharge-based indices (17 and 18) allow for the assessment of the impact of

the different bias-adjusting methods on simulated river flow. The discharge-based indices combine the information of the other

indices by routing through the rainfall-runoff model. They are the most important aspect of the assessment, as they indicate the

natural hazard. ETCCDI (Expert Team on Climate Change Detection and Indices) precipitation indices (Zhang et al., 2011)

have also been considered and calculated. However, these are not included in this paper, as the differences in ETCCDI indices190

were minor and did not allow to clearly discern between the different methods
::
As

:::
the

:::::::::
percentiles

:::::
focus

::::::
mostly

:::
on

:::
the

::::::::
extremes,

::
the

:::::::
Perkins

::::
Skill

:::::
Score

:::::
(PSS)

:
(Perkins et al., 2007)

:
is
::::
used

::
to
::::::
assess

:::
the

:::::::::
adjustment

::
of

:::
the

:::
full

::::
PDF

:::
of

::
the

::::::::
variables. All indices
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were
::
are

:
calculated taking all days into account, instead of only calculating them on wet days, as some of the multivariate

bias-adjusting methods do not discriminate between wet or dry days in their adjustment.

:::
The

::::::
indices

:::
are

:::
all

:::::::::
calculated

::
on

::
a
:::::::
seasonal

:::::
basis

:::
for

::::
both

:::
the

:::::::::
calibration

::::
and

::::::::
validation

:::::::
period.

:::
By

:::::::::
comparing

::::
over

:::::
these195

::::::
periods,

:::
we

:::
can

:::::
relate

:::
the

:::::::::::
performance

::
to

:::::
either

:::
the

::::::
method

:::::
itself

::
or

::::
bias

::::::::::::::
(non)stationarity,

::
on

::
a
:::::::
seasonal

:::::
basis.

:::::::
Besides,

:::
not

:::
all

:::::::
methods

:::::
adjust

:::
on

:
a
:::::::
seasonal

:::::
basis.

:::
As

:::::
such,

:::::::
methods

:::::::::
performing

::::::
poorly

::
in

::::
both

::::::
periods

::::::
might

::::
need

:
a
::::::::
seasonal

:::::::::
component

:::
for

:::
bias

::::::::::
adjustment.

::::
The

::::::
seasons

:::::
were

::::::
defined

::
as

:::::::
follows:

::::::
winter

:::::
(DJF),

::::::
spring

:::::::
(MAM),

:::::::
summer

:::::
(JJA)

:::
and

:::::::
autumn

::::::
(SON).

:

Table 1. Overview of the indices used

Nr Index Name

1 Px Precipitation amount percentile values, with x the percentile considered

2 Tx Temperature percentile values, with x the percentile considered

3 Ex Evaporation percentile values, with x the percentile considered

4 corrP,E Spearman correlation between the time series of P and E

5 corrP,T Spearman correlation between the time series of P and T

6 corrE,T Spearman correlation between the time series of E and T

7 crosscorrP,E,0 Lag-0 crosscorrelation between the time series of P and E

8 crosscorrP,T,0 Lag-0 crosscorrelation between the time series of P and T

9 crosscorrE,T,0 Lag-0 crosscorrelation between the time series of E and T

10 crosscorrP,E,1 Lag-1 crosscorrelation between the time series of P and E

11 crosscorrP,T,1 Lag-1 crosscorrelation between the time series of P and T

12 crosscorrE,T,1 Lag-1 crosscorrelation between the time series of E and T

13 PP00 Precipitation transition probability from a dry to a dry day

14 PP10 Precipitation transition probability from a wet to a dry day

15 Ndry Number of dry days

16 Plag1 Precipitation lag-1 auto-correlation

17 Qx Discharge percentiles, with x the percentile considered

18 QT20 20-year return period value of discharge

2.4 Bias nonstationarity

In a study on possible changes in bias, Maurer et al. (2013) proposed the R index:200

R = 2
| biasf −biash |
| biasf |+ | biash |

, (1)

where biasf and biash are the biases in respectively the future and historical time series, calculated on the basis of the observa-

tions and raw climate simulations. The R index takes a value between 0 and 2. If the index is greater than one, the difference

in bias between the two sets is larger than the average bias of the model and it is likely that the bias adjustment would degrade

7



the RCM output rather than improve it. The index is calculated for the indices used for validation in order to have an indication205

of the influence of bias nonstationarity on these indices. Besides for the indices, the R index is also calculated for the average

and standard deviation of each variable, in order to be able to more easily visualise the changes in distribution.

2.5 Hydrological model

Similar to Van de Velde et al. (2020)Pham et al. (2018), we use the Probability Distributed Model (PDM, Moore (2007)Moore (2007); Cabus (2008)),

a lumped conceptual rainfall-runoff model to calculate the discharge for the Grote Nete watershed in Belgium.
:::
This

::::::
model

::::
uses210

::::::::::
precipitation

:::
and

::::::::::
evaporation

::::
time

:::::
series

::
as

::::::
inputs

::
to

:::::::
generate

:
a
::::::::
discharge

::::
time

::::::
series. The PDM as used here was calibrated by

Cabus (2008)
::::::
(RMSE

::
=
:::
0.9

:::::
m3/h,

::::
see

::::::::::::::::
Pham et al. (2018)

::
for

:::::
more

::::::
details)

:
using the Particle Swarm Optimization algorithm

(PSO, Eberhart and Kennedy (1995)). The same assumption was used as in Pham et al. (2018) and Van de Velde et al. (2020),

i.e. Eberhart and Kennedy (1995)
:
).

:::
As

::
in Pham et al. (2018)

:
,
:
it
::::
was

:::::::
assumed

:
that the differences between meteorological con-

ditions in the Grote Nete-watershed and Uccle are negligible, and thus that
:::
that

::::
thus

:
the adjusted data for the Uccle grid cell215

can be used as a forcing for the PDM.
:::
This

::::::::::
assumption

::
is

:::::
based

::
on

:::
the

::::::
limited

:::::::
distance

:::
of

::
50

:::
km

:::::::
between

:::
the

:::::::
gauging

:::::::
stations

::::
used

:::
for

:::
the

:::::::::::
observations

::
in

:::::
Uccle

::::
and

:::
the

:::::::
gauging

::::::
station

::::
used

::::
for

:::
the

:::::
PDM

:::::::::
calibration.

:::
As

:::::::::
mentioned

:::::::
before,

:::
the

::::::
region

:::
has

:
a
:::
flat

::::::::::
topography

::::
and,

:::::
hence,

:::
the

:::::::::::
climatology

:::
can

::
be

:::::::::
considered

:::::::
similar.

:::::::::::
Furthermore,

:::
the

::::
goal

::
is

:::
not

::
to

:::::
make

::::::::::
predictions,

:::
but

::
to

:::::
assess

:::
the

::::::
impact

:::
of

:::::::
different

::::
bias

:::::::::
adjustment

::::::::
methods

::
on

:::
the

::::::::
discharge

:::::::
values. To calculate the bias on the discharge

indices, both the
::::::
indices,

::::::::
observed,

:
raw and adjusted precipitation and evaporation

::::
RCM

:
time series were used as forcing for220

this model.
:::
The

::::::::
discharge

::::
time

:::::
series

:::::::::
generated

::
by

:::
the

:::::::::::
observations

::
is

:::::::::
considered

::
to

:::
be

:::
the

:::::::::
’observed’

:::::::::
discharge,

:::
and

::::::
biases

::
are

:::::::::
calculated

::
in

::::::::::
comparison

::::
with

:::
this

::::
time

::::::
series.

2.6 Validation metrics

The residual biases relative to the observations and to the model bias are often used in this paper to graphically present and

interpret the results(Van de Velde et al., 2020). These residual biases are based on the ‘added value’ concept (Di Luca et al.,225

2015) and enable a comparison based on two aspects. The first aspect is the performance in removing the bias, the second

is the extent of the bias removal in comparison with the original value for the corresponding index for the observation time

series. The use of the residual biases allows for a detailed study and comparison of the effect of bias adjustment on the different

indices.

The residual bias relative to the observations RBO for an index k is calculated as follows:230

RBO (k) = 1−
| biasraw(k) | − | biasadj(k) |

| obs(k) |
, (2)

with raw(k) the raw climate model simulations, adj(k) the adjusted climate model simulations and obs(k) the observed values

for index k.

The residual bias relative to the model bias RBMB for an index k is calculated as follows:

RBMB (k) = 1−
| biasraw(k) | − | biasadj(k) |

| biasraw(k) |
. (3)235
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Absolute values are used in Eqs. (2) and (3) to compute the absolute difference between the raw and adjusted values, thus

neglecting a possible change of sign of the bias. If the values of these residual biases are lower than 1 for an index, the method

performs better than the raw RCM for this index. The best methods have low scores on both residual biases for as many indices

as possible.

3 Bias-adjusting methods240

3.1 Occurrence-bias adjustment: Thresholding

One of the deficiencies of RCMs, especially in Northwest Europe, are the so-called ‘drizzle days’ (Gutowski et al., 2003;

Themeßl et al., 2012; Argüeso et al., 2013), i.e. the simulation of a small amount of precipitation on days that are supposed

to be
:::::
during

::::::
which

:::::
small

:::::::
amounts

::
of

:::::::::::
precipitation

:::
are

:::::::::
simulated

:::::
while

:::::
these

::::
days

::::::
should

::::
have

:::::
been

:
dry. This has an influ-

ence on the temporal structure of the simulated time series and should thus be adjusted (Ines and Hansen, 2006). This is245

commonly done in an occurrence-bias-adjusting step before the main step, the intensity-bias adjustment. Although multiple

methods are available (Hay and Clark, 2003; Schmidli et al., 2006; Vrac et al., 2016; Van de Velde et al., 2020), their effect on

the intensity-bias-adjusting methods is not always clear, especially if these add a lot of complexity, such as the multivariate

intensity-bias-adjusting methods. Furthermore, the more advanced methods, with stochastic steps, do not always seem to have

an added value (Van de Velde et al., 2020). Therefore, we proposed to use simpler methods, such as thresholding .250

Thresholding
::
In

:::
this

::::::
study,

:::
we

:::
use

:::
the

:::::::::::
thresholding

:::::::::::::::::::::
occurrence-bias-adjusting

:::::::
method,

::::::
which is one of the most common

occurrence-bias-adjusting methods and has been in use for many years (e.g. Hay and Clark (2003); Schmidli et al. (2006); Ines

and Hansen (2006)). This method is only applicable in regions where the assumption holds that the simulated time series has

more wet days than the observed time series. This is the case for Northwest Europe (Themeßl et al., 2012) and Belgium in

particular. An advanced version of the thresholding method is used here. To adjust the number of wet days, the frequencies255

::::
total

::::::
number

:
of dry days in the observations and in the simulations are calculated. The difference

::
in

:::
dry

::::
days

:
between the two

frequencies
::::::
periods, ∆N , is the number of days of the simulated time series that have to be adapted. The simulated series is

adapted by first sorting the wet days and thus only changing
::
If

::::
∆N

::::
days

::::
have

::
to

::
be

::::::::
converted

::
to
::::
dry

::::
days,

::::
then

:
the ∆N lowest

days of the simulation time series by setting them to 0.
::::
days

::::
with

:::
the

::::::
lowest

:::::::
amounts

::
of

:::::::::::
precipitation

:::
are

:::::::
changed

::
to

:::
dry

:::::
days.

∆N is computed for the past and applied in the future and consequently relies on the bias stationarity assumption. However,260

as thresholding is used prior to all methods, the influence of possible bias nonstationarity on ∆N is assumed to be negligible.

More mathematical details and an algorithm including all steps can be found in Van de Velde et al. (2020). In the present paper,

days in the simulation are
:::::::
Besides,

::
as

::
is

:::::
shown

::
in
:::::::
Section

:::
4.1,

:::
the

:::::::
number

::
of

:::
dry

::::
days

::
is
:::::::::
stationary

:::
for

::
the

:::::
time

:::::
frames

:::::::
studied

::
in

:::
this

:::::
paper.

:

::
In

:::
this

::::::::
advanced

::::::
version

::
of

:::::::::::
thresholding,

:::::
some

::::::::::::
considerations

::
are

::::::
made.

::::
First,

:
a
::::
day

:
is
:
considered wet if the daily precipitation265

intensity is higher than
::
its

:::::::::
simulated

::::::::::
precipitation

:::::::
amount

::
is

:::::
above

:
0.1 mm, to account for measurement errors in the obser-

vations.
::::::
Second,

:::
the

::::::::::
adjustment

:
is
:::::
done

::
on

::
a
:::::::
monthly

:::::
basis,

::
to

:::::::
account

:::
for

:::
the

::::::::
temporal

:::::::
structure

::
in

:::
the

::::::::
observed

::::
time

::::::
series.
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:::::
Third,

::::
both

::::::::
historical

::::
and

:::::
future

::::::::::
simulations

:::
are

::::::::
adjusted,

::
to

:::::
ensure

::::
that

:::
the

::::
bias

:::
can

:::
be

:::::::::
transferred

::::
from

::::
the

::::::::
historical

::
to

:::
the

:::::
future

::::
time

:::::
period

::::::
would

::
be

::::::::
impaired.

:

3.2 Univariate intensity-bias-adjusting methods270

3.2.1 Quantile Delta Mapping

The Quantile Delta Mapping (QDM) method was first proposed by Li et al. (2010). Its main idea is to preserve the climate sim-

ulation trends: it takes trend nonstationarity (changes in the simulated distribution) into account to a certain degree. Although

it handles temperature adjustments well, it gives unrealistic values for precipitation and was therefore extended by Wang

and Chen (2014) for precipitation adjustment. A comparison with other quantile mapping methods by Cannon et al. (2015)275

showed this method to perform best with respect to the preservation of trends. Cannon et al. (2015) bundled both the method

by
::
By

:::::::::
combining

:::
the

:::::::
methods

:::
by

:
Li et al. (2010) (Equidistant CDF-matching) and Wang and Chen (2014) (Equiratio CDF-

matching)under the name Quantile Delta Mapping, because of the similarity with delta change methods (which are described

in e. g. Olsson et al. (2009), Willems and Vrac (2011) and Räty et al. (2014)). ,
::::::::::::::::::
Cannon et al. (2015)

::::::::
developed

:::
the

::::::::
Quantile

::::
Delta

::::::::
Mapping

::::::
method.

:
280

Mathematically, this method can be written as

xfa
i = xfs

i +F−1
xho

(
Fxfs

(
xfs
))
−F−1

xhs

(
Fxfs

(
xfs
))

(4)

in the additive case, and

xfa
i = xfs

i

F−1
xho

(
Fxfs

(
xfs
))

F−1
xhs (Fxfs (xfs))

(5)

in the ratio or multiplicative case. The superscripts hs, ho, fs and fa indicate respectively the historical simulations, the his-285

torical observations, the future simulations and the adjusted future. The
::
In

:::
this

::::::
paper,

:::
the additive version is used for temper-

ature adjustments, whereas the multiplicative version is used for the adjustment of precipitation and evaporation, to ensure

physically correct values (Hempel et al., 2013).The same implementation is used as in Van de Velde et al. (2020): a 91-day

window to
::::
time

:::::
series

::::
and

:::
the

::::::::::::
multiplicative

:::
one

:::
for

:::::::::::
precipitation

:::
and

:::::::::::
evaporation

::::
time

::::::
series.

::::
This

::::::
choice

::
is

:::::
based

:::
on

:::
the

::::
work

::
of
:

Wang and Chen (2014),
::::

who
:::::

have
::::::
shown

::::
that

:::::
using

:::
the

:::::::
additive

:::::::::
adjustment

::::
for

::::::::::
precipitation

::::::
results

:::
in

:::::::::
unrealistic290

::::::::::
precipitation

::::::
values

::::
and

:::::::::
introduced

:
a
::::::::::::

multiplicative
::::::::::

adjustment.
::::

For
::::::::::
evaporation,

:::
we

::::::
follow

::::
the

:::
few

::::::::
available

::::::
studies

:::::
(e.g.

Lenderink et al. (2007)
:
)
::
in

:::::
using

:::
the

:::::
same

:::::::::
adjustment

::
as

:::
for

:::::::::::
precipitation.

::
To

:
ensure the consistency of the time series(Themeßl et al., 2011; Rajczak et al., 2016; Reiter et al., 2018); empirical CDFs

forthe ease of application (Gudmundsson et al., 2012; Gutjahr and Heinemann, 2013); application of the multiplicative version

on wet daysonly,
:
,
:
a
::::::
91-day

:::::::
moving

:::::::
window

::
is

:::::
opted

:::
for,

:::
as

::::::::
suggested

:::
by Rajczak et al. (2016)

:::
and

:
Reiter et al. (2018)

:
.
::::
This295

::::::
enables

:::
the

:::::::::
adjustment

:::
of

::::
each

:::
day

:::::
based

:::
on

::::::::::::::::::::::::
91days/year · 20years = 1820

:::::
days.

::::::
These

::::
days

::::
were

::::
used

:::
to

::::
build

:::
an

::::::::
empirical

::::
CDF

:::
(as

::
in

:::::::::::::::::::::::::::::::::::::::::::::::::
Gudmundsson et al. (2012); Gutjahr and Heinemann (2013),

::::::
among

:::::::
others).

::
It
::
is
::::
also

:::::::::
important

::
to

::::
note

::::
that

:::
for

:::::::::::
precipitation, Eq. (5)

:::
was

:::::::
applied

::::
only

:::
on

:::
the

::::
days

:::::::::
considered

::::
wet,

:::
i.e.

:
with a precipitation /evaporation

:::::
higher

::::
than

::::
0.1

::::
mm.
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:::
For

::::::::::
consistency,

::
a
:
threshold of 0.1 mm /day.

:::
was

::::
also

::::
used

:::
for

:::::::::::
evaporation.

::
It

::
is

::::::::
important

:::
to

::::
note

::::
that

:::::::
although

::::::
QDM

::
is

::::
only

::::::
applied

:::
on

:::
wet

:::::
days,

:
it
::::
can

:::
still

:::::::::
transform

::::::::::::::
low-precipitation

:::
wet

:::::
days

:::
into

::::
days

::::
that

:::
are

:::::::::
considered

::
to
:::
be

:::
dry

::::
(e.g.

::::
with

::
a300

::::::::::
precipitation

:::::::
amount

:
<
:::
0.1

:::::
mm)

:
if
:::
the

::::
ratio

::
in
::::
Eq.

:
(5)

::
is
:::::
small

:::::::
enough.

:

3.2.2 Modified Quantile Delta Mapping

Pham (2016) proposed another version of QDM, following the delta change philosophy (Olsson et al., 2009; Willems and Vrac,

2011): the trend established by the RCM is assumed to be more thrust-worthy than the absolute value itself. When applying

this type of methods, the simulated change between the historical and the future is applied to the observations. Thus, instead305

of the future simulations, the historical observations are adjusted to the future ‘observations’. As Johnson and Sharma (2011)

mention, this workflow could be problematic for future impact assessment, as it inherits the temporal structure of the historical

observations. This method is mathematically very similar to the QDM method, exchanging the roles of xfs and xho. Thus, it is

named ‘modified Quantile Delta Mapping’ (mQDM), and can for the additive case be written as

xfa
i = xho

i +F−1
xfs

(
Fxho

(
xho
))
−F−1

xhs

(
Fxho

(
xho
))
. (6)310

The ratio version is mathematically written as
::::
given

:::
by

xfa
i = xho

i

F−1
xfs

(
Fxho

(
xho
))

F−1
xhs (Fxho (xho))

. (7)

For the implementation, the same principles were used as for the QDM method: a 91-day moving window, empirical CDFs

and a threshold
:::::::
minimum

:::::
value

:
of 0.1 mm/day to be considered as a wet day.

3.3 Multivariate intensity-bias-adjusting methods315

The increasing number of multivariate bias-adjusting methods throughout the 2010s urges the need to classify them according

to their properties. One possible classification was done by Vrac (2018), who proposed the ‘marginal/dependence’ versus the

‘successive conditional’ approach. The former approach separately adjusts the 1D-marginal distributions and the dependence

structure and is applied in e.g. Vrac and Friederichs (2015), Cannon (2018) and Vrac (2018). These two components are then

recombined to obtain data that are close to the observations for both marginal and multivariate aspects. The latter approach320

consists of adjusting one given variable and then adjusting a second
:
a variable conditionally on the second variable: this

:::::::
variables

:::::::
already

:::::::
adjusted.

:::::
This procedure is applied successively to each variable. Examples can be found in e.g. Piani and

Haerter (2012), Li et al. (2014) and Dekens et al. (2017). According to Vrac (2018) , the latter approach suffers from two

main limitations . First, the adjustment is performed conditionally on the previously adjusted data. However, the adjustment

is often applied in bins. As a result, for each variable, the amount of data available for each bin decreases, thus decreasing325

the robustness of the adjustment. Second, the ordering of the variables in the successive adjustments matters. For example,

Li et al. (2014) point out that their ‘Joint Bias Correction for temperature’ (JBCt) and ‘Joint Bias Correction for precipitation’

(JBCp) methods, which respectively first adjust temperature and precipitation, differ in performance. For these two reasons,
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Vrac (2018)
::::::::::
Vrac (2018)

::::::::
discusses

:::
the

:::::::::
limitations

:::
of

:::
the

:::::::::
‘successive

:::::::::::
conditional’

::::::::
approach

:::
and

:
advocates for the use of the

more robust and coherent ‘marginal/dependence’ approach.
:::::
Hence,

::::::::::
‘successive

::::::::::
conditional’

::::::::
methods

:::
are

:::
not

:::::::
included

:::
in

:::
the330

::::::
present

:::::
paper.

:
Robin et al. (2019) and François et al. (2020) extended this

::
the

:
classification by introducing the ‘all-in-one

:
’

approach, which adjusts the marginal variables and the correlations simultaneously, ‘dynamical Optimal Transport Correction’

(dOTC) (Robin et al., 2019) being such a method.

Another perspective on the multivariate bias-adjusting methods is to consider the amount of temporal adjustment that is

allowed or applied by the method. This is important, as the amount of temporal adjustment is intrinsically linked with the main335

goal, the adjustment of the multivariate distribution of the variables. This distribution, in which the dependence is characterised

by the underlying copula (Nelsen, 2006; Schölzel and Friederichs, 2008), can be estimated using the ranks. Thus, to adjust the

multivariate distribution, the ranks of the climate model are replaced by those of the observations, using methods such as

the ‘Schaake Shuffle’ (Clark et al., 2004; Vrac and Friederichs, 2015). This implies that the temporal structure and trends

of the climate model will be altered, which may have a considerable impact (Van de Velde et al., 2020; François et al., 2020)340

::::::::::::::::::
(François et al., 2020). This impact is especially large when multiday characteristics strongly matter, such as in applications

as the hydrological example we use in this study (Addor and Seibert, 2014). Vrac (2018) mentions this necessity to modify

the temporal structure and rank chronology of the simulations. Yet, he also mentions that the extent of this modification is still

a matter of debate. Cannon (2016) describes this as the ‘knobs’ that control whether marginal distributions, inter-variable or

spatial dependence structure and temporal structure are more informed by the climate model or the observations. Thus, the345

choice between the temporal structure of the climate model and unbiased dependence structures is a trade-off that has to be

made. Some methods, such as those by Vrac and Friederichs (2015), Mehrotra and Sharma (2016) and Nguyen et al. (2018)

rely on the observations for their temporal properties, while other methods try to find the middle ground (e.g. Vrac (2018) and

Cannon (2018)).
:
A

:::
last

::::::::::
perspective,

::::::
which

::
is

:::
not

::::::
limited

::
to

::::::::::
multivariate

:::::::
methods,

::
is
::::
that

::
of

::::
trend

:::::::::::
preservation,

::::
i.e.,

:::
the

:::::::
capacity

::
of

:::::::
methods

::
to

:::::::
preserve

:::
the

:::::::
changes

::::::::
simulated

:::
by

::
the

:::::::
climate

::::::
model,

::::
such

::
as

:::::::
changes

::
in

:::::
mean,

::::::::
extremes

:::
and

::::::::
temporal

::::::::
structure.350

::::::::
Although

:::
the

::::::
amount

:::
of

:::::
trend

::::::::::
preservation

:::
or

:::::::::
adjustment

:::
has

:::::
been

:
a
::::::

matter
:::
of

::::::
debate (Ivanov et al., 2018)

:
,
:
Maraun (2016)

:::::
argues

::::
that

::
it

::
is

:::::::
sensible

::
to

:::::::
preserve

::::
the

::::::::
simulated

:::::::
changes

::::
and

:::::
hence

:::
the

:::::::
climate

::::::
change

::::::
signal,

::
if

:::
the

::::::
model

:::::::::
simulation

::
is

:::::::
credible.

:::
As

::::
such,

:::::
trend

::::::::::
preservation

:::::::
interacts

::::
with

::::
bias

:::::::::::::
nonstationarity:

:::::::::::::
non-stationarity

:::
can

:::
be

::::
seen

::
as

:::
the

:::::::::
divergence

:::::::
between

::
the

::::::::
observed

:::
and

:::::::::
simulated

::::::
trends.

::::::
Hence,

::
in

:
a
:::::::::::
nonstationary

:::::::
context,

::::::::::::::
trend-preserving

:::::::
methods

::::
may

::
be

:::::::::::::
disadvantaged,

::
as

::::
they

:::
will

::::::
assume

::::
that

:::
the

::::::::
simulated

:::::
trend

:
is
::::::::::
trustworthy.

:::
In

::
the

:::::::::
univariate

::::::
setting,

:::::
QDM

::
is

::
an

::::::::
example

::
of

:
a
::::::::::::::
trend-preserving

:::::::
method,355

::
as

:
is
:::::::

’Scaled
::::::::::
Distribution

:::::::::
Mapping’

::
by

:
Switanek et al. (2017)

:
.

Our choice of multivariate bias-adjusting methods takes the above classification into account. The oldest method in the com-

parison is ‘Multivariate Recursive Quantile Nesting Bias Correction’
::::::::::
(MRQNBC)

:
(Mehrotra and Sharma, 2016). This method

completely replaces the simulated correlations by those of the observations and is a ‘marginal/dependence’ method accord-

ing to François et al. (2020).
::
As

::::::
QDM

::
is

::::
used

:::
for

:::
the

::::::::
marginal

:::::::::::
distributions,

:::
the

:::::
latter

:::
are

:::::::::
preserved.

::::::::
However,

::::::::::
MRQNBC360

::::
does

:::
not

::::::::
preserve

:::
the

:::::::
changes

:::
in

::::::::::
dependence.

:
‘Multivariate Bias Correction in n dimensions’ (Cannon, 2018) is both a

‘marginal/dependence’ method and a method that tries to combine information from the climate model and the observations.

The
:::::
Similar

:::
to

:::::::::
MRQNBC,

::
it

::::::::
explicitly

::::::::
preserves

:::
the

::::::::
simulated

:::::::
changes

::
in

:::
the

:::::::
marginal

:::::::::::
distributions

::
by

::::::::
applying

:::::
QDM

:::
for

:::
the

12



:::::::
marginal

:::::::::::
distributions.

:::
As

:::
the

::::::::
simulated

::::::::::
dependence

:::::::
structure

::
is
:::
the

:::::
basis

:::
for

::
the

::::::::::
adjustment,

::
it

:::
will

:::
be

::::::
slightly

:::::::::
preserved.

::::
The

:::::
‘Rank

::::::::::
Resampling

:::
for

:::::::::::
Distributions

::::
and

::::::::::::
Dependences’

:::::::
(R2D2,

::::::::::::::::::::::::::::::
Vrac (2018); Vrac and Thao (2020b)

:
)
::::::
method

:::::::::
preserves

:::
the365

::::
rank

:::::::::
correlation

::
of

:::
the

:::::::::::
observations,

:::
but

::::::
allows

:::
the

::::::
climate

:::::
model

:::
to

::::
have

::::
some

::::::::
influence

:::
on

:::
the

:::::::
temporal

:::::::::
properties.

::
It
::
is

::::
also

:
a
:::::::::::::::::::
‘marginal/dependence’

:::::::
method:

::
in

:::
the

::::::
present

::::::
paper,

:::::
QDM

::
is

::::
used

::
as

::
its

:::::::::
univariate

::::::
routine

:::
and

::::
thus

:::
the

:::::::
changes

::
in

::::::::
marginal

::::::::::
distributions

:::
are

::::::::
preserved

:::
by

:::::
R2D2.

::::
The

:
most recent method, ‘dynamical Optimal Transport Correction’ (Robin et al., 2019)

differs considerably from the other two methods: it generalises the ‘transfer function’-principle using the ‘optimal transport’

paradigm (Villani, 2008), thereby defining a new category of multivariate bias-adjusting methods: the above-mentioned all-370

in-one approach.
:
It
::

is
:::
the

:::::
only

::::::
method

::::
that

::::::::
explicitly

::::::::
preserves

:::
the

:::::::::
simulated

:::::::
changes

::
in

::::
both

:::
the

::::::::
marginal

::::::::::
distributions

::::
and

::
the

::::::::::
dependence

:::::::::
structure. Although far from complete, by comparing these three

:::
four

:
methods, a broad view of the different

approaches in multivariate bias adjustment can be obtained.
:::
The

::::
main

:::::::::
principles

::
of

:::
the

:::::::::::
bias-adjusting

::::::::
methods

::
are

:::::::::::
summarized

::
in

::::
Table

::
2.
:

3.3.1 Multivariate Recursive Quantile Nesting Bias Correction375

In 2016, Mehrotra and Sharma proposed a new multivariate bias adjustment method, named ‘Multivariate Recursive Quantile

Nesting Bias Correction’ (MRQNBC), based on a combination of several older methods by Johnson and Sharma (2012),

Mehrotra and Sharma (2012) and Mehrotra and Sharma (2015)
:::
and

:::
by

:::::::::::
incorporating

::::::
QDM

::
as

:::
the

:::::::::
univariate

:::::::
routine

:::
for

:::::::
adjusting

::::
the

::::::::
marginals. The underlying idea of this method is to adjust on more than one timescale, an idea that most

bias-adjusting methods do not incorporate (Haerter et al., 2011). This
:::
and

::
to

::::
nest

:::
the

::::::
results

::
of

:::
the

:::::::
different

:::::::::
timescales

::::::
within380

::::
each

:::::
other.

:::
The

:
adjustment on multiple timescales is applied by adjusting

:::::
almost

:::::
never

:::::::::::
incorporated

::
in

:::::::::::
bias-adjusting

::::::::
methods

:::::::::::::::::
(Haerter et al., 2011).

:::
On

:::::
each

::::::::
timescale,

:
the biases in lag-0- and lag-1-auto and the cross-correlation coefficients, i.e. the

persistence attributes,
::
are

::::::::
adjusted, instead of focusing on the mean or the distribution.

As a first step in this method, QDM is applied separately on variables to adjust the empirical CDFs. This is followed by a

multivariate bias adjustment to adjust the lag-0 and lag-1 auto and cross-correlation coefficients. This combination of univariate385

and multivariate bias-adjusting methods is applied on all time scales. For the multivariate adjustment, two models are used: a

multivariate first-order autoregressive (AR(1)) model with constant parameters at the daily and yearly level, and a multivariate

AR(1) model with periodic parameters (Salas, 1980) at the monthly and seasonal level. All steps are applied to the different

types of data: historical observations of temperature, evaporation and precipitation (combined in the matrix Xho), historical

climate model simulations of the three variables (the matrix Xhs) and climate model projections of the three variables (the390

matrix Xfs), which have to be adjusted. All these datasets are of size T ×N , with T the number of time steps and N the

number of variables.

The quantile-mapped future GCM time series for time step t is denoted as Xfa
t . The standardised versions of this time series

and of the observed time series are denoted as X̆fa
t and X̆ho

t , respectively. Using the standardised time (zero mean and unit

variance) series, the multivariate AR(1) model with constant parameters (MAR) for the observed and GCM multivariate time395
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Table 2.
::::::::
Overview

:
of
:::

the
:::::::::
multivariate

:::::::::::
bias-adjusting

::::::
methods

:::::
MBCn

::::::::
MRQNBC

::::
R2D2

:::::
dOTC

:::::::
Category

::::::::::::::::
Marginal/dependence

::::::::::::::::
Marginal/dependence

::::::::::::::::
Marginal/dependence

:::::::
All-in-one

:::::::
Temporal

:::::::::
properties

:::::
Shuffle

::::::
based

:::
on

:::::::::
observations

:

:::::::
Observed

:::::
Shuffle

::::::
based

:::
on

:::::::::
observations

:

:::::
Future,

:::::::
adjusted

::::::::::
Dependence

:::::::
structure

:::::
Future,

:::::::::
adjusted

::::
based

::::::::::
on

:::::::::
observations

:::::::
Observed

:::::::
Observed

:::::
Future,

:::::::
adjusted

:::::
Trend

::::::::::
preservation

:::::::
Marginal

:::::::
properties

:::::::
by

::
the

:::::::::
application

:::
of

:::::
QDM,

:::::::::
dependence

::::::
structure

:::::
partly

:::::::
Marginal

:::::::
properties

:::::::
by

::
the

:::::::::
application

:::
of

::::
QDM

:

:::::::
Marginal

:::::::
properties

:::::::
by

::
the

:::::::::
application

:::
of

::::
QDM

:

:::::::
Marginal

:::::::
properties

:::::::
and

::::::::
dependence

::::::
structure

:

::::::::
Statistical

:::::::
technique

::::::
Iterative

:::::
partial

:::::::::
matrix

:::::::::
recorrelation

:

:::::::::::
Autoregressive

:::::::
modeling

:::::::::
Conditional

::::::::
resampling

::::::
Optimal

:::::::
transport

::::::::
Timescale

::::
Daily

::::::::::
adjustment

::
by

::::::
QDM

::
+
::::

full

:::
time

:::::
series

:::::
shuffle

:

:::::::::
Combination

:::::
of

::::
daily,

::::::::::
monthly,

::::::
seasonal

:::
and

:::::
yearly

::::::::
adjustment

::::
Daily

::::::::::
adjustment

::
by

::::::::
QDM

::::
+

:::
full

:::::
time

::::::
series

::::::::
resampling

:::
Full

::::
time

::::
series

:

series can be expressed as (Mehrotra and Sharma, 2016):

X̆ho
t = CX̆ho

t−1 +Dεt

and

X̆fa
t = EX̆fa

t−1 +Fεt ,

with C and D the coefficient matrices of X̆ho
t , E and F the coefficient matrices of X̆fa

t and εt a white noise term. The coefficient400

matrices are calculated using the N ×N lag-0 and lag-1 cross-correlation matrices M0 and M1. Using the standardised time
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series, the elements of these matrices can be expressed as (Salas, 1980):

mi,j
0 = 1

T

∑T
t=1x

i
tx
j
t

mi,j
1 = 1

T−1

∑T
t=1x

i
tx
j
t+1 ,

with i and j the column numbers of X̆t, referring to the variables whose correlation is calculated. This enables the calculation405

of C and E as (Matalas, 1967):

C = Mho
1 Mho−1

0 ,

E = Mfa
1 Mfa−1

0 ,

and of D and F via

DDT = Mho
0 −Mho

1 Mho−1
0 MhoT

1410

FFT = Mfa
0 −Mfa

1 Mfa−1
0 MfaT

1 ,

which can be solved using the eigenvalues and eigenvectors of DDT or FFT:

D = V
√
SVT ,

F = V
√
SVT ,

with V the matrix of eigenvectors and S a diagonal matrix with the corresponding eigenvalues.415

The multivariate bias adjustment is then implemented by removing the lag-0 and lag-1 auto- and cross-correlations from the

future time series X̆fa
t (the matrices E and F) and applying the observed lag-0 and lag-1 auto- and cross-correlations (C and

D) to the future time series and thus creating a modified future time series, X̆′ fat . These steps are applied by first rearranging

and simplifying Eq. (??) for εt:

εt = F−1
(
X̆fa
t −EX̆fa

t−1

)
,420

with εt now a standardised vector of N variables calculated by removing the lag-0 and lag-1 auto- and cross-correlations from

the X̆fa
t time series. This vector is plugged into Eq. (??) along with the matrices C and D in which X̆fa

t is used instead of X̆ho
t

to obtain the modified time series:

X̆′ fat = CX̆′ fat−1 +DF−1
(
X̆fa
t −EX̆fa

t−1

)
,

which can be rearranged as:425

X̆′ fat = CX̆′ fat−1 +DF−1X̆fa
t −DF−1EX̆fa

t−1 .

This model preserves the
:::
The

::::::
biases

:::
are

:::::::
adjusted

:::
by

::::::::
replacing

:::
the

::::::::
modeled

:::::::::
persistence

::::::::
attributes

::::
with

:
observed persistence

attributes. As a last step, destandardising results in the bias-adjusted time series X′ fat .
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When using the multivariate AR(1) with periodic parameters (PMAR), the parameters are derived separately for each period

to allow for periodicity. In this case, the vectors Xho
t,τ and Xfa

t,τ respectively represent the observed and quantile mapped GCM430

time series. The subscript t refers to the year and the subscript τ to a specific period in the year.

The elements of the periodic version of M0 and M1 can be calculated as (Salas, 1980):

mi,j
0,τ =

∑Tτ
t=1(x

i
t,τ−x̄

i
τ)(x

j
t,τ−x̄

j
τ)

Tτsiτs
j
τ

mi,j
1,τ =

∑Tτ
t=1(x

i
t,τ−x̄

i
τ)(x

j
t,τ−1−x̄

j
τ−1)

Tτsiτs
j
τ−1

,

with Tτ the number of time steps of the period τ , x̄τ and x̄τ−1 the mean of periods τ and τ − 1 (for instance, if τ is summer,435

than τ − 1 is spring) and sτ and sτ−1 the standard deviations of periods τ and τ − 1. The correlation matrices are calculated

in the same way as in the non-periodic steps. The only difference is that they are calculated for every period (e.g. separately

for every season or month). For every time step in period τ , the corresponding value can be adjusted as follows to preserve the

observed persistence attributes:

X̆′ fat,τ = Cτ X̆
′ fa
t,τ−1 +DτF

−1
τ X̆fa

t,τ −DτF
−1
τ Eτ X̆

fa
t,τ−1 .440

The different time steps are combined with the nesting method proposed in Johnson and Sharma (2012) and Mehrotra and Sharma (2015)

. First, QDM (as described in Section 3.2.1) is applied at a daily level, followed by MAR. These adjusted time series are then

aggregated and averaged to form a monthly time series, which is adjusted by QDM, standardised and adjusted by PMAR. Note

that the standardisation of the aggregated time series does not imply that the variables of a period τ of that time series have zero

mean and unit variance. The results of the monthly adjustment are aggregated and averaged to form seasonal time series, which445

are also adjusted using QDM, standardised and adjusted by PMAR. As a last nesting step, the results are once more aggregated

and averaged to build an annual time series, which is adjusted using QDM and MAR. The outcomes of all these steps are

combined into a weighting factor that is used to modify the daily time series accordingly (Srikanthan and Pegram, 2009):

X′′fat,j,s,i =

(
Y′faj,s,i
Yfa
j,s,i

)(
Z′fas,i
Zfa
s,i

)(
A′fai
Afa
i

)
X′fat,j,s,i ,

with t the day, j the month, s the season, i the year, Y′faj,s,i the monthly adjusted value, Yfa
j,s,i ,

:::
on

:::
the

::::
basis

:::
of

::::::::::::
autoregressive450

::::::::::
expressions.

::::::
Besides

::::::::
replacing

:::
the

::::::::
simulated

::::::::
temporal

::::::::
properties

::::
with the aggregated-averaged monthly value, Z′fas,i the seasonal

adjusted value, Zfa
s,i :::::::

observed
:::::

ones,
::::
this

:::::::
implies

:::
that

::::
the

::::::::
simulated

::::::::::
dependence

::::::::
structure

::
is
::::
also

::::::::
replaced

:::
by

:::
the

::::::::
observed

:::::::
structure.

:::
As

:::::
QDM

::
is

::::::
applied

:::
on

::::
each

::::::::
timescale, the aggregated-averaged seasonal value, A′fai the adjusted yearly value and Afa

i

the aggregated-averaged yearly value. The full procedure is summarised in Algorithm ??.
:::::::
marginal

:::::::::
properties

:::
are

::::::::
preserved.

:

MRQNBC Daily historical observations XhoDaily historical simulations Xhs Daily future simulations Xfs Adjusted future455

simulations X′′fa Apply QDM to calculate Xfa Standardise Xho and Xfa Calculate matrices C and D of X̆ho and E and F
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of X̆fa Apply the persistence adjustment to calculate X̆′fa Destandardise X̆′fa Aggregate Xho and X′fa to the higher timescale

Calculate weighting factors for all timescalesexcept the daily timescale Calculate the final adjusted daily value X′′fa

The
::::
After

::::::::
adjusting

:::
all

:::::::::
timescales,

:::
the

::::
final

:::::
daily

:::::
result

::
is

:::::::::
calculated

::
by

:::::::::
weighing

::
all

::::::::::
timescales.

::::::::
However,

::
as

:::
the

:
nesting

method cannot fully remove biases at all time scales, thus Mehrotra and Sharma (2016) suggested to repeat the complete460

:::::
entire procedure multiple times. However

::
Yet, in our case this seemed to exacerbate the results, so the method was run only

once
:::::::
multiple

:::::::::
repetitions

::::::::::
exacerbated

:::
the

:::::
results.

:::::::::::
Non-realistic

::::::
outliers

:::::::
created

::
by

:::
the

::::
first

::::::::
repetition

::::::::
influenced

:::
the

::::::::::
subsequent

:::::::::
repetitions,

:::::::
creating

:::::
even

:::::
more

::::::::::
non-realistic

:::::::
values.

::::
This

::::
was

:::::
most

::::::
clearly

::::
seen

:::
for

::::::::::::
precipitation.

:::
As

:
a
::::::::

bounded
::::::::
variable,

::::::::::
precipitation

::
is

::::
most

::::::::
sensitive

:::
for

::::::::::
non-realistic

::::::
values.

:::::::::::
Nonetheless,

:::::::
running

:::
the

:::::::
method

:::
just

::::
once

:::::::
yielded

:::::::::
satisfactory

:::::::
results.

:
A
::::
full

:::::::::::
mathematical

:::::::::
description

:::
of

::
the

:::::::
method

:::
can

:::
be

:::::
found

::
in

::::::::::::::::::::::::
Mehrotra and Sharma (2016).

:
465

3.3.2 Multivariate Bias Correction in n dimensions

In 2018, Cannon (2018) proposed the ‘Multivariate Bias correction in n dimensions’ (MBCn) method as a flexible multivariate

bias-adjusting method. The method’s flexibility has attracted some attention, as
:::
and

:
it has already been used in multiple studies

(Räty et al., 2018; Zscheischler et al., 2019; Meyer et al., 2019; François et al., 2020). This method consists of three steps.

First, the multivariate data are rotated using a randomly generated orthogonal rotation matrix, adjusted with the additive form470

of QDM, and rotated back until the calibration period model simulations converge to the observations. This convergence is

verified on the basis of the energy distance (Rizzo and Székely, 2016). Second, the validation period simulations are adjusted

using QDM, as this method preserves the simulated trends. As the last step, these adjusted time series are shuffled using the

Schaake Shuffle (Clark et al., 2004) based on the rank order of the rotated dataset. A thorough mathematical explanation
:::
full

:::::::::::
mathematical

:::::::::
description

::
of

:::
the

:::::::
method can be found in Cannon (2018)and Van de Velde et al. (2020), and the implementation475

is .
:

3.3.3
:::::
Rank

::::::::::
Resampling

:::
for

::::::::::::
Distributions

::::
and

:::::::::::
Dependences

:::
One

:::
of

:::
the

::::
most

::::::
recent

:::::::
methods

:::::::
studied

::
in

::::
this

:::::
paper

::
is

:::
the

:::::
‘Rank

:::::::::::
Resampling

:::
for

:::::::::::
Distributions

:::
and

::::::::::::
Dependences’

:::::::
(R2D2)

:::::::
method,

::::::
which

::::
was

::::::::
designed

::
by

:::::::::::
Vrac (2018)

::
as

:::
an

:::::::::::
improvement

::
of

:::
the

:::::
older

:::::::
EC-BC

::::::
method

::::::::::::::::::::::::
(Vrac and Friederichs, 2015)

:
.

:::::::
Recently,

::::::
R2D2

:::
was

::::::
further

::::::::
extended

:::
for

:::::
better

:::::::
multisite

::::
and

:::::::
temporal

::::::::::::
representation

:::
by

:::::::::::::::::::
Vrac and Thao (2020b)

::::::
(R2D2

:::::
v2.0).480

::::
This

::::::
method

::
is
::
a
:::::::::::::::::
marginal/dependence

:::::::::::
multivariate

::::::::::::
bias-adjusting

:::::::
method,

:::::
which

:::::::
adjusts

:::
the

::::::::
simulated

:::::::
climate

::::::::::
dependence

::
by

::::::::::
resampling

::::
from

:::
the

::::::::
observed

:::::::::::
dependence.

::::
The

:::::::::
resampling

::
is
:::::::

applied
:::::::
through

:::
the

::::::
search

:::
for

:::
an

:::::::
analogue

::::
for

:::
the

:::::
ranks

::
of

:
a
:::::::::
simulated

::::::::
reference

:::::::::
dimension

::
in

:::
the

::::::::
observed

:::::
time

:::::
series,

::::::
which

::::::
makes

:::
this

:::
an

:::::::::
application

:::
of

:::
the

::::::::
analogue

::::::::
principle

::::::::::::::::::::::::::::::::::::
(Lorenz, 1969; Zorita and Von Storch, 1999)

::
in

:::
bias

::::::::::
adjustment.

::
A

:::::::
detailed

:::::::::::
mathematical

:::::::::
description

:::
can

::
be

:::::
found

::
in
:::::::::::
Vrac (2018)

:::
and

:::::::::::::::::::
Vrac and Thao (2020b)

:
.485

::
In

:::
the

::::::
present

::::::::::
application

::
of

:::::
R2D2,

::::::
QDM

:::
was

:::::
used

::
as

:::
the

::::::::
univariate

::::::::::::
bias-adjusting

:::::::
method

::
to

::::::
ensure

::::::::::
consistency

::::
with

:::
the

::::
other

::::::::::
multivariate

::::::::::::
bias-adjusting

::::::::
methods.

::::
This

:::::::
ensures

:::
the

:::::::::::
preservation

::
of

:::
the

:::::::
changes

::
in
:

the same as in the latter. For the

sake of clarity,
:::::::
marginal

::::::::::
distribution,

:::::::
besides

:::
the

::::::::::
preservation

::
of

:::::
some

::::::::
temporal

:::::::::
properties,

::::::
which

::
is

:::::::
inherent

::
to

:
the method
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is summarised in Algorithm ??.
::::::
method.

:::::
Each

:::::::
variable

::::::::::::
(precipitation,

::::::::::
evaporation

:::
and

:::::::::::
temperature)

::::
was

::
in

::::
turn

::::
used

:::
as

:::
the

:::::::
reference

::::::::::
dimension.

:::
No

::::
other

::::::::::
information

::::
was

::::::::
included,

::
as

:::
the

::::::
present

:::::
study

::::
was

::::::
limited

::
to

:::
one

::::
grid

::::
cell.490

MBCn Historical observations XhoHistorical simulations Xhs Future simulations Xfs Adjusted future simulations X′fa

Initialisation: tolerance ε and initial energy distance difference ∆D0 Randomly generate a rotation matrix R Rotate Xho, Xhs

and Xfs Apply the additive form of QDM Rotate Xho, Xhs and Xfs back Calculate the energy distance D between Xhs and

Xho Calculate the decrease in energy distance ∆D Apply QDM to the original inputs to calculate Xfa Apply the Schaake

Shuffle based on the rotated future simulations to calculate X′fa495

3.3.4 Dynamical Optimal Transport Correction

Recently, Robin et al. (2019) indicated that the notion of a transfer function in quantile mapping can be generalised to the

theory of optimal transport. Optimal transport is a way to measure the dissimilarity between two probability distributions and

to use this as a means for transforming the distributions in the most optimal way (Villani, 2008; Peyré and Cuturi, 2019).

Optimal transport was used by Robin et al. (2019) to adjust the bias of a multivariate data set in the ‘dynamical Optimal500

Transport Correction’ method (dOTC), which extends the ‘CDF-transform’ (CDF-t) bias-adjusting method (Michelangeli et al.,

2009)
::
to

:::
the

::::::::::
multivariate

::::
case. dOTC calculates the optimal transport plans from Xho to Xhs (the bias between the model and

the simulations) and from Xhs to Xfs (the evolution of the model). The combination of both optimal transport plans allows for

bias adjustment while preserving the trend of the model.

The different transport plans and transformations used in dOTC. Based on Robin et al. (2019).505

Optimal transport is applied on the basis of an optimal transport plan. The optimal plan between Xho
::::::::
simulated

:::::::
changes

::
in

::::
both

:::::::
marginal

:::::::::
properties and Xhs is denoted as γ. The second optimal plan between Xhs and Xfs is denoted as φ. The goal is

to transform φ according to γ, defining a new plan φ̃. This optimal plan estimates Xfa = φ̃
(
Xho

)
. Finally, Xfs is adjusted with

respect to Xfa, creating the final adjusted X′fa. These steps are summarised in Fig. ??.

For the definition of the optimal plan, the ‘Optimal Transport Correction’ (OTC) (Robin et al., 2019) is used. First, the510

empirical distributions P̂Xho and P̂Xhs have to be calculated. To achieve this, the subspace of RN that contains the data is

partitioned into regularly spaced cells, generically denoted c∗i , with N the number of variables of Xho and Xhs. Using this

notation, P̂Xho and P̂Xhs can be estimated using the relative frequencies pXho and pXhs as:

pXho,i = 1
m

m∑
k=1

1
(
Xho
k ∈ c∗i

)
,

pXhs,i = 1
n

n∑
l=1

1
(
Xhs
l ∈ c∗i

)
,515

with 1 the indicator function and m and n the total number of time steps of respectively Xho and Xhs. Thus, the distributions

are essentially estimated by counting the number of observations of each time series within each cell. The optimal plan γ

between Xho and Xhs can be estimated as:
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γ̂ =

I,J∑
i,j=1

γi,j .

The coefficients γi,j are the probabilities to transform an observation of Xho in cell c∗i into an observation of Xhs in cell c∗j520

and I and J are the total number of cells containing observations of respectively Xho and Xhs. Note that from here on, c∗i and

c∗j denote only those cells containing observations of respectively Xho and Xhs and that ‘observation’ is used generically for

both observed and simulated time series. The coefficients are unknown, but obey the marginal properties :

J∑
j=1

γi,j = pXho,i

and

I∑
i=1

γi,j = pXhs,j .525

Central to the optimal transport theorem is the cost function C (Villani, 2008), which can here be approximated by

Ĉ (γ̂) =

I,J∑
i,j=1

|| ci− cj ||2 γi,j ,

with || · || the Euclidean norm and ci and cj the centres of the cells defined above. Finding γi,j comes down to solving the

problem defined by the constraints of Eqs. (??) and minimisation of Eq. (??). Here, Sinkhorn’s algorithm (Cuturi, 2013) is

used to find the solution to this problem and thus the optimal plan γ. Using this optimal plan, a vector of probabilities with530

length J can be defined for each cell c∗i of Xho, each element j corresponding to the probability that an observation in that

cell c∗i will be transformed into an observation in cell c∗j of Xhs. In the transformation, the vectors of probabilities are used to

introduce stochasticity, by sampling from these vectors the element j corresponding to cell c∗j . The stochastic transformation

of an observation of Xho into an observation of Xhs can be repeated to create an ensemble of results. This ensemble accounts

for random weather effects and can thus be considered to be more similar to the true range of observations.535

The optimal plan φ can be calculated analogously. This optimal plan φ transforms an observation of Xhs in cell c∗j into an

observation of Xfs in cell c∗k, with c∗k defined analogously to c∗i and c∗j . What distinguishes dOTC from OTC is the next phase,

in which φ is transformed according to γ, resulting in φ̃. This is conducted in three steps, the first being is the transformation of

φ into a vector. The vector vjk := ck − cj represents the climatic trend from an observation of Xhs in cell c∗j to an observation

of Xfs in cell c∗k. The second step is the transfer according to γ. The result φ̃ can be defined by translating the observations of540

Xho along their respective vectors vjk: an observation of Xfa is then given by Xho
t +vjk, with Xho

t the observation of Xho at

time step t. However, the translation of Xho
t along vector vjk does not always define an optimal transport plan: the vector has

to be adapted to Xho, which is the third step. In this step, a matrix factor D is introduced, which rescales the vector vjk. This
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rescaling is actually the replacement of the scale of Xhs by that of Xho. A Cholesky decomposition of the covariance matrix

has been proposed for this rescaling (Bárdossy and Pegram, 2012; Cannon, 2016). Denoting the covariance matrix as Σ, and545

the Cholesky decomposition as Cho(Σ), Robin et al. (2019) proposed to multiply vjk by the following matrix:

D := Cho(ΣXho) ·Cho(ΣXhs)
−1
.

Robin et al. (2019) remark that the Cholesky decomposition only exists if Σ is symmetric and positive-definite. Some covariance

matrices, such as those of highly correlated random variables, do not have this property. Σ must then be slightly perturbed to

be positive-definite (Higham, 1988; Knol and ten Berge, 1989). It is also possible for the Cholesky decomposition to be poorly550

estimated if the available data are too small compared to the dimension. In that case, it is suggested to replace the matrix D by

the diagional matrix of the standard devation: D = diag
(
σXhoσ−1

Xhs

)
.

An observation of Xfa is then given by Xho
t +D ·vjk. To finalize, the empirical distribution P̂Xfa can be calculated. Using

this distribution, OTC can be applied to Xhs and Xfa to generate X′fa. A more elaborate mathematical explanation can be
:::
the

:::::::::
dependence

::::::::
structure.

::
A
::::
full

:::::::::::
mathematical

::::::::::
description

::
of

:::
the

::::::
method

::::
can

::
be

:
found in Robin et al. (2019), a summary is given555

in Algorithm ??.

dOTC Historical observations XhoHistorical simulations Xhs Future simulations Xfs Adjusted future simulations X′fa

Calculate the empirical distributions P̂Xho , P̂Xhs and P̂Xfs Calculate the optimal plan γ between P̂Xho and P̂Xhs Calculate

the optimal plan φ between P̂Xfs and P̂Xhs Calculate the Cholesky factor D Find cell ci containing Xho
t Construct the vector of

probabilities γ̂Xho
t

= (γi,1, . . . ,γi,J)/pXho,i Sample j ∈ {1, ...,J} according to the probability vector γ̂Xho
t

Construct the vector560

of probabilities φ̂Xhs
t

= (φj,1, . . . ,γj,K)/pXhs,j Sample k ∈ {1, ...,K} according to the probability vector φ̂Xhs
t

Calculate the

vector vjk Calculate Xfa
t = Xho

t +D ·vjk Calculate the empirical distribution P̂Xfa Apply OTC between Xfa and Xfs to

generate X′fa

3.4 Experimental design

Prior to all intensity-bias-adjusting methods, the thresholding occurrence-adjusting method was applied. As in Van de Velde et al. (2020)565

::
In

:::
the

::::::::::::::::::::
intensity-bias-adjustment

::::
step, a balance was sought between randomness and computational power for the calculation

of the intensity-bias-adjusting methods. Methods with randomised steps were repeated. As such, 10 calculations were made for

dOTC. The resulting values of each index were averaged for further comparison. Biases on the indices were always calculated

as raw or adjusted simulations minus observations, indicating a positive bias if the raw or adjusted simulations are larger than

the observations and a negative bias if the simulations are smaller.570

4 Results

In this section, the results will be shown first for the R index calculations for bias change, and then for the validation indices. For

the validation indices, first the indices based on the adjusted variables are discussed, followed by an elaboration on the indices

based on the derived variables. As the effect on discharge is the overarching goal of this paper and the discharge indices are
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affected by all other indices, those will be discussed last. All observed values and biases of both raw and adjusted simulations575

are presented in Table ??.

4.1 Bias change

The R index values for the variable averages, standard deviations and all indices are given in Table ??. The results
:::::
results

:::
for

:::
the

:
R
:::::
index

:
vary considerably depending on the variable and/or index: for P, the bias can be considered almost stationary: only the

99.5th percentile has an R index above one. In contrast, for E, the
::::::
season:

::::
bias

:::::::::::::
nonstationarity

::
(R

:::::
index

::::::
values

:
>
:::
1)

:
is
:::::::
present580

::
for

:::
all

::::::::
variables,

:::
but

:::
the

:::::
extent

::::::
varies.

:::
For

:::::::::::
precipitation,

::::
bias

::::::::::::
nonstationarity

::
is
:::::
most

::::
clear

::
in

:::::
winter

::::
and

:::::::
summer

:::
for

::
the

:::::::
highest

:::::::::
percentiles

::::
(P99 :::

and
::::::
P99.5).

:::
For

:::::::::::
temperature,

::::::
winter,

::::::
spring

:::
and

:::::::
summer

:::
all

:::::
show

:::::
some

::::
high R index valuesare above 1 for

:
,

:::
but

::::
while

::::::
winter

:::
has

::::
high

::
R
:::::
index

::::::
values

:::
for

::
all

::::::::::
percentiles,

:::
the

::::::::::::
nonstationarity

::
is
::::::::
restricted

::
to

:::
the

:::::
lower

::
to
:::::::
middle

:::::::::
percentiles

:::
(T5,

::::
T25,

::::
T50 :::

and
::::
T75)

:::
for

:::::
spring

::::
and

:::
the

:::::
lower

:::::::::
percentiles

:::
(T5:::

and
::::
T25)

:::
for

:::::::
summer.

::::
This

::
is
::::::::
reflected

::
in the middle percentiles

and for the standard deviation, indicating some major changes in parts of the distribution, and consequently, the bias. For T, the585

mean and
:::::::
standard

::::::::
deviation:

:::::
both

::
are

::::::::::::
nonstationary

:::
for

::::::
winter,

:::::::
whereas

::::
only

:::
the

:::::
mean

::
is

:::::::::::
nonstationary

:::
for

:::::
spring

::::
and

::::::
neither

::::
mean

::::
nor

:::::::
standard

::::::::
deviation

::
is

:::::::::::
nonstationary

:::
for

:::::::
summer.

:::
In

:::::::
autumn,

:::
the

:::::::
behavior

::
is

::::
less

:::::
clear:

:::
two

:::::::::
percentiles

::::
(P50::::

and
::::
P95)

::::
have

::
an

::
R
:::::
index

:::::
value

::
of

::
2,
::::

but
:::::
unlike

:::
the

:::::
other

:::::::
seasons,

:::::
there

::
is

::
no

::::::::
apparent

::::::
pattern

::
as

:::::
these

::::::
values

:::
are

::
far

:::::
apart.

:::::::::
However,

the lower extremes are clearly influenced, although the bias on the higher extremes does not change. The different effects on

the variables are linked with the effect on the (cross-)correlations. For example, the lag-1 cross-correlation between P and E590

:::::::
standard

::::::::
deviation

:::
has

::
an

::
R

:::::
index

:::::
value

:::::
higher

::::
than

:
1
:::
for

:::::::
autumn

:::::::::::
temperatures,

:::::::::
indicating

:::
that

:::::
some

:::
bias

:::::::::::::
nonstationarity

:::::
could

::
be

:::::::
present.

:::
For

:::::::::::
evaporation,

:::::
spring

::::
has

:::
the

::::::
clearest

::::
bias

:::::::::::::
nonstationarity:

::::::
almost

:::
all

:::::::::
percentiles

:::::
have

::
an

::
R

:::::
index

:::::
value

::::::
higher

:::
than

::
1.
::::
For

:::
the

::::
other

:::::::
seasons,

:::
the

:::::::::::::
nonstationarity

::
is

:::
less

:::::::
striking,

::::::::
although

:::::::
present.

:::
For

::::::
winter

:::
and

:::::::
autumn,

:::
E75:

has an R index

value ofonly 0.19, whereas the
::
1

::
or

::::::
higher

::::
and

:
a
::::::
clearly

::::::::::::
nonstationary

:::::::
standard

:::::::::
deviation,

:::::
while

::
in

::::::::
summer,

::::
E25 :::

and
::::
E50

::::
have

::
an

:
R index value for the cross-correlation between E and T is 1.20. Although the R index values are low for P, this does595

not imply that
:::::
higher

::::
than

::
1,
::::::::

although
::::::
neither

:::::
mean

::::
nor

:::::::
standard

::::::::
deviation

::
is

::::::
clearly

::::::::::::
nonstationary.

:::
For

::::::::::
occurrence

:::
the

::::
bias

::::::::::::
nonstationarity

:::::
seems

:::::::
limited:

::::
only

::
in
::::::
spring

:::
and

:::::::
autumn,

:
the R index values for the precipitation occurrence indices are low.

With an R index value of 1.44, the auto-correlation bias clearly changes between both periods. However, this is not reflected

by the other precipitation occurrence indices, which all but one have R index values lower thanone
:::::
value

:::
for

::::::::::
precipitation

:::::
lag-1

::::::::::::
autocorrelation

::
is
::::::
higher

::::
than

::
1.
::::

For
::::::::::
correlation,

:::
the

::::
bias

:::::::::::::
nonstationarity

::
is

:::
also

:::::::
limited,

::::::::
although

:::::
some

::
of

::::
the

::::::::::
correlations600

::
of

::::::::::
evaporation

:::
and

:::::
either

:::::::::::
temperature

::
or

:::::::::::
precipitation

::::
have

:::
an

::
R

:::::
index

:::::
value

::::::
higher

::::
than

::
1,

:::
but

::::
this

:::::::
depends

:::
on

:::
the

::::::
season

(crosscorrE,T,0 and crosscorrE,T,1 in spring, crosscorrE,T,1 in winter, corrE,T in summer and corrP,E in autumn).

R index values for 1970-1989 as historical period and 1998-2017 as future period Indices R index Indices R index Indices

R index Indices R index P5 NaN T5 2 E5 0.03 Plag1 1.44 P25 0 T25 2 E25 0.47 PP00 0.09 P50 0.10 T50 2 E50 1.47 PP10 0.41

P75 0.13 T75 0.87 E75 2 Ndry 0.29 P90 0.19 T90 0.31 E90 1.14 corrE,T 0.75 P95 0.17 T95 0.07 E95 1 corrP,E 0.20 P99 0.58 T99605

0.19 E99 0.47 corrP,T 0 P99.5 1.02 T99.5 0.08 E99.5 0.20 crosscorrE,T,0 2 Pmean 0.18 Tmean 2 Emean 1.06 crosscorrE,T,1 0.90

Pstd 0.72 Tstd 0.50 Estd 2 crosscorrP,E,0 0.31 crosscorrP,E,1 0.13 crosscorrP,T,0 0.10 crosscorrP,T,1 0.09
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Many of the R index values presented in Table ??
::::
thus indicate that the bias changes between the two periods considered

here (1970-1989 versus 1998-2017) might already be large enough to have an effect on the bias adjustment. As these periods

are only separated by 10 years, this is an important indicator for the bias adjustment of late 21st century data, just as Chen et al.610

(2015) mentioned. However, it does not suffice to calculate just a few of these R index values. The results vary substantially

among variables and even for the percentiles of a variable under consideration: while the 5th T percentile has an R index

value of 2, the value for the 95th percentile is only 0.07. This
::::::
seasons,

::::::::
variables

:::
and

:::::::::::
distributions

::
of

:::
the

:::::::::
variables.

::::::::
Although

:::
this could give an indication of why the methods perform more poorly for

:::
the

:::::
reason

:::
for

:::::
poor

::::::::::
performance

:::
for

:
some of these

indices. However, purely based on these results, ,
:
it is impossible to say

::::
state

:
exactly what causes the bias nonstationarities615

:::::
purely

:::::
based

:::
on

::::
these

::::::
results. Possible causes could be that recent trends such as those in precipitation extremes (Papalexiou

and Montanari, 2019) are poorly captured by the models, that limiting mechanisms such as soil moisture
:::::::
depletion

:
(Bellprat

et al., 2013) are poorly modelled or that natural variability influences (Addor and Fischer, 2015)
::::::::::::::::::::::
(Addor and Fischer, 2015)

::::::::
influences

:
the biases. However, discussing this in depth is out of the scope of the present study and deserves a separate study.

In what follows, we will focus on the performance of the bias-adjusting methods and whether or not there is a link with these620

nonstationarities.

4.2 Precipitation amount

Figure ?? presents the RBO and RBMB values for the highest P percentiles. None of the residual bias values of the lower

percentiles can be plotted as either the observations are 0 mm (P5 and P25) or the RBO values are lower than zero (P50). The

percentiles could also have been plotted for wet days only (e.g. days with P higher than 0.1 mm/day) , but as some methods625

change the number of dry days after the initial thresholding step, the dry days are also included in the calculation of the indices.

This influences the RBO and RBMB values: they are generally higher when the dry days are not included.
:::
The

::::::
Perkins

:::::
Skill

:::::
Score

:::::
(PSS)

:::
for

::::::::::
precipitation

::::::
(Table

::
3)

::::::::
indicates

:::
that

:::
the

:::::
PDFs

::
of

:::
the

:::::::::::
observations

:::
and

:::::::
adjusted

::::::::::
simulations

:::::
agree

:::::
rather

:::::
well.

:::::
These

:::::
scores

:::
are

::::
very

::::::
similar

::
in
:::
the

:::::::::
calibration

::::
and

::::::::
validation

::::::
period.

:::::
Only

:::::
QDM

:::
and

:::::::
mQDM

:::::::
perform

:::::
worse

:::
in

::::
every

:::::::
season,

:::::::
whereas

:::
the

::::::
change

:::::::::::
performance

::
of

:::
the

:::::::::::
multivariate

:::::::
methods

::::::::
depends

::
on

:::
the

:::::::
season.

:::
For

:::::::
dOTC,

:::
the

:::::
result

::
is

:::::
better

:::
in

:::
the630

::::::::
validation

::::::
period

::::
than

::
in

:::
the

:::::::::
calibration

::::::
period.

The RBO and RBMB values depict a very similar performance for QDM , mQDM and MBCn, but a different performance

for MRQNBC and dOTC. The similar performance of the former three is unsurprising, as their adjustments of P are all very

similar. The only difference between QDM and MBCn versus mQDM is the time series to which the adjustment was applied,

as the latter is based on the historical time series. QDM, mQDM and MBCn are consistently the best methods out of the five635

tested here, with the

:::
The

:::::
good

::::::::::
performance

:::
for

:::
the

:::
full

::::
PDF

::::::::
contrasts

::::
with

:::
the

:::
bias

:::::::::
adjustment

:::
of

::
the

:::::::
extreme

::::::
values.

::::::
Figure

:
1
:::::::
presents

:::
the

:
RBMB

values for P75, P90, P95 and P99 all below 0.5 and the RBO valuesalso below 0.5. The performances of MRQNBC and dOTC are

worse, but not poor either: P75, P90, P95 and P99 all have RBO and RBMB values lower than 1, but only for dOTC the majority

of them (P
:::
for

:::
the

::::::
highest

::
P

:::::::::
percentiles

::
in

:::
the

::::::::
validation

::::::
period.

::::
The

:::::
lower

:::::::::
percentiles

::
(P75

:
5 , P

::
to

:
P640

RBMB versus RB0 for the precipitation indices. (a) QDM, (b) mQDM, (c) MBCn, (d) MRQNBC, (e) dOTC.
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Table 3.
:::
PSS

:::::
values

:::
for

::::::::::
precipitation

:
in
:::
the

::::::::
calibration

::::
(Cal)

:::
and

::::::::
validation

::::
(Val)

::::::
periods

:::
(%).

Winter Spring Summer Autumn

:::
Cal

:::
Val

:::
Cal

:::
Val

:::
Cal

:::
Val

:::
Cal

:::
Val

::::
QDM

: :::
96.5

: :::
94.1

: :::
97.2

: :::
95.0

: :::
97.9

: :::
96.7

: :::
96.8

: :::
94.3

:

::::::
mQDM

::::
100.0

: :::
92.1

: ::::
100.0

: :::
93.4

: ::::
100.0

: :::
96.5

: ::::
100.0

: :::
94.8

:

:::::
MBCn

: :::
94.1

: :::
89.9

: :::
95.6

: :::
95.5

: :::
92.6

: :::
97.3

: :::
97.2

: :::
96.8

:

::::::::
MRQNBC

: :::
93.2

: :::
92.8

: :::
84.7

: :::
81.0

: :::
96.1

: :::
95.6

: :::
93.5

: :::
91.0

:

:::::
dOTC

:::
64.6

: :::
73.8

: :::
66.6

: :::
70.0

: :::
62.2

: :::
91.6

: :::
62.8

: :::
72.0

:

::::
R2D2

: :::
93.3

: :::
90.1

: :::
94.0

: :::
93.1

: :::
93.2

: :::
92.6

: :::
94.1

: :::
93.8

:

A surprising result for P is the high RBMB value for
::
50)

:::
are

::::::::
adjusted

::::
very

::::
well

::
by

:::
all

::::::::
methods,

:::
but

:::
the

::::::::::
performance

:::
of

:::
the

:::::::
methods

:::
for

::
the

::::::
higher

:::::::::
percentiles

::::::
differs

::::::::::
considerably

::::::::
between

:::
the

:::::::
seasons.

:::
For

:::::
winter

::::::
(blue)

:::
and

:::::::
summer

::::::::
(yellow),

::::
only P99.5

for MRQNBC. This percentile is too biased for all other methodsto be plotted: the result is possibly influenced by the need for

the observed values to be extrapolated if the simulated value lies outside the range of observed values (see e.g. Li et al. (2010)645

). This extrapolation is not implemented in this version of QDM and dOTC, which clearly hampers the ability of all methods to

correctly adjust this percentile. Yet, as the
:75::::

and
:::
P90 :::

can
::
be

:::::::
plotted

::
in

::
the

:::::::::
validation

::::::
period,

:::::::
whereas

:::
for

:::::
spring

::::
and

::::::
autumn

:::
all

:::::::::
percentiles,

:::::
from

:::
P75 ::

to
::::
P99.5 :::

can
::
be

::::::
plotted

:::
for

:::
all

::::::::
methods.

:::
The

::::
poor

::::::::::
adjustment

::
of

:::
the

::::
high

:::::::::
percentiles

::
in

:::::
winter

::::
and

:::::::
summer

::::
could

:::
be

::::::
caused

::
by

::::
bias

:::::::::::::
nonstationarity:

:::
the

::
R

:::::
index

:::::
values

:::
for

:::::
these

:::::::::
percentiles

:::
are

:::::
higher

::::
than

::
1,

::
in

:::::::
contrast

::::
with

:::
the

:::
low

::::
and

:::::::::::
well-adjusted

:::::
higher

::::::::::
percentiles

:::
for

:::::
spring

::::
and

::::::
autumn

::::::::::::
precipitation.

::::::::
However,

:::::::
although

::::
P95 :::

has
:::
an R index value was close650

to
:::::
lower

::::
than 1

::
for

:::::
both

:::::
winter

::::
and

:::::::
summer, it is possible that bias nonstationarityalso slightly influences the performance.

For MRQNBC, however, the combination of QDM with the focus on correlation seemingly improves the performance of this

percentile. As heavy precipitation values are clustered in time, the performance of the respective indices might be improved by

the correlation. The good representation of heavy precipitation values in the MRQNBC-adjusted time series is also shown by

P99, for which MRQNBC has an RBMB value of 0.59, the best of all methods.655

4.3 Temperature

For the temperature adjustment, the RB
:::::
poorly

::::::::
adjusted.

::::
This

::::::::
illustrates

:::
that

:::
the

::
R

:::::
index

::::
gives

::
an

:::::::::
indication

::
of

:::
the

::::::::::::
nonstationarity,

:::
but

:::
also

:::::
hides

::::::::::
information

::
on

:::
the

:::
size

::
of

:::
the

::::::
biases.

:::
For

:::::::
summer,

:::
the

::::
bias

:::
for

:::
P95:::::::

changes
::::
from

::::
5.09

:::
mm

::
in
:::
the

:::::::::
calibration

::::::
period

::
to

::::
1.89

:::
mm

:::
in

:::
the

::::::::
validation

:::::::
period,

:
a
:::::::
change

::
of

::::
over

::
3

::::
mm.

:::
For

:::::::
winter,

:::
the

::::
bias

:::::::
changes

::::
from

::::
1.44

::::
mm

::
in
::::

the
:::::::::
calibration

:::::
period

::
to

::::
0.52

::::
mm

::
in

:::
the

::::::::
validation

::::::
period,

::
a

::::::
change

::
of

::::::
almost

:
1
::::
mm.

::::
Yet,

:::::
these

:::::::::
differences

::::
have

::
a

::::
very

::::::
similar

::
R

::::
index

::::::
value.660

:
A
::::::::::
comparison

::::
with

:::
the

:::
RBO

::
MB and RBMB

:
O values indicate that all methods result in a performance better than the raw climate

simulations, except for MRQNBC
::
of

:::
the

:::::::::
calibration

::::::
period (Fig. ??) . In contrast to all other methods , only the residual bias

values of T90 of MRQNBC are within the area delineated by the 1-1-lines. For all other indices, the bias is worse than in

the climate simulations, with absolute biases up to 7ºC. The results for MRQNBC are interesting, as T is the best understood
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variable (Shepherd, 2014) and should thus not be hard to adjust. One line of reasoning could be the implementation of model665

trend preservation. While trend preservation is a prominent aspect in all other methods, the persistence preservation is at least

as important in MRQNBC. The trade-off between both aspects of the bias adjustment thus seems to influence the result of

MRQNBC, while the other methods can more easily adapt to and adjust the simulated T
:
2)

::::::::
illustrates

::::
that

::
all

::::::::
methods

:::::::
perform

:::
well

:::
for

:::::
every

::::::
season,

:::::::::
indicating

:::
that

:::
the

::::::::::::
nonstationarity

:::::
could

:::
be

:
a
:::::
cause

::
of

:::
the

::::::::
diverging

:::::::::::
performances

::
in

:::
the

::::::::
validation

::::::
period

:::::::
between

:::
the

::::::::::::
winter/summer

::::
and

::::::::::::
spring/autumn

:::::
pairs.

:::::::::
However,

:::
this

:::::::::::::
nonstationarity

::
is

:::
not

:::::::
apparent

:::::
from

:::
the

::::
PSS,

:::
as

::
it

::::
only670

:::::
occurs

::
in

:::
the

:::
tail

:::
of

:::
the

::::::::::
distribution.

::::
This

::::
also

::::::
follows

:::::
from

:::
the

::
R

:::::
index

:::::
values

:::
for

:::
the

:::::
mean

::::
and

:::::::
standard

::::::::
deviation

::
in

::::::
winter

:::
and

:::::::
summer.

:::::
Only

:::
for

:::::::
standard

:::::::::
deviation,

:::
the

::
R
:::::
index

:::::
value

::::::::
indicates

:::::::::::::
nonstationarity

::
in

::::::
winter

:::
and

::::::::
summer:

:::
the

::::::
values

:::
are

::::::::::
respectively

::::
1.79

:::
and

::::
1.56.

:::::
Thus,

:::
the

:::::::::::::
nonstationarity

::
of

:::
the

::::::::
extremes

:::
and

:::
the

:::::::
standard

::::::::
deviation

:::::
seem

::
to

::
be

::::::
linked.

When comparing the indices for the other methods , the results are rather similar. They all have RB

Figure 1.
:::::
RBMB :::::

versus
::::
RB0 ::

for
:::
the

::::::::::
precipitation

::
in

::
the

::::::::
validation

::::::
period.

::
(a)

:::::
QDM,

:::
(b)

:::::::
mQDM,

::
(c)

::::::
MBCn,

:::
(d)

::::::::
MRQNBC,

:::
(e)

:::::
dOTC,

:::
(f)

:::::
R2D2.

:::::
Winter:

::::
blue,

::::::
spring:

:::::
ochre,

:::::::
summer:

:::::
yellow,

:::::::
autumn:

:::::
purple.

:::
The

:::::::
methods

:::::
seem

::
to

:::::::
perform

:::::
rather

:::::::
similarly

::
in

:::::
every

::::::
season.

::::::::
Although

:::
the

:::
RBO

::
MB values close to 1

::::
vary, indicating that

:::
for675

::::
some

:::::::
methods

:::
the

::::
bias

::
is

:::::::
removed

::
to

:
a
:::::
larger

::::::
extent,

:
the bias difference is small in comparison to the absolute T values. Besides

that, for every method, the lower T percentiles have RB
:::
RBMB

:
O values that are too high to be plotted

::
are

:::::::
similar,

::::::::
indicating

::::
that

::::::
relative

::
to

:::
the

:::::::::::
observations,

:::
the

::::::::
influence

:::
of

:::
the

::::::::
difference

::
in
::::::::

removed
::::
bias

::
is

:::
low. However, despite their similar behaviour,

::::
there

::
is

:
a
:::::::::
difference

:::
that

::::::
should

::
be

:::::::::::::
acknowledged.

:::
For

:::::::
example,

:::
on

:
a
::::::
yearly

:::::
basis,

::
the

:::::
mean

:::::::
number

::
of

:::::
heavy

:::::::::::
precipitation

::::
days

:::::
(R10,

:::
one

::
of

:::
the

::::::::
ETCCDI

::::::
indices

::::::::::::::::
(Zhang et al., 2011)

:
)
::
is

::::
well

::::::::
presented

:::
by

::
all

::::::::
adjusted

:::::::::
simulations

:::::
(Fig.

::
3),

:::
but

:
the methods680

show some notable differences. The highest percentiles have the lowest RBMB values for QDM and MBCn, which have the

same percentiles by construction, but this differs for the other methods. For example, T99.5 has an RBMB value of 0.09 for QDM
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Figure 2.
::::
RBMB:::::

versus
::::
RB0:::

for
::
the

::::::::::
precipitation

::::::
indices

::
in

:::
the

::::::::
calibration

::::::
period.

::
(a)

::::::
QDM,

::
(b)

:::::::
mQDM,

:::
(c)

::::::
MBCn,

::
(d)

:::::::::
MRQNBC,

:::
(e)

:::::
dOTC,

::
(f)

:::::
R2D2.

::::::
Winter:

::::
blue,

::::::
spring:

::::
ochre,

:::::::
summer:

::::::
yellow,

::::::
autumn:

::::::
purple.

and MBCn, but only 0.43 for dOTC and 0.77 for mQDM. On the other hand, when considering all plotted percentiles, dOTC

generally performs best. The highest RBMB value for dOTC is 0.52 (T75), whereas 0.65 (T75) is the highest value for QDM

and MBCn and 0.77 (T99.5) for mQDM. Although broadly similar, the indices for QDM and mQDM display some interesting685

differences. Whereas for QDM T95, T99 and T99.5 have the lowest RBMB values, T75 has the lowest value for mQDM. In

contrast, QDM has the highest RBMB value for T75. This might imply that for the highest T values, it is better to follow the

simulations, while for slightly lower values, it is better to only use the climate change signal. Yet, QDM has the best RBMB

values and might thus be preferable.
:::::
yearly

::::::::
variance

::::::
clearly

:::::::
depends

:::
on

:::
the

:::::::
method:

:::::::::
MRQNBC

::::::::::::
overestimates

:::
the

::::::::
variance,

:::::::
whereas

::
the

:::::
other

:::::::
methods

:::::::
slightly

::::::::::::
underestimate

::
it.690

For the lowest T values , all methods seem unable to handle the change in bias (as seen in Table ??) : the RBMB values are

all higher than 1. This poor performance, combined with the high values for RBO, might imply that it is better not to adjust T

and work with the raw climate simulations. However, for the extreme T values

4.3
:::::::::::

Temperature

::::
Table

::
4
:::::::
displays

:::
the

::::
PSS

::::::
values

:::
for

::::::::::
temperature.

::
It

:::
can

:::
be

::::
seen

:::
that

::::
the

::::::::
univariate

::::::::::::
bias-adjusting

:::::::
methods

::::
have

::::::
higher

::::::
values695

:::
than

:::
the

:::::::::::
multivariate

:::::::
methods

:::
for

::
all

::::::::
seasons.

::::::
Among

:::
the

::::::::::
multivariate

::::::::
methods,

:::
the

:::::::::::
performance

::::
also

:::::
varies:

::::::
dOTC

::::::::
performs

:::
best, the absolute biases can be more than 1ºC. Thus, depending on the research goal and the R index value, it might be

important to consider whether or not T should be adjusted.
:::::::
whereas

:::
the

::::::::::
performance

:::
for

:::
the

:::::
other

::::::::::
multivariate

::::::::::::
bias-adjusting

:::::::
methods

:::::::
depends

:::::::
strongly

::
on

:::
the

::::::
season.

::::::::
However,

:::
the

::::::::::
multivariate

::::::::
methods

:::
are

::::
much

:::::
more

:::::
robust

:::::::
between

:::
the

:::::::::
calibration

::::
and
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RBMB versus RB0 for the temperature indices. (a) QDM, (b) mQDM, (c) MBCn, (d) MRQNBC, (e) dOTC.

Figure 3.
:::
Box

::::
plot

::
of

:::
the

::::::
Annual

::::::
number

:::
of

::::
days

::::
with

::::::::::
precipitation

:::::
higher

::::
than

:::
10

:::
mm

::::::::
(ETCCDI

:::::::
’Heavy

::::::::::
precipitation’

:::::
days,

:::
see

::::::::::::::
Zhang et al. (2011))

::
in
:::

the
::::::::
validation

::::::
period.

::
(a)

::::::::::
observations,

:::
(b)

:::
raw

::::::::::
simulations,

::
(c)

::::::
QDM,

::
(d)

:::::::
mQDM,

:::
(e)

::::::
MBCn,

::
(f)

:::::::::
MRQNBC,

:::
(g)

:::::
dOTC,

::
(h)

:::::
R2D2.

::::::::
validation

::::::
period:

:::
the

:::::::::::
performance

::
of

:::
the

::::::::
univariate

::::::::
methods

::
is

:::::
worse

::
in

::
all

::::::::
seasons.

::::::::::
Nonetheless,

:::
the

:::::::::
univariate

:::::::
methods

::::
still700

::::::
perform

::::::
better.

4.4 Potential evaporation

Table 4.
:::
PSS

:::::
values

:::
for

:::::::::
temperature

::
in

:::
the

::::::::
calibration

::::
(Cal)

:::
and

::::::::
validation

::::
(Val)

:::::
periods

::::
(%).

Winter Spring Summer Autumn

:::
Cal

:::
Val

:::
Cal

:::
Val

:::
Cal

:::
Val

:::
Cal

:::
Val

::::
QDM

: :::
97.1

: :::
93.4

: :::
95.8

: :::
86.8

: :::
96.8

: :::
88.7

: :::
96.5

: :::
91.4

:

::::::
mQDM

:::
99.3

: :::
94.0

: :::
98.8

: :::
87.0

: :::
99.1

: :::
89.8

: :::
98.7

: :::
91.8

:

:::::
MBCn

: :::
52.7

: :::
52.5

: :::
78.6

: :::
77.1

: :::
44.8

: :::
39.2

: :::
77.9

: :::
79.3

:

::::::::
MRQNBC

: :::
78.7

: :::
76.6

: :::
90.6

: :::
75.3

: :::
58.9

: :::
61.7

: :::
87.1

: :::
80.7

:

:::::
dOTC

:::
81.6

: :::
82.0

: :::
81.8

: :::
83.0

: :::
79.2

: :::
77.5

: :::
80.3

: :::
83.3

:

::::
R2D2

: :::
71.7

: :::
69.7

: :::
75.5

: :::
72.2

: :::
63.6

: ::::
59.22

: :::
73.4

: :::
73.2

:

Figure ?? displays the
::::::::
Although

:::
the

::::
PDF

:::
of

:::
the

:::::::
adjusted

::::::::::
simulations

:::::::
matches

:::
the

:::::::
observed

:::::
PDF

::::::::
relatively

::::
well,

:::
the

:
RB

:::MB

:::
and

::::
RBO::::::

values
::::::
(Figure

:::
4)

::::
show

:::::
some

:::::
clear

:::::::::
differences

::::::::
between

:::
the

:::::::
seasonal

::::
bias

::::::::::
adjustment:

:::
for

:::::
winter

::::::
(blue)

::
all

::::::::
methods
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::::::
perform

:::::::
poorly,

:::::::
whereas

:::
for

:::
the

:::::
other

:::::::
seasons,

::
at

::::
least

:::::
some

:::::::
methods

::::
are

::::
able

::
to

:::::
adjust

:::
the

::::
raw

::::::::::
simulations.

:::
For

:::::::
winter,

:::
the705

:
R
:::::
index

::::::
values

:::
are

::::
high

:::
for

:::
all

:::::::::
percentiles,

::::::
which

::::::::
indicates

:::
that

:::::::::::::
nonstationarity

:::::
could

::
be

:::
the

:::::
cause

:::
for

:::
the

:::::
poor

:::::::::::
performance.

::::::::
However,

:::
this

::
is
:::
not

:::::::::
clear-cut.

:::::
When

:::::::::
comparing

:::
the

::::::
winter

::::
RBO

::
MB and RBMB

:
O values for the E indices.Only afew indices

are shown for each method, or just one for dOTC
:
of
::::

the
::::::::
validation

::::::
period

::::
with

:::::
those

::
of

:::
the

:::::::::
calibration

::::::
period

::::
(Fig.

:::
5;

:::::
blue),

:
it
:::
can

:::
be

::::
seen

::::
that

::::
only

:::::
QDM

::::::
(panel

:::
(a))

::::::::
performs

:::::
much

:::::
better

::::
and

:::
that

::::::::
mQDM,

:::::::::
MRQNBC

::::
and

:::::
dOTC

:::::::::::
(respectively

::::::
panels

:::
(b),

:::
(d)

:::
and

::::
(e))

:::::::
perform

::::::
slightly

::::::
better

::
in

:::
the

:::::::::
calibration

::::::
period.

::::
The

:::::
better

:::::::::::
performance

::
of

:::::
these

:::::::
methods

::
is

:::::::
clearest

:::
for

:::
the710

:::::
lower

:::::::::
percentiles

::::
(T5,

:::
T25:::

and
:::::
T50).

::::::
MBCn

:::::
(panel

::::
(c))

:::
and

:::::
R2D2

::::::
(panel

:::
(f))

:::::
seem

::
to

:::::::
perform

::::::
equally

::::
poor

:::
in

::::
both

:::::::::
calibration

:::
and

::::::::
validation

:::::::
period.

:::
The

:::::
poor

::::::::::
performance

:::
of

::::
these

::::
two

:::::::
methods

:::::
could

:::
be

::::::
caused

::
by

:::
the

::::::::
seasonal

:::::::::
evaluation:

::::
both

:::::
apply

::
a

:::::::
shuffling

:::::::::
algorithm

::::
over

:::
the

:::
full

::::
time

:::::::
period.

::::::::
However, indicating that the performance after adjusting the bias is generally

worse than the raw climate simulations. The indices plotted are E25, E99 and E99.5. The index E5 also performs well, but cannot

be plotted as its observed value is 0 mm. Thus, for the lowest and the highest percentiles, the bias-adjusting methodsperform715

well, but they fail to capture the nonstationarity at the middle percentiles. These middle percentiles have high R index values:

they are all greater than or equal to one. Only for dOTC, it is possible to plot a percentile between E25 and E99: E95 ::::
other

:::::::
methods,

::::
this

::
is

:::::
harder

::
to

:::::::
explain:

::::::
QDM,

:::::::
mQDM

:::
and

:::::::::
MRQNBC

:::
all

:::
use

:::::::
seasonal

::::
time

:::::::::
windows,

::::
while

::::::
dOTC

::::
does

:::
not. How-

ever, for dOTC, this
:::::
QDM

:::
and

::::::::
mQDM,

:::
the

::::::
moving

:::::
time

:::::::
window

::::
used

::
in

:::
the

::::::::::
adjustment

:::
and

:::
the

:::::
fixed

:::::::
seasonal

::::::::
window

::
in

::
the

:::::::::
evaluation

::::::
might

:::::
cause

::
a
:::::
small

:::::::::
mismatch.

:::
For

::::::::::
MRQNBC,

:::::
there

:
is also the only percentile for which it is possible to720

plot the RBO and RB
::::::::
influence

::
of

:::
the

:::::::
monthly

:::
and

::::::
yearly

::::::::::
adjustment.

:::
For

::::::
dOTC,

:::
the

:::::::
optimal

::::::::
transport

::::
and,

:::::
hence,

:::::::::
stochastic

::::::
element

::::::
might

::
be

:::::
better

::::::
suited

:::
for

:::::::
seasonal

::::::::::
differences

::::
than

:::
the

:::::::
shuffling

:::::
used

::
by

::::::
MBCn

::::
and

::::::
R2D2,

:::
but

:::
still

:::::
does

:::
not

:::::
seem

:::::::
optimal.

:::::::
Besides,

:::
the

:::::::
seasonal

:::::::
variance

::
is

:::::
larger

:::
for

::::::::::
temperature

::::
than

::
for

::::::::::::
precipitation,

:::::
which

::::::::
increases

:::
the

:::::::::::
susceptibility

::
of

:::
the

:::::::
methods

::
to

:::::::::
differences

::
in
::::::::
seasonal

:::::::::
adjustment

::::
and

:::::::::
evaluation.

:::
As

:
a
:::
last

:::::::
reason,

:
it
::::::
should

:::
be

:::::::::
considered

::::
that

:::
the

:::
RBMB values

(respectively 1.00 and 0.86). For all other methods and all other percentiles, both RBO andRBMB values are higher than 1.725

The poor performance of dOTC might be related to its trend preservation characteristics. Of all methods, it is the one most

explicitly designed to follow the simulated trend. This might thus imply that the nonstationarity for E is caused by poor model

performance, although this should be investigated more in depth.
:::
and

::::
RBO::::::

values
::::::
always

::::::
depend

:::
on

::::::::::
respectively

:::
the

:::::::
original

:::::
biases

:::
and

:::
the

:::::::::::
observations.

:

The percentiles that are plotted all have a high RBO value, which is in this case caused by rather low biases to adjust. For730

example, E99.5 had an observed value of 5.24 mm/day and only a bias of 0.27 mm/day, or 5%. There is consequently not much

room for improvement, though the RBMB values imply that the bias-adjusting method could be improved, except for E99.5,

which consistently has an RBMB value lower than 0.5.

RBMB versus RB0 for the potential evaporation indices. (a) QDM, (b) mQDM, (c) MBCn, (d) MRQNBC, (e) dOTC.

As in Section 4.3, there are interesting differences between QDM and mQDM. In contrast to the results for temperature,735

mQDM performs better. For mQDM,
::
At

:::
first

:::::
sight,

::
in
::::::
spring

:::::::
(ochre),

::::
most

::::::::
methods,

::::
with

:::
the

::::::::
exception

:::
of

::::::
MBCn

:::::
(panel

::::
(c))

:::
and

:::::::::
MRQNBC

::::::
(panel

:::
(d)),

:::::
seem

::
to

:::::::
perform

::::::::
relatively

::::
well.

::::::::
However,

:::::
when

:::::::::
comparing

:::
the

::::::
biases

::
of

:::
the

::::::::
validation

::::::
period

::::
with

::::
those

::
of

:::
the

:::::::::
calibration

:::::::
period,

::
the

::::::::::
adjustment

::
of

:::
T5 ::

by
::::::
QDM,

:::::::
mQDM,

:::::::::
MRQNBC

::::
and

:::::
dOTC

:::::::::::
(respectively

:::::
panels

::::
(a),

:::
(b),

:::
(d)

:::
and

:::
(e))

::
is
::::::
clearly

:::::::
poorer,

:::::::
whereas the highest percentiles (E

:
T99 and E

:
T99.5) have lower RBMB values than for QDM. In this
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case, it thus seems better to only use the climate change signal. However, given the general poor performance of all methods,740

these results should be considered with care.

Given that the percentiles with a
::::::
perform

::::::
similar

::
to

:::
the

:::::::::
calibration

::::::
period

::
or

::::::
better.

:::
For

::::::
MBCn

:::
and

::::::
R2D2,

:::
the

:::::::::::
performance

:
is
::::::::

similarly.
::::

The
:::::
poor

::::::::::
performance

:::::::::::
corresponds

::
to

:::
the

:
high R index value have a larger bias than the raw simulations after

adjustment, and the added value for the other percentiles with respect to observed values is low, it can be advised not to adjust

E. However, similar to
:::
for T, this should be evaluated on a case-by-case basis.745

4.4 Correlation

When considering the correlation (Fig. ??), the methods generally perform well: most of the correlation indices can be plotted.

:5
.
::::
For

:::::::
summer,

:::
this

::
is

::::
also

::::::::
observed,

:::::::
although

::
to

::
a

::::::
smaller

::::::
extent:

::::
only

:::::
QDM

:::
and

:::::::
mQDM

::::
were

::::
able

::
to

:::::::
properly

:::::
adjust

:::
T5::

in
:::
the

:::::::::
calibration

::::::
period.

::
In

:::::::
general,

::::::
QDM,

:::::::::
MRQNBC

:::
and

::::::
dOTC

::
all

:::::::
perform

:::::::
slightly

:::::
worse

::
in
:::

the
:::::::::

validation
::::::
period

::
in

::::::::::
comparison

::::
with

::
the

::::::::::
calibration

:::::
period

:::
for

:::::::
summer.

:::::::
mQDM

::::::::
performs

::::::::
similarly,

:::::::
whereas

::::::
MBCn

:::
and

:::::
R2D2

:::::::
perform

::::::
poorly

::
in

::::
both

:::::::
periods.750

::
In

:::::::
autumn,

:::
the

::::::::::
performance

::
is

::::
poor

:::
for

::
all

::::::::
methods

::
in

:::
the

::::::::
validation

::::::
period. However, there are some differences depending on

the indices under consideration and the method. The indices that can always be plotted are the lag-0 cross-correlation between

P and T, the lag-1 cross-correlation between P and T, the lag-1 cross-correlation between P and E and the correlation between

P and T. Except for dOTC, all methods also perform well for the lag-0 cross-correlation between P and E. Yet, for the indices

that can be plotted, the RBO and RBMB values show a considerable difference among the methods. For example,
:::::
except

:::
for755

:::::
QDM,

:::
the

:::::::::::
performance

::
is

::::
poor

::
in

:::
the

:::::::::
calibration

::::::
period

::
as

::::
well,

::::
and,

::::::
hence,

::::::::::
conclusions

:::
are

::::
hard

::
to

:::::
draw.

::::::::
However,

:::::
based

:::
on

::
the

::
R
:::::

index
:::::::

values,
:::::
which

:::::::
indicate

::::::
limited

:::::::::::::
nonstationarity,

::
it
:::::
could

:::
be

:::::::
assumed

::::
that

:::
the

::::::::
influence

::
of

:::
the

::::::::::
seasonality

:
is
::::::

larger

:::
than

::::
that

::
of

:::
the

:::::::::::::
nonstationarity.

:::::
Based

::
on

:::
the

::::::
results

:::
for

:::::
winter

::::
and the lag-1 cross-correlation between P and E has RBO values ranging from 0.29 (mQDM)

to 0.69 (dOTC) and RBMB values ranging from 0.08 (mQDM) to 0.60 (dOTC). The best method varies for each index: while760

dOTC does not perform well for most indices, it has the best performance for the correlation between P and T. It is interesting

that the performance of dOTC seems to be either very good, or very poor. As dOTC is built around the idea of trend preservation

and all-in-one adjustment, it is possible that the adjustment performs very well when the trend is properly modelled. Three out

of the four correlations that dOTC adjusts well are based on T and P, the two variables that are well understood in the time

frame under consideration. All indices that are not or less frequently present in the plots have one thing in common: they are765

based on the correlation between E and one of the other variables. The indices based on E thus consequently perform worst,

except for the aforementioned lag-1 cross-correlation between P and E
:::::
lowest

:::::::::
percentiles

:::
in

:::::
spring

::::
and

:::::::
summer,

::
it

:::::
seems

::::
that

::
the

::::::
lower

::::::::::
temperature

::::::
values

:::
are

:::::
more

:::::::::
susceptible

:::::::::::::
nonstationarity.

:::::
This

::::::
should

:::::::
certainly

:::
be

:::::::::
accounted

:::
for

:::::
when

:::::::::
estimating

:::::::
extremes

::::
such

:::
as

:::
cold

::::::
spells.

The correlation index performance seems to be related to the results of T (Section 4.3) and E (Section 4.4): correlations of E770

with another variable generally perform worse, and the (cross-)correlation between T and E with another variable performs the

worst, in line with the R index values (Table ??) . Although the

28



Figure 4. RBMB versus RB0 for the correlation
::::::::
temperature

:
indices

::
in

::
the

::::::::
validation

:::::
period. (a) QDM, (b) mQDM, (c) MBCn, (d) MRQNBC,

(e) dOTC,
:::
(f)

::::
R2D2.

::::::
Winter:

::::
blue,

:::::
spring:

:::::
ochre,

:::::::
summer:

:::::
yellow,

:::::::
autumn:

::::::
purple..

Figure 5.
:::::
RBMB :::::

versus
:::
RB0:::

for
::
the

:::::::::
temperature

::::::
indices

:
in
:::
the

::::::::
calibration

:::::
period.

:::
(a)

:::::
QDM,

::
(b)

:::::::
mQDM,

::
(c)

::::::
MBCn,

::
(d)

:::::::::
MRQNBC,

::
(e)

::::::
dOTC,

::
(f)

:::::
R2D2.

::::::
Winter:

::::
blue,

:::::
spring:

:::::
ochre,

:::::::
summer:

:::::
yellow,

:::::::
autumn:

:::::
purple.

4.4
:::::::

Potential
:::::::::::
evaporation
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:::
The

::::
PSS

:::::
values

:::
for

::::::::
potential

:::::::::
evaporation

::::::
(Table

::
5)

::::
show

::::
that

:::
the

::::::::
univariate

::::::::::::
bias-adjusting

:::::::
methods

:::::::
perform

:::::
better

::::
than

:::
the mul-

tivariate bias-adjusting methodsare supposed to adjust correlation, they seem to be unable to do so, as they generally have larger775

biases (though not on all indices) than the univariate bias-adjusting methods for the indices with the lowest residual bias values.

This seems to indicate that the multivariate bias-adjusting methods, and especially MBCn and dOTC, are unable to adjust the

correlation exactly because of the nonstationarity in the correlation that has to be overcome. In contrast
:::::
when

::::::::::
considering

:::
the

:::
full

::::
PDF.

:::::::::
Similarly

::
to

::::::::::
temperature

::::::
(Table

::
4)

:::
the

::::
skill

::::::
scores

:::::
differ

::::::
among

:::
the

::::::::::
multivariate

::::::::
methods.

::::::::
However,

:::
in

:::::::
contrast

::
to

::::::::::
temperature,

:::::
dOTC

::::::::
performs

:::::
much

:::::
worse

:::
for

:::::::
potential

:::::::::::
evaporation;

:::::::::
MRQNBC

:::::::
performs

:::::
best.

:::::::
Similarly

::
to
:::::::::::
temperature,

::::::
MBCn780

:::
and

:::::
R2D2

::::
vary

:::::::::
depending

:::
on

:::
the

:::::::
season.

::
In

::::::::::
comparison

:::::
with

:::
the

:::::::::
calibration

::::::
period, the univariate bias-adjusting methods

neglect the adjustment of correlation and consequently do not have to overcome nonstationarity in the correlation bias. Yet,

for the univariate bias-adjusting methods, the difference in adjustment of T and E seems to have an influence here as well, as

illustrated by the different results for QDM and mQDM. Except for the correlations that have high RBMB values for all meth-

ods
:::::::
perform

:::::
worse

::
in
:::

the
:::::::::

validation
::::::
period

::
in

:::::
every

::::::
season,

::::::::
whereas

:::
this

::::::
varies

::
for

::::
the

::::::::::
multivariate

::::::::
methods:

::::
only

::
in

::::::
spring785

:::
and

:::::::
summer,

:::
all

::::::::::
multivariate

::::::::
methods

:::::::
perform

::::::
worse.

:::
For

::::::
spring,

:::
the

:::::::::
difference

::
is

:::::
large,

:::::
which

:::::
could

:::
be

::::::
related

::
to

:::
the

:::::
clear

::::::::::::
nonstationarity

:::
for

:::
this

:::::::
season.

:::
For

::::::::
summer,

:::
the

::
R

:::::
index

:::::
values

:::
are

::::::::
generally

:::::
lower,

:::::
which

::::::::
indicates

::::
less

:::::::::::::
nonstationarity,

:::
but

::
the

:::::::::
difference

::
in

::::
PSS

:::::::
between

::::::::::
calibration

:::
and

:::::::::
validation

:::::
period

::
is
::::
also

:::::::
smaller.

::::
The

::::
large

:::::::::
difference

:::
for

:::::
spring

::::::::
between

::::
both

::::::
periods

::
is

:::::::
striking,

::
as

:::
this

::::
was

:::
not

::
as

:::::::
apparent

:::
for

:::::
winter

::::::::::::
temperatures,

::::::
despite

:::
the

::::
high

:
R
:::::
index

::::::
values.

::::
This

:::::
could

:::
be

::::::::
explained

::
by

:::
the

::
R

:::::
index

::::::
values

:::
for the results indicate that mQDM performs better. Thus, it might be better to use correlations of the790

observed time series than to adjust the simulated correlations. This is confirmed by the results for MRQNBC. Together with

mQDM, this is the only method to have six indices with RBMB values lower than one. Besides, it is also the only multivariate

bias-adjusting method to have an RBMB value for corrE,T lower than one, although it is only slightly lower.
::::
mean

:::
and

::::::::
standard

::::::::
deviation:

:::
for

:::::::
potential

::::::::::
evaporation

::
in

::::::
spring,

::::
only

:::
the

::::
bias

::
in

:::
the

:::::
mean

:::::::
changed

:
a
::::
lot,

:::::::
whereas

::
for

:::::::::::
temperature

::
in

::::::
winter,

::::
both

::
the

::::::
biases

::
in

:::::
mean

:::
and

::::::::
standard

:::::::
deviation

::::::::
changed

:
a
:::
lot.

::::
The

::::::::::
combination

:::
of

::::
these

::::
bias

:::::::
changes

:::::
could

:::::
offset

::::
each

:::::
other

::
in

:::
the795

:::::::::
calculation

::
of

:::
the

::::
PSS.

:

4.5 Precipitation occurrence

Table 5.
:::
PSS

:::::
values

:::
for

:::::::::
evaporation

::
in

::
the

:::::::::
calibration

::::
(Cal)

:::
and

:::::::
validation

::::
(Val)

::::::
periods

::::
(%).

Winter Spring Summer Autumn

:::
Cal

:::
Val

:::
Cal

:::
Val

:::
Cal

:::
Val

:::
Cal

:::
Val

::::
QDM

: :::
94.8

: :::
86.1

: :::
93.3

: :::
82.5

: :::
97.3

: :::
88.6

: :::
94.1

: :::
91.0

:

::::::
mQDM

::::
100.0

: :::
90.5

: ::::
100.0

: :::
83.4

: ::::
100.0

: :::
87.7

: ::::
100.0

: :::
92.4

:

:::::
MBCn

: :::
48.5

: :::
52.0

: :::
78.6

: :::
70.8

: :::
52.7

: :::
48.4

: :::
79.5

: :::
83.6

:

::::::::
MRQNBC

: :::
89.1

: :::
84.5

: :::
91.4

: :::
74.1

: :::
80.2

: :::
78.0

: :::
85.1

: :::
88.6

:

:::::
dOTC

:::
58.7

: :::
52.4

: :::
67.4

: :::
57.5

: :::
63.9

: :::
56.0

: :::
60.5

: :::
57.0

:

::::
R2D2

: :::
80.4

: :::
79.3

: :::
69.1

: :::
59.5

: :::
66.5

: :::
63.9

: :::
78.6

: :::
76.5

:
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Figure ?? displays the
:::
The

::::::
RBMB :::

and RBO and RBMB::::::
results

::
for

::::::::
potential

::::::::::
evaporation

::
in

:::
the

::::::::
validation

::::::
period

:::
are

::::::::
displayed

::
in

:::::
Figure

::
6.

:::
For

:::::
every

::::::
season,

:::
all

::::::::
methods

::::::
perform

::::::
rather

:::::
poorly,

::::::::
although

::::
there

:::
are

:::::::::
differences

:::::::
between

:::
the

::::::::
method’s

:::::::::::
performances

:::
and

::
in

:::
the

::::::
extent

::
of

:::::::::::::
nonstationarity.

::::::
Based

::
on

:::
the

::
R
:::::
index

::::::
values

::::
and

:::::
Table

::
5,

::
it

:::::
would

:::::
seem

::::
that

:::::
spring

::
is
:::::
most

:::::::::
influenced800

::
by

::::
bias

:::::::::::::
nonstationarity,

::
as

:::::
many

:::::::::
percentiles

:::::
have

::
an

::
R
:::::
index

:::::
value

::::::
higher

::::
than

::
1

:::
and

:::
the

::::
PSS

::::::
values

:::::
differ

:::::::::::
considerably

:::
for

::::::
spring.

::::::
Figure

::
6

:::::
shows

:::
that

::::
only

:::
E5:::

(for
::::::
QDM,

:::::::
mQDM,

:::::::::
MRQNBC

::::
and

:::::
R2D2,

::::::::::
respectively

::::::
panels

:::
(a),

:::
(b),

:::
(d)

:::
and

::::
(f)),

:::
E99::::

(for

::::::
mQDM

::::
and

::::::
MBCn,

::::::
panels

:::
(b)

:::
and

:::
(c))

::::
and

::::
E99.5::::

(for
:::::::
mQDM

:::
and

:::::::
MBCn,

:::::
panels

:::
(b)

::::
and

:::
(c))

::::
have

::::::
RBMB :::

and
::::
RBO:values for

:::::
lower

::::
than

::
1.

::::::
Except

:::
for

:::::
E99.5,

:::
this

:::::::::::
corresponds

::
to the precipitation occurrence indices. When comparing these values, large

differences among the methods and among the indices can be noted. The best-performing method seems to be QDM, as all the805

RBMB values are lower than 0.5 and some RBO values are close to 0.5. When comparing the other methods
:::::::::
percentiles

::::
that

::::
have

::
an

::
R

:::::
index

::::
value

:::::
lower

::::
than

::
1.

:::
For

:::::::
mQDM

:::
and

::::::
MBCn, there is no clear difference between the univariate and multivariate

bias-adjusting methods. The other univariate method, mQDM, and one multivariate method, MRQNBC, also perform better

than
::
it

::::::
cannot

::
be

:::::
ruled

:::
out

::::
that

:::
the

::::
good

:::::::::::
performance

:::
for

:::::
E99.5::

is
:::
by

:::::::
accident.

:::::::::
However,

::::
bias

::::::::::::
nonstationarity

:::::
alone

:::::
does

:::
not

::::::
explain

:::
the

::::
poor

:::::::::::
performance:

:::::
when

:::::::::
comparing

:::
the

:::::
biases

::
in

:::
the

:::::::::
calibration

:::::
(Fig.

::
7)

:::
and

:::::::::
validation

::::::
periods,

::
it
:::
can

:::
be

::::
seen

::::
that,810

:::::
except

:::
for

::::::::
mQDM,

::
all

::::::::
methods

:::::::
perform

::::::
poorly

::
in

:::
the

::::::::::
calibration

::::::
period.

:::
For

:::::::
MBCn,

::::::
dOTC

:::
and

::::::
R2D2,

:::::
which

::::::::
perform

:::
the

::::
worst

::
in
:
the raw climate simulations for all indices. The other two methods, MBCn and dOTC, have respectively only one and

two indices with both RBO and RBMB values below 1.
:::::::::
calibration

::::::
period,

::::
this

:::::
could

::
be

::::::
related

::
to
:::

the
:::::::

absence
:::

of
:
a
::::::::
seasonal

:::::::::
component,

::::::::
whereas

:::
this

::
is

::::
less

::::
clear

:::
for

::::::
QDM,

:::::::
mQDM

:::
and

::::::::::
MRQNBC,

::
as

:::::::::
discussed

::
in

::::::
Section

::::
4.3.

:::::::::::
Nonetheless,

:::
the

:::::
latter

::::
three

:::::::
methods

:::
are

:::
all

:::
able

::
to

::::::
adjust

:::
E25:::

and
::::
E50,

:::
two

::::::::::
percentiles

:::
that

::::::
cannot

::
be

:::::::
adjusted

:::
by

:::
any

::::::
method

::
in
:::
the

:::::::::
validation

::::::
period.815

RBMB versus RB0 for the precipitation occurrence indices. (a) QDM, (b) mQDM, (c) MBCn, (d) MRQNBC, (e) dOTC.

Interestingly enough,the indices with RBO and RBMB values below 1 are not the same for all methods. For the three

best-performing methods,
:
In

:::
the

:::::
other

:::::::
seasons,

:
the dry-to-dry transition probability has very low RBMB values (ranging from

0.3
:::::::
methods

::::::
behave

::::::::
similarly

::
to

::::::
spring:

::::
most

::
of

:::
the

::::::::::
multivariate

::::::::
methods

:::::::
perform

::
as

::::::
poorly

::
in

:::
the

:::::::::
calibration

:::::
period

:::
as

::
in

:::
the820

::::::::
validation

::::::
period

::::::
(except

::::::::::
MRQNBC,

:
to 0.18) , while this index is absent from the MBCn and dOTC plots. The differences

between those two plots are also notable. For MBCn, only the number of dry days has a very low RBMB value (0) , as the number

of dry days is unaffected after the thresholding, whereas the lag-1 P auto-correlation and
:::::
some

::::::
extent).

::::
The

::::
poor

:::::::::::
performance

::
of

:::
the

::::::::::
multivariate

:::::::
methods

:::
in

:::
the

:::::::::
calibration

::::::
period

:::::::
indicates

::::
that

:::
the

:::::::
absence

::
of

::
a
:::::::
seasonal

::::::::::
component

:::::
might

:::::
have

:
a
:::::
large

::::::
impact,

::
as

::::
was

:::
also

:::::::::
discussed

::
in

::::::
Section

::::
4.3.

::::
This

:
is
:::::::::
confirmed

:::
by

::
the

::::::
results

:::
for

:::
the

:::
full

::::
year

::::
(not

:::::::
shown),

:::::
which

:::::
show

:::
that

:::
all825

:::::::
methods

:::::::
perform

::::
well

::
in

:::
the

:::::::::
calibration

::::::
period.

::::::
Despite

:::
the

::::
poor

:::::::::::
performance

::
of

:::::
some

:::::::
methods

:::
in

:::
the

:::::::::
calibration

::::::
period,

::::
even

:::
for

:::::
these

::::::
seasons

:::::
some

:::::::::
differences

::::::::
between

::
the

:::::::::
calibration

::::
and

::::::::
validation

::::::
period

:::
are

:::::
worth

:::::::::
discussing.

::
In

::::::
winter

::::::
(blue),

:::::
where

:::::::::::::
nonstationarity

::::::
mostly

:::::::
affected

::
the

::::::::
standard

::::::::
deviation,

:::
the

:::::::::::
performance

::
of

::
all

::::::::
methods

::
for

:::
all

::::::
indices

::
is

:::::::
slightly

:::::
worse

::
in

::::::::::
comparison

::::
with

:::
the

:::::::::
calibration

::::::
period.

:::::
Only

:::
the

:::::
lower

:::::::::
percentiles

:::
(E5::::

and
::::
E25)

:::
can

:::
be

:::::::
adjusted

::::
well

:::
by

:::::
almost

:::::
every

::::::::
method.

::
In

:::::::
summer

::::::::
(yellow),

:::::
where

:::
the

::
R

:::::
index

::::::
values830

:::::::
indicated

:::::
some

::::::::::::
nonstationarity

:::
for

:::
the

:::::
lower

::
E

:::::::::
percentiles,

:::
the

:::::::::::
performance

::
is

:::::
poorer

::
in
:::
the

:::::::::
validation

:::::
period

:::
for

:::
all

:::::::::
percentiles

:::::
except

::::
E99 :::

and
:::::
E99.5::::

(and
::::
E90 ::

for
:::::::

dOTC).
::::::::
However,

:::
the

::::::
impact

::::::
seems

::
to

::
be

:::::::
smaller

:::
for

::::::
MBCn,

::::::
dOTC

:::
and

::::::
R2D2.

::
In

:::::::
autumn
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:::::::
(purple),

:::
the

::
R
:::::
index

::::::
values

::::::::
indicated

:::
the

::::::
largest

:::::::
impact

::
on

:::
the

::::::::
standard

:::::::::
deviation.

:::
As

::
in

::::::
winter,

:
the wet-to-dry transition

probability are more biased than the raw climate simulations. For dOTC, it is the other way around: the number of dry days

is more biased after the application of dOTC, andthe auto-correlation and the wet-to-dry transition probability perform well,835

with RBMB values 0.50 or lower.
:::
best

:::::::::::
performance

::
is

::::::::
obtained

::
for

:::
the

::::::
lowest

:::::::::
percentiles

::::
and,

:::
for

:::
the

:::::::::
univariate

::::::::
methods,

:::
for

::
the

:::::::
highest

:::::::::
percentiles

::::
(E99::::

and
:::::
E99.5).

:::::::
Despite

:::
the

:::::::::
seemingly

:::::
larger

::::::
impact

:::
on

:::
the

::::::::
univariate

:::::::
methods

::
in
:::::
these

:::::
three

:::::::
seasons,

::::
their

:::::::::
adjustment

::
is

:::
still

:::::
better

::::
than

:::
the

:::::::::
adjustment

:::
by

:::
the

::::::::::
multivariate

::::::::
methods.

Another peculiar result that can be seen from Fig. ?? is the difference in dry day bias. Although all methods start with

the same number of dry days, there are large differences among the RBO and
:::
The

:::::
results

:::
for

::::::::
potential

::::::::::
evaporation

::::
have

::
to

:::
be840

:::::::::
considered

::
in

::::::::::
comparison

::
to

:::
the

::::::::
effective

::::
bias

:::::
values

:::
for

:::
the

:::::::
original

::::::::::
simulations

::::
and

:::
the

:::::::
adjusted

:::::::::::
simulations:

:::
the

:::::::
original

:::::
biases

::::
were

::::::::
relatively

:::::
small

::::
(not

:::::::
shown).

::::::
Hence,

::::
even

:
a
:::::
small

::::::
change

::
in

::::
bias

::::
will

::::
have

:
a
:::::
large

::::::
impact.

:::::::::::
Nonetheless,

::::
even

:::::
these

::::
small

:::::::
changes

::::
and

::::::::
relatively

:::::
small

:::::
biases

::::
have

:::
an

::::::
impact,

::::::
which

::
is

:::::::
reflected

:::
by

:::
the RBMB values for the number of dry days.

The RBO values range from 0.58 to 1.04 and the RBMB values from 0 to 1.09. QDM and MBCnperform best (RBMB = 0), as

the number of dry days is unaffected after the thresholding. For mQDM (RBMB = 0.25), this holds by construction: instead845

of adjusting the threshold-adjusted climate model simulations, this method adjusts the observations. For MRQNBC (RBMB =

0.63) and dOTC (RBMB = 1.09), the results seem to imply thatthe multivariate framework of these methods has an influence

on the number of dry days.
::::::
values.

:::
On

:::
the

::::
other

:::::
hand,

:::::
when

::::::::::
considering

:::
the

::::
PSS

::::::
values,

:::::
which

::::::
reflect

:::
the

:::
full

::::
PDF

:::::::
instead

::
of

:::::::
focusing

::
on

:::
the

:::::::::
extremes,

::
the

::::::
impact

::
is
:::::::
limited,

:::::::
although

::::
this

:::::::
depends

::
on

:::
the

:::::::
method

:::
and

:::::::
season,

::
as

:::
was

::::::
shown

:::
for

::::::
spring.

What the difference in transition probabilities implies for the time series, becomes more clear in Fig. ??. Although all850

adjusted simulations andthe observations have more short wet spells than long ones, MBCn pronounces the short wet spell

length more than the other methods, while the probability of longer wet spell lengths is lowered in comparison with other

methods . Closest to the observations is mQDM. QDM and MRQNBC also perform well, a conclusion similar to that of Fig.

??.

The difference in performance between QDM and the other methods seems to demonstrate that most strategies for retaining855

a certain temporal structure or adjusting the temporal structure do not perform well. MRQNBC and mQDM depend heavily

on the temporal structure of the observations, and MBCn and dOTC have an important shuffling or recalculation aspect, all of

which lead to less reliable results at the end of the process. The poor performance of dOTC and MBCn for the temporal structure

was also discussed by François et al. (2020). As for mQDM and MRQNBC, it is notable that the temporal structure does not

change much from the calibration time series to the validation time series. At least, this is suggested by their relatively good860

performance , which is based on using the observed time series (mQDM) and observed persistence statistics (MRQNBC). Yet,

this is no guarantee that these methods will be able to realistically adjust climate model simulations for the end of the century.

Figure ?? also suggests that despite the high R index value, the P lag-1 auto-correlation is not necessarily poorly adjusted.

For QDM, this index has relatively low RBO and RBMB values. This could imply that the performance still depends on the

robustness to the bias nonstationarity of the methodsunder consideration. Or, as the other indices illustrate, the effect of bias865

(non-)stationarity is not as large as the effect induced by the methods themselves. An example of this is the number of dry

days: though it has a low R index value, the performance varies substantially among the methods.
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Figure 6.
:::::
RBMB :::::

versus
:::
RB0:::

for
:::
the

::::::
potential

:::::::::
evaporation

::::::
indices

::
in

::
the

::::::::
validation

:::::
period.

:::
(a)

:::::
QDM,

:::
(b)

::::::
mQDM,

:::
(c)

:::::
MBCn,

:::
(d)

:::::::::
MRQNBC,

::
(e)

:::::
dOTC,

:::
(f)

:::::
R2D2.

::::::
Winter:

::::
blue,

:::::
spring:

:::::
ochre,

:::::::
summer:

:::::
yellow,

:::::::
autumn:

:::::
purple.

Wet spell length probability mass function for all adjusted simulations, the raw RCM simulations and the observations.

Figure 7.
:::::
RBMB :::::

versus
:::
RB0:::

for
::
the

:::::::
potential

:::::::::
evaporation

::::::
indices

:
in
:::
the

::::::::
calibration

::::::
period.

::
(a)

:::::
QDM,

:::
(b)

::::::
mQDM,

:::
(c)

:::::
MBCn,

:::
(d)

:::::::::
MRQNBC,

::
(e)

:::::
dOTC,

:::
(f)

:::::
Winter:

::::
blue,

::::::
spring:

:::::
ochre,

:::::::
summer:

:::::
yellow,

:::::::
autumn:

:::::
purple.
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4.5
:::::::::

Correlation

4.6 Discharge

All bias-adjusting methods perform better for the discharge percentiles compared to most other indices (Fig. ??). Although870

the discharge is influenced by a combination of many effects, these appear to be small in the end result. For example,

the poor performance of E
:::
For

:::::::::
correlation

:
(Fig. ??)does not result in large discharge biases. Thus, it is the integration of

precipitation amount, precipitation occurrence and evaporation, and the routing effect that ultimately defines the resulting

discharge. Generally, many indices perform well, though there are some differences among the methods. The best-performing

methods are QDM and mQDM, as all indices have values lower than 0.5 and some indices have values near to zero. For mQDM,875

::
8),

:::
all

:::::::
methods

:::::::
perform

::::::::
relatively

::::
well

::
in

:::
the

:::::::::
validation

::::::
period.

::::
Both

:::
the

:::::::::
univariate

:::
and

:
the 20-year return period even has an

RBO value of -0.05. For MBCn, the results are also good. Most extreme values have RBO and RBMB values lower than 0.5;

only the 5th percentile has an RBO value of 0.96 and an RBMB value of 0.89. As the only difference between QDM and MBCn

is the adjustment of occurrence, the results for discharge illustrates the importance of occurrence adjustment. This variability

in values seems to be a difference between the univariate
:::::::::
multivariate

::::::::::::
bias-adjusting

:::::::
methods

::::
can

:::::
adjust

:::
the

::::::::
simulated

::::::
biases880

::::
well.

::::
The

::::::::
univariate

:::::::
methods

::::
will

:::::
adopt

:::
the

:::::::::
dependence

::::::::
structure

::
of

:::
the

:::
raw

:::::::::::
simulations,

:::::::
whereas

:::
the

::::::::::
multivariate

:::::::
methods

:::
are

:::::::::
specifically

::::::::
designed

::
to

:::::
adjust

:::
the

::::::::::
dependence

:::::::::
structure, and

:::
both

::::::::
strategies

:::::
seem

::
to

:::::
work

::::
well.

:::::::::
However,

:
it
::::::
should

:::
be

:::::
noted

:::
that

:::::
some

::
of

:::
the

:::::
biases

::
in

:::::::::
correlation

:::
are

::::
very

:::::
small

::
in

:::
the

:::
raw

::::::::::
simulations

:::
(not

:::::::
shown)

:::
and

::::
that

::
for

:::::
those

::::::::::
correlations,

:::
the

:::::
good

:::::::::
adjustment

::
by

:::::::::
univariate

:::::::
methods

::
is

::::::
trivial:

::::
they

::::
will

:::::
adopt

:::
the

:::::::::
correlation

::
of

:::
the

::::::::::
simulations

::::
and

::::
only

::::::
slightly

::::::
adjust

:::
this

:::
by

:::::::
adjusting

:::
the

:::::::::
marginals.

:::::
This

:
is
::::::

linked
::::
with

:::
an

::::
issue

::::::
raised

::
by

:::::::::::::::::::::
Zscheischler et al. (2019)

:
:
::
in

::::::::
situations

::::
with

::::
low

::::::
biases

::
in

:::
the885

:::::::::
correlation,

:::
the

:::::::::
univariate

:::::::
methods

::::
will

::::::
almost

::::::
always

:::::::::
outperform

:::
the

:
multivariate bias-adjusting methods. For the two worst

performing methods, i. e. MRQNBC and dOTC, some indices have RBO and RBMB valuesclose to or ,
::
as

::::::::::
specifically

::::::::
adjusting

::
the

::::::::::
dependence

::::::::
structure

:::::::::
sometimes

::::::
results

::
in

::
an

:::::::
increase

::
of

:::
the

::::
bias.

:

:::
The

:::::
good

::::::::::
performance

:::
for

::::
the

::::::::
validation

::::::
period

::::::::
indicates

:::
that

:::
the

::::::
impact

:::
of

::::::::::::
nonstationarity

::
is
:::::::
limited,

::
as

::::
was

::::
also

::::::
shown

::
by

:::
the

:::::
small

::
R

:::::
index

::::::
values

:::::::
(Section

:::::
4.1).

::::
This

::
is

:::::::::
confirmed

::
by

:::
the

::::::
biases

::
in

:::
the

:::::::::
calibration

::::::
period

::::
(not

:::::::
shown),

::::::
which

:::
are890

::::::
similar

::
to

:::::
those

::
in

:::
the

:::::::::
validation

::::::
period.

:::::::::
However,

:::
for

:::::
some

::::::
values,

:::
the

::
R
:::::

index
:::::

value
::::

was
:

higher than 1and some values

between 0.5
:
,
::::
thus

:
it
::
is
:::::::::
important

::
to

:::::
know

::::
what

::::::
caused

::::
this.

:::
For

::::::
corrE,T::

in
::::::::

summer,
:::
the

:::::::::
difference

:::::::
between

:::
the

::::::::
validation

::::
and

:::::::::
calibration

:::::
period

::
is
:::::::::
negligible,

::::::::
although

::::
only

:::
for

:::::
QDM

::::
this

::::
value

::
is
::::
well

::::::::
adjusted

::
in

::::
both

:::::::
periods.

::::::::
However,

:::
the

::::
bias

:::
for

:::
the

::::::
original

::::::::::
simulations

::
is

:::::
lower

::::
than

::::::
0.10%

::
in

::::
both

:::
the

:::::::::
calibration

::::
and

::::::::
validation

:::::::
period, and 1. These methods are thus unable

to correctly adjust the bias for all indices. However, although MRQNCB and dOTC seem to perform similarly, the indices895

with the worst RBO and RBMB values are different. For MRQNBC, the 99.5th percentile and the 20-year return period have

the highest values, whereas for dOTC, the 5th and 25th percentile perform worse than the raw climate simulations . From the

point of view of extreme discharges, dOTC is thus the better method of these two. This might indicate that although not all

occurrence indices of dOTC had lower RBMB values than those of MRQNBC, those that had (Plag1 and PP10), had a larger

influence on the extreme discharge values. Both indices are partly based on the occurrence of wet days, and thus indicate that900

those need to be at the correct place in the time series for extreme floods to be correctly simulated
::::::
switches

:::
in

::::
sign,

::::::
which

34



::::::
inflates

:::
the

::
R

:::::
index

:::::
value.

:::
For

:::::::::::
crosscorrE,T,0::::

and
:::::::::::
crosscorrE,T,1,

:::
the

:::::
same

:::::
effect

::::::
occurs.

:::::::
Besides,

::
it
::::::
seems

:::
that

:::
the

::::
bias

::
of

:::::
these

::::
three

::::::::::
correlations

::
is

:::
too

:::::
small

::
to

::
be

::::::::
corrected

::
by

::::
any

::::::
method

::::
and

:::
that

:::::
trying

:::
to

:::::
adjust

:::
this

::::::::::::
automatically

::::::
inflates

:::
the

::::::
results.

:::
As

::::::::
discussed

::::::
earlier,

:::
this

::::::
shows

:::
that

:::::
while

::::
the

:
R
:::::

index
::::

can
::
be

::
a
:::::::
valuable

::::
tool

:::
for

:::::
some

::::::::
variables,

::
it

::::
does

:::
not

::::::
always

:::
tell

:::
the

::::
full

::::
story.905

Figure 8. RBMB versus RB0 for the discharge percentiles and
::::::::
correlation

:::::
indices

::
in

:
the 20-year return

:::::::
validation

:
periodvalue. (a) QDM, (b)

mQDM, (c) MBCn, (d) MRQNBC, (e) dOTC,
:::
(f)

::::
R2D2.

::::::
Winter:

::::
blue,

:::::
spring:

:::::
ochre,

:::::::
summer:

:::::
yellow,

:::::::
autumn:

:::::
purple.

5 Discussion

4.1
:::::::::::

Precipitation
:::::::::
occurrence

In the previous section, the results for the bias adjustment by different methods and under climate change conditions were

reported. The effect of climate change on the bias was evaluated through the R index , which showed that the bias for some

indices cannot be considered stationary. For some of the indices (the lower percentiles of T and especially the middle percentiles910

of E) the methods performed poorly, which could often be linked with the
:::::
Figure

::
9

:::::
shows

::::
that

:::
the

:::::::::::
bias-adjusting

::::::::
methods

:::
are

:::
able

::
to

::::::
adjust

::
the

:::::::::::
precipitation

:::::::::
occurrence

::::
well

::
in

::::
most

::::::::
seasons.

::::::::
Especially

:::
the

:::::::::
univariate

:::::::::::
bias-adjusting

:::::::
methods

:::::::
perform

:::::
well.

::::::::
Although

:::
the

::::::::::
multivariate

:::::::::::::
bias-adjustment

::::::
always

::::::
results

::
in

::
at

::::
least

::::
one

:::::
index

::::
that

::
is

:::::
better

::::
than

:::
the

:::
raw

:::::::
climate

::::::::::
simulations

::::::
(except

:::
for

:::::::::
MRQNBC

::
in

::::::
spring:

::::
panel

::::
(d),

::::::
ochre),

::::
most

::::::
indices

:::
are

::::
not,

::
or

::::
only

::::::
slightly

:::::
better

::::
than

:::
the

:::
raw

:::::::
climate

::::::::::
simulations.

::::
This

:
is
::
a

::::::::::
disadvantage

:::::::
inherent

::
to
:::
the

::::::
current

:::::::::
generation

::
of

::::::::::
multivariate

::::::::::::
bias-adjusting

::::::::
methods:

::
as

::::::::
discussed

::
in

::::::
Section

::::
3.3,

:::
the915

:::::::::
dependence

::::::::::
adjustment

:::
will

::::::
always

::::::::
influence

:::
the

:::::::
temporal

:::::::
structure

:::::::::::::::::::::::::::::::::::::
(François et al., 2020; Vrac and Thao, 2020b)

:
.
::::::::::
Nonetheless,
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::
on

::
a

:::::::
seasonal

:::::
level,

:::
the

::::::::
temporal

:::::::
structure

::
is
::::::::::

sometimes
:::::::::
remarkably

::::
well

::::::::
adjusted,

:::::
such

::
as

::
in

:::::::
summer

::::::::
(yellow)

:::
and

:::::::
autumn

:::::::
(purple).

:::
The R index values . The methods clearly handle this bias nonstationarity differently. It seems that the univariate bias-adjusting

methods are far more robust: even for indices with high R values , they are sometimes able to perform very well, with low RBO920

and RBMB values. This good performance thus seems to imply that the more indices a bias-adjusting method directly adjusts,

the more susceptible it is to problems related to bias nonstationarity. However
:::::::
indicated

::::
that

::::
there

:::::
might

:::
be

::::
some

:::::::::::::
nonstationarity

::
in

:::::
spring

::::
and

::::::
autumn

::::::::
(Section

::::
4.1):

:::
the

:::::
value

:::
for

::::
Plag1::

is
::
2,

:::
and

:::
for

:::
the

:::::
other

::::::
indices

:::
the

::::::
values

:::
are

::::::
clearly

::::::
higher

::::
than

:::::
those

::
in

:::::
winter

::::
and

:::::::
summer.

:::
In

:::::::
contrast

::
to

::::
other

:::::::::
situations

::
of

::::
bias

:::::::::::::
nonstationarity, this does not imply that QDM and mQDM are

similar: while they are almost as good for many variables, the poorerperformance of mQDM for the precipitation occurrence925

indices is an indication that assuming that the temporal structure of the past can be used for the future might be dangerous, as

Johnson and Sharma (2011) and Kerkhoff et al. (2014) already mentioned. Given that mQDM performed worse for two time

periods separated by 10 years only, it is unlikely that it is safe to use this method , or other delta change-based methods, for

impact assessments targeting the end of the 21st century and depending on the temporal structure of time series. Yet, for some

other indices, especially the correlation, mQDM performed better. Consequently, the exact choice should depend on the goals930

of the end user.
:::::
result

::
in

:
a
::::::
poorer,

:::
but

:::::::
actually

:
a
:::::
better

:::::::::::
performance

::
for

:::::
these

:::
two

:::::::
seasons

::::::::::
(calibration

:::::
period

:::
not

:::::::
shown).

::::::
Winter

:::
and

:::::::
summer,

:::
for

::::::
which

::
no

:::::::::::::
nonstationarity

:::::
could

::
be

::::::::
detected,

:::::::
perform

::::::::
similarly

::
in

::::
both

:::
the

:::::::::
calibration

::::
and

:::::::::
validation

::::::
period.

::::::::
However,

::
in

::
all

:::::::
seasons

:::::::
mQDM

::::::
(panel

:::
(b))

::::::::
performs

::::::
worse

::
in

:::
the

:::::::::
validation

::::
than

::
in

:::
the

:::::::::
calibration

:::::::
period.

:::
As

:::
this

:::::::
method

:::
uses

:::
the

::::::::
observed

::::::::
structure,

:::
the

::::::::
temporal

:::::::
structure

::
is

:::
by

::::::::::
construction

::::::
perfect

::
in

:::
the

:::::::::
calibration

::::::
period.

::::
The

::::::
poorer

:::::
result

::
in

:::
the

::::::::
validation

::::::
period

:::::
might

:::::
imply

::::
that

:::::
using

:::
the

:::::::
observed

::::::::
temporal

::::::::
structure

::::
does

:::
not

::::::
suffice

:::
for

:::::
future

::::::::
impacts,

:::::
which

:::::
might

:::
be935

::::::::
important

:::::
when

::::
using

:::::
delta

:::::::
methods

:::
for

::::::
impact

::::::::::
assessment.

The results of the multivariate bias-adjusting methodstoo are not without nuance: though they are generally worse than the

univariate bias-adjusting methods, their performance depends heavily on the variable under consideration and on the method

itself. A clear example of this dependence on variables is the contrasting performance of dOTC to adjust T (Fig. ??) versus

E (
::::
When

::::::::::
comparing

:::
the

::::::::
methods,

::::
some

::::::::::
differences

::::::
related

::
to

:::::
their

:::::::
structure

::::
can

::
be

:::::::
noticed.

:::
In

:::::::
general,

:::::
QDM

::::::
(panel

:::
(a)

::
in940

Fig. ??) : the adjustment of E is much worse. This is a reminder that in a multivariate context, the multivariate methods are

far less robust and can perform relatively good and poor at the same time for different variables. Therefore, there seems to be

an interplay between the modelling of the variables and the method of calculation. Except for P, for which the results were

similar, the methodsperformed differently for each variable. MRQNBC performed best in the context of temporal structure, for

which it was designed (Fig. ??). For T, MBCn and dOTC performed better (Fig. ??)
::
9)

:::
has

:::
the

:::
best

:::::::::::
performance

::
of

::
all

::::::::
methods945

::
for

:::
the

::::::::::
occurrence,

:::::::::
indicating

::::
once

:::::
more

:::
the

::::::
impact

::
of

:::
the

::::::::
shuffling

:::
and

::::::
similar

::::::::::
algorithms

::
of

:::
the

::::::::::
multivariate

::::::::::::
bias-adjusting

:::::::
methods. This could be related to their trend-preserving properties, which are more pronounced for those methodsthan for

MRQNBC. For E (Fig. ??)and correlation (Fig. ??)
::::
Only

::
in

:::::::
autumn

:::::::
(purple), dOTC displayed the most different results. For

the former,
:::::::::
MRQNBC

::::::
(panel

:::
(d))

::::
and

:::::
R2D2

:::::
(panel

::::
(f))

:::::::
perform

::
as

::::
well

::
as

::::::
QDM.

::::::::
However,

:::::::
mQDM

:::::
(panel

:::
(b)

::::
also

::::::::
performs

:::
well

:::
in

::
all

:::::::
seasons,

:::::::
despite

:::
the

:::::
poorer

:::
fit.

:::::
There

:::
are

::::
also

::::::::::
differences

::::::
among

:::
the

:::::::
different

::::::::::
multivariate

::::::::::::
bias-adjusting

::::::::
methods.950

::
In

::
all

::::::::
seasons,

::::::
MBCn

:::::
(panel

::::
(c))

::::
and

:::::
R2D2

:::::
(panel

::::
(f))

:::
are

::::
able

::
to

::::::
reduce

:::
the

::::
bias

:::
of

:::
the

::::::
number

:::
of

:::
dry

:::::
days,

:::::::
whereas

::::
this
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:::::
varies

:::
for

:::::::::
MRQNBC

:::
and

::::::
dOTC

:::::
(panel

::::
(e)).

::::
The

::::
good

:::::::::::
performance

:::
for

:::
this

:::::
index

:::
for

::::::
MBCn

::::
and

:::::
R2D2

::
is

:::::
based

::
on

:::
the

::::
use

::
of

::::::::::
thresholding

::::
and

:::::
QDM

:::
for

:::
the

::::::::
marginal

::::::::::
adjustment:

::::
these

::::::::
methods

:::
are

::::
able

::
to

::::::::
perfectly

:::::
adjust

:::
the

:::::::
number

::
of

:::
dry

:::::
days,

::::
and

:::
any

:::::::::
remaining

:::
bias

::::
can

::
be

::::::
related

::
to
:::

the
:::::::::::

combination
::
of

::::::::
temporal

::::::::
shuffling

:::
and

::::::::
seasonal

:::::::::
evaluation.

::::::::
However,

::::::
dOTC

::::::
adjusts

::::
Plag1 :::

and
::::
PP10::::

well
::
in
:::::

every
:::::::

season.
::::
This

:::::::
implies

:::
that

::
it
::
is

::::
able

::
to

::::::::::
differentiate

:::
in

:::
the

:::::::::
adjustment

:::::::
between

::::
zero

::::
and

::::::::
non-zero955

::::::
values,

:::::::
whereas

:::::
longer

:::::
series

::
of

:::::
zeros

:::
are

::::::
harder

::
to

:::::
adjust.

::::
The

::::::::
incorrect

:::::
series

::
of

:::::
zeros

:
is
::::::::
probably

::::
also

:::::
linked

::::
with

::::
one

::
of

:::
the

:::::::::
deficiencies

:::
of

::::::
dOTC:

:
it
:::::::::
sometimes

::::::
creates

::::::::::
nonphysical

:::::::::::
precipitation

::::::
values,

::::::
which

::::
have

::
to

::
be

::::::::
corrected

:::
by

:::::::::::
thresholding.

Figure 9.
:::::
RBMB ::::

versus
::::
RB0::

for
:::
the

:::::::::
precipitation

:::::::::
occurrence

:::::
indices

::
in

::
the

::::::::
validation

:::::
period.

:::
(a)

:::::
QDM,

::
(b)

:::::::
mQDM,

::
(c)

::::::
MBCn,

::
(d)

:::::::::
MRQNBC,

::
(e)

:::::
dOTC,

:::
(f)

:::::
R2D2.

::::::
Winter:

::::
blue,

:::::
spring:

:::::
ochre,

:::::::
summer:

:::::
yellow,

:::::::
autumn:

:::::
purple.

4.2
::::::::
Discharge

:::
The

:::::::
Perkins

::::
Skill

:::::
Score

:::::
values

:::
for

::::::::
discharge

::::::
(Table

::
6)

:::::
show

:::
that

:::
the

:::::::::
univariate

:::::::::::
bias-adjusting

::::::::
methods

::::::::
generally

:::::::
perform

::::
best,

:::::::
whereas

::
the

:::::::::::
performance

::
of the all-in-one and trend-preservation method did not seem robust enough. For the latter, it depended960

heavily on the type of correlation under consideration. These results seem to imply that the difference under bias-nonstationary

conditions is not clear-cut for the different types of multivariate bias-adjusting methods . For the ‘marginal/dependence’ vs.

the ‘all-in-one’ approach, consequently no clear conclusions can be drawn. For the amount of temporal alteration, it depends

on the index under consideration. MRQNBC, which replaces the simulated correlations by those of the observations performs

well for the temporal structure, but performs worse for many other indices. For MBCn and dOTC, the effect of the difference965

in temporal alteration is less distinct and other properties, such as trend preservation, seem to have more influence
:::::::
depends

::
on

:::
the

:::::::
season.

::::::::
However,

::
all

::::::::
methods

:::::::
perform

::::::
poorly

:::
for

::::::
spring.

::::
The

::::
PSS

:::::
values

:::
for

::::::::::
evaporation

::::::
clearly

:::::
show

:::
the

::::::
impact

:::
of

::::::::::::
nonstationarity,

::::::
which

:::::
seems

::
to

:::
be

::::::::::
propagating

::
to

:::
the

::::::::
discharge

:::::
PDF.

::::
This

::
is

::::::::
illustrated

:::::
when

:::::::::
comparing

::::
with

:::
the

::::
PSS

::::::
values
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::
for

:::
the

:::::::::
calibration

::::::
period:

::::
only

:::
in

::::::
spring,

::
all

:::::::
methods

:::::::
perform

:::::
worse

::
in
:::
the

:::::::::
validation

:::::
period

::::
than

::
in
:::
the

:::::::::
calibration

::::::
period.

::::
For

::
the

:::::
other

:::::::
seasons,

:::
the

::::::
impact

::
is

:::::
much

::::
more

::::::
mixed.970

To have a better view of how these results should be interpreted, the perspective of the end user should be considered

(Maraun et al., 2015; Maraun and Widmann, 2018b). We used discharge as an example, using the relatively simple PDM.

Although the residual bias values

Table 6.
:::
PSS

:::::
values

:::
for

:::::::
discharge

::
in
:::
the

::::::::
calibration

::::
(Cal)

:::
and

::::::::
validation

::::
(Val)

::::::
periods

:::
(%).

Winter Spring Summer Autumn

:::
Cal

:::
Val

:::
Cal

:::
Val

:::
Cal

:::
Val

:::
Cal

:::
Val

::::
QDM

: :::
85.9

: :::
90.0

: :::
87.4

: :::
67.0

: :::
90.8

: :::
81.5

: :::
92.4

: :::
86.6

:

::::::
mQDM

:::
99.6

: :::
85.3

: ::::
100.0

: :::
60.8

: ::::
100.0

: :::
76.8

: ::::
100.0

: :::
86.2

:

:::::
MBCn

: :::
49.5

: :::
50.7

: :::
87.4

: :::
51.0

: :::
41.8

: :::
64.3

: :::
74.3

: :::
80.0

:

::::::::
MRQNBC

: :::
92.2

: :::
86.4

: :::
67.3

: :::
38.6

: :::
89.1

: :::
85.1

: :::
57.7

: :::
49.8

:

:::::
dOTC

:::
70.0

: :::
85.4

: :::
48.2

: :::
25.0

: :::
42.3

: :::
58.3

: :::
68.5

: :::
72.4

:

::::
R2D2

: :::
75.0

: :::
78.0

: :::
73.1

: :::
42.8

: :::
43.2

: :::
40.0

: :::
69.3

: :::
63.8

:

:::
The

::::::
impact

::
on

:::
the

::::
PDF

:::
for

::::::
spring

::::::::
discharge

::::
does

:::
not

::::::
clearly

:::::
appear

:::::
when

:::::::::
comparing

:::
the

:::::
RBMB::::

and
:::
RB0::::::

values:
:
for all meth-

ods for E (Fig. ??) indicate a poor performance, the influence thereof on the discharge seems to be negligible
:::
and

:::::::
seasons,

:::
the975

:::
bias

::::::::::
adjustment

:::::
seems

::
to

:::::
result

::
in

:::
an

::::::::
agreeable

::::::::::::
representation

::
of

:::
the

::::::::
discharge

::
in

:::
the

:::::::::
validation

:::::
period

:
(Fig. ??). Discharge is

the variable that is of the highest importance for hydrological impact modelling, and the results indicate that most methods are

able to adjust the forcing variables sufficiently in order to have a good simulation of discharge. However, the small differences

between the methods should still be taken into account.Overall, QDM and mQDM perform best in adjusting the variables such

that the discharge rates are the least biased in comparison with the observations. This is also important considering that bias980

adjustment can be applied for many different types of impact assessment. In other impact assessments,
::::
10).

::::::::
However,

:::::
when

:::::::::
comparing

::::
these

::::::
results

::::
with

:::
the

:::::::
residual

::::::
biases

::
in the differences could affect the result more than the discharge considered

here. For example, forest fires (a typical compound event, discussed in a bias adjustment context in e.g. Yang et al. (2015),

Cannon (2018), Zscheischler et al. (2019))depend more heavily on T and E to simulate fire weather conditions. Besides such

compound events, other applications are ecosystem functioning (Sippel et al., 2016), agriculture (Galmarini et al., 2019), or985

climate zone classification (Beck et al., 2018). In such studies the effect of bias nonstationarity can even be worse, whereas in

other studies, depending more on P or other (so far)less-affected variables, the need fora bias nonstationarity-proof
:::::::::
calibration

:::::
period

:::::
(Fig.

::::
11),

::
it

::::::::
becomes

::::
clear

::::
that

:::
the

::::::
results

:::
for

::::::
winter

::::
and

:::::::
summer

::::
are

:::::
much

::::::
worse

::
in

:::
the

:::::::::
validation

::::::
period.

:::::
This

::::::::::
corresponds

::::
with

:::
the

::::
poor

:::::::::::
performance

:::
for

:::::::::::
precipitation

:::::::::
adjustment

:::
in

::::
these

::::::::
seasons,

:::::
which

::::
was

::::::::
probably

::::::
linked

::::
with

::::
bias

::::::::::::
nonstationarity.

:
990

:::
The

:
bias-adjusting method is less compelling. Anyway,

:::::::
methods

::::
seem

::
to
:::::::
respond

::::::::
similarly

::
to

:::
the

:::::::::::::
nonstationarity.

::
In

::::::
winter

:::::
(blue),

::::::
QDM

:::::
(panel

::::
(a))

::::::::
performs

:::::::
slightly

:::::
better,

::::::::
whereas

::
in

:::::::
summer

::::::::
(yellow),

:::::
R2D2

::::::
(panel

:::
(f))

::::::::
performs

:::::::::
relatively

:::::
good.

::
In

:::::
spring

::::::::
(ochre), the inability of some methods to adjust the biases in nonstationary conditions implies that a thorough
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assessment of possible bias nonstationarity should be made before bias-adjusting. If not done, the risk of reporting a wrong

future projection is likely increased. Given the knowledge of bias nonstationarity, such uncertainties can be better characterised.995

:::::::
methods

:::
also

:::::::
perform

::::::::
similarly,

::::::::
although

:::::
QDM

::::::::
performs

::::::
slightly

:::::
better

:::
for

:::
Q99::::

and
:::::
dOTC

::::::
(panel

:::
(e))

::::::::
performs

:::::
worse

::::
than

:::
the

::::
other

::::::::
methods.

:::
As

:::::
such,

:::::::
whether

::
or

:::
not

:::
the

::::::::
methods

:::
take

::::::::::
seasonality

::::::::
explicitly

::::
into

:::::::
account

::::
does

:::
not

:::::
seem

::
to

::::::
matter

:::
for

:::
the

:::::
impact

:::
on

:::::::::
discharge.

::::
This

::::
also

::::::
follows

:::::
from

:::
the

:::::::
structure

:::
of

:::
the

::::::::::
hydrological

::::::
model:

:::::::::::
precipitation

::
is

:
a
:::::
more

::::::::
important

::::::
driver

:::
than

::::::::
potential

:::::::::::
evaporation.

::::::::::
Seasonality

::
in

:::
the

::::
bias

:::::::::
adjustment

::::
had

:
a
::::::

larger
::::::
impact

:::
on

:::::::
potential

:::::::::::
evaporation,

:::
but

::::
this

::::::
impact

::::::::
disappears

:::::
when

:::::
using

:::::
these

::::::::
variables

::
as

::::::
inputs

::
to

:::
the

:::::::::::
hydrological

::::::
model.

:::::::
Besides,

::
it
::::
can

:::
also

:::
be

::::
seen

::::
that

::
if

::
an

:::::::::
important1000

::::::
forcing

:::::::
variable

:::
for

::
an

::::::
impact

::::::
model

:::::
shows

:::::
large

:::::::::::::
nonstationarity,

:::
this

:::::::::::::
nonstationarity

:::
will

:::::::::
propagate

:::::::
through

:::
the

::::::
model.

::::
This

::::
helps

:::::::::
explaining

:::
the

::::::::::
differences

:::::::
between

:::
the

::::
PSS

::::
and

:::
the

:::
RB

::::::
values:

:::
the

:::::::
impact

::
of

::::::::::::
nonstationarity

:::
on

::::::::
potential

::::::::::
evaporation

:::::::::
propagates

::
as

::
an

::::::::
influence

:::
on

:::
the

::::
PDF

::::::::
structure,

:::
but

::
is

:::
less

::::::
visible

::
in

:::
the

::::
final

:::::
bias,

::
as

:::
the

::::::
amount

::
of
:::::::::::

precipitation
:::
has

::
a
:::::
much

:::::
larger

::::::
impact

::
in

:::
the

::::::::::
hydrological

::::::
model.

::::::
Hence,

:::
the

::::
final

::::
bias

::
is

::::
more

:::::::::
influenced

:::
by

::::::::::
precipitation

:::::::::::::
nonstationarity.

:

Returning to the discharge, it might be interesting to discuss whether or not the adjustment of E is truly needed. On the1005

one hand, this variable is the most affected by bias nonstationarity. On the other hand, discharge is far less influenced by this

variable than by P or temporal structure. The discharge has been calculated for this setting with raw E, the result of which is

shown in Fig. ??. The results depend on the method: for QDM and mQDM, raw E data slightly exacerbate the results, while

for dOTC the percentiles are all improved. Only for MRQNBC and MBCn, the results are highly dependent on
::::
The

::::::
impact

::
of

:::
bias

:::::::::::::
nonstationarity

:::::
varies

:::::::
between

:::::
winter

::
(
::::
blue)

:::
and

:::::::
summer

:::::
(Fig.

:::
10,

:::::::
yellow).

::
In

::::::
winter,

::
the

::::::
impact

::
is

:::::
more

::::::
clearly

:::::
visible

:::
on1010

::
the

::::::
higher

::::::::::
percentiles:

::::
Q99,

:::::
Q99.5 :::

and
::::::::::
Q10001000

:::
T20

::
are

::
all

::::
well

:::::::
adjusted

::
in
:
the considered percentile. For MBCn,

:::::::::
calibration

:::::
period

:::
by

:::::
QDM,

:::::::
mQDM,

::::::
dOTC

:::
and

::::::
R2D2,

:::
but

::
are

:::::
much

::::::
worse

:::::::
adjusted

::
in

:::
the

::::::::
validation

::::::
period.

::
In

:::::::
summer,

:
the 5th percentile

and the 20-year return period value (with RBO ≤ 0) are improved, whereas the 95th and 99th percentile RBO and RBMB values

are deteriorated. For MRQNBC, the results are opposite: the 5th percentile RBO and RBMB values are deteriorated, and the

95th and 99th values are improved
:::::
impact

:::::
seems

::
to
:::
be

::::::
similar

:::
for

::
all

:::
the

:::::::::
percentiles.1015

The results for raw E seem to imply that, on the one hand and depending on the bias-adjusting method used, a well-considered

choice of variables to adjust can give optimal results. On the other hand, the results demonstrate once more that the univariate

methods are far more robust than the multivariate methods. Although the RBO and RBt10001000MBvalues are slightly

deteriorated for QDM and mQDM in comparison with the discharge based on adjusted E, all values, and especially the values

for the highest percentiles, still indicate a good bias adjustment. In general, an assessment like this can be done for the other1020

types of impact studies discussed above, so that the influence of adjusting bias-nonstationary variables can be better understood.

5
:::::::::
Discussion

::::
and

::::::::::
conclusions

The goal of this paper was to assess how five
:::
six bias-adjusting methods handle a climate change context with possible bias

nonstationarity. Three
::::
Four of the methods were multivariate bias-adjusting methods: MRQNBC, MBCnand dOTC ,

:::::
dOTC

::::
and1025

:::::
R2D2. The two other the bias-adjusting methods

::::
ones were univariate: one was a traditional bias-adjusting method

::::::
(QDM),
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RBMB versus RB0 for the discharge percentiles and the 20-year return period value, calculated with raw evaporation. (a) QDM, (b) mQDM,

(c) MBCn, (d) MRQNBC, (e) dOTC.

Figure 10.
::::
RBMB:::::

versus
::::
RB0::

for
:::
the

:::::::
discharge

:::::::::
percentiles

:::
and

::
the

::::::
20-year

:::::
return

:::::
period

::::
value

::
in

::
the

::::::::
validation

:::::
period.

:::
(a)

:::::
QDM,

::
(b)

:::::::
mQDM,

::
(c)

::::::
MBCn,

::
(d)

:::::::::
MRQNBC,

::
(e)

::::::
dOTC,

::
(f)

:::::
R2D2.

::::::
Winter:

::::
blue,

:::::
spring:

:::::
ochre,

:::::::
summer:

::::::
yellow,

::::::
autumn:

::::::
purple.

Figure 11.
::::
RBMB:::::

versus
::::
RB0 ::

for
:::
the

:::::::
discharge

::::::::
percentiles

:::
and

:::
the

::::::
20-year

::::
return

:::::
period

:::::
value

:
in
:::
the

::::::::
calibration

:::::
period.

:::
(a)

:::::
QDM,

::
(b)

:::::::
mQDM,

::
(c)

::::::
MBCn,

::
(d)

:::::::::
MRQNBC,

::
(e)

::::::
dOTC,

::
(f)

:::::
R2D2.

::::::
Winter:

::::
blue,

:::::
spring:

:::::
ochre,

:::::::
summer:

::::::
yellow,

::::::
autumn:

:::::::
purple.dr
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while the other was almost the same method, but modified according to the delta change paradigm
::::::::
(mQDM). These univariate

methods were used as a baseline to compare the multivariate bias-adjusting methods with
::
for

::::::::::
comparison. The climate change

context, using 1970-1989 as calibration time period and 1998-2017 as validation time period, allowed us to calculate the change

in bias between the periods, or the extent of bias stationarity
::::::::::::
nonstationarity, using the R index. All methods were calculated1030

and
:::
The

::::::
results

::
of

:::
all

:::::::
methods

::::
were

:
compared using different indices, for which the residual biases relative to the observations

and model bias were calculated.
:::::::
Although

:::
the

:::::
study

::::
was

::::::
limited

::
in

::::::
spatial

:::::
scale

:::
and

:::::::
climate

::::::
models

:::::
used,

:::
this

:::::::
yielded

:::::
some

:::::
results

::::
that

:::::
could

::
be

:::::::
valuable

:::::::
starting

:::::
points

:::
for

:::::
future

::::::::
research.

The calculated R index values differed depending on the variable and variable index under consideration, but generally

demonstrated that the bias of some of these indices is not stationary under climate change conditions. These changes could1035

in some cases ,
::::::::
although

:::
the

:::::
extent

:::
of

:::
bias

:::::::::::::
nonstationarity

::::::::
depended

:::
on

:::
the

:::::::
variable

:::
and

:::::
index

:::::
under

::::::::::::
consideration.

::::
The

::::
bias

::::::::::::
nonstationarity

:::::
could

:
be clearly linked to the poor performance of bias-adjusting methods , such as for

::
for

:::::::::::
precipitation,

::::
and

::
to

::::
some

::::::
extent

:::
for

::::::::::
temperature

:::
and

:::::::
potential

:::::::::::
evaporation.

:::
For

::::
both

:::::::::::
precipitation

:::
and

:::::::::::
evaporation,

:
it
:::::
could

:::
be

:::::::
observed

::::
that

:::
the

::::::::::::
nonstationarity

:::::::::
propagated

:::::::
through

:::
the

::::::::::::
rainfall-runoff

:::::
model

::::
used

:::
for

::::::
impact

:::::::::
assessment,

::::
and

:::
that

:::
the

::::::::::
propagation

:::
was

::::::::
different

::
for

:::::
these

::::::::
variables.

:
1040

::
In

:::
the

::::::
context

:::
of

:::::::::::::
nonstationarity,

:
it
::
is
:::::::::
important

::
to

::::::
discuss

::::
how

::::
well

:::
the

::::::::
methods

:::::::::
performed.

:::::
Some

:::::::::::
observations

:::::
could

:::
be

:::::
made.

:::::
First, the lower percentiles of T or the middle percentiles of E. The performance was often poorer for the multivariate

bias-adjusting methods , which corroborates the conclusions of Guo et al. (2020) that bias nonstationarity influences the performance

of multivariate
::::::::
univariate bias-adjusting methods. Although these methods have been developed during the last few years

as a means to better adjust the biases, it seems that their more complex calculations make them more vulnerable to bias1045

nonstationarity. Thus, the
::::::
methods

::::
are

::::::::
relatively

::::::
robust.

:::::::::
Although

::::
there

:::::::
always

::
is

::
an

:::::::
impact

:::::
when

::::
bias

:::::::::::::
nonstationarity

::
is

::::::
present,

:::
the

:
univariate bias-adjusting methods , computationally less complex and not taking (potentially changing) correlations

into account, seem to be more robust. Although effective difference in climate change impact is weakened by the hydrological

model we used , the univariate
:::
still

:::::::
perform

:::
best

:::::
when

::::::::::
considering

:::
the

::::
PSS

::::::
values,

:::
i.e.

:::
the

:::
full

::::
PDF.

:::::::::
However,

:::
the

:::::::
methods

:::
are

:::::::::
specifically

::::::::
designed

::
to

:::
alter

:::
the

::::::::
marginal

:::::::::::
distributions.

::
As

::::::
already

:::::::::
discussed

:
in
:::::::
Section

:::
4.5,

::
it

:::
was

:::::::
pointed

::
out

:::
by

:::::::::::::::::::::
Zscheischler et al. (2019)1050

:::
that

:::
the

::::::::::
multivariate

::::::::::::
bias-adjusting

:::::::
methods

::::
were

:::::
made

::::
with

:::::
other

:::::::
principal

::::::
goals,

::::
such

::
as

::::::
spatial

:::
and

::::::::::
dependence

::::::::::
adjustment.

::
As

::
it

:
is
:::
not

::::::::
assessed

:
in
::::
this

:::::
study,

:::
we

:::::
cannot

::::::::
comment

::
on

:::
the

::::::
spatial

::::::::::
adjustment.

::::::::::
Nonetheless,

:::
the

:::::
study

::
by

::::::::::::::::::
François et al. (2020)

::::::::
illustrated

::::
that

:::
the

::::::::::
multivariate

:::::::::::
bias-adjusting

:
methods still perform best. Studying other types of climate change impacts, the

effect of bias nonstationaritycould possible be even larger than discussed here.
:::
can

::
be

::::
very

::::::::::
informative

::::
and

:::::
robust

:::
for

::::::
spatial

:::::::::
adjustment.

::::::::::
Concerning

:::
the

::::::::::
dependence

::::::::::
adjustment,

:
it
::::
was

:::::
shown

::
in
:::::::
Section

:::
4.5

:::
that

:::
the

::::::::::
multivariate

:::::::
methods

:::
all

:::::::
perform

::::
well1055

::
for

:::
the

::::
area

::::
and

:::::
model

:::::
chain

::::::
studied

:::::
here.

:::::::
Second,

:::::
while

:::::
QDM

:::
and

:::::::
mQDM

::::
seem

:::
to

::::::
respond

::::::::
similarly,

::
it
::::::
should

::
be

:::::
taken

::::
into

::::::
account

::::
that

::::::
mQDM

::
is
::::::::
designed

::
to

::::
have

:
a
::::::
perfect

:::
fit

::
in

:::
the

:::::::::
calibration

::::::
period.

::::::::
However,

:::
the

:::::
poorer

:::::::::::
performance

::
of

:::::::
mQDM

:::
for

::
the

:::::::::::
precipitation

::::::::::
occurrence

::::::
indices

::
is

::
an

:::::::::
indication

:::
that

:::::::::
assuming

:::
that

:::
the

::::::::
temporal

:::::::
structure

:::
of

:::
the

::::
past

:::
can

::
be

:::::
used

:::
for

:::
the

:::::
future

:::::
might

:::
be

:::::::::
dangerous,

::
as

::::::::::::::::::::::::
Johnson and Sharma (2011)

:::
and

::::::::::::::::::
Kerkhoff et al. (2014)

::::::
already

::::::::::
mentioned.

:::::
Given

::::
that

:::::::
mQDM

::::::::
performed

::::::
worse

::
for

::::
two

::::
time

::::::
periods

::::::::
separated

:::
by

::
10

:::::
years

:::::
only,

:
it
::
is

:::::::
unlikely

::::
that

:
it
::
is
::::
safe

::
to

:::
use

::::
this

:::::::
method,

::
or

::::
other

:::::
delta1060

:::::::::::
change-based

::::::::
methods,

:::
for

::::::
impact

::::::::::
assessments

::::::::
targeting

:::
the

:::
end

::
of

:::
the

::::
21st

:::::::
century

:::
that

:::::::
depend

::
on

:::
the

::::::::
temporal

:::::::
structure

:::
of
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::::
time

:::::
series.

::::
Yet,

:::
for

:::::
some

:::::
other

::::::
indices,

:::::::::
especially

:::
the

::::::::::
correlation,

:::::::
mQDM

:::::::::
performed

:::::
better.

::::::::::::
Consequently,

:::
the

:::::
exact

::::::
choice

:::::
should

:::::::
depend

::
on

:::
the

:::::
goals

:::
of

:::
the

:::
end

:::::
user.

:::::
Third,

:::
the

::::::::
methods

::::
with

:::::::
seasonal

:::::::::::
components

::
do

:::
not

:::::::
always

:::::::
perform

::::::::
similarly.

:::::::::
MRQNBC

::
is

::::
able

::
to

:::::::
address

:::::::
seasonal

:::::::
effects,

:::
but

:::
its

:::::::::::
performance

:::::
varies

::::::::
strongly

:::::::::
depending

::
on

::::
the

:::::::
variable.

:::::
Even

:::
in

:::
the

:::::::
situation

:::::
where

:::
the

:::::::::
univariate

:::::::
methods

:::::::
perform

:::::
well,

:::::::::
MRQNBC

:::::::::
sometimes

:::::::::
performed

:::::
much

::::::
worse,

::::
such

:::
as

:::
for

::::::::::
temperature1065

::
in

::::::
autumn

::
or

:::
in

:::::
winter

::::
(Fig

::
4,
:::::

panel
::::
(d),

::::::::::
respectively

::::::
purple

:::
and

:::::
blue).

:::::::::
Although

::::
these

:::::
three

:::::::::::
observations

:::
can

:::
be

:::::
made,

::
it

::
is

:::::::::
impossible

::
to

::::
fully

::::::
discuss

:::
the

::::::
method

:::::::::::
performance

:::::
based

::
on

:::
the

:::::
set-up

::::::::::
considered.

:::
The

:::::
most

::::::::
important

:::::
cause

::
is

::
the

::::::::::
seasonality

::
of

:::
the

:::
bias

:::::::::::::
nonstationarity:

:::::
while

:::
the

::::
bias

::::::::::::
nonstationarity

:::::
shows

:::::
clear

:::::::::
differences

:::::::
between

:::
the

:::::::
seasons,

:::::
some

::
of

:::
the

::::::::::
multivariate

:::::::::::
bias-adjusting

::::::::
methods

::
are

::::
not

::
yet

::::::::
equipped

::
to

::::::
handle

::::::::::
seasonality.

:::::
When

:::::
there

:::
are

::::
large

:::::::
seasonal

::::::::::
differences

:::
for

:::
the

::::::::
variables,

::
for

::::::::
example

:::
for

:
E
::::

and
::
T,

::::
this

:::::
causes

::
a
::::::::
relatively

::::
poor

:::::::::::
performance

::
in

:::
the

:::::::::
calibration

:::::::
period,

:::
and

::
a

::::::
similar

::::
poor

:::::::::::
performance1070

::
in

:::
the

::::::::
validation

:::::::
period.

::
It

::
is

::::
thus

::::::
unclear

::::::::
whether

:::
the

::::
poor

::::::::
seasonal

:::::::::::
performance

:::::::::
obfuscates

:::
the

:::::
effect

:::
of

:::::::::::::
nonstationarity,

::
or

::
if

:::
the

::::::
similar

:::::::::::
performance

::
is

:
a
::::
sign

::
of

::::::::::
robustness.

:::
An

::::::
earlier

:::::
study

:::::::::::::::
(Guo et al., 2020)

:::::::
indicates

:::
the

:::::::
former,

:::
but

::::
this

:::::
could

:::
also

:::
be

:::::::
location-

::::
and

::::::::::::::::
method-dependent.

::::::
Hence,

:::
the

::::::
set-up

::::
does

:::
not

:::::
allow

:::
to

::::::
clearly

::::::
discern

:::::::
between

::::
the

::::::
various

:::::::::
categories

::
of

::::::::::
multivariate

::::::::::::::
bias-adjustment,

::::
such

:::
as

:::
the

:::::::::::::::::::
‘marginal/dependence’

::
or

::::::::::
‘all-in-one’

:::::::::
categories.

:::
To

::::
fully

:::::::
address

:::
the

::::::::
question

::
on

:::::::::::
performance

:::::
under

::::
bias

:::::::::::::
nonstationarity,

:
a
::::::
better

:::::::
seasonal

:::::::::::
performance

:::
for

:::
the

::::::::::
multivariate

::::::::::::
bias-adjusting

:::::::
methods

::::::
seems1075

::::::
crucial.

::::::::
However,

:::
not

::::
only

:::::::
seasonal

::::::::::
differences

::
in

:::
bias

:::::::::::::
nonstationarity

:::::
should

:::
be

::::::::::::
acknowledged:

:::
for

::::::::
variables

::::
other

::::
than

::
P,

::
T

::
or

::
E,

::
or

:::
for

::::
other

:::::::
regions,

:::
bias

:::::::::::::
nonstationarity

:::::
might

::
be

:::::
better

:::::::::
discernible

:::
on

:
a
:::::::
monthly

:::::::::
timescale,

::
on

:
a
::::::
yearly

::::::::
timescale,

::
or

::::
even

:::
on

:::::
longer

:::::::::
timescales.

:::::
Only

:
a
::::
few

::::::::::
multivariate

:::::::::::
bias-adjusting

::::::::
methods

:::::::::
specifically

:::::::
address

:::::::
multiple

:::::::::
timescales,

::::
such

:::
as

:::::::::
MRQNBC

::::::::::::::::::::::::
(Mehrotra and Sharma, 2016),

:::
or

::::
more

::::::::
recently,

:::::::::::
‘Multivariate

:::::::::
Frequency

::::
Bias

::::::::::
Correction’

::::::::
(MFBC)

::::::::::::::::::
(Nguyen et al., 2018)

::
or

::::::
‘3DBC’

:::::::::::::::::::::::::
(Mehrotra and Sharma, 2019)

:
.
::::
Yet,

:::
the

:::::::
varying

:::::::::::
performance

::
of

::::::::::
MRQNBC

:::::
shows

::::
that

::::
the

:::::::::::::
implementation

::
of

::::
the1080

:::::::::
seasonality

:::
can

::::
have

::
a
::::
large

:::::::
impact.

::
As

:::::
such,

:::
the

:::::::
question

:::::
about

::::::::::
seasonality

:
is
:::
not

:::::
easy

::
to

::::::
answer.

:

The validation results could only be obtained by analysing and comparing a broad combination of indices. Considering only

the mean or other standard statistics would have hidden many of the results seen. For example, in contrast to the results for the

mean, the inclusion of both high and low extremes highlighted some problems with bias nonstationarity for some variables.

As such, this study does not contradict earlier studies such as Maraun (2012), where the mean-based biases were found to1085

be rather stable. Even a broader set of indices, such as the ETCCDI indices, was not enough to clearly discern between the

methods. As such,
:::::
Thus,

:
we repeat the advice by Maraun and Widmann (2018a) to use indices not directly affected by bias-

adjusting methods and to analyse the user needs before deciding upon the bias adjustment validation method. An important

limitation is that we only used one GCM-RCM-combination. Using a model ensemble will
:::::
would

:
be more informative, but

could hide a single model’s poor performance. On the other hand, similar assessments could also be used to discard poor-1090

performing models(expanding upon methods such as those used in e.g. Brunner et al. (2019) or Tokarska et al. (2020)), based

on the R index (also suggested by Maurer et al. (2013)) or the remaining bias after adjustment.
::::::::
However,

:::
the

::::
used

::::::
indices

::::
can

:::
still

:::
be

::::::::
improved.

::::::::
Although

::::
the

:
R
::::::

index
:::::::
provides

::
a

::
lot

:::
of

::::::
insight

:::
into

:::
the

::::
bias

:::::::::::::
nonstationarity,

::
it
:::
has

:::::
been

::::::
shown

::
to

::::
over-

:::
or

:::::::::::
underestimate

:::
the

:::::
effect

::
of

::::
bias

:::::::::::::
nonstationarity

:::::::::
depending

::
on

:::
the

::::
size

:::
and

:::::::::
sometimes

:::::
even

:::
the

:::
sign

:::
of

:::
the

::::::
original

:::::
bias.

:::::
Other

::::::
criteria

:::
also

:::::
exist,

:::::
such

::
as

:::
the

:::::::::::::
‘signal-to-noise

:::::
ratio’

::::::
(SNR)

::::
used

:::
by

:::::::::::::
Hui et al. (2020)

:
.
::::
The

:::::::
different

::::::
criteria

:::
or

::::::
indices

::::::
should1095

::
be

::::::::
compared

::::
and

:::::
maybe

::::
new

:::::
tools

:::
are

::::::
needed,

:::
so

:::
that

:::
the

::::
issue

:::
of

:::
bias

:::::::::::::
nonstationarity

:::
can

:::
be

::::
more

:::::::::
thoroughly

::::::::
explored.

:
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The results for the multivariate bias-adjusting methods assessed here are in line with François et al. (2020), especially for the

problematic adjustment of occurrence. François et al. (2020) consequently state that the different multivariate bias-adjusting

methods are based on different assumptions, and thus, the
::
To

:::::
have

:
a
:::::
better

:::::
view

::
of

::::
how

:::::
these

::::::
results

::::::
should

::
be

::::::::::
interpreted

::
for

:::::::
impacts

::::
and

:::::::::
compound

::::::
events,

:::
the

::::::::::
perspective

::
of

:::
the

:
end user should make well-grounded choices on the method used.1100

This also became clear in our assessment. However, François et al. (2020) did not study the effect of climate change and

bias (non)stationarity and instead focused on modeltrend preservation, or trend nonstationarity . The results presented and

discussed here, such as the contrasting results of MRQNBC and dOTC, imply that whether trend preservation was the focus

of a method or not, can have
::
be

:::::::::
considered

:::::::::::::::::::::::::::::::::::::::::::
(Maraun et al., 2015; Maraun and Widmann, 2018b).

::::
We

::::
used

:::::::::
discharge

::
as

:::
an

:::::::
example,

:::::
using

:::
the

::::::::
relatively

::::::
simple

::::::
PDM.

::::
Even

:::
for

::::
this

::::::
model,

::
it

:::::
could

::
be

::::::::
observed

:::
that

::::
bias

:::::::::::::
nonstationarity

:::
can

:::::::::
propagate1105

::
in

:::::::
multiple

:::::
ways.

::::
The

::::::::
influence

::
of

:::
the

::::::::::::
nonstationarity

::
in
:::::::::::
precipitation

::::
was

::::
most

:::::
clear

::
in

:::::::
summer

:::
and

::::::
winter.

:::
As

:::::::::::
precipitation

:
is
:::
the

:::::::
driving

:::::::
variable

:::
for

:::
the

:::::
PDM,

:::::
even

:::
the

::::::
limited

:::::::::::::
nonstationarity,

::::::
mostly

::
in
::::

the
::::::::::
precipitation

:::::::::
extremes,

:::
had

:
an influence

on the bias adjustment.
:::::::
discharge

::::::::::
simulation,

::
as

:::::
could

:::
be

::::
seen

:::
for

:::
the

::::::::
discharge

:::
in

:::::
winter

::::
and

:::::::
summer

::::
(Fig.

::::
11,

::::::::::
respectively

:::
blue

::::
and

:::::::
yellow).

::
In

::::::::
contrast,

:::
the

:::::::::::::
nonstationarity

::
in

::::::::::
evaporation

:::::::::
propagated

:::::
much

::::
less.

:
However, it is yet unclear how trend

nonstationarity and bias nonstationarity influence each other and how the most appropriate methods can be discerned
:::
had

:::
an1110

:::::
effect

::
on

:::
the

:::
full

::::
PDF

::
in
::::::
spring,

:::
as

::::
could

:::
be

::::::::
observed

::::
from

:::
the

::::
PSS

::::
value

:::
for

::::::::
discharge

::::::
(Table

:::
6).

::
In

::::::
spring,

::
no

:::::::::::::
nonstationarity

::::
could

:::
be

::::::::
observed

::
for

::::::::::::
precipitation,

:::::
which

:::::::
allowed

:::
the

::::::::
influence

::
of

::::::::::
evaporation

::
to

::
be

:::::
larger, although it has been suggested to

use trend-preserving methods whenever we can assume the models to correctly simulate the atmospheric processes (Maraun, 2016)

.

Although critical of their use, the results of this paper do not imply that multivariate bias-adjusting methods are not helpful.1115

Many of the methods developed during the past few years can also be used for spatial bias adjustment , in which case the

locations can be used as extra variables (see
::::::::::
theoretically

::::
has

:
a
:::::::

smaller
::::::::
influence

::::
than

:::::::::::
precipitation

:::
on

:::
the

:::::::::
discharge.

::::
The

:::::::
different

::::::::::
propagation

::
of

::::
bias

:::::::::::::
nonstationarity,

:::::::
observed

::::
here

:::
for

:::
the

::::::::
extremes

:::::
versus

:::
the

:::
full

:::::
PDF,

:::
can

:::
be

::::::::
important

::::::::::
considering

:::
that

::::
bias

:::::::::
adjustment

::::
can

::
be

:::::::
applied

:::
for

:::::
many

:::::::
different

:::::
types

::
of

::::::
impact

::::::::::
assessment.

:::::::::
However,

:::
the

:::::::::
assessment

::
in

::::
this

:::::
study

::
is

:::::::
relatively

:::::::
simple.

:::
For

:::::
other

::::::
impact

:::::::
studies,

:::
the

::::::
results

::::
may

::::
vary

:::::::::::
considerably.

:::
For

::::::::
example,

:::::
forest

::::
fires

:::
(a

::::::
typical

:::::::::
compound1120

:::::
event,

::::::::
discussed

::
in

:
a
::::
bias

:::::::::
adjustment

::::::
context

::
in
:
e.g.Vrac (2018))

::::::::::::::
Yang et al. (2015)

:
,
::::::::::::
Cannon (2018)

:
,
:::::::::::::::::::::
Zscheischler et al. (2019)

:
)
::::::
depend

::::
more

:::::::
heavily

::
on

::
T

:::
and

::
E

::
to

:::::::
simulate

:::
fire

:::::::
weather

:::::::::
conditions.

::::::
Besides

::::
such

:::::::::
compound

::::::
events,

:::::
other

::::
types

::
of

::::::::::
application

:::
can

:::
use

:
a
::::
wide

::::::
variety

:::
of

:::::::
variables

::::
and,

::::::
hence,

::
the

::::
bias

::::::::::::
nonstationarity

::::
may

::::::
differ.

::
In

::
all

::
of

:::::
these

::::::
studies,

:::
the

::::::::::
propagation

::
of

::::
bias

::::::::::::
nonstationarity

::::
will

::::::
depend

::
on

:::
the

:::::::::
timescales

::::::::::
considered

::
in

:::
the

::::::
impact

::::::::::
assessment,

::
the

:::::::::
timescales

:::
on

:::::
which

:::::::::::::
nonstationarity

::
is

::::::
present,

:::
the

::::::::
variables

:::::::::
considered

:::
and

:::
the

::::::
spatial

:::::
scale.

::::::::
Although

:::
this

:::
last

::::::
aspect

::
is

::::::
limited

::
in

:::
this

:::::
study,

::
it

:::
can

::
be

::::::::
assumed

:::
that

::
if1125

:::
bias

:::::::::::::
nonstationarity

:
is
:::::::
present

::
in

:::
one

::::
grid

:::
cell,

::
it
::::
will

:::
also

:::
be

::::::
present

::
in

:::::::::::
neighbouring

:::
grid

:::::
cells

::::
with

::::::
similar

::::::
climatic

:::::::::
conditions.

A similar set-up has not been tested here, but the study by François et al. (2020) has proven the multivariate bias-adjusting

methods to be very informative and robust for spatial adjustment: the spatial characteristics that influence local weather the

most, such as orography.

Nonetheless
::
To

::::::::
conclude, the results discussed in this paper indicate that many methods, and especially the multivariate1130

bias-adjusting methods, fail in handling climate change and its resulting bias nonstationarity correctly
:::
bias

::::::::::::
nonstationarity

::::
can
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::::
have

::
an

:::::::::
important

:::::::
influence

:::
on

:::
the

::::
bias

:::::::::
adjustment

::::
and

:::
the

::::::::::
propagation

::
of

:::::
biases

:::
in

::::::
impact

::::::
models.

::::::::::
Depending

::
on

:::
the

::::::
extent

::
of

::::::::::::
nonstationarity

:::::::
(spatial,

::::::::
temporal

:::
and

:::
the

::::::::
variables

::::::::
affected),

::::
such

::::::::::
propagation

::::::
should

::
be

:::::
taken

::::
into

:::::::
account

::
far

:::::
more

:::::
when

:::::::
studying

:::::
future

:::::::
impacts. As authors have mentioned before (Ehret et al., 2012; Maraun, 2016; Nahar et al., 2017), this foremost

implies that climate models have to become better at modelling the future: we need to be able to trust them as fully as possible.1135

As long as this is not the case, bias adjustment methods have to be developed that are more robust and that are able to help us

assessing the future correctly.
::
As

:::::
such,

:::
the

::::
issue

:::
of

:::::::::
seasonality

::
as

:::::
raised

::::
here

::
is

::::
very

:::::::::
important. Yet, impact assessment cannot

wait for new methods to be developed and/or tested: we need to prepare ourselves for the future as soon as possible. As was

shown here
:::
For

::::
now, we can state for the current generation of methods that the fewer assumptions and calculations a method

needs, the more robust it is when used in a climate change context
:::
that

:::
for

:
a
::::::

robust
::::
bias

:::::::::
adjustment

:::::
under

::::::::::::::::
bias-nonstationary1140

:::::::::
conditions,

:::::::::
accounting

:::
for

:::::::::
seasonality

::
is

::::::
crucial. Given this statement, we advise to use univariate bias-adjusting methods, until

it becomes more clear how it can be ensured that multivariate methods certainly perform well in a climate change context
:::::
under

:::
bias

:::::::::::::
nonstationarity.

Code and data availability. The code for the computations is publicly available at https://doi.org/10.5281/zenodo.4247518 (Hydro-Climate

Extremes Lab – Ghent University, 2020). All methods were implemented in Matlab, except R2D2, for which the R package "R2D2" was1145

used (Vrac and Thao, 2020a). The RCA4 data are downloaded and are available from the Earth System Grid Federation data repository. The

local observations were obtained from RMI in Belgium, and cannot be shared with third parties.
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6 Appendix A1155

Observed values, and biases for the raw and adjusted climate simulations. (continued) Index Observed value QDM mQDM

MBCn MRQNBC dOTC P5 (mm) 0.00 0.00 0.0000 0.0000 0.00 -0.40 0 P25 (mm) 0.00 0.08 0.0000 0.0000 0.00 0.00 0.42
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P50 (mm) 0.10 1.01 0.05 0.10 0.05 0.27 0.83 P75(mm) 2.70 1.83 -0.18 -0.17 -0.18 -0.84 0.76 P90(mm) 7.40 1.99 -0.26 -0.30

-0.26 -1.36 -0.23 P95 (mm) 11.42 2.38 -0.61 -0.60 -0.61 -1.44 -0.65 P99 (mm) 21.80 2.36 -1.86 -1.73 -1.86 1.38 -1.55 P99.5

(mm) 29.09 1.56 -4.20 -3.97 -4.20 0.02 -4.02 T5 (ºC) 0.40 -0.31 -0.70 -1.43 -0.70 -0.63 -0.94 T25 (ºC) 6.30 -0.08 -0.68 -1.551160

-0.68 -3.00 -0.73 T50 (ºC) 11.40 -0.40 -0.81 -0.88 -0.81 -3.24 -0.70 T75(ºC) 16.10 -0.70 -0.46 0.09 -0.46 -1.07 -0.37 T90(ºC)

19.40 -1.07 -0.35 0.31 -0.35 1.02 0.12 T95 (ºC) 21.30 -1.17 -0.01 0.37 -0.01 2.59 0.25 T99 (ºC) 24.95 -1.85 -0.16 -0.75 -0.16

5.95 0.46 T99.5 (ºC) 25.90 -1.80 0.16 -1.39 0.16 7.01 0.77 E5 (mm) 0.00 0.20 0.00 0.00 0.00 -0.04 0 E25 (mm) 0.52 0.15 -0.09

-0.10 -0.09 -0.16 -0.52 E50 (mm) 1.42 0.05 -0.27 -0.28 -0.27 -0.38 -0.77 E75(mm) 2.69 -0.02 -0.34 -0.35 -0.34 -0.58 -0.65

E90(mm) 3.65 0.10 -0.27 -0.27 -0.27 -0.47 -0.18 E95 (mm) 4.21 0.15 -0.30 -0.28 -0.30 -0.41 0.125 E99 (mm) 5.02 0.21 -0.161165

-0.13 -0.16 -0.17 0.69 E99.5 (mm) 5.24 0.27 -0.10 -0.02 -0.10 -0.07 1.03 corrP,E (-) -0.18 -0.04 -0.06 0.02 0.19 0.17 0.57

corrP,T (-) -0.16 0.18 0.14 0.09 0.16 0.16 0.04 corrE,T (-) 0.82 -0.02 -0.03 -0.09 -0.84 0.02 -0.45 crosscorrP,E,0(-) 0.30 0.06

-0.04 -0.02 0.05 -0.03 0.12 crosscorrP,T,0(-) 0.24 0.19 0.08 -0.01 0.10 0.05 0.11 crosscorrE,T,0 (-) 0.36 0.14778813 0.05 0.01

0.02 -0.03 0.06 crosscorrP,E,1 (-) 0.38 0.126718335 0.02 -0.01 0.02 -0.04 0.08 crosscorrP,T,1 (-) 0.93 -0.001694362 -0.02

-0.05 -0.29 -0.02 -0.21 crosscorrE,T,1 (-) 0.91 0.007385905 -0.01 -0.04 -0.27 -0.01 -0.24PP00 (-) 0.65 -0.10 -0.00 -0.02 -0.171170

0.00 -0.37 PP10 (-) 0.32 -0.15 0.00 -0.05 0.16 -0.13 -0.07 Ndry (-) 3470.00 -1466.00 0.00 -373.00 0.00 -923.00 -1604.20 Plag1

(-) 0.33 0.11 0.02 0.07 -0.12 0.08 0.05 Q5 (m3/s) 2.30 0.92 -0.32 -0.18 0.82 -0.40 1.50 Q25 (m3/s) 3.36 1.45 0.02 -0.12 0.29

-0.23 1.50 Q50 (m3/s) 4.39 1.53 0.08 0.02 -0.20 -0.42 1.33 Q75 (m3/s) 5.72 2.52 -0.08 -0.03 -0.72 -0.81 1.51 Q90 (m3/s) 7.83

4.76 -0.36 -0.07 -1.66 -1.37 2.12 Q95(m3/s) 10.09 9.22 -1.00 -0.33 -2.78 -1.78 2.94 Q99 (m3/s) 18.71 18.58 -1.65 -0.78 -3.21

4.77 5.77 Q99.5 (m3/s) 23.90 19.70 0.84 -1.77 -0.57 13.81 6.61 QT20 (m3/s) 48.69 54.61 8.36 -3.41 -10.40 52.45 25.031175
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